1
|
Cheng X, Li W, Wang Y, Weng K, Xing Y, Huang Y, Sheng X, Yao J, Zhang H, Li J. Highly Branched Au Superparticles as Efficient Photothermal Transducers for Optical Neuromodulation. ACS NANO 2024; 18:29572-29584. [PMID: 39400203 DOI: 10.1021/acsnano.4c07163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Precise neuromodulation is critical for interrogating cellular communication and treating neurological diseases. Nanoscale transducers have emerged as effective interfaces to exert photothermal effects and modulate neural activities with a high spatiotemporal resolution. Ideal materials for this application should possess strong light absorption, high photothermal conversion efficiency, and great biocompatibility for clinical translation. Here, we show that the structurally designed 3D Au superparticles with a highly branched morphology can be promising candidates for nongenetic and remote neuromodulation. The structure-induced blackbody-like absorption endows Au superparticles with photothermal conversion efficiency over 90%, much higher than that of conventional Au nanorods. With the biocompatible polydopamine ligands, Au superparticles can be readily interfaced with primary mouse hippocampal neurons and other cells and can photostimulate or inhibit their activities in both cell networks or with a single-cell resolution. These findings highlight the importance of structural designs as powerful tools to promote the performance of plasmonic materials in neuromodulation and related research of neuroscience and neuroengineering.
Collapse
Affiliation(s)
- Xinyu Cheng
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Wenjun Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yinghan Wang
- School of Life Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Kangkang Weng
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- School of Optics and Photonics, Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing Institute of Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| | - Yunyun Xing
- School of Life Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Yunxiang Huang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Jun Yao
- School of Life Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Hao Zhang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Jakešová M, Kunovský O, Gablech I, Khodagholy D, Gelinas J, Głowacki ED. Coupling of photovoltaics with neurostimulation electrodes-optical to electrolytic transduction. J Neural Eng 2024; 21:046003. [PMID: 38885680 DOI: 10.1088/1741-2552/ad593d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Objective.The wireless transfer of power for driving implantable neural stimulation devices has garnered significant attention in the bioelectronics field. This study explores the potential of photovoltaic (PV) power transfer, utilizing tissue-penetrating deep-red light-a novel and promising approach that has received less attention compared to traditional induction or ultrasound techniques. Our objective is to critically assess key parameters for directly powering neurostimulation electrodes with PVs, converting light impulses into neurostimulation currents.Approach.We systematically investigate varying PV cell size, optional series configurations, and coupling with microelectrodes fabricated from a range of materials such as Pt, TiN, IrOx, Ti, W, PtOx, Au, or poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate). Additionally, two types of PVs, ultrathin organic PVs and monocrystalline silicon PVs, are compared. These combinations are employed to drive pairs of electrodes with different sizes and impedances. The readout method involves measuring electrolytic current using a straightforward amplifier circuit.Main results.Optimal PV selection is crucial, necessitating sufficiently large PV cells to generate the desired photocurrent. Arranging PVs in series is essential to produce the appropriate voltage for driving current across electrode/electrolyte impedances. By carefully choosing the PV arrangement and electrode type, it becomes possible to emulate electrical stimulation protocols in terms of charge and frequency. An important consideration is whether the circuit is photovoltage-limited or photocurrent-limited. High charge-injection capacity electrodes made from pseudo-faradaic materials impose a photocurrent limit, while more capacitive materials like Pt are photovoltage-limited. Although organic PVs exhibit lower efficiency than silicon PVs, in many practical scenarios, stimulation current is primarily limited by the electrodes rather than the PV driver, leading to potential parity between the two types.Significance.This study provides a foundational guide for designing a PV-powered neurostimulation circuit. The insights gained are applicable to bothin vitroandin vivoapplications, offering a resource to the neural engineering community.
Collapse
Affiliation(s)
- Marie Jakešová
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Ondřej Kunovský
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Imrich Gablech
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Jennifer Gelinas
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
- Department of Neurology, Columbia University, New York, NY 10032, United States of America
| | - Eric Daniel Głowacki
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| |
Collapse
|
3
|
Criado-Gonzalez M, Marzuoli C, Bondi L, Gutierrez-Fernandez E, Tullii G, Lagonegro P, Sanz O, Cramer T, Antognazza MR, Mecerreyes D. Porous Semiconducting Polymer Nanoparticles as Intracellular Biophotonic Mediators to Modulate the Reactive Oxygen Species Balance. NANO LETTERS 2024; 24:7244-7251. [PMID: 38842262 PMCID: PMC11194851 DOI: 10.1021/acs.nanolett.4c01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
The integration of nanotechnology with photoredox medicine has led to the emergence of biocompatible semiconducting polymer nanoparticles (SPNs) for the optical modulation of intracellular reactive oxygen species (ROS). However, the need for efficient photoactive materials capable of finely controlling the intracellular redox status with high spatial resolution at a nontoxic light density is still largely unmet. Herein, highly photoelectrochemically efficient photoactive polymer beads are developed. The photoactive material/electrolyte interfacial area is maximized by designing porous semiconducting polymer nanoparticles (PSPNs). PSPNs are synthesized by selective hydrolysis of the polyester segments of nanoparticles made of poly(3-hexylthiophene)-graft-poly(lactic acid) (P3HT-g-PLA). The photocurrent of PSPNs is 4.5-fold higher than that of nonporous P3HT-g-PLA-SPNs, and PSPNs efficiently reduce oxygen in an aqueous environment. PSPNs are internalized within endothelial cells and optically trigger ROS generation with a >1.3-fold concentration increase with regard to nonporous P3HT-SPNs, at a light density as low as a few milliwatts per square centimeter, fully compatible with in vivo, chronic applications.
Collapse
Affiliation(s)
- Miryam Criado-Gonzalez
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Camilla Marzuoli
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Raffaele Rubattino 81, 20134 Milano, Italy
- Politecnico
di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Luca Bondi
- Department
of Physics and Astronomy, University of
Bologna, Viale Carlo Berti Pichat 6/2, 40127 Bologna, Italy
| | - Edgar Gutierrez-Fernandez
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- XMaS/BM28-ESRF, 71 Avenue Des Martyrs, F-38043 Grenoble Cedex, France
- Department
of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Gabriele Tullii
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Raffaele Rubattino 81, 20134 Milano, Italy
| | - Paola Lagonegro
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Raffaele Rubattino 81, 20134 Milano, Italy
| | - Oihane Sanz
- Department
of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Tobias Cramer
- Department
of Physics and Astronomy, University of
Bologna, Viale Carlo Berti Pichat 6/2, 40127 Bologna, Italy
| | - Maria Rosa Antognazza
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Raffaele Rubattino 81, 20134 Milano, Italy
| | - David Mecerreyes
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48013 Bilbao, Spain
| |
Collapse
|
4
|
Luponosov YN, Solodukhin AN, Aseyev NA, Rokitskaya TI, Kolotova DE, Kotova EA, Kurkin TS, Poletavkina LA, Isaeva YA, Antonenko YN, Balaban PM, Ponomarenko SA. Nanoparticles of Push-Pull Triphenylamine-Based Molecules for Light-Controlled Stimulation of Neuronal Activity. ACS Biomater Sci Eng 2024; 10:1139-1152. [PMID: 38241460 DOI: 10.1021/acsbiomaterials.3c01562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Organic semiconductor materials with a unique set of properties are very attractive for interfacing biological objects and can be used for noninvasive therapy or detection of biological signals. Here, we describe the synthesis and investigation of a novel series of organic push-pull conjugated molecules with the star-shaped architecture, consisting of triphenylamine as a branching electron donor core linked through the thiophene π-spacer to electron-withdrawing alkyl-dicyanovinyl groups. The molecules could form stable aqueous dispersions of nanoparticles (NPs) without the addition of any surfactants or amphiphilic polymer matrixes with the average size distribution varying from 40 to 120 nm and absorption spectra very similar to those of human eye retina pigments such as rods and green cones. Variation of the terminal alkyl chain length of the molecules forming NPs from 1 to 12 carbon atoms was found to be an efficient tool to modulate their lipophilic and biological properties. Possibilities of using the NPs as light nanoactuators in biological systems or as artificial pigments for therapy of degenerative retinal diseases were studied both on the model planar bilayer lipid membranes and on the rat cortical neurons. In the planar bilayer system, the photodynamic activity of these NPs led to photoinactivation of ion channels formed by pentadecapeptide gramicidin A. Treatment of rat cortical neurons with the NPs caused depolarization of cell membranes upon light irradiation, which could also be due to the photodynamic activity of the NPs. The results of the work gave more insight into the mechanisms of light-controlled stimulation of neuronal activity and for the first time showed that fine-tuning of the lipophilic affinity of NPs based on organic conjugated molecules is of high importance for creating a bioelectronic interface for biomedical applications.
Collapse
Affiliation(s)
- Yuriy N Luponosov
- Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya st. 70, Moscow 117393, Russia
| | - Alexander N Solodukhin
- Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya st. 70, Moscow 117393, Russia
| | - Nikolay A Aseyev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Darya E Kolotova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Tikhon S Kurkin
- Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya st. 70, Moscow 117393, Russia
| | - Liya A Poletavkina
- Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya st. 70, Moscow 117393, Russia
| | - Yulia A Isaeva
- Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya st. 70, Moscow 117393, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Sergey A Ponomarenko
- Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya st. 70, Moscow 117393, Russia
| |
Collapse
|
5
|
Savva A, Hama A, Herrera‐López G, Schmidt T, Migliaccio L, Steiner N, Kawan M, Fiumelli H, Magistretti PJ, McCulloch I, Baran D, Gasparini N, Schindl R, Głowacki ED, Inal S. Photo-Chemical Stimulation of Neurons with Organic Semiconductors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300473. [PMID: 37661572 PMCID: PMC10625067 DOI: 10.1002/advs.202300473] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/17/2023] [Indexed: 09/05/2023]
Abstract
Recent advances in light-responsive materials enabled the development of devices that can wirelessly activate tissue with light. Here it is shown that solution-processed organic heterojunctions can stimulate the activity of primary neurons at low intensities of light via photochemical reactions. The p-type semiconducting polymer PDCBT and the n-type semiconducting small molecule ITIC (a non-fullerene acceptor) are coated on glass supports, forming a p-n junction with high photosensitivity. Patch clamp measurements show that low-intensity white light is converted into a cue that triggers action potentials in primary cortical neurons. The study shows that neat organic semiconducting p-n bilayers can exchange photogenerated charges with oxygen and other chemical compounds in cell culture conditions. Through several controlled experimental conditions, photo-capacitive, photo-thermal, and direct hydrogen peroxide effects on neural function are excluded, with photochemical delivery being the possible mechanism. The profound advantages of low-intensity photo-chemical intervention with neuron electrophysiology pave the way for developing wireless light-based therapy based on emerging organic semiconductors.
Collapse
Affiliation(s)
- Achilleas Savva
- Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB30ASUK
| | - Adel Hama
- Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Gabriel Herrera‐López
- Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Tony Schmidt
- Gottfried Schatz Research CenterChair of BiophysicsMedical University of GrazNeue Stiftingtalstraße 6Graz8010Austria
| | - Ludovico Migliaccio
- Bioelectronics Materials and Devices LaboratoryCentral European Institute of TechnologyBrno University of TechnologyPurkyňova 123Brno61200Czech Republic
| | - Nadia Steiner
- Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Malak Kawan
- Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Hubert Fiumelli
- Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Pierre J. Magistretti
- Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Iain McCulloch
- Physical Science and Engineering (PSE)KAUST Solar Center (KSC)King Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Derya Baran
- Physical Science and Engineering (PSE)KAUST Solar Center (KSC)King Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Nicola Gasparini
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
| | - Rainer Schindl
- Gottfried Schatz Research CenterChair of BiophysicsMedical University of GrazNeue Stiftingtalstraße 6Graz8010Austria
| | - Eric D. Głowacki
- Bioelectronics Materials and Devices LaboratoryCentral European Institute of TechnologyBrno University of TechnologyPurkyňova 123Brno61200Czech Republic
| | - Sahika Inal
- Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| |
Collapse
|
6
|
Tommasini G, De Simone M, Santillo S, Dufil G, Iencharelli M, Mantione D, Stavrinidou E, Tino A, Tortiglione C. In vivo neuromodulation of animal behavior with organic semiconducting oligomers. SCIENCE ADVANCES 2023; 9:eadi5488. [PMID: 37851802 PMCID: PMC10584338 DOI: 10.1126/sciadv.adi5488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023]
Abstract
Modulating neural activity with electrical or chemical stimulus can be used for fundamental and applied research. Typically, neuronal stimulation is performed with intracellular and extracellular electrodes that deliver brief electrical pulses to neurons. However, alternative wireless methodologies based on functional materials may allow clinical translation of technologies to modulate neuronal function. Here, we show that the organic semiconducting oligomer 4-[2-{2,5-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)thiophen-3-yl}ethoxy]butane-1-sulfonate (ETE-S) induces precise behaviors in the small invertebrate Hydra, which were dissected through pharmacological and electrophysiological approaches. ETE-S-induced behavioral response relies on the presence of head neurons and calcium ions and is prevented by drugs targeting ionotropic channels and muscle contraction. Moreover, ETE-S affects Hydra's electrical activity enhancing the contraction burst frequency. The unexpected neuromodulatory function played by this conjugated oligomer on a simple nerve net opens intriguing research possibilities on fundamental chemical and physical phenomena behind organic bioelectronic interfaces for neuromodulation and on alternative methods that could catalyze a wide expansion of this rising technology for clinical applications.
Collapse
Affiliation(s)
- Giuseppina Tommasini
- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Mariarosaria De Simone
- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Silvia Santillo
- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Gwennaël Dufil
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrkoping, Sweden
| | - Marika Iencharelli
- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Daniele Mantione
- POLYMAT University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrkoping, Sweden
| | - Angela Tino
- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Claudia Tortiglione
- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| |
Collapse
|
7
|
Zhang Z, You Y, Ge M, Lin H, Shi J. Functional nanoparticle-enabled non-genetic neuromodulation. J Nanobiotechnology 2023; 21:319. [PMID: 37674191 PMCID: PMC10483742 DOI: 10.1186/s12951-023-02084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Stimulating ion channels targeting in neuromodulation by external signals with the help of functionalized nanoparticles, which integrates the pioneering achievements in the fields of neurosciences and nanomaterials, has involved into a novel interdisciplinary field. The emerging technique developed in this field enable simple, remote, non-invasive, and spatiotemporally precise nerve regulations and disease therapeutics, beyond traditional treatment methods. In this paper, we define this emerging field as nano-neuromodulation and summarize the most recent developments of non-genetic nano-neuromodulation (non-genetic NNM) over the past decade based on the innovative design concepts of neuromodulation nanoparticle systems. These nanosystems, which feature diverse compositions, structures and synthesis approaches, could absorb certain exogenous stimuli like light, sound, electric or magnetic signals, and subsequently mediate mutual transformations between above signals, or chemical reactions, to regulate stimuli-sensitive ion channels and ion migrations which play vital roles in the nervous system. We will also discuss the obstacles and challenges in the future development of non-genetic NNM, and propose its future developments, to add the further progress of this promising field.
Collapse
Affiliation(s)
- Zhimin Zhang
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanling You
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Min Ge
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Han Lin
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, People's Republic of China.
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, People's Republic of China.
| | - Jianlin Shi
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, People's Republic of China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
8
|
Zhang Z, You Y, Ge M, Lin H, Shi J. Functional nanoparticle-enabled non-genetic neuromodulation. J Nanobiotechnology 2023; 21:319. [DOI: doi.org/10.1186/s12951-023-02084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
AbstractStimulating ion channels targeting in neuromodulation by external signals with the help of functionalized nanoparticles, which integrates the pioneering achievements in the fields of neurosciences and nanomaterials, has involved into a novel interdisciplinary field. The emerging technique developed in this field enable simple, remote, non-invasive, and spatiotemporally precise nerve regulations and disease therapeutics, beyond traditional treatment methods. In this paper, we define this emerging field as nano-neuromodulation and summarize the most recent developments of non-genetic nano-neuromodulation (non-genetic NNM) over the past decade based on the innovative design concepts of neuromodulation nanoparticle systems. These nanosystems, which feature diverse compositions, structures and synthesis approaches, could absorb certain exogenous stimuli like light, sound, electric or magnetic signals, and subsequently mediate mutual transformations between above signals, or chemical reactions, to regulate stimuli-sensitive ion channels and ion migrations which play vital roles in the nervous system. We will also discuss the obstacles and challenges in the future development of non-genetic NNM, and propose its future developments, to add the further progress of this promising field.
Graphical Abstract
Collapse
|
9
|
Bernhardt S, Yokosawa T, Spiecker E, Gröhn F. Polythiophene as a Double-Electrostatic Template for Zinc Oxide and Gold: Multicomponent Nano-Objects for Enhanced Photocatalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10312-10320. [PMID: 37462454 DOI: 10.1021/acs.langmuir.3c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Using electrostatic self-assembly and electrostatic nanotemplating, a quaternary nanostructured system consisting of zinc oxide nanoparticles, gold nanoparticles, poly[3-(potassium-4-butanoate)thiophene-2,5-diyl] (PT), and methyltrioctylammonium chloride (MTOA) (PT-MTOA-ZnO-Au) was designed for aqueous photocatalysis. The PT-MTOA hollow sphere aggregates served as an electrostatic template for both individual inorganic nanoparticles controlling their morphology, stabilizing the nanoparticles, and acting as a photosensitizer. The hybrid structures included spherical ZnO nanoparticles with a diameter of d = 2.6 nm and spherical Au nanoparticles with d = 6.0 nm embedded in PT-MTOA hollow spheres with a hydrodynamic radius of RH = 100 nm. The ZnO nanoparticles acted as the main catalyst, while the Au nanoparticles acted as the cocatalyst. As a photocatalytic model reaction, the dye degradation of methylene blue in aqueous solution using the full spectral range from UV to visible light was tested. The photocatalytic activity was optimized by varying the Zn and Au loading ratios and was substantially enhanced regarding the components; for example, it was increased by about 61% using PT-MTOA-ZnO-Au compared to the composite without gold particles. A photocatalytic mechanism of the methylene blue degradation was proposed when catalyzed by these multicomponent nano-objects. Thus, a simple procedure of templating two different nanoparticle species within the same cocatalytically active template has been demonstrated, which can be extended to other inorganic particles, making a variety of task-specific catalysts accessible.
Collapse
Affiliation(s)
- Sarah Bernhardt
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) and Bavarian Polymer Institute (BPI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Tadahiro Yokosawa
- Institute of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), IZNF, Cauerstraße 3, 91058 Erlangen, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), IZNF, Cauerstraße 3, 91058 Erlangen, Germany
| | - Franziska Gröhn
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) and Bavarian Polymer Institute (BPI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
10
|
Sharova AS, Modena F, Luzio A, Melloni F, Cataldi P, Viola F, Lamanna L, Zorn NF, Sassi M, Ronchi C, Zaumseil J, Beverina L, Antognazza MR, Caironi M. Chitosan-gated organic transistors printed on ethyl cellulose as a versatile platform for edible electronics and bioelectronics. NANOSCALE 2023; 15:10808-10819. [PMID: 37334549 PMCID: PMC10311466 DOI: 10.1039/d3nr01051a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/20/2023] [Indexed: 06/20/2023]
Abstract
Edible electronics is an emerging research field targeting electronic devices that can be safely ingested and directly digested or metabolized by the human body. As such, it paves the way to a whole new family of applications, ranging from ingestible medical devices and biosensors to smart labelling for food quality monitoring and anti-counterfeiting. Being a newborn research field, many challenges need to be addressed to realize fully edible electronic components. In particular, an extended library of edible electronic materials is required, with suitable electronic properties depending on the target device and compatible with large-area printing processes, to allow scalable and cost-effective manufacturing. In this work, we propose a platform for future low-voltage edible transistors and circuits that comprises an edible chitosan gating medium and inkjet-printed inert gold electrodes, compatible with low thermal budget edible substrates, such as ethylcellulose. We report the compatibility of the platform, characterized by critical channel features as low as 10 μm, with different inkjet-printed carbon-based semiconductors, including biocompatible polymers present in the picogram range per device. A complementary organic inverter is also demonstrated with the same platform as a proof-of-principle logic gate. The presented results offer a promising approach to future low-voltage edible active circuitry, as well as a testbed for non-toxic printable semiconductors.
Collapse
Affiliation(s)
- Alina S Sharova
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
| | - Francesco Modena
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
| | - Alessandro Luzio
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
| | - Filippo Melloni
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
| | - Pietro Cataldi
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Fabrizio Viola
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
| | - Leonardo Lamanna
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Nicolas F Zorn
- Institute for Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Mauro Sassi
- Department of Materials Science, Università degli Studi di Milano-Bicocca, via Cozzi, 55, 20125, Milano, Italy
| | - Carlotta Ronchi
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
| | - Jana Zaumseil
- Institute for Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Luca Beverina
- Department of Materials Science, Università degli Studi di Milano-Bicocca, via Cozzi, 55, 20125, Milano, Italy
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
| | - Mario Caironi
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
| |
Collapse
|
11
|
Serrano-Garcia W, Cruz-Maya I, Melendez-Zambrana A, Ramos-Colon I, Pinto NJ, Thomas SW, Guarino V. Optimization of PVDF-TrFE Based Electro-Conductive Nanofibers: Morphology and In Vitro Response. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3106. [PMID: 37109942 PMCID: PMC10145551 DOI: 10.3390/ma16083106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
In this study, morphology and in vitro response of electroconductive composite nanofibers were explored for biomedical use. The composite nanofibers were prepared by blending the piezoelectric polymer poly(vinylidene fluoride-trifluorethylene) (PVDF-TrFE) and electroconductive materials with different physical and chemical properties such as copper oxide (CuO), poly(3-hexylthiophene) (P3HT), copper phthalocyanine (CuPc), and methylene blue (MB) resulting in unique combinations of electrical conductivity, biocompatibility, and other desirable properties. Morphological investigation via SEM analysis has remarked some differences in fiber size as a function of the electroconductive phase used, with a reduction of fiber diameters for the composite fibers of 12.43% for CuO, 32.87% for CuPc, 36.46% for P3HT, and 63% for MB. This effect is related to the peculiar electroconductive behavior of fibers: measurements of electrical properties showed the highest ability to transport charges of methylene blue, in accordance with the lowest fibers diameters, while P3HT poorly conducts in air but improves charge transfer during the fiber formation. In vitro assays showed a tunable response of fibers in terms of viability, underlining a preferential interaction of fibroblast cells to P3HT-loaded fibers that can be considered the most suitable for use in biomedical applications. These results provide valuable information for future studies to be addressed at optimizing the properties of composite nanofibers for potential applications in bioengineering and bioelectronics.
Collapse
Affiliation(s)
- William Serrano-Garcia
- Advanced Materials Bio & Integration Research (AMBIR) Laboratory, Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Iriczalli Cruz-Maya
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare, Pad.20, 80125 Naples, Italy
| | | | - Idalia Ramos-Colon
- Department of Physics and Electronics, University of Puerto Rico at Humacao, Humacao 00791, Puerto Rico
| | - Nicholas J. Pinto
- Department of Physics and Electronics, University of Puerto Rico at Humacao, Humacao 00791, Puerto Rico
| | - Sylvia W. Thomas
- Advanced Materials Bio & Integration Research (AMBIR) Laboratory, Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare, Pad.20, 80125 Naples, Italy
| |
Collapse
|
12
|
Pan WT, Liu PM, Ma D, Yang JJ. Advances in photobiomodulation for cognitive improvement by near-infrared derived multiple strategies. J Transl Med 2023; 21:135. [PMID: 36814278 PMCID: PMC9945713 DOI: 10.1186/s12967-023-03988-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Cognitive function is an important ability of the brain, but cognitive dysfunction can easily develop once the brain is injured in various neuropathological conditions or diseases. Photobiomodulation therapy is a type of noninvasive physical therapy that is gradually emerging in the field of neuroscience. Transcranial photobiomodulation has been commonly used to regulate neural activity in the superficial cortex. To stimulate deeper brain activity, advanced photobiomodulation techniques in conjunction with photosensitive nanoparticles have been developed. This review addresses the mechanisms of photobiomodulation on neurons and neural networks and discusses the advantages, disadvantages and potential applications of photobiomodulation alone or in combination with photosensitive nanoparticles. Photobiomodulation and its associated strategies may provide new breakthrough treatments for cognitive improvement.
Collapse
Affiliation(s)
- Wei-tong Pan
- grid.412633.10000 0004 1799 0733Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, 450052 China ,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450000 People’s Republic of China
| | - Pan-miao Liu
- grid.412633.10000 0004 1799 0733Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, 450052 China ,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450000 People’s Republic of China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK. .,National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| | - Jian-jun Yang
- grid.412633.10000 0004 1799 0733Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, 450052 China ,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450000 People’s Republic of China
| |
Collapse
|
13
|
Zhao D, Huang R, Gan JM, Shen QD. Photoactive Nanomaterials for Wireless Neural Biomimetics, Stimulation, and Regeneration. ACS NANO 2022; 16:19892-19912. [PMID: 36411035 DOI: 10.1021/acsnano.2c08543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanomaterials at the neural interface can provide the bridge between bioelectronic devices and native neural tissues and achieve bidirectional transmission of signals with our brain. Photoactive nanomaterials, such as inorganic and polymeric nanoparticles, nanotubes, nanowires, nanorods, nanosheets or related, are being explored to mimic, modulate, control, or even substitute the functions of neural cells or tissues. They show great promise in next generation technologies for the neural interface with excellent spatial and temporal accuracy. In this review, we highlight the discovery and understanding of these nanomaterials in precise control of an individual neuron, biomimetic retinal prosthetics for vision restoration, repair or regeneration of central or peripheral neural tissues, and wireless deep brain stimulation for treatment of movement or mental disorders. The most intriguing feature is that the photoactive materials fit within a minimally invasive and wireless strategy to trigger the flux of neurologically active molecules and thus influences the cell membrane potential or key signaling molecule related to gene expression. In particular, we focus on worthy pathways of photosignal transduction at the nanomaterial-neural interface and the behavior of the biological system. Finally, we describe the challenges on how to design photoactive nanomaterials specific to neurological disorders. There are also some open issues such as long-term interface stability and signal transduction efficiency to further explore for clinical practice.
Collapse
Affiliation(s)
- Di Zhao
- Department of Polymer Science and Engineering and Key Laboratory of High-Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266001, China
| | - Rui Huang
- Department of Polymer Science and Engineering and Key Laboratory of High-Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jia-Min Gan
- Department of Polymer Science and Engineering and Key Laboratory of High-Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qun-Dong Shen
- Department of Polymer Science and Engineering and Key Laboratory of High-Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Medical School of Nanjing University, Nanjing 210008, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing 210023, China
| |
Collapse
|
14
|
Onorato G, Fardella F, Lewinska A, Gobbo F, Tommasini G, Wnuk M, Tino A, Moros M, Antognazza MR, Tortiglione C. Optical Control of Tissue Regeneration through Photostimulation of Organic Semiconducting Nanoparticles. Adv Healthc Mater 2022; 11:e2200366. [PMID: 35861262 PMCID: PMC11469744 DOI: 10.1002/adhm.202200366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/04/2022] [Indexed: 01/27/2023]
Abstract
Next generation bioengineering strives to identify crucial cues that trigger regeneration of damaged tissues, and to control the cells that execute these programs with biomaterials and devices. Molecular and biophysical mechanisms driving embryogenesis may inspire novel tools to reactivate developmental programs in situ. Here nanoparticles based on conjugated polymers are employed for optical control of regenerating tissues by using an animal with unlimited regenerative potential, the polyp Hydra, as in vivo model, and human keratinocytes as an in vitro model to investigate skin repair. By integrating animal, cellular, molecular, and biochemical approaches, nanoparticles based on poly-3-hexylthiophene (P3HT) are shown able to enhance regeneration kinetics, stem cell proliferation, and biomolecule oxidation levels. Opposite outputs are obtained with PCPDTBT-NPs (Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b'] dithiophene)-alt-4,7(2,1,3-benzothiadiazole)], causing a beneficial effect on Hydra regeneration but not on the migratory capability of keratinocytes. These results suggest that the artificial modulation of the redox potential in injured tissues may represent a powerful modality to control their regenerative potential. Importantly, the possibility to fine-tuning materials' photocatalytic efficiency may enable a biphasic modulation over a wide dynamic range, which can be exploited to augment the tissue regenerative capacity or inhibit the unlimited potential of cancerous cells in pathological contexts.
Collapse
Affiliation(s)
- Giada Onorato
- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”Consiglio Nazionale delle RicercheVia Campi Flegrei 34Pozzuoli80078Italy
- Institute of Biosciences and BioresourcesNational Research CouncilVia Pietro Castellino 111NapoliItaly
| | - Federica Fardella
- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”Consiglio Nazionale delle RicercheVia Campi Flegrei 34Pozzuoli80078Italy
- Instituto de Nanociencia y Materiales de AragónC/Mariano Esquillor 15Zaragoza50018Spain
| | - Anna Lewinska
- Department of BiotechnologyInstitute of Biology and BiotechnologyFaculty of BiotechnologyUniversity of RzeszowPigonia 1Rzeszow35–310Poland
| | - Federico Gobbo
- Center for Nano Science and Technology @PoliMiIstituto Italiano di TecnologiaVia Pascoli 70/3Milano20133Italy
- Politecnico di MilanoDip. di FisicaP.zza L. Da Vinci 32Milano20133Italy
| | - Giuseppina Tommasini
- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”Consiglio Nazionale delle RicercheVia Campi Flegrei 34Pozzuoli80078Italy
- Instituto de Nanociencia y Materiales de AragónC/Mariano Esquillor 15Zaragoza50018Spain
| | - Maciej Wnuk
- Department of BiologyFaculty of BiotechnologyUniversity of RzeszowPigonia 1Rzeszow35–310Poland
| | - Angela Tino
- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”Consiglio Nazionale delle RicercheVia Campi Flegrei 34Pozzuoli80078Italy
| | - Maria Moros
- Instituto de Nanociencia y Materiales de AragónC/Mariano Esquillor 15Zaragoza50018Spain
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology @PoliMiIstituto Italiano di TecnologiaVia Pascoli 70/3Milano20133Italy
| | - Claudia Tortiglione
- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”Consiglio Nazionale delle RicercheVia Campi Flegrei 34Pozzuoli80078Italy
| |
Collapse
|
15
|
Berggren M, Głowacki ED, Simon DT, Stavrinidou E, Tybrandt K. In Vivo Organic Bioelectronics for Neuromodulation. Chem Rev 2022; 122:4826-4846. [PMID: 35050623 PMCID: PMC8874920 DOI: 10.1021/acs.chemrev.1c00390] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 01/27/2023]
Abstract
The nervous system poses a grand challenge for integration with modern electronics and the subsequent advances in neurobiology, neuroprosthetics, and therapy which would become possible upon such integration. Due to its extreme complexity, multifaceted signaling pathways, and ∼1 kHz operating frequency, modern complementary metal oxide semiconductor (CMOS) based electronics appear to be the only technology platform at hand for such integration. However, conventional CMOS-based electronics rely exclusively on electronic signaling and therefore require an additional technology platform to translate electronic signals into the language of neurobiology. Organic electronics are just such a technology platform, capable of converting electronic addressing into a variety of signals matching the endogenous signaling of the nervous system while simultaneously possessing favorable material similarities with nervous tissue. In this review, we introduce a variety of organic material platforms and signaling modalities specifically designed for this role as "translator", focusing especially on recent implementation in in vivo neuromodulation. We hope that this review serves both as an informational resource and as an encouragement and challenge to the field.
Collapse
Affiliation(s)
- Magnus Berggren
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Eric D. Głowacki
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
- Bioelectronics
Materials and Devices, Central European
Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech
Republic
| | - Daniel T. Simon
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Eleni Stavrinidou
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| |
Collapse
|
16
|
Moros M, Fergola E, Marchesano V, Mutarelli M, Tommasini G, Miedziak B, Palumbo G, Ambrosone A, Tino A, Tortiglione C. The Aquatic Invertebrate Hydra vulgaris Releases Molecular Messages Through Extracellular Vesicles. Front Cell Dev Biol 2022; 9:788117. [PMID: 34988080 PMCID: PMC8721104 DOI: 10.3389/fcell.2021.788117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Recent body of evidence demonstrates that extracellular vesicles (EVs) represent the first language of cell-cell communication emerged during evolution. In aquatic environments, transferring signals between cells by EVs offers protection against degradation, allowing delivering of chemical information in high local concentrations to the target cells. The packaging of multiple signals, including those of hydrophobic nature, ensures target cells to receive the same EV-conveyed messages, and the coordination of a variety of physiological processes across cells of a single organisms, or at the population level, i.e., mediating the population’s response to changing environmental conditions. Here, we purified EVs from the medium of the freshwater invertebrate Hydra vulgaris, and the molecular profiling by proteomic and transcriptomic analyses revealed multiple markers of the exosome EV subtype, from structural proteins to stress induced messages promoting cell survival. Moreover, positive and negative regulators of the Wnt/β-catenin signaling pathway, the major developmental pathway acting in body axial patterning, were identified. Functional analysis on amputated polyps revealed EV ability to modulate both head and foot regeneration, suggesting bioactivity of the EV cargo and opening new perspectives on the mechanisms of developmental signalling. Our results open the path to unravel EV biogenesis and function in all cnidarian species, tracing back the origin of the cell-cell, cross-species or cross-kingdom communication in aquatic ecosystems.
Collapse
Affiliation(s)
- Maria Moros
- Instituto de Nanociencia y Materiales de Aragón(INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain.,Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| | - Eugenio Fergola
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| | - Valentina Marchesano
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| | - Margherita Mutarelli
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| | - Giuseppina Tommasini
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| | - Beata Miedziak
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| | - Giuliana Palumbo
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| | - Alfredo Ambrosone
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| | - Angela Tino
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| | - Claudia Tortiglione
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy
| |
Collapse
|
17
|
Wu Y, Shi C, Wang G, Sun H, Yin S. Recent Advances in the Development and Applications of Conjugated Polymer dots. J Mater Chem B 2022; 10:2995-3015. [DOI: 10.1039/d1tb02816b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugated polymer dots or semiconducting polymer nanoparticles (Pdots) are nanoparticles prepared based on organic polymers. Pdots have the advantages of lower cost, simple preparation process, good biocompatibility, excellent stability, easy...
Collapse
|
18
|
Pitsalidis C, Pappa AM, Boys AJ, Fu Y, Moysidou CM, van Niekerk D, Saez J, Savva A, Iandolo D, Owens RM. Organic Bioelectronics for In Vitro Systems. Chem Rev 2021; 122:4700-4790. [PMID: 34910876 DOI: 10.1021/acs.chemrev.1c00539] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bioelectronics have made strides in improving clinical diagnostics and precision medicine. The potential of bioelectronics for bidirectional interfacing with biology through continuous, label-free monitoring on one side and precise control of biological activity on the other has extended their application scope to in vitro systems. The advent of microfluidics and the considerable advances in reliability and complexity of in vitro models promise to eventually significantly reduce or replace animal studies, currently the gold standard in drug discovery and toxicology testing. Bioelectronics are anticipated to play a major role in this transition offering a much needed technology to push forward the drug discovery paradigm. Organic electronic materials, notably conjugated polymers, having demonstrated technological maturity in fields such as solar cells and light emitting diodes given their outstanding characteristics and versatility in processing, are the obvious route forward for bioelectronics due to their biomimetic nature, among other merits. This review highlights the advances in conjugated polymers for interfacing with biological tissue in vitro, aiming ultimately to develop next generation in vitro systems. We showcase in vitro interfacing across multiple length scales, involving biological models of varying complexity, from cell components to complex 3D cell cultures. The state of the art, the possibilities, and the challenges of conjugated polymers toward clinical translation of in vitro systems are also discussed throughout.
Collapse
Affiliation(s)
- Charalampos Pitsalidis
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE.,Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE
| | - Alexander J Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Ying Fu
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Douglas van Niekerk
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Janire Saez
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain.,Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Donata Iandolo
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, 42023 Saint-Étienne, France
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
19
|
Tommasini G, Dufil G, Fardella F, Strakosas X, Fergola E, Abrahamsson T, Bliman D, Olsson R, Berggren M, Tino A, Stavrinidou E, Tortiglione C. Seamless integration of bioelectronic interface in an animal model via in vivo polymerization of conjugated oligomers. Bioact Mater 2021; 10:107-116. [PMID: 34901533 PMCID: PMC8637319 DOI: 10.1016/j.bioactmat.2021.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022] Open
Abstract
Leveraging the biocatalytic machinery of living organisms for fabricating functional bioelectronic interfaces, in vivo, defines a new class of micro-biohybrids enabling the seamless integration of technology with living biological systems. Previously, we have demonstrated the in vivo polymerization of conjugated oligomers forming conductors within the structures of plants. Here, we expand this concept by reporting that Hydra, an invertebrate animal, polymerizes the conjugated oligomer ETE-S both within cells that expresses peroxidase activity and within the adhesive material that is secreted to promote underwater surface adhesion. The resulting conjugated polymer forms electronically conducting and electrochemically active μm-sized domains, which are inter-connected resulting in percolative conduction pathways extending beyond 100 μm, that are fully integrated within the Hydra tissue and the secreted mucus. Furthermore, the introduction and in vivo polymerization of ETE-S can be used as a biochemical marker to follow the dynamics of Hydra budding (reproduction) and regeneration. This work paves the way for well-defined self-organized electronics in animal tissue to modulate biological functions and in vivo biofabrication of hybrid functional materials and devices.
Collapse
Affiliation(s)
- Giuseppina Tommasini
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Gwennaël Dufil
- Laboratory of Organic Electronics, Department of Science and Technology, Linkoping University, SE-60174, Norrkoping, Sweden
| | - Federica Fardella
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Xenofon Strakosas
- Laboratory of Organic Electronics, Department of Science and Technology, Linkoping University, SE-60174, Norrkoping, Sweden
| | - Eugenio Fergola
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Tobias Abrahamsson
- Laboratory of Organic Electronics, Department of Science and Technology, Linkoping University, SE-60174, Norrkoping, Sweden
| | - David Bliman
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Roger Olsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30, Gothenburg, Sweden.,Chemical Biology & Therapeutics, Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linkoping University, SE-60174, Norrkoping, Sweden
| | - Angela Tino
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linkoping University, SE-60174, Norrkoping, Sweden
| | - Claudia Tortiglione
- Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| |
Collapse
|
20
|
Sharova AS, Caironi M. Sweet Electronics: Honey-Gated Complementary Organic Transistors and Circuits Operating in Air. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103183. [PMID: 34418204 PMCID: PMC11468742 DOI: 10.1002/adma.202103183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Sustainable harnessing of natural resources is key moving toward a new-generation electronics, which features a unique combination of electronic functionality, low cost, and absence of environmental and health hazards. Within this framework, edible electronics, of which transistors and circuits are a fundamental component, is an emerging field, exploiting edible materials that can be safely ingested, and subsequently digested after performing their function. Dielectrics are a critical functional element of transistors, often constituting their major volume. Yet, to date, there are only scarce examples of electrolytic food-based materials able to provide low-voltage operation of transistors at ambient conditions. In this context, a cost-effective and edible substance, honey, is proposed to be used as an electrolytic gate viscous dielectric in electrolyte-gated organic field-effect transistors (OFETs). Both n- and p-type honey-gated OFETs (HGOFETs) are demonstrated, with distinctive features such as low voltage (<1 V) operation, long-term shelf life and operation stability in air, and compatibility with large-area fabrication processes, such as inkjet printing on edible tattoo-paper. Such complementary devices enable robust honey-based integrated logic circuits, here exemplified by inverting logic gates and ring oscillators. A marked device responsivity to humidity provides promising opportunities for sensing applications, specifically, for moisture control of dried or dehydrated food.
Collapse
Affiliation(s)
- Alina S. Sharova
- Center for Nano Science and Technology @PoliMiIstituto Italiano di TecnologiaVia G. Pascoli, 70/3Milano20133Italy
- Department of PhysicsPolitecnico di MilanoPiazza Leonardo da Vinci, 32Milano20133Italy
| | - Mario Caironi
- Center for Nano Science and Technology @PoliMiIstituto Italiano di TecnologiaVia G. Pascoli, 70/3Milano20133Italy
| |
Collapse
|
21
|
Bondelli G, Sardar S, Chiaravalli G, Vurro V, Paternò GM, Lanzani G, D'Andrea C. Shedding Light on Thermally Induced Optocapacitance at the Organic Biointerface. J Phys Chem B 2021; 125:10748-10758. [PMID: 34524830 PMCID: PMC8488932 DOI: 10.1021/acs.jpcb.1c06054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Photothermal
perturbation
of the cell membrane is typically achieved
using transducers that convert light into thermal energy, eventually
heating the cell membrane. In turn, this leads to the modulation of
the membrane electrical capacitance that is assigned to a geometrical
modification of the membrane structure. However, the nature of such
a change is not understood. In this work, we employ an all-optical
spectroscopic approach, based on the use of fluorescent probes, to
monitor the membrane polarity, viscosity, and order directly in living
cells under thermal excitation transduced by a photoexcited polymer
film. We report two major results. First, we show that rising temperature
does not just change the geometry of the membrane but indeed it affects
the membrane dielectric characteristics by water penetration. Second,
we find an additional effect, which is peculiar for the photoexcited
semiconducting polymer film, that contributes to the system perturbation
and that we tentatively assigned to the photoinduced polarization
of the polymer interface.
Collapse
Affiliation(s)
- Gaia Bondelli
- Department of Physics, Politecnico di Milano, 20133 Milan, Italy.,Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, 20133 Milan, Italy
| | - Samim Sardar
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, 20133 Milan, Italy
| | - Greta Chiaravalli
- Department of Physics, Politecnico di Milano, 20133 Milan, Italy.,Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, 20133 Milan, Italy
| | - Vito Vurro
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, 20133 Milan, Italy
| | - Giuseppe Maria Paternò
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, 20133 Milan, Italy
| | - Guglielmo Lanzani
- Department of Physics, Politecnico di Milano, 20133 Milan, Italy.,Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, 20133 Milan, Italy
| | - Cosimo D'Andrea
- Department of Physics, Politecnico di Milano, 20133 Milan, Italy.,Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, 20133 Milan, Italy
| |
Collapse
|
22
|
Hou K, Yang C, Shi J, Kuang B, Tian B. Nano- and Microscale Optical and Electrical Biointerfaces and Their Relevance to Energy Research. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100165. [PMID: 34142435 DOI: 10.1002/smll.202100165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Different research fields in energy sciences, such as photovoltaics for solar energy conversion, supercapacitors for energy storage, electrocatalysis for clean energy conversion technologies, and materials-bacterial hybrid for CO2 fixation have been under intense investigations over the past decade. In recent years, new platforms for biointerface designs have emerged from the energy conversion and storage principles. This paper reviews recent advances in nano- and microscale materials/devices for optical and electrical biointerfaces. First, a connection is drawn between biointerfaces and energy science, and how these two distinct research fields can be connected is summarized. Then, a brief overview of current available tools for biointerface studies is presented. Third, three representative biointerfaces are reviewed, including neural, cardiac, and bacterial biointerfaces, to show how to apply these tools and principles to biointerface design and research. Finally, two possible future research directions for nano- and microscale biointerfaces are proposed.
Collapse
Affiliation(s)
- Kun Hou
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Chuanwang Yang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Jiuyun Shi
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Boya Kuang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
23
|
Milos F, Tullii G, Gobbo F, Lodola F, Galeotti F, Verpelli C, Mayer D, Maybeck V, Offenhäusser A, Antognazza MR. High Aspect Ratio and Light-Sensitive Micropillars Based on a Semiconducting Polymer Optically Regulate Neuronal Growth. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23438-23451. [PMID: 33983012 PMCID: PMC8161421 DOI: 10.1021/acsami.1c03537] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Many nano- and microstructured devices capable of promoting neuronal growth and network formation have been previously investigated. In certain cases, topographical cues have been successfully complemented with external bias, by employing electrically conducting scaffolds. However, the use of optical stimulation with topographical cues was rarely addressed in this context, and the development of light-addressable platforms for modulating and guiding cellular growth and proliferation remains almost completely unexplored. Here, we develop high aspect ratio micropillars based on a prototype semiconducting polymer, regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT), as an optically active, three-dimensional platform for embryonic cortical neurons. P3HT micropillars provide a mechanically compliant environment and allow a close contact with neuronal cells. The combined action of nano/microtopography and visible light excitation leads to effective optical modulation of neuronal growth and orientation. Embryonic neurons cultured on polymer pillars show a clear polarization effect and, upon exposure to optical excitation, a significant increase in both neurite and axon length. The biocompatible, microstructured, and light-sensitive platform developed here opens up the opportunity to optically regulate neuronal growth in a wireless, repeatable, and spatio-temporally controlled manner without genetic modification. This approach may be extended to other cell models, thus uncovering interesting applications of photonic devices in regenerative medicine.
Collapse
Affiliation(s)
- Frano Milos
- Institute
of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- RWTH
University Aachen, 52062 Aachen, Germany
| | - Gabriele Tullii
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
| | - Federico Gobbo
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
- Physics
Department, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy
| | - Francesco Lodola
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
| | - Francesco Galeotti
- Istituto
di Scienze e Tecnologie Chimiche G. Natta (SCITEC), Consiglio Nazionale delle Ricerche, 20133 Milano, Italy
| | - Chiara Verpelli
- Istituto
di Neuroscienze, Consiglio Nazionale delle
Ricerche, 20133 Milano, Italy
| | - Dirk Mayer
- Institute
of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Vanessa Maybeck
- Institute
of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Andreas Offenhäusser
- Institute
of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- RWTH
University Aachen, 52062 Aachen, Germany
| | - Maria Rosa Antognazza
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
| |
Collapse
|
24
|
Monti F, Manfredi G, Palamà IE, Kovtun A, Zangoli M, D'Amone S, Ortolani L, Bondelli G, Szreder T, Bobrowski K, D'Angelantonio M, Lanzani G, Di Maria F. Sterilization of Semiconductive Nanomaterials: The Case of Water-Suspended Poly-3-Hexylthiophene Nanoparticles. Adv Healthc Mater 2021; 10:e2001306. [PMID: 33448138 DOI: 10.1002/adhm.202001306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/23/2020] [Indexed: 12/11/2022]
Abstract
In this work, the feasibility of sterilizing a water suspension of poly-3-hexylthiophene nanoparticles (P3HT-NPs) is investigated using ionizing radiation, either γ-rays or high-energy electrons (e-beam). It is found that regardless of the irradiation source, the size, polydispersity, aggregation stability, and morphology of the NPs are not affected by the treatment. Furthermore, the impact of ionizing radiation on the physicochemical properties of NPs at different absorbed radiation doses (10-25 kGy) and dose rates (kGy time-1 ) is evaluated through different spectroscopic techniques. The results indicate that delivering a high dose of radiations (25 kGy) at a high dose rate, that is, kGy s-1 , as achieved by e-beam irradiation, preserves the characteristics of the polymeric NPs. Differently, the same radiation dose but delivered at a lower dose rate, that is, kGy h-1 , as attained by using a γ-source, can modify the physicochemical properties of the polymer. Sterility tests indicate that an absorbed dose of 10 kGy, delivered either with γ-rays or e-beam, is already sufficient for effective sterilization of the colloidal suspension and for reducing the endotoxin content. Finally, NPs irradiated at different doses, exhibit the same cytocompatibility and cell internalization characteristics in human neuroblastoma SH-SY5Y cells of NPs prepared under aseptic conditions.
Collapse
Affiliation(s)
- Filippo Monti
- Consiglio Nazionale delle Ricerche, CNR‐ISOF via P. Gobetti 101 Bologna 40129 Italy
| | - Giovanni Manfredi
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia via Pascoli 70/3 Milano 20133 Italy
| | - Ilaria Elena Palamà
- Consiglio Nazionale delle Ricerche, CNR‐Nanotec c/o Campus Ecotekne—Università del Salento, via Monteroni Lecce 73100 Italy
| | - Alessandro Kovtun
- Consiglio Nazionale delle Ricerche, CNR‐ISOF via P. Gobetti 101 Bologna 40129 Italy
| | - Mattia Zangoli
- Consiglio Nazionale delle Ricerche, CNR‐ISOF via P. Gobetti 101 Bologna 40129 Italy
| | - Stefania D'Amone
- Consiglio Nazionale delle Ricerche, CNR‐Nanotec c/o Campus Ecotekne—Università del Salento, via Monteroni Lecce 73100 Italy
| | - Luca Ortolani
- Consiglio Nazionale delle Ricerche, CNR‐IMM via P. Gobetti 101 Bologna 40129 Italy
| | - Gaia Bondelli
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia via Pascoli 70/3 Milano 20133 Italy
| | - Tomasz Szreder
- Institute for Nuclear Chemistry and Technology Center of Radiation Research and Technology Dorodna 16 Warszawa 03‐195 Poland
| | - Krzysztof Bobrowski
- Institute for Nuclear Chemistry and Technology Center of Radiation Research and Technology Dorodna 16 Warszawa 03‐195 Poland
| | - Mila D'Angelantonio
- Consiglio Nazionale delle Ricerche, CNR‐ISOF via P. Gobetti 101 Bologna 40129 Italy
| | - Guglielmo Lanzani
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia via Pascoli 70/3 Milano 20133 Italy
| | - Francesca Di Maria
- Consiglio Nazionale delle Ricerche, CNR‐ISOF via P. Gobetti 101 Bologna 40129 Italy
| |
Collapse
|
25
|
Moccia F, Antognazza MR, Lodola F. Towards Novel Geneless Approaches for Therapeutic Angiogenesis. Front Physiol 2021; 11:616189. [PMID: 33551844 PMCID: PMC7855168 DOI: 10.3389/fphys.2020.616189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/08/2020] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular diseases are the leading cause of mortality worldwide. Such a widespread diffusion makes the conditions affecting the heart and blood vessels a primary medical and economic burden. It, therefore, becomes mandatory to identify effective treatments that can alleviate this global problem. Among the different solutions brought to the attention of the medical-scientific community, therapeutic angiogenesis is one of the most promising. However, this approach, which aims to treat cardiovascular diseases by generating new blood vessels in ischemic tissues, has so far led to inadequate results due to several issues. In this perspective, we will discuss cutting-edge approaches and future perspectives to alleviate the potentially lethal impact of cardiovascular diseases. We will focus on the consolidated role of resident endothelial progenitor cells, particularly endothelial colony forming cells, as suitable candidates for cell-based therapy demonstrating the importance of targeting intracellular Ca2+ signaling to boost their regenerative outcome. Moreover, we will elucidate the advantages of physical stimuli over traditional approaches. In particular, we will critically discuss recent results obtained by using optical stimulation, as a novel strategy to drive endothelial colony forming cells fate and its potential in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Francesco Moccia
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
| | - Francesco Lodola
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Milan, Italy.,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
26
|
Fang Y, Meng L, Prominski A, Schaumann EN, Seebald M, Tian B. Recent advances in bioelectronics chemistry. Chem Soc Rev 2020. [PMID: 32672777 DOI: 10.1039/d1030cs00333f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Research in bioelectronics is highly interdisciplinary, with many new developments being based on techniques from across the physical and life sciences. Advances in our understanding of the fundamental chemistry underlying the materials used in bioelectronic applications have been a crucial component of many recent discoveries. In this review, we highlight ways in which a chemistry-oriented perspective may facilitate novel and deep insights into both the fundamental scientific understanding and the design of materials, which can in turn tune the functionality and biocompatibility of bioelectronic devices. We provide an in-depth examination of several developments in the field, organized by the chemical properties of the materials. We conclude by surveying how some of the latest major topics of chemical research may be further integrated with bioelectronics.
Collapse
Affiliation(s)
- Yin Fang
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Fang Y, Meng L, Prominski A, Schaumann E, Seebald M, Tian B. Recent advances in bioelectronics chemistry. Chem Soc Rev 2020; 49:7978-8035. [PMID: 32672777 PMCID: PMC7674226 DOI: 10.1039/d0cs00333f] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Research in bioelectronics is highly interdisciplinary, with many new developments being based on techniques from across the physical and life sciences. Advances in our understanding of the fundamental chemistry underlying the materials used in bioelectronic applications have been a crucial component of many recent discoveries. In this review, we highlight ways in which a chemistry-oriented perspective may facilitate novel and deep insights into both the fundamental scientific understanding and the design of materials, which can in turn tune the functionality and biocompatibility of bioelectronic devices. We provide an in-depth examination of several developments in the field, organized by the chemical properties of the materials. We conclude by surveying how some of the latest major topics of chemical research may be further integrated with bioelectronics.
Collapse
Affiliation(s)
- Yin Fang
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Lingyuan Meng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Erik Schaumann
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Seebald
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
28
|
Zangoli M, Di Maria F. Synthesis, characterization, and biological applications of semiconducting polythiophene‐based nanoparticles. VIEW 2020. [DOI: 10.1002/viw.20200086] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Mattia Zangoli
- Consiglio Nazionale Ricerche CNR‐ISOF and Mediteknology srl Bologna Italy
| | - Francesca Di Maria
- Consiglio Nazionale Ricerche CNR‐ISOF and Mediteknology srl Bologna Italy
| |
Collapse
|
29
|
Ohayon D, Inal S. Organic Bioelectronics: From Functional Materials to Next-Generation Devices and Power Sources. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001439. [PMID: 32691880 DOI: 10.1002/adma.202001439] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/03/2020] [Indexed: 05/23/2023]
Abstract
Conjugated polymers (CPs) possess a unique set of features setting them apart from other materials. These properties make them ideal when interfacing the biological world electronically. Their mixed electronic and ionic conductivity can be used to detect weak biological signals, deliver charged bioactive molecules, and mechanically or electrically stimulate tissues. CPs can be functionalized with various (bio)chemical moieties and blend with other functional materials, with the aim of modulating biological responses or endow specificity toward analytes of interest. They can absorb photons and generate electronic charges that are then used to stimulate cells or produce fuels. These polymers also have catalytic properties allowing them to harvest ambient energy and, along with their high capacitances, are promising materials for next-generation power sources integrated with bioelectronic devices. In this perspective, an overview of the key properties of CPs and examination of operational mechanism of electronic devices that leverage these properties for specific applications in bioelectronics is provided. In addition to discussing the chemical structure-functionality relationships of CPs applied at the biological interface, the development of new chemistries and form factors that would bring forth next-generation sensors, actuators, and their power sources, and, hence, advances in the field of organic bioelectronics is described.
Collapse
Affiliation(s)
- David Ohayon
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
30
|
Affiliation(s)
- Marta J.I. Airaghi Leccardi
- Medtronic Chair in Neuroengineering Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne 1202 Geneva Switzerland
| | - Diego Ghezzi
- Medtronic Chair in Neuroengineering Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne 1202 Geneva Switzerland
| |
Collapse
|
31
|
Negri S, Faris P, Rosti V, Antognazza MR, Lodola F, Moccia F. Endothelial TRPV1 as an Emerging Molecular Target to Promote Therapeutic Angiogenesis. Cells 2020; 9:cells9061341. [PMID: 32471282 PMCID: PMC7349285 DOI: 10.3390/cells9061341] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Therapeutic angiogenesis represents an emerging strategy to treat ischemic diseases by stimulating blood vessel growth to rescue local blood perfusion. Therefore, injured microvasculature may be repaired by stimulating resident endothelial cells or circulating endothelial colony forming cells (ECFCs) or by autologous cell-based therapy. Endothelial Ca2+ signals represent a crucial player in angiogenesis and vasculogenesis; indeed, several angiogenic stimuli induce neovessel formation through an increase in intracellular Ca2+ concentration. Several members of the Transient Receptor Potential (TRP) channel superfamily are expressed and mediate Ca2+-dependent functions in vascular endothelial cells and in ECFCs, the only known truly endothelial precursor. TRP Vanilloid 1 (TRPV1), a polymodal cation channel, is emerging as an important player in endothelial cell migration, proliferation, and tubulogenesis, through the integration of several chemical stimuli. Herein, we first summarize TRPV1 structure and gating mechanisms. Next, we illustrate the physiological roles of TRPV1 in vascular endothelium, focusing our attention on how endothelial TRPV1 promotes angiogenesis. In particular, we describe a recent strategy to stimulate TRPV1-mediated pro-angiogenic activity in ECFCs, in the presence of a photosensitive conjugated polymer. Taken together, these observations suggest that TRPV1 represents a useful target in the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (S.N.); (P.F.)
| | - Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (S.N.); (P.F.)
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy; (M.R.A.); (F.L.)
| | - Francesco Lodola
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy; (M.R.A.); (F.L.)
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (S.N.); (P.F.)
- Correspondence:
| |
Collapse
|
32
|
Abdel Aziz I, Malferrari M, Roggiani F, Tullii G, Rapino S, Antognazza MR. Light-Triggered Electron Transfer between a Conjugated Polymer and Cytochrome C for Optical Modulation of Redox Signaling. iScience 2020; 23:101091. [PMID: 32438318 PMCID: PMC7240120 DOI: 10.1016/j.isci.2020.101091] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/02/2020] [Accepted: 04/16/2020] [Indexed: 01/21/2023] Open
Abstract
Protein reduction/oxidation processes trigger and finely regulate a myriad of physiological and pathological cellular functions. Many biochemical and biophysical stimuli have been recently explored to precisely and effectively modulate intracellular redox signaling, due to the considerable therapeutic potential. Here, we propose a first step toward an approach based on visible light excitation of a thiophene-based semiconducting polymer (P3HT), demonstrating the realization of a hybrid interface with the Cytochrome c protein (CytC), in an extracellular environment. By means of scanning electrochemical microscopy and spectro-electrochemistry measurements, we demonstrate that, upon optical stimulation, a functional interaction between P3HT and CytC is established. Polymer optical excitation locally triggers photoelectrochemical reactions, leading to modulation of CytC redox activity, either through an intermediate step, involving reactive oxygen species formation, or via a direct photoreduction process. Both processes are triggered by light, thus allowing excellent spatiotemporal resolution, paving the way to precise modulation of protein redox signaling.
Collapse
Affiliation(s)
- Ilaria Abdel Aziz
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy; Politecnico di Milano, Dipartimento di Fisica, Piazza L. Da Vinci 32, 20133 Milano, Italy
| | - Marco Malferrari
- Università di Bologna, Dipartimento di Chimica "Giacomo Ciamician", via Francesco Selmi 2, 40126 Bologna, Italy
| | - Francesco Roggiani
- Università di Bologna, Dipartimento di Chimica "Giacomo Ciamician", via Francesco Selmi 2, 40126 Bologna, Italy
| | - Gabriele Tullii
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy; Politecnico di Milano, Dipartimento di Fisica, Piazza L. Da Vinci 32, 20133 Milano, Italy
| | - Stefania Rapino
- Università di Bologna, Dipartimento di Chimica "Giacomo Ciamician", via Francesco Selmi 2, 40126 Bologna, Italy.
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy.
| |
Collapse
|
33
|
Shi J, Clayton C, Tian B. Nano-enabled cellular engineering for bioelectric studies. NANO RESEARCH 2020; 13:1214-1227. [PMID: 34295455 PMCID: PMC8294124 DOI: 10.1007/s12274-019-2580-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/24/2019] [Indexed: 06/13/2023]
Abstract
Engineered cells have opened up a new avenue for scientists and engineers to achieve specialized biological functions. Nanomaterials, such as silicon nanowires and quantum dots, can establish tight interfaces with cells either extra- or intracellularly, and they have already been widely used to control cellular functions. The future exploration of nanomaterials in cellular engineering may reveal numerous opportunities in both fundamental bioelectric studies and clinic applications. In this review, we highlight several nanomaterials-enabled non-genetic approaches to fabricating engineered cells. First, we briefly review the latest progress in engineered or synthetic cells, such as protocells that create cell-like behaviors from nonliving building blocks, and cells made by genetic or chemical modifications. Next, we illustrate the need for non-genetic cellular engineering with semiconductors and present some examples where chemical synthesis yields complex morphology or functions needed for biointerfaces. We then provide discussions in detail about the semiconductor nanostructure-enabled neural, cardiac, and microbial modulations. We also suggest the need to integrate tissue engineering with semiconductor devices to carry out more complex functions. We end this review by providing our perspectives for future development in non-genetic cellular engineering.
Collapse
Affiliation(s)
- Jiuyun Shi
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | | | - Bozhi Tian
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
34
|
Moros M, Di Maria F, Dardano P, Tommasini G, Castillo-Michel H, Kovtun A, Zangoli M, Blasio M, De Stefano L, Tino A, Barbarella G, Tortiglione C. In Vivo Bioengineering of Fluorescent Conductive Protein-Dye Microfibers. iScience 2020; 23:101022. [PMID: 32283525 PMCID: PMC7155203 DOI: 10.1016/j.isci.2020.101022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/17/2020] [Accepted: 03/25/2020] [Indexed: 01/01/2023] Open
Abstract
Engineering protein-based biomaterials is extremely challenging in bioelectronics, medicine, and materials science, as mechanical, electrical, and optical properties need to be merged to biocompatibility and resistance to biodegradation. An effective strategy is the engineering of physiological processes in situ, by addition of new properties to endogenous components. Here we show that a green fluorescent semiconducting thiophene dye, DTTO, promotes, in vivo, the biogenesis of fluorescent conductive protein microfibers via metabolic pathways. By challenging the simple freshwater polyp Hydra vulgaris with DTTO, we demonstrate the stable incorporation of the dye into supramolecular protein-dye co-assembled microfibers without signs of toxicity. An integrated multilevel analysis including morphological, optical, spectroscopical, and electrical characterization shows electrical conductivity of biofibers, opening the door to new opportunities for augmenting electronic functionalities within living tissue, which may be exploited for the regulation of cell and animal physiology, or in pathological contexts to enhance bioelectrical signaling. The oligothiophene DTTO promotes the synthesis of microfibers in Hydra vulgaris DTTO co-assembles with proteins giving rise to fluorescent and conductive microfibers The biofiber synthesis is an active process, based on protein synthesis In situ produced hybrid microfibers have great potential in biolectronics and biomedicine
Collapse
Affiliation(s)
- Maria Moros
- Istituto di Scienze Applicate e Sistemi Intelligenti "E.Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Francesca Di Maria
- Istituto per la Sintesi Organica e Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, 40129 Bologna, Italy; Istituto di Nanotecnologia, Consiglio Nazionale delle Ricerche, c/o Campus Ecotekne - Università del Salento, via Monteroni, 73100 Lecce, Italy
| | - Principia Dardano
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Giuseppina Tommasini
- Istituto di Scienze Applicate e Sistemi Intelligenti "E.Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | | | - Alessandro Kovtun
- Istituto per la Sintesi Organica e Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, 40129 Bologna, Italy
| | - Mattia Zangoli
- Istituto per la Sintesi Organica e Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, 40129 Bologna, Italy
| | - Martina Blasio
- Istituto di Scienze Applicate e Sistemi Intelligenti "E.Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Luca De Stefano
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Angela Tino
- Istituto di Scienze Applicate e Sistemi Intelligenti "E.Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Giovanna Barbarella
- Istituto per la Sintesi Organica e Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, 40129 Bologna, Italy
| | - Claudia Tortiglione
- Istituto di Scienze Applicate e Sistemi Intelligenti "E.Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy.
| |
Collapse
|
35
|
Ðerek V, Rand D, Migliaccio L, Hanein Y, Głowacki ED. Untangling Photofaradaic and Photocapacitive Effects in Organic Optoelectronic Stimulation Devices. Front Bioeng Biotechnol 2020; 8:284. [PMID: 32363183 PMCID: PMC7180391 DOI: 10.3389/fbioe.2020.00284] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/18/2020] [Indexed: 12/25/2022] Open
Abstract
Light, as a versatile and non-invasive means to elicit a physiological response, offers solutions to problems in basic research as well as in biomedical technologies. The complexity and limitations of optogenetic methods motivate research and development of optoelectronic alternatives. A recently growing subset of approaches relies on organic semiconductors as the active light absorber. Organic semiconductors stand out due to their high optical absorbance coefficients, mechanical flexibility, ability to operate in a wet environment, and potential biocompatibility. They could enable ultrathin and minimally invasive form factors not accessible with traditional inorganic materials. Organic semiconductors, upon photoexcitation in an aqueous medium, can transduce light into (1) photothermal heating, (2) photochemical/photocatalytic redox reactions, (3) photocapacitive charging of electrolytic double layers, and (4) photofaradaic reactions. In realistic conditions, different effects may coexist, and understanding their role in observed physiological phenomena is an area of critical interest. This article serves to evaluate the emerging picture of photofaradaic vs. photocapacitive effects in the context of our group’s research efforts and that of others over the past few years. We present simple experiments which can be used to benchmark organic optoelectronic stimulation devices.
Collapse
Affiliation(s)
- Vedran Ðerek
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, Norrköping, Sweden.,Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.,Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia.,Center of Excellence for Advanced Materials and Sensing Devices, Ruđer Bošković Institute, Zagreb, Croatia
| | - David Rand
- Tel Aviv University Center for Nanoscience and Nanotechnology, School of Electrical Engineering Tel Aviv University, Tel Aviv, Israel
| | - Ludovico Migliaccio
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, Norrköping, Sweden.,Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Yael Hanein
- Tel Aviv University Center for Nanoscience and Nanotechnology, School of Electrical Engineering Tel Aviv University, Tel Aviv, Israel
| | - Eric Daniel Głowacki
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, Norrköping, Sweden.,Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.,Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
36
|
Veronesi G, Moros M, Castillo-Michel H, Mattera L, Onorato G, Wegner KD, Ling WL, Reiss P, Tortiglione C. In Vivo Biotransformations of Indium Phosphide Quantum Dots Revealed by X-Ray Microspectroscopy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35630-35640. [PMID: 31496235 DOI: 10.1021/acsami.9b15433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many attempts have been made to synthesize cadmium-free quantum dots (QDs), using nontoxic materials, while preserving their unique optical properties. Despite impressive advances, gaps in knowledge of their intracellular fate, persistence, and excretion from the targeted cell or organism still exist, precluding clinical applications. In this study, we used a simple model organism (Hydra vulgaris) presenting a tissue grade of organization to determine the biodistribution of indium phosphide (InP)-based QDs by X-ray fluorescence imaging. By complementing elemental imaging with In L-edge X-ray absorption near edge structure, unique information on in situ chemical speciation was obtained. Unexpectedly, spectral profiles indicated the appearance of In-O species within the first hour post-treatment, suggesting a fast degradation of the InP QD core in vivo, induced mainly by carboxylate groups. Moreover, no significant difference in the behavior of bare core QDs and QDs capped with an inorganic Zn(Se,S) gradient shell was observed. The results paralleled those achieved by treating animals with an equivalent dose of indium salts, confirming the preferred bonding type of In3+ ions in Hydra tissues. In conclusion, by focusing on the chemical identity of indium along a 48 h long journey of QDs in Hydra, we describe a fast degradation process, in the absence of evident toxicity. These data pave the way to new paradigms to be considered in the biocompatibility assessment of QD-based biomedical applications, with greater emphasis on the dynamics of in vivo biotransformations, and suggest strategies to drive the design of future applied materials for nanotechnology-based diagnosis and therapeutics.
Collapse
Affiliation(s)
- Giulia Veronesi
- Univ. Grenoble Alpes , CNRS, CEA, IRIG, Laboratory CBM , 17 rue des Martyrs , 38000 Grenoble , France
- ESRF, the European Synchrotron , 71 Avenue des Martyrs , 38000 Grenoble , France
| | - Maria Moros
- Istituto di Scienze Applicate e Sistemi Intelligenti " E. Caianiello" , Consiglio Nazionale delle Ricerche , Via Campi Flegrei 34 , 80078 Pozzuoli , Italy
- Aragon Materials Science Institute and Ciber-BBN , Campus Rio Ebro, C/Mariano Esquillor s/n 27, 50018 Zaragoza , Spain
| | | | - Lucia Mattera
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Laboratoire STEP , 17 rue des Martyrs , 38000 Grenoble , France
| | - Giada Onorato
- Istituto di Scienze Applicate e Sistemi Intelligenti " E. Caianiello" , Consiglio Nazionale delle Ricerche , Via Campi Flegrei 34 , 80078 Pozzuoli , Italy
| | - Karl David Wegner
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Laboratoire STEP , 17 rue des Martyrs , 38000 Grenoble , France
| | - Wai Li Ling
- Univ. Grenoble Alpes, CEA, CNRS, IBS , F-38000 Grenoble , France
| | - Peter Reiss
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Laboratoire STEP , 17 rue des Martyrs , 38000 Grenoble , France
| | - Claudia Tortiglione
- Istituto di Scienze Applicate e Sistemi Intelligenti " E. Caianiello" , Consiglio Nazionale delle Ricerche , Via Campi Flegrei 34 , 80078 Pozzuoli , Italy
| |
Collapse
|
37
|
Lodola F, Rosti V, Tullii G, Desii A, Tapella L, Catarsi P, Lim D, Moccia F, Antognazza MR. Conjugated polymers optically regulate the fate of endothelial colony-forming cells. SCIENCE ADVANCES 2019; 5:eaav4620. [PMID: 31598549 PMCID: PMC6764832 DOI: 10.1126/sciadv.aav4620] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/04/2019] [Indexed: 05/02/2023]
Abstract
The control of stem and progenitor cell fate is emerging as a compelling urgency for regenerative medicine. Here, we propose a innovative strategy to gain optical control of endothelial colony-forming cell fate, which represents the only known truly endothelial precursor showing robust in vitro proliferation and overwhelming vessel formation in vivo. We combine conjugated polymers, used as photo-actuators, with the advantages offered by optical stimulation over current electromechanical and chemical stimulation approaches. Light modulation provides unprecedented spatial and temporal resolution, permitting at the same time lower invasiveness and higher selectivity. We demonstrate that polymer-mediated optical excitation induces a robust enhancement of proliferation and lumen formation in vitro. We identify the underlying biophysical pathway as due to light-induced activation of TRPV1 channel. Altogether, our results represent an effective way to induce angiogenesis in vitro, which represents the proof of principle to improve the outcome of autologous cell-based therapy in vivo.
Collapse
Affiliation(s)
- F. Lodola
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
- Corresponding author. (F.L.); (M.R.A.)
| | - V. Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - G. Tullii
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
- Department of Physics, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy
| | - A. Desii
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
| | - L. Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro,” Novara, Italy
| | - P. Catarsi
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - D. Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro,” Novara, Italy
| | - F. Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - M. R. Antognazza
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
- Corresponding author. (F.L.); (M.R.A.)
| |
Collapse
|
38
|
Acarón Ledesma H, Li X, Carvalho-de-Souza JL, Wei W, Bezanilla F, Tian B. An atlas of nano-enabled neural interfaces. NATURE NANOTECHNOLOGY 2019; 14:645-657. [PMID: 31270446 PMCID: PMC6800006 DOI: 10.1038/s41565-019-0487-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/17/2019] [Indexed: 05/19/2023]
Abstract
Advances in microscopy and molecular strategies have allowed researchers to gain insight into the intricate organization of the mammalian brain and the roles that neurons play in processing information. Despite vast progress, therapeutic strategies for neurological disorders remain limited, owing to a lack of biomaterials for sensing and modulating neuronal signalling in vivo. Therefore, there is a pressing need for developing material-based tools that can form seamless biointerfaces and interrogate the brain with unprecedented resolution. In this Review, we discuss important considerations in material design and implementation, highlight recent breakthroughs in neural sensing and modulation, and propose future directions in neurotechnology research. Our goal is to create an atlas for nano-enabled neural interfaces and to demonstrate how emerging nanotechnologies can interrogate neural systems spanning multiple biological length scales.
Collapse
Affiliation(s)
- Héctor Acarón Ledesma
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Xiaojian Li
- Brain Cognition and Brain Disease Institute of Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- Shenzhen-Hongkong Institute of Brain Science, Shenzhen, People's Republic of China
| | - João L Carvalho-de-Souza
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Department of Anesthesiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Wei Wei
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Francisco Bezanilla
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Centro Interdisciplinario de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Bozhi Tian
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
- James Franck Institute, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
39
|
Manfredi G, Colombo E, Barsotti J, Benfenati F, Lanzani G. Photochemistry of Organic Retinal Prostheses. Annu Rev Phys Chem 2019; 70:99-121. [DOI: 10.1146/annurev-physchem-042018-052445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Organic devices are attracting considerable attention as prostheses for the recovery of retinal light sensitivity lost to retinal degenerative disease. The biotic/abiotic interface created when light-sensitive polymers and living tissues are placed in contact allows excitation of a response in blind laboratory rats exposed to visual stimuli. Although polymer retinal prostheses have proved to be efficient, their working mechanism is far from being fully understood. In this review article, we discuss the results of the studies conducted on these kinds of polymer devices and compare them with the data found in the literature for inorganic retinal prostheses, where the working mechanisms are better comprehended. This comparison, which tries to set some reference values and figures of merit, is intended for use as a starting point to determine the direction for further investigation.
Collapse
Affiliation(s)
- Giovanni Manfredi
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, 20133 Milan, Italy;,
| | - Elisabetta Colombo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genoa, Italy;,
| | - Jonathan Barsotti
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, 20133 Milan, Italy;,
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genoa, Italy;,
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| | - Guglielmo Lanzani
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, 20133 Milan, Italy;,
- Department of Physics, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
40
|
P3HT:Bebq 2-Based Photovoltaic Device Enhances Differentiation of hiPSC-Derived Retinal Ganglion Cells. Int J Mol Sci 2019; 20:ijms20112661. [PMID: 31151170 PMCID: PMC6600320 DOI: 10.3390/ijms20112661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 12/28/2022] Open
Abstract
Electric field stimulation is known to affect various cellular processes, including cell fate specification and differentiation, particularly towards neuronal lineages. This makes it a promising therapeutic strategy to stimulate regeneration of neuronal tissues. Retinal ganglion cells (RGCs) is a type of neural cells of the retina responsible for transduction of visual signals from the retina to the brain cortex, and is often degenerated in various blindness-causing retinal diseases. The organic photovoltaic materials such as poly-3-hexylthiophene (P3HT) can generate electric current upon illumination with light of the visible spectrum, and possesses several advantageous properties, including light weight, flexibility and high biocompatibility, which makes them a highly promising tool for electric stimulation of cells in vitro and in vivo. In this study, we tested the ability to generate photocurrent by several formulations of blend (bulk heterojunction) of P3HT (which is electron donor material) with several electron acceptor materials, including Alq3 and bis(10-hydroxybenzo[h]quinolinato)beryllium (Bebq2). We found that the photovoltaic device based on bulk heterojunction of P3HT with Bebq2 could generate photocurrent when illuminated by both green laser and visible spectrum light. We tested the growth and differentiation capacity of human induced pluripotent stem cells (hiPSC)-derived RGCs when grown in interface with such photostimulated device, and found that they were significantly increased. The application of P3HT:Bebq2-formulation of photovoltaic device has a great potential for developments in retinal transplantation, nerve repair and tissue engineering approaches of treatment of retinal degeneration.
Collapse
|
41
|
Moros M, Kyriazi ME, El-Sagheer AH, Brown T, Tortiglione C, Kanaras AG. DNA-Coated Gold Nanoparticles for the Detection of mRNA in Live Hydra Vulgaris Animals. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13905-13911. [PMID: 30525369 DOI: 10.1021/acsami.8b17846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Advances in nanoparticle design have led to the development of nanoparticulate systems that can sense intracellular molecules, alter cellular processes, and release drugs to specific targets in vitro. In this work, we demonstrate that oligonucleotide-coated gold nanoparticles are suitable for the detection of mRNA in live Hydra vulgaris, a model organism, without affecting the animal's integrity. We specifically focus on the detection of Hymyc1 mRNA, which is responsible for the regulation of the balance between stem cell self-renewal and differentiation. Myc deregulation is found in more than half of human cancers, thus the ability to detect in vivo related mRNAs through innovative fluorescent systems is of outmost interest.
Collapse
Affiliation(s)
- Maria Moros
- Istituto di Scienze Applicate e Sistemi Intelligenti "E.Caianiello" , Consiglio Nazionale delle Ricerche , Pozzuoli 80078 , Italy
| | | | - Afaf H El-Sagheer
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory, 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering , Suez University , Suez 43721 , Egypt
| | - Tom Brown
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory, 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Claudia Tortiglione
- Istituto di Scienze Applicate e Sistemi Intelligenti "E.Caianiello" , Consiglio Nazionale delle Ricerche , Pozzuoli 80078 , Italy
| | | |
Collapse
|
42
|
Jakešová M, Silverå Ejneby M, Đerek V, Schmidt T, Gryszel M, Brask J, Schindl R, Simon DT, Berggren M, Elinder F, Głowacki ED. Optoelectronic control of single cells using organic photocapacitors. SCIENCE ADVANCES 2019; 5:eaav5265. [PMID: 30972364 PMCID: PMC6450690 DOI: 10.1126/sciadv.aav5265] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/12/2019] [Indexed: 05/23/2023]
Abstract
Optical control of the electrophysiology of single cells can be a powerful tool for biomedical research and technology. Here, we report organic electrolytic photocapacitors (OEPCs), devices that function as extracellular capacitive electrodes for stimulating cells. OEPCs consist of transparent conductor layers covered with a donor-acceptor bilayer of organic photoconductors. This device produces an open-circuit voltage in a physiological solution of 330 mV upon illumination using light in a tissue transparency window of 630 to 660 nm. We have performed electrophysiological recordings on Xenopus laevis oocytes, finding rapid (time constants, 50 μs to 5 ms) photoinduced transient changes in the range of 20 to 110 mV. We measure photoinduced opening of potassium channels, conclusively proving that the OEPC effectively depolarizes the cell membrane. Our results demonstrate that the OEPC can be a versatile nongenetic technique for optical manipulation of electrophysiology and currently represents one of the simplest and most stable and efficient optical stimulation solutions.
Collapse
Affiliation(s)
- Marie Jakešová
- Laboratory of Organic Electronics, ITN Campus Norrköping, Linköping University, SE-60221 Norrköping, Sweden
| | - Malin Silverå Ejneby
- Department of Clinical and Experimental Medicine, Linköping University, SE-58185 Linköping, Sweden
| | - Vedran Đerek
- Laboratory of Organic Electronics, ITN Campus Norrköping, Linköping University, SE-60221 Norrköping, Sweden
- Wallenberg Centre for Molecular Medicine, Linköping University, SE-58185 Linköping, Sweden
| | - Tony Schmidt
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria
| | - Maciej Gryszel
- Laboratory of Organic Electronics, ITN Campus Norrköping, Linköping University, SE-60221 Norrköping, Sweden
- Wallenberg Centre for Molecular Medicine, Linköping University, SE-58185 Linköping, Sweden
| | - Johan Brask
- Department of Clinical and Experimental Medicine, Linköping University, SE-58185 Linköping, Sweden
| | - Rainer Schindl
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria
| | - Daniel T. Simon
- Laboratory of Organic Electronics, ITN Campus Norrköping, Linköping University, SE-60221 Norrköping, Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, ITN Campus Norrköping, Linköping University, SE-60221 Norrköping, Sweden
| | - Fredrik Elinder
- Department of Clinical and Experimental Medicine, Linköping University, SE-58185 Linköping, Sweden
| | - Eric Daniel Głowacki
- Laboratory of Organic Electronics, ITN Campus Norrköping, Linköping University, SE-60221 Norrköping, Sweden
- Wallenberg Centre for Molecular Medicine, Linköping University, SE-58185 Linköping, Sweden
- Corresponding author.
| |
Collapse
|
43
|
Antognazza MR, Abdel Aziz I, Lodola F. Use of Exogenous and Endogenous Photomediators as Efficient ROS Modulation Tools: Results and Perspectives for Therapeutic Purposes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2867516. [PMID: 31049131 PMCID: PMC6462332 DOI: 10.1155/2019/2867516] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/15/2019] [Indexed: 01/09/2023]
Abstract
Reactive Oxygen Species (ROS) play an essential dual role in living systems. Healthy levels of ROS modulate several signaling pathways, but at the same time, when they exceed normal physiological amounts, they work in the opposite direction, playing pivotal functions in the pathophysiology of multiple severe medical conditions (i.e., cancer, diabetes, neurodegenerative and cardiovascular diseases, and aging). Therefore, the research for methods to detect their levels via light-sensitive fluorescent probes has been extensively studied over the years. However, this is not the only link between light and ROS. In fact, the modulation of ROS mediated by light has been exploited already for a long time. In this review, we report the state of the art, as well as recent developments, in the field of photostimulation of oxidative stress, from photobiomodulation (PBM) mediated by naturally expressed light-sensitive proteins to the most recent optogenetic approaches, and finally, we describe the main methods of exogenous stimulation, in particular highlighting the new insights based on optically driven ROS modulation mediated by polymeric materials.
Collapse
Affiliation(s)
- Maria Rosa Antognazza
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Ilaria Abdel Aziz
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
- Politecnico di Milano, Dipartimento di Fisica, Piazza L. Da Vinci 32, 20133 Milano, Italy
| | - Francesco Lodola
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| |
Collapse
|
44
|
Parameswaran R, Tian B. Scalable breakthrough. NATURE NANOTECHNOLOGY 2018; 13:875-876. [PMID: 30104617 PMCID: PMC7684823 DOI: 10.1038/s41565-018-0248-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Ramya Parameswaran
- Medical Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - Bozhi Tian
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
45
|
Bossio C, Abdel Aziz I, Tullii G, Zucchetti E, Debellis D, Zangoli M, Di Maria F, Lanzani G, Antognazza MR. Photocatalytic Activity of Polymer Nanoparticles Modulates Intracellular Calcium Dynamics and Reactive Oxygen Species in HEK-293 Cells. Front Bioeng Biotechnol 2018; 6:114. [PMID: 30211158 PMCID: PMC6119808 DOI: 10.3389/fbioe.2018.00114] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/20/2018] [Indexed: 11/13/2022] Open
Abstract
Optical modulation of living cells activity by light-absorbing exogenous materials is gaining increasing interest, due to the possibility both to achieve high spatial and temporal resolution with a minimally invasive and reversible technique and to avoid the need of viral transfection with light-sensitive proteins. In this context, conjugated polymers represent ideal candidates for photo-transduction, due to their excellent optoelectronic and biocompatibility properties. In this work, we demonstrate that organic polymer nanoparticles, based on poly(3-hexylthiophene) conjugated polymer, establish a functional interaction with an in vitro cell model (Human Embryonic Kidney cells, HEK-293). They display photocatalytic activity in aqueous environment and, once internalized within the cell cytosol, efficiently generate reactive oxygen species (ROS) upon visible light excitation, without affecting cell viability. Interestingly, light-activated ROS generation deterministically triggers modulation of intracellular calcium ion flux, successfully controlled at the single cell level. In perspective, the capability of polymer NPs to produce ROS and to modulate Ca2+ dynamics by illumination on-demand, at non-toxic levels, may open the path to the study of biological processes with a gene-less approach and unprecedented spatio-temporal resolution, as well as to the development of new biotechnology tools for cell optical modulation.
Collapse
Affiliation(s)
- Caterina Bossio
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
| | - Ilaria Abdel Aziz
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
| | - Gabriele Tullii
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
| | - Elena Zucchetti
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
| | - Doriana Debellis
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Genova, Italy
| | - Mattia Zangoli
- Institute for Organic Synthesis and Photoreactivity, CNR-ISOF, Bologna, Italy
| | - Francesca Di Maria
- Institute for Organic Synthesis and Photoreactivity, CNR-ISOF, Bologna, Italy
| | - Guglielmo Lanzani
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
| |
Collapse
|
46
|
Di Maria F, Lodola F, Zucchetti E, Benfenati F, Lanzani G. The evolution of artificial light actuators in living systems: from planar to nanostructured interfaces. Chem Soc Rev 2018; 47:4757-4780. [PMID: 29663003 DOI: 10.1039/c7cs00860k] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Artificially enhancing light sensitivity in living cells allows control of neuronal paths or vital functions avoiding the wiring associated with the use of stimulation electrodes. Many possible strategies can be adopted for reaching this goal, including the direct photoexcitation of biological matter, the genetic modification of cells or the use of opto-bio interfaces. In this review we describe different light actuators based on both inorganic and organic semiconductors, from planar abiotic/biotic interfaces to nanoparticles, that allow transduction of a light signal into a signal which in turn affects the biological activity of the hosting system. In particular, we will focus on the application of thiophene-based materials which, thanks to their unique chemical-physical properties, geometrical adaptability, great biocompatibility and stability, have allowed the development of a new generation of fully organic light actuators for in vivo applications.
Collapse
|
47
|
Bargigia I, Zucchetti E, Kandada ARS, Moreira M, Bossio C, Wong WPD, Miranda PB, Decuzzi P, Soci C, D'Andrea C, Lanzani G. The Photophysics of Polythiophene Nanoparticles for Biological Applications. Chembiochem 2018; 20:532-536. [DOI: 10.1002/cbic.201800167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Ilaria Bargigia
- Center for Nano Science and Technology @PolimiIstituto Italiano di Tecnologia via Pascoli 70/3 20133 Milano Italy
| | - Elena Zucchetti
- Center for Nano Science and Technology @PolimiIstituto Italiano di Tecnologia via Pascoli 70/3 20133 Milano Italy
- Department of PhysicsPolitecnico di Milano Piazza Leonardo da Vinci 32 20133 Milano Italy
| | - Ajay Ram Srimath Kandada
- Center for Nano Science and Technology @PolimiIstituto Italiano di Tecnologia via Pascoli 70/3 20133 Milano Italy
| | - Miguel Moreira
- Laboratory of Nanotechnology for Precision MedicineIstituto Italiano di Tecnologia via Morego 30 16163 Genova Italy
| | - Caterina Bossio
- Center for Nano Science and Technology @PolimiIstituto Italiano di Tecnologia via Pascoli 70/3 20133 Milano Italy
| | - Walter P. D. Wong
- School of Material Science and EngineeringNanyang Technological University Singapore 637371 Singapore
| | - Paulo Barbeitas Miranda
- Center for Nano Science and Technology @PolimiIstituto Italiano di Tecnologia via Pascoli 70/3 20133 Milano Italy
- Department of PhysicsPolitecnico di Milano Piazza Leonardo da Vinci 32 20133 Milano Italy
- São Carlos Physics InstituteUniversity of São Paulo CP 369 Sao Carlos SP 13560-970 Brazil
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision MedicineIstituto Italiano di Tecnologia via Morego 30 16163 Genova Italy
| | - Cesare Soci
- School of Material Science and EngineeringNanyang Technological University Singapore 637371 Singapore
| | - Cosimo D'Andrea
- Center for Nano Science and Technology @PolimiIstituto Italiano di Tecnologia via Pascoli 70/3 20133 Milano Italy
- Department of PhysicsPolitecnico di Milano Piazza Leonardo da Vinci 32 20133 Milano Italy
| | - Guglielmo Lanzani
- Center for Nano Science and Technology @PolimiIstituto Italiano di Tecnologia via Pascoli 70/3 20133 Milano Italy
- Department of PhysicsPolitecnico di Milano Piazza Leonardo da Vinci 32 20133 Milano Italy
| |
Collapse
|
48
|
Zimmerman JF, Tian B. Nongenetic Optical Methods for Measuring and Modulating Neuronal Response. ACS NANO 2018; 12:4086-4095. [PMID: 29727159 PMCID: PMC6161493 DOI: 10.1021/acsnano.8b02758] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The ability to probe and modulate electrical signals sensitively at cellular length scales is a key challenge in the field of electrophysiology. Electrical signals play integral roles in regulating cellular behavior and in controlling biological function. From cardiac arrhythmias to neurodegenerative disorders, maladaptive phenotypes in electrophysiology can result in serious and potentially deadly medical conditions. Understanding how to monitor and to control these behaviors precisely and noninvasively represents an important step in developing next-generation therapeutic devices. As we develop a deeper understanding of neural network formation, electrophysiology has the potential to offer fundamental insights into the inner working of the brain. In this Perspective, we explore traditional methods for examining neural function, discuss recent genetic advances in electrophysiology, and then focus on the latest innovations in optical sensing and stimulation of action potentials in neurons. We emphasize nongenetic optical methods, as these provide high spatiotemporal resolution and can be achieved with minimal invasiveness.
Collapse
Affiliation(s)
- John F. Zimmerman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Bozhi Tian
- Department of Chemistry, the James Franck Institute, the Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
49
|
Gryszel M, Sytnyk M, Jakešová M, Romanazzi G, Gabrielsson R, Heiss W, Głowacki ED. General Observation of Photocatalytic Oxygen Reduction to Hydrogen Peroxide by Organic Semiconductor Thin Films and Colloidal Crystals. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13253-13257. [PMID: 29624365 DOI: 10.1021/acsami.8b01295] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Low-cost semiconductor photocatalysts offer unique possibilities for industrial chemical transformations and energy conversion applications. We report that a range of organic semiconductors are capable of efficient photocatalytic oxygen reduction to H2O2 in aqueous conditions. These semiconductors, in the form of thin films, support a 2-electron/2-proton redox cycle involving photoreduction of dissolved O2 to H2O2, with the concurrent photooxidation of organic substrates: formate, oxalate, and phenol. Photochemical oxygen reduction is observed in a pH range from 2 to 12. In cases where valence band energy of the semiconductor is energetically high, autoxidation competes with oxidation of the donors, and thus turnover numbers are low. Materials with deeper valence band energies afford higher stability and also oxidation of H2O to O2. We found increased H2O2 evolution rate for surfactant-stabilized nanoparticles versus planar thin films. These results evidence that photochemical O2 reduction may be a widespread feature of organic semiconductors, and open potential avenues for organic semiconductors for catalytic applications.
Collapse
Affiliation(s)
- Maciej Gryszel
- Laboratory of Organic Electronics, Department of Science and Technology , Linköping University , Bredgatan 33 , SE-60174 Norrköping , Sweden
| | - Mykhailo Sytnyk
- Materials for Electronics and Energy Technology (i-MEET) , Friedrich-Alexander-Universität Erlangen-Nürnberg , Martensstraße 7 , 91058 Erlangen , Germany
- Energie Campus Nürnberg (EnCN) , Fürtherstraße 250 , 90429 Nürnberg , Germany
| | - Marie Jakešová
- Laboratory of Organic Electronics, Department of Science and Technology , Linköping University , Bredgatan 33 , SE-60174 Norrköping , Sweden
| | - Giuseppe Romanazzi
- Dipartimento di Ingegneria Civile Ambientale, del Territorio Edile e di Chimica (DICATECh) , Politecnico di Bari , via Orabona 4 , 70125 Bari , Italy
| | - Roger Gabrielsson
- Laboratory of Organic Electronics, Department of Science and Technology , Linköping University , Bredgatan 33 , SE-60174 Norrköping , Sweden
| | - Wolfgang Heiss
- Materials for Electronics and Energy Technology (i-MEET) , Friedrich-Alexander-Universität Erlangen-Nürnberg , Martensstraße 7 , 91058 Erlangen , Germany
- Energie Campus Nürnberg (EnCN) , Fürtherstraße 250 , 90429 Nürnberg , Germany
| | - Eric Daniel Głowacki
- Laboratory of Organic Electronics, Department of Science and Technology , Linköping University , Bredgatan 33 , SE-60174 Norrköping , Sweden
| |
Collapse
|
50
|
Affiliation(s)
- Guglielmo Lanzani
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milan, Italy.
- Department of Physics, Politecnico di Milano, Milan, Italy.
| |
Collapse
|