1
|
Amjad A, Xian X. Optical sensors for transdermal biomarker detection: A review. Biosens Bioelectron 2025; 267:116844. [PMID: 39406072 DOI: 10.1016/j.bios.2024.116844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
This review has explored optical sensors and their important role in non-invasive transdermal biomarker detection. While electrochemical sensors have been thoroughly studied for biomarker tracking, optical sensors present a compelling alternative due to their high sensitivity and selectivity, multiplex capabilities, cost-efficiency, and small form factor. This review examines the latest advancements in optical sensing technologies for transdermal biomarker detection, such as colorimetry, fluorescence, surface plasmon resonance (SPR), fiber optics, photonic crystals, and Raman spectroscopy. These technologies have been applied in the analysis of biomarkers present in sweat and skin gases, which are essential for non-invasive health monitoring. Furthermore, the review has discussed the challenges and future perspectives of optical sensors in in transdermal biomarker detection. The analysis of various sensor types and their applications highlights the transformative potential of optical sensors in enhancing disease diagnostics and promoting proactive health management.
Collapse
Affiliation(s)
- Amirhossein Amjad
- McComish Department of Electrical Engineering and Computer Science, Jerome J. Lohr College of Engineering, South Dakota State University, Brookings, SD, 57007, USA
| | - Xiaojun Xian
- McComish Department of Electrical Engineering and Computer Science, Jerome J. Lohr College of Engineering, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
2
|
Ding Y, Tan K, Sheng L, Ren H, Su Z, Yang H, Zhang X, Li J, Hu P. Integrated mental stress smartwatch based on sweat cortisol and HRV sensors. Biosens Bioelectron 2024; 265:116691. [PMID: 39182413 DOI: 10.1016/j.bios.2024.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Mental stress, a human's common emotion that is difficult to recognize and describe, can give rise to serious psychological disorders. Skin and sweat are easily accessible sources of biomarkers and bio-signals that contain information about mental stress. It is challenging for current wearable devices to monitor psychological stress in real-time with a non-invasive manner. Therefore, we have developed a smartwatch integrated with a sweat cortisol sensor and a heart rate variation (HRV) sensor. This smartwatch can simultaneously record the cortisol levels in sweat and HRV index in real time over a long period. The cortisol sensors based on organic electrochemical transistor (OECT) are fabricated by utilizing the Prussian-blue (PB) doped molecular imprinting polymer (MIP) modified gate electrode. The sensor signal current will decrease following the combination of sweat cortisol, due to the blocking of the PBMIP conductive path, demonstrating good sensitivity, selectivity, and stability. The HRV sensor is manufactured by a photoplethysmography method. We have integrated the two sensors into a wearable smartwatch that can match well with the mobile phone APP and the upper computer software. Through the use of this smartwatch, we have observed a negative correlation between cortisol levels in sweat and the HRV index in short-term stressful environments. Our research presents a great progress in real-time and non-invasive monitoring human's stress levels, which promotes not only the stress management, but also better psychological research.
Collapse
Affiliation(s)
- Yanan Ding
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Kaiwen Tan
- School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, 150001, China
| | - Li Sheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Huiwen Ren
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhen Su
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hongying Yang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xin Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jianyang Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - PingAn Hu
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin, 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
3
|
Diacci C, Burtscher B, Berto M, Ruoko TP, Lienemann S, Greco P, Berggren M, Borsari M, Simon DT, Bortolotti CA, Biscarini F. Organic Electrochemical Transistor Aptasensor for Interleukin-6 Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61467-61474. [PMID: 38141020 PMCID: PMC11565573 DOI: 10.1021/acsami.3c12397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
We demonstrate an organic electrochemical transistor (OECT) biosensor for the detection of interleukin 6 (IL6), an important biomarker associated with various pathological processes, including chronic inflammation, inflammaging, cancer, and severe COVID-19 infection. The biosensor is functionalized with oligonucleotide aptamers engineered to bind specifically IL6. We developed an easy functionalization strategy based on gold nanoparticles deposited onto a poly(3,4-ethylenedioxythiophene) doped with polystyrenesulfonate (PEDOT:PSS) gate electrode for the subsequent electrodeposition of thiolated aptamers. During this functionalization step, the reduction of sulfide bonds allows for simultaneous deposition of a blocking agent. A detection range from picomolar to nanomolar concentrations for IL6 was achieved, and the selectivity of the device was assessed against Tumor Necrosis Factor (TNF), another cytokine involved in the inflammatory processes.
Collapse
Affiliation(s)
- Chiara Diacci
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74, Norrköping, Sweden
- Dipartimento
di Scienze della Vita, Università
di Modena e Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Bernhard Burtscher
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74, Norrköping, Sweden
| | - Marcello Berto
- Dipartimento
di Scienze della Vita, Università
di Modena e Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Tero-Petri Ruoko
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74, Norrköping, Sweden
| | - Samuel Lienemann
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74, Norrköping, Sweden
| | - Pierpaolo Greco
- Department
of Neuroscience and Rehabilitation, Università
di Ferrara, Via Borsari
46, 44121 Ferrara, Italy
- Center
for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, via Fossato di Mortara 17-193, 44100 Ferrara, Italy
| | - Magnus Berggren
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74, Norrköping, Sweden
| | - Marco Borsari
- Dipartimento
di Scienze Chimiche e Geologiche, Università
di Modena e Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Daniel T. Simon
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74, Norrköping, Sweden
| | - Carlo A. Bortolotti
- Dipartimento
di Scienze della Vita, Università
di Modena e Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Fabio Biscarini
- Dipartimento
di Scienze della Vita, Università
di Modena e Reggio Emilia, via Campi 103, 41125 Modena, Italy
- Center
for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, via Fossato di Mortara 17-193, 44100 Ferrara, Italy
| |
Collapse
|
4
|
Meng Q, Li H, Zhao W, Song M, Zhang W, Li X, Chen J, Wang L. Overcoming Debye screening effect in field-effect transistors for enhanced biomarker detection sensitivity. NANOSCALE 2024. [PMID: 39452895 DOI: 10.1039/d4nr03481c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Field-effect transistor (FET)-based biosensors not only enable label-free detection by measuring the intrinsic charges of biomolecules, but also offer advantages such as high sensitivity, rapid response, and ease of integration. This enables them to play a significant role in disease diagnosis, point-of-care detection, and drug screening, among other applications. However, when FET sensors detect biomolecules in physiological solutions (such as whole blood, serum, etc.), the charged molecules will be surrounded by oppositely charged ions in the solution. This causes the effective charge carried by the biomolecules to be shielded, thereby significantly weakening their ability to induce charge rearrangement at the sensing interface. Such shielding hinders the change of carriers inside the sensing material, reduces the variation of current between the source and drain electrodes of the FET, and seriously limits the sensitivity and reliability of the device. In this article, we summarize the research progress in overcoming the Debye screening effect in FET-based biosensors over the past decade. Here, we first elucidate the working principles of FET sensors for detecting biomarkers and the mechanism of the Debye screening. Subsequently, we emphasize optimization strategies to overcome the Debye screening effect. Finally, we summarize and provide an outlook on the research on FET biosensors in overcoming the Debye screening effect, hoping to help the development of FET electronic devices with high sensitivity, specificity, and stability. This work is expected to provide new ideas for next-generation biosensing technology.
Collapse
Affiliation(s)
- Qi Meng
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Huimin Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Weilong Zhao
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Ming Song
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Wenhong Zhang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| |
Collapse
|
5
|
Yu S, Wu HY, Lemaur V, Kousseff CJ, Beljonne D, Fabiano S, Nielsen CB. Cation-Dependent Mixed Ionic-Electronic Transport in a Perylenediimide Small-Molecule Semiconductor. Angew Chem Int Ed Engl 2024; 63:e202410626. [PMID: 39041291 DOI: 10.1002/anie.202410626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/24/2024]
Abstract
A rapidly growing interest in organic bioelectronic applications has spurred the development of a wide variety of organic mixed ionic-electronic conductors. While these new mixed conductors have enabled the community to interface organic electronics with biological systems and efficiently transduce biological signals (ions) into electronic signals, the current materials selection does not offer sufficient selectivity towards specific ions of biological relevance without the use of auxiliary components such as ion-selective membranes. Here, we present the molecular design of an n-type (electron-transporting) perylene diimide semiconductor material decorated with pendant oligoether groups to facilitate interactions with cations such as Na+ and K+. Using the cyclic 15-crown-5 oligoether motif, we find that the resulting mixed conductor PDI-crown displays a strong dependence on the size of the electrolyte cation when tested in an organic electrochemical transistor configuration. In stark contrast to the low current response on the order of 1 μA observed with aqueous sodium chloride, a nearly 200-fold increase in current is observed with aqueous potassium chloride. We ascribe the high selectivity to extended molecular aggregation and therefore efficient charge transport in the presence of K+ due to a favourable sandwich-like structure between two adjacent 15-crown-5 motifs and the potassium ion.
Collapse
Affiliation(s)
- Simiao Yu
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Han-Yan Wu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
| | - Vincent Lemaur
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons, Place du Parc 20, Mons, BE-7000, Belgium
| | - Christina J Kousseff
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons, Place du Parc 20, Mons, BE-7000, Belgium
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
| | - Christian B Nielsen
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
6
|
Zea M, Ben Halima H, Villa R, Nemeir IA, Zine N, Errachid A, Gabriel G. Salivary Cortisol Detection with a Fully Inkjet-Printed Paper-Based Electrochemical Sensor. MICROMACHINES 2024; 15:1252. [PMID: 39459126 PMCID: PMC11509315 DOI: 10.3390/mi15101252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Electrochemical paper-based analytical devices (ePADs) offer an innovative, low-cost, and environmentally friendly approach for real-time diagnostics. In this study, we developed a functional all-inkjet paper-based electrochemical immunosensor using gold (Au) printed ink to detect salivary cortisol. Covalent binding of the cortisol monoclonal antibody onto the printed Au surface was achieved through electrodeposition of 4-carboxymethylaniline (CMA), with ethanolamine passivation to prevent non-specific binding. The ePAD exhibited a linear response within the physiological cortisol range (5-20 ng/mL), with sensitivities of 25, 23, and 19 Ω·ng/mL and R2 values of 0.995, 0.979, and 0.99, respectively. Additionally, interference studies against tumor necrosis factor-α (TNF-α) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) yielded excellent results. This novel ePAD, fabricated using inkjet printing technology on paper, simplifies the process, reduces environmental impact, and lowers fabrication costs.
Collapse
Affiliation(s)
- Miguel Zea
- Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC), Campus Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (M.Z.); (R.V.); (G.G.)
| | - Hamdi Ben Halima
- Institut UTINAM, UMR CNRS 6213, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Rosa Villa
- Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC), Campus Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (M.Z.); (R.V.); (G.G.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Imad Abrao Nemeir
- ThEA Group, Department of Chemistry and Biochemistry, Faculty of Arts and Science, Holy Spirit University of Kaslik (USEK), Jounieh P.O. Box 446, Lebanon;
| | - Nadia Zine
- Institut des Sciences Analytiques (ISA), Université Claude Bernard Lyon 1, 5 Rue de la Doua, 69100 Lyon, France; (N.Z.); (A.E.)
| | - Abdelhamid Errachid
- Institut des Sciences Analytiques (ISA), Université Claude Bernard Lyon 1, 5 Rue de la Doua, 69100 Lyon, France; (N.Z.); (A.E.)
| | - Gemma Gabriel
- Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC), Campus Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (M.Z.); (R.V.); (G.G.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| |
Collapse
|
7
|
Gurke J, Carnicer-Lombarte A, Naegele TE, Hansen AK, Malliaras GG. In vivo photopharmacological inhibition of hippocampal activity via multimodal probes - perspective and opening steps on experimental and computational challenges. J Mater Chem B 2024; 12:9894-9904. [PMID: 39189156 PMCID: PMC11348833 DOI: 10.1039/d4tb01117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Neurological conditions such as epilepsy can have a significant impact on people's lives. Here, we discuss a new perspective for the study/treatment of these conditions using photopharmacology. A multimodal, intracranial implant that incorporates fluidic channels for localised drug delivery, electrodes for recording and stimulation, and a light source for photoswitching is used for in vivo administration and deactivation of a photoresponsive AMPA antagonist. We review current advancements in the relevant disciplines and show experimentally that the inhibition of seizure-like events induced in the hippocampus by electrical stimulation can be altered upon switching the drug with light. We discuss the interconnection of the drug's photopharmacological properties with the design of the device by modelling light penetration into the rat brain with Monte Carlo simulations. This work delivers a new perspective, including initial experimental and computational efforts on in vivo photopharmacology to understand and eventually treat neurological conditions.
Collapse
Affiliation(s)
- Johannes Gurke
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge CB3 0FA, UK
- Fraunhofer Institute of Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam, Germany
| | | | - Tobias E Naegele
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge CB3 0FA, UK
| | - Anders K Hansen
- Technical University of Denmark, DTU Fotonik, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - George G Malliaras
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge CB3 0FA, UK
| |
Collapse
|
8
|
Li CY, Jiang GH, Higashihara T, Lin YC. Interfacial Stabilization of Organic Electrochemical Transistors Conferred Using Polythiophene-Based Conjugated Block Copolymers with a Hydrophobic Coil Design. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52753-52765. [PMID: 39287510 PMCID: PMC11450721 DOI: 10.1021/acsami.4c13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
The recent interest in developing low-cost, biocompatible, and lightweight bioelectronic devices has focused on organic electrochemical transistors (OECTs), which have the potential to fulfill these requirements. In this study, three types of poly(3-hexylthiophene) (P3HT)-based block copolymers (BCPs) incorporating different insulating blocks (poly(nbutyl acrylate) (PBA), polystyrene, and poly(ethylene oxide) (PEO)) were synthesized for application in OECTs. The morphological, crystallographic, and electrochemical properties of these BCPs are systematically investigated. Accordingly, P3HT-b-PBA demonstrates superior performance in the KCl-based aqueous electrolyte, with a higher product of mobility and capacitance (μC*) at 170 F s-1 cm-1 V-1 than that of the P3HT homopolymer at 58 F s-1 cm-1 V-1. P3HT-b-PBA exhibits better stability over 50 ON/OFF switching cycles than do other BCPs and P3HT homopolymers. With regard to the performance in the KPF6-based aqueous electrolyte, P3HT-b-PBA outperforms with a higher μC* of 9.2 F s-1 cm-1 V-1 than that of 8.6 F s-1 cm-1 V-1 observed from P3HT. Notably, both polymers exhibited almost no decay in device performance over 110 ON/OFF switching cycles. The strongly different performance of polymers in these two electrolytes is due to the side chain's hydrophobicity and interdigitated lamellar structures, thereby retarding the doping kinetics of the highly hydrated Cl- ions compared with the slightly hydrated PF6- ions. Concerning the improved performance of P3HT-b-PBA, this is attributed to its soft and hydrophobic backbone. Our morphological and crystallographic analyses reveal that P3HT-b-PBA experiences minimal structural disorder when swelled by the electrolyte, maintaining its original structure better than the P3HT homopolymer and the hydrophilic BCP of P3HT-b-PEO. The hydrophobic nature of P3HT-b-PBA contributes to the stability of its backbone structure, ensuring enhanced capacitance during the operation of the OECT operation. These findings provide reassurance about the stability and performance of P3HT-b-PBA in the field of OECT applications. In summary, this study represents the first exploration of P3HT-based BCPs for OECT applications and investigates their structure-performance relationships in mixed ionic-electronic conductors.
Collapse
Affiliation(s)
- Chia-Ying Li
- Department
of Chemical Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
| | - Guo-Hao Jiang
- Department
of Chemical Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
| | - Tomoya Higashihara
- Department
of Organic Materials Science, Graduate School of Organic Materials
Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yan-Cheng Lin
- Department
of Chemical Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
9
|
Mintz Hemed N, Hwang FJ, Zhao ET, Ding JB, Melosh NA. Multiplexed neurochemical sensing with sub-nM sensitivity across 2.25 mm 2 area. Biosens Bioelectron 2024; 261:116474. [PMID: 38870827 DOI: 10.1016/j.bios.2024.116474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Multichannel arrays capable of real-time sensing of neuromodulators in the brain are crucial for gaining insights into new aspects of neural communication. However, measuring neurochemicals, such as dopamine, at low concentrations over large areas has proven challenging. In this research, we demonstrate a novel approach that leverages the scalability and processing power offered by microelectrode array devices integrated with a functionalized, high-density microwire bundle, enabling electrochemical sensing at an unprecedented scale and spatial resolution. The sensors demonstrate outstanding selective molecular recognition by incorporating a selective polymeric membrane. By combining cutting-edge commercial multiplexing, digitization, and data acquisition hardware with a bio-compatible and highly sensitive neurochemical interface array, we establish a powerful platform for neurochemical analysis. This multichannel array has been successfully utilized in vitro and ex vivo systems. Notably, our results show a sensing area of 2.25 mm2 with an impressive detection limit of 820 pM for dopamine. This new approach paves the way for investigating complex neurochemical processes and holds promise for advancing our understanding of brain function and neurological disorders.
Collapse
Affiliation(s)
- Nofar Mintz Hemed
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Fuu-Jiun Hwang
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| | - Eric T Zhao
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Nicholas A Melosh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Zhang Y, Zheng XT, Zhang X, Pan J, Thean AVY. Hybrid Integration of Wearable Devices for Physiological Monitoring. Chem Rev 2024; 124:10386-10434. [PMID: 39189683 DOI: 10.1021/acs.chemrev.3c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Wearable devices can provide timely, user-friendly, non- or minimally invasive, and continuous monitoring of human health. Recently, multidisciplinary scientific communities have made significant progress regarding fully integrated wearable devices such as sweat wearable sensors, saliva sensors, and wound sensors. However, the translation of these wearables into markets has been slow due to several reasons associated with the poor system-level performance of integrated wearables. The wearability consideration for wearable devices compromises many properties of the wearables. Besides, the limited power capacity of wearables hinders continuous monitoring for extended duration. Furthermore, peak-power operations for intensive computations can quickly create thermal issues in the compact form factor that interfere with wearability and sensor operations. Moreover, wearable devices are constantly subjected to environmental, mechanical, chemical, and electrical interferences and variables that can invalidate the collected data. This generates the need for sophisticated data analytics to contextually identify, include, and exclude data points per multisensor fusion to enable accurate data interpretation. This review synthesizes the challenges surrounding the wearable device integration from three aspects in terms of hardware, energy, and data, focuses on a discussion about hybrid integration of wearable devices, and seeks to provide comprehensive guidance for designing fully functional and stable wearable devices.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
11
|
He R, Chen L, Chu P, Gao P, Wang J. Recent advances in nonenzymatic electrochemical biosensors for sports biomarkers: focusing on antibodies, aptamers and molecularly imprinted polymers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6079-6097. [PMID: 39212159 DOI: 10.1039/d4ay01002g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Nonenzymatic electrochemical biosensors, renowned for their high sensitivity, multi-target analysis capabilities, and miniaturized integration, align well with the requirements of non-invasive, multi-index integrated, continuous monitoring, and user-friendly wearable biosensors in sports science. In the past three years, novel strategies targeting specific responses to sports biomarkers have opened new avenues for applications in sports science. However, these advancements also pose challenges in achieving adequate sensitivity and specificity for online analysis of complex sweat bio-samples. Our article focuses on three key nonenzymatic electrochemical biosensing strategies: antigen-antibody reactions, nucleic acid aptamer recognition, and molecular imprinting capture. We delve into strategies to enhance specificity and sensitivity in the application of biosensors in sports science, including shortening signal transduction paths through built-in signal probes, increasing reaction sites through increased surface area and the introduction of nanostructures, multi-target analyses, and microfluidic techniques.
Collapse
Affiliation(s)
- Rui He
- Physical Education Department, Wuhan University, No. 299 Bayi Road, Wuchang District, Wuhan City, Hubei province, People's Republic of China
| | - Long Chen
- School of Physical Education and Equestrian, Wuhan Business University, No. 816 Dongfeng Avenue, Wuhan Economic and Technological Development Zone, Hubei Province, People's Republic of China
| | - Pengfei Chu
- School of Sports Science and Physical Education, China University of Geosciences, Wuhan 430074, People's Republic of China.
| | - Pengcheng Gao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China.
| | - Junjie Wang
- School of Sports Science and Physical Education, China University of Geosciences, Wuhan 430074, People's Republic of China.
| |
Collapse
|
12
|
Garg M, Guo H, Maclam E, Zhanov E, Samudrala S, Pavlov A, Rahman MS, Namkoong M, Moreno JP, Tian L. Molecularly Imprinted Wearable Sensor with Paper Microfluidics for Real-Time Sweat Biomarker Analysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46113-46122. [PMID: 39178237 PMCID: PMC11378148 DOI: 10.1021/acsami.4c10033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
The urgent need for real-time and noninvasive monitoring of health-associated biochemical parameters has motivated the development of wearable sweat sensors. Existing electrochemical sensors show promise in real-time analysis of various chemical biomarkers. These sensors often rely on labels and redox probes to generate and amplify the signals for the detection and quantification of analytes with limited sensitivity. In this study, we introduce a molecularly imprinted polymer (MIP)-based biochemical sensor to quantify a molecular biomarker in sweat using electrochemical impedance spectroscopy, which eliminates the need for labels or redox probes. The molecularly imprinted biosensor can achieve sensitive and specific detection of cortisol at concentrations as low as 1 pM, 1000-fold lower than previously reported MIP cortisol sensors. We integrated multimodal electrochemical sensors with an iontophoresis sweat extraction module and paper microfluidics for real-time sweat analysis. Several parameters can be simultaneously quantified, including sweat volume, secretion rate, sodium ion, and cortisol concentration. Paper microfluidic modules not only quantify sweat volume and secretion rate but also facilitate continuous sweat analysis without user intervention. While we focus on cortisol sensing as a proof-of-concept, the molecularly imprinted wearable sensors can be extended to real-time detection of other biochemicals, such as protein biomarkers and therapeutic drugs.
Collapse
Affiliation(s)
- Mayank Garg
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Heng Guo
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Ethan Maclam
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Elizabeth Zhanov
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Sathwika Samudrala
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Anton Pavlov
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Md Saifur Rahman
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Myeong Namkoong
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Jennette P Moreno
- Department of Pediatrics-Nutrition, Baylor College of Medicine, Houston 77030, Texas, United States
| | - Limei Tian
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station 77843, Texas, United States
| |
Collapse
|
13
|
Ma J, Li H, Anwer S, Umer W, Antwi-Afari MF, Xiao EB. Evaluation of sweat-based biomarkers using wearable biosensors for monitoring stress and fatigue: a systematic review. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2024; 30:677-703. [PMID: 38581242 DOI: 10.1080/10803548.2024.2330242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Objectives. This systematic review aims to report the evaluation of wearable biosensors for the real-time measurement of stress and fatigue using sweat biomarkers. Methods. A thorough search of the literature was carried out in databases such as PubMed, Web of Science and IEEE. A three-step approach for selecting research articles was developed and implemented. Results. Based on a systematic search, a total of 17 articles were included in this review. Lactate, cortisol, glucose and electrolytes were identified as sweat biomarkers. Sweat-based biomarkers are frequently monitored in real time using potentiometric and amperometric biosensors. Wearable biosensors such as an epidermal patch or a sweatband have been widely validated in scientific literature. Conclusions. Sweat is an important biofluid for monitoring general health, including stress and fatigue. It is becoming increasingly common to use biosensors that can measure a wide range of sweat biomarkers to detect fatigue during high-intensity work. Even though wearable biosensors have been validated for monitoring various sweat biomarkers, such biomarkers can only be used to assess stress and fatigue indirectly. In general, this study may serve as a driving force for academics and practitioners to broaden the use of wearable biosensors for the real-time assessment of stress and fatigue.
Collapse
Affiliation(s)
- Jie Ma
- Department of Building and Real Estate, Hong Kong Polytechnic University, People's Republic of China
| | - Heng Li
- Department of Building and Real Estate, Hong Kong Polytechnic University, People's Republic of China
| | - Shahnawaz Anwer
- Department of Building and Real Estate, Hong Kong Polytechnic University, People's Republic of China
| | - Waleed Umer
- Department of Mechanical and Construction Engineering, Northumbria University, UK
| | | | - Eric Bo Xiao
- Department of Building and Real Estate, Hong Kong Polytechnic University, People's Republic of China
| |
Collapse
|
14
|
Wei C, Fu D, Ma T, Chen M, Wang F, Chen G, Wang Z. Sensing patches for biomarker identification in skin-derived biofluids. Biosens Bioelectron 2024; 258:116326. [PMID: 38696965 DOI: 10.1016/j.bios.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/04/2024]
Abstract
In conventional clinical disease diagnosis and screening based on biomarker detection, most analysis samples are collected from serum, blood. However, these invasive collection methods require specific instruments, professionals, and may lead to infection risks. Additionally, the diagnosis process suffers from untimely results. The identification of skin-related biomarkers plays an unprecedented role in early disease diagnosis. More importantly, these skin-mediated approaches for collecting biomarker-containing biofluid samples are noninvasive or minimally invasive, which is more preferable for point-of-care testing (POCT). Therefore, skin-based biomarker detection patches have been promoted, owing to their unique advantages, such as simple fabrication, desirable transdermal properties and no requirements for professional medical staff. Currently, the skin biomarkers extracted from sweat, interstitial fluid (ISF) and wound exudate, are achieved with wearable sweat patches, transdermal MN patches, and wound patches, respectively. In this review, we detail these three types of skin patches in biofluids collection and diseases-related biomarkers identification. Patch classification and the corresponding manufacturing as well as detection strategies are also summarized. The remaining challenges in clinical applications and current issues in accurate detection are discussed for further advancement of this technology (Scheme 1).
Collapse
Affiliation(s)
- Chen Wei
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Danni Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Tianyue Ma
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Mo Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Fangling Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada.
| | - Zejun Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
15
|
Ye C, Lukas H, Wang M, Lee Y, Gao W. Nucleic acid-based wearable and implantable electrochemical sensors. Chem Soc Rev 2024; 53:7960-7982. [PMID: 38985007 PMCID: PMC11308452 DOI: 10.1039/d4cs00001c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The rapid advancements in nucleic acid-based electrochemical sensors for implantable and wearable applications have marked a significant leap forward in the domain of personal healthcare over the last decade. This technology promises to revolutionize personalized healthcare by facilitating the early diagnosis of diseases, monitoring of disease progression, and tailoring of individual treatment plans. This review navigates through the latest developments in this field, focusing on the strategies for nucleic acid sensing that enable real-time and continuous biomarker analysis directly in various biofluids, such as blood, interstitial fluid, sweat, and saliva. The review delves into various nucleic acid sensing strategies, emphasizing the innovative designs of biorecognition elements and signal transduction mechanisms that enable implantable and wearable applications. Special perspective is given to enhance nucleic acid-based sensor selectivity and sensitivity, which are crucial for the accurate detection of low-level biomarkers. The integration of such sensors into implantable and wearable platforms, including microneedle arrays and flexible electronic systems, actualizes their use in on-body devices for health monitoring. We also tackle the technical challenges encountered in the development of these sensors, such as ensuring long-term stability, managing the complexity of biofluid dynamics, and fulfilling the need for real-time, continuous, and reagentless detection. In conclusion, the review highlights the importance of these sensors in the future of medical engineering, offering insights into design considerations and future research directions to overcome existing limitations and fully realize the potential of nucleic acid-based electrochemical sensors for healthcare applications.
Collapse
Affiliation(s)
- Cui Ye
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Minqiang Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Yerim Lee
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
16
|
Porter EB, Adaryan S, Ardebili H, Biswal SL, Verduzco R. Detection of Crude Oil in Subsea Environments Using Organic Electrochemical Transistors. ACS Sens 2024; 9:3633-3640. [PMID: 38954649 DOI: 10.1021/acssensors.4c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Current methods for detecting pipeline oil leaks depend primarily on optical detection, which can be slow and have deployment limitations. An alternative non-optical approach for earlier and faster detection of oil leaks would enable a rapid response and reduce the environmental impact of oil leaks. Here, we demonstrate that organic electrochemical transistors (OECTs) can be used as non-optical sensors for crude oil detection in subsea environments. OECTs are thin film electronic devices that can be used for sensing in a variety of environments, but they have not yet been tested for crude oil detection in subsea environments. We fabricated OECTs with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) as the channel and showed that coating the channel with a polystyrene film results in an OECT with a large and measurable response to oil. Oil that comes in contact with the device will adsorb onto the polystyrene film and increases the impedance at the electrolyte interface. We performed electrochemical impedance spectroscopy measurements to quantify the impedance across the device and found an optimal thickness for the polystyrene coating for the detection of oil. Under optimal device characteristics, as little as 10 μg of oil adsorbed on the channel surface produced a statistically significant change in the source-drain current. The OECTs were operable in seawater for the detection of oil, and we demonstrated that the devices can be transferred to flexible substrates which can be easily implemented in vehicles, pipelines, or other surfaces. This work demonstrates a low-cost device for oil detection in subsea environments and provides a new application of OECT sensors for sensing.
Collapse
Affiliation(s)
- Erin B Porter
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Sarah Adaryan
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Haleh Ardebili
- Department of Mechanical Engineering, University of Houston, Houston, Texas 77204, United States
- Materials Science and Engineering Program, University of Houston, Houston, Texas 77204, United States
| | - Sibani Lisa Biswal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
17
|
Poursharifi N, Hassanpouramiri M, Zink A, Ucuncu M, Parlak O. Transdermal Sensing of Enzyme Biomarker Enabled by Chemo-Responsive Probe-Modified Epidermal Microneedle Patch in Human Skin Tissue. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403758. [PMID: 38733567 DOI: 10.1002/adma.202403758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Wearable bioelectronics represents a significant breakthrough in healthcare settings, particularly in (bio)sensing which offers an alternative way to track individual health for diagnostics and therapy. However, there has been no notable improvement in the field of cancer, particularly for skin cancer. Here, a wearable bioelectronic patch is established for transdermal sensing of the melanoma biomarker, tyrosinase (Tyr), using a microneedle array integrated with a surface-bound chemo-responsive smart probe to enable target-specific electrochemical detection of Tyr directly from human skin tissue. The results presented herein demonstrate the feasibility of a transdermal microneedle sensor for direct quantification of enzyme biomarkers in an ex vivo skin model. Initial performance analysis of the transdermal microneedle sensor proves that the designed methodology can be an alternative for fast and reliable diagnosis of melanoma and the evaluation of skin moles. The innovative approach presented here may revolutionize the landscape of skin monitoring by offering a nondisruptive means for continuous surveillance and timely intervention of skin anomalies, such as inflammatory skin diseases or allergies and can be extended to the screening of multiple responses of complementary biomarkers with simple modification in device design.
Collapse
Affiliation(s)
- Nazanin Poursharifi
- Department of Medicine, Solna, Division of Dermatology and Venereology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Morteza Hassanpouramiri
- Department of Medicine, Solna, Division of Dermatology and Venereology, Karolinska Institutet, Stockholm, 171 77, Sweden
- Department of Dermatology and Allergy, TUM School of Medicine and Health, Technical University of Munich, 80802, Munich, Germany
| | - Alexander Zink
- Department of Medicine, Solna, Division of Dermatology and Venereology, Karolinska Institutet, Stockholm, 171 77, Sweden
- Department of Dermatology and Allergy, TUM School of Medicine and Health, Technical University of Munich, 80802, Munich, Germany
| | - Muhammed Ucuncu
- Department of Analytical Chemistry, Faculty of Pharmacy, İzmir Katip Çelebi University, İzmir, 35620, Türkiye
| | - Onur Parlak
- Department of Medicine, Solna, Division of Dermatology and Venereology, Karolinska Institutet, Stockholm, 171 77, Sweden
- Department of Dermatology and Allergy, TUM School of Medicine and Health, Technical University of Munich, 80802, Munich, Germany
- Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, 171 77, Sweden
- Centre for Molecular Medicine, Karolinska University Hospital, Stockholm, 171 64, Sweden
| |
Collapse
|
18
|
Liu H, Song J, Zhao Z, Zhao S, Tian Z, Yan F. Organic Electrochemical Transistors for Biomarker Detections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305347. [PMID: 38263718 PMCID: PMC11251571 DOI: 10.1002/advs.202305347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Indexed: 01/25/2024]
Abstract
The improvement of living standards and the advancement of medical technology have led to an increased focus on health among individuals. Detections of biomarkers are feasible approaches to obtaining information about health status, disease progression, and response to treatment of an individual. In recent years, organic electrochemical transistors (OECTs) have demonstrated high electrical performances and effectiveness in detecting various types of biomarkers. This review provides an overview of the working principles of OECTs and their performance in detecting multiple types of biomarkers, with a focus on the recent advances and representative applications of OECTs in wearable and implantable biomarker detections, and provides a perspective for the future development of OECT-based biomarker sensors.
Collapse
Affiliation(s)
- Hong Liu
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Jiajun Song
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Zeyu Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Sanqing Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Zhiyuan Tian
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Feng Yan
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
- Research Institute of Intelligent Wearable SystemsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| |
Collapse
|
19
|
Babamiri B, Sadri R, Farrokhnia M, Hassani M, Kaur M, Roberts EPL, Ashani MM, Sanati Nezhad A. Molecularly Imprinted Polymer Biosensor Based on Nitrogen-Doped Electrochemically Exfoliated Graphene/Ti 3 CNT X MXene Nanocomposite for Metabolites Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27714-27727. [PMID: 38717953 DOI: 10.1021/acsami.4c01973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Rapid and accurate quantification of metabolites in different bodily fluids is crucial for a precise health evaluation. However, conventional metabolite sensing methods, confined to centralized laboratory settings, suffer from time-consuming processes, complex procedures, and costly instrumentation. Introducing the MXene/nitrogen-doped electrochemically exfoliated graphene (MXene@N-EEG) nanocomposite as a novel biosensing platform in this work addresses the challenges associated with conventional methods, leveraging the concept of molecularly imprinted polymers (MIP) enables the highly sensitive, specific, and reliable detection of metabolites. To validate our biosensing technology, we utilize agmatine as a significant biologically active metabolite. The MIP biosensor incorporates electrodeposited Prussian blue nanoparticles as a redox probe, facilitating the direct electrical signaling of agmatine binding in the polymeric matrix. The MXene@N-EEG nanocomposite, with excellent metal conductivity and a large electroactive specific surface area, effectively stabilizes the electrodeposited Prussian blue nanoparticles. Furthermore, increasing the content of agmatine-imprinted cavities on the electrode enhances the sensitivity of the MIP biosensor. Evaluation of the designed MIP biosensor in buffer solution and plasma samples reveals a wide linear concentration range of 1.0 nM-100.0 μM (R2 = 0.9934) and a detection limit of 0.1 nM. Notably, the developed microfluidic biosensor offers low cost, rapid response time to the target molecule (10 min of sample incubation), good recovery results for detecting agmatine in plasma samples, and acceptable autonomous performance for on-chip detection. Moreover, its high reliability and sensitivity position this MIP-based biosensor as a promising candidate for miniaturized microfluidic devices with the potential for scalable production for point-of-care applications.
Collapse
Affiliation(s)
- Bahareh Babamiri
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Rad Sadri
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mohammadreza Farrokhnia
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mohsen Hassani
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Manpreet Kaur
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Edward P L Roberts
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mehdi Mohammadi Ashani
- Department of Biological Sciences, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Amir Sanati Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
20
|
Karthika P, Shanmuganathan S, Subramanian V, Delerue-Matos C. Selective detection of salivary cortisol using screen-printed electrode coated with molecularly imprinted polymer. Talanta 2024; 272:125823. [PMID: 38422908 DOI: 10.1016/j.talanta.2024.125823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
A novel electrochemical sensor was developed for the detection of salivary cortisol levels. The sensor employs a combination of a molecularly imprinted polymer (MIP) and gold nanoparticles (AuNPs) that are electrodeposited onto a screen-printed electrode (SPE). The study utilised density functional theory and molecular docking techniques to determine the geometry of molecular orbitals, electrostatic potential energies, and binding energy of cortisol and the polymers. The thin film of cortisol-imprinted polymer on the SPE was created by electro-polymerizing pyrrole and thiophene-3-carboxylic acid on the electrode surface along with cortisol as the template molecule. The MIP film was characterised using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and electrochemical techniques. The sensor exhibited a linear response in the concentration range of 0.05 nmol L-1 to 2.5 μmol L-1, with a limit of detection of 0.01 nmol L-1, as determined by differential pulse voltammetry. This method offers a simple yet efficient and sensitive approach to detecting cortisol levels in human saliva samples.
Collapse
Affiliation(s)
- Palanisamy Karthika
- Department of Industrial Chemistry, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | | | - Viswanathan Subramanian
- Department of Industrial Chemistry, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| |
Collapse
|
21
|
Song J, Liu H, Zhao Z, Lin P, Yan F. Flexible Organic Transistors for Biosensing: Devices and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300034. [PMID: 36853083 DOI: 10.1002/adma.202300034] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable biosensors can offer seamless and conformable biological-electronic interfaces for continuously acquiring high-fidelity signals, permitting numerous emerging applications. Organic thin film transistors (OTFTs) are ideal transducers for flexible and stretchable biosensing due to their soft nature, inherent amplification function, biocompatibility, ease of functionalization, low cost, and device diversity. In consideration of the rapid advances in flexible-OTFT-based biosensors and their broad applications, herein, a timely and comprehensive review is provided. It starts with a detailed introduction to the features of various OTFTs including organic field-effect transistors and organic electrochemical transistors, and the functionalization strategies for biosensing, with a highlight on the seminal work and up-to-date achievements. Then, the applications of flexible-OTFT-based biosensors in wearable, implantable, and portable electronics, as well as neuromorphic biointerfaces are detailed. Subsequently, special attention is paid to emerging stretchable organic transistors including planar and fibrous devices. The routes to impart stretchability, including structural engineering and material engineering, are discussed, and the implementations of stretchable organic transistors in e-skin and smart textiles are included. Finally, the remaining challenges and the future opportunities in this field are summarized.
Collapse
Affiliation(s)
- Jiajun Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Hong Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials and Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
22
|
Vignesh V, Castro-Dominguez B, James TD, Gamble-Turner JM, Lightman S, Reis NM. Advancements in Cortisol Detection: From Conventional Methods to Next-Generation Technologies for Enhanced Hormone Monitoring. ACS Sens 2024; 9:1666-1681. [PMID: 38551608 PMCID: PMC11059103 DOI: 10.1021/acssensors.3c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024]
Abstract
The hormone cortisol, released as the end-product of the hypothalamic-pituitary-adrenal (HPA) axis, has a well-characterized circadian rhythm that enables an allostatic response to external stressors. When the pattern of secretion is disrupted, cortisol levels are chronically elevated, contributing to diseases such as heart attacks, strokes, mental health disorders, and diabetes. The diagnosis of chronic stress and stress related disorders depends upon accurate measurement of cortisol levels; currently, it is quantified using mass spectroscopy or immunoassay, in specialized laboratories with trained personnel. However, these methods are time-consuming, expensive and are unable to capture the dynamic biorhythm of the hormone. This critical review traces the path of cortisol detection from traditional laboratory-based methods to decentralised cortisol monitoring biosensors. A complete picture of cortisol biology and pathophysiology is provided, and the importance of precision medicine style monitoring of cortisol is highlighted. Antibody-based immunoassays still dominate the pipeline of development of point-of-care biosensors; new capture molecules such as aptamers and molecularly imprinted polymers (MIPs) combined with technologies such as microfluidics, wearable electronics, and quantum dots offer improvements to limit of detection (LoD), specificity, and a shift toward rapid or continuous measurements. While a variety of different sensors and devices have been proposed, there still exists a need to produce quantitative tests for cortisol ─ using either rapid or continuous monitoring devices that can enable a personalized medicine approach to stress management. This can be addressed by synergistic combinations of technologies that can leverage low sample volumes, relevant limit of detection and rapid testing time, to better account for cortisol's shifting biorhythm. Trends in cortisol diagnostics toward rapid and continuous monitoring of hormones are highlighted, along with insights into choice of sample matrix.
Collapse
Affiliation(s)
- Visesh Vignesh
- Department
of Chemical Engineering and Centre for Bioengineering and Biomedical
Technologies (CBio) University of Bath, BA2 7AY Bath, U.K.
| | - Bernardo Castro-Dominguez
- Department
of Chemical and Engineering and Digital Manufacturing and Design University
of Bath, BA2 7AY Bath, U.K.
| | - Tony D. James
- Department
of Chemistry, University of Bath, BA2 7AY Bath, U.K.
| | | | - Stafford Lightman
- Translational
Health Sciences, Bristol Medical School, University of Bristol, BS1 3NY Bristol, U.K.
| | - Nuno M. Reis
- Department
of Chemical Engineering and Centre for Bioengineering and Biomedical
Technologies (CBio) University of Bath, BA2 7AY Bath, U.K.
| |
Collapse
|
23
|
Bocu R. Extended Review Concerning the Integration of Electrochemical Biosensors into Modern IoT and Wearable Devices. BIOSENSORS 2024; 14:214. [PMID: 38785688 PMCID: PMC11117989 DOI: 10.3390/bios14050214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Electrochemical biosensors include a recognition component and an electronic transducer, which detect the body fluids with a high degree of accuracy. More importantly, they generate timely readings of the related physiological parameters, and they are suitable for integration into portable, wearable and implantable devices that are significant relative to point-of-care diagnostics scenarios. As an example, the personal glucose meter fundamentally improves the management of diabetes in the comfort of the patients' homes. This review paper analyzes the principles of electrochemical biosensing and the structural features of electrochemical biosensors relative to the implementation of health monitoring and disease diagnostics strategies. The analysis particularly considers the integration of the biosensors into wearable, portable, and implantable systems. The fundamental aim of this paper is to present and critically evaluate the identified significant developments in the scope of electrochemical biosensing for preventive and customized point-of-care diagnostic devices. The paper also approaches the most important engineering challenges that should be addressed in order to improve the sensing accuracy, and enable multiplexing and one-step processes, which mediate the integration of electrochemical biosensing devices into digital healthcare scenarios.
Collapse
Affiliation(s)
- Razvan Bocu
- Department of Mathematics and Computer Science, Transilvania University of Brasov, 500036 Brasov, Romania
| |
Collapse
|
24
|
Hindelang M, Wecker H, Biedermann T, Zink A. Continuously monitoring the human machine? - A cross-sectional study to assess the acceptance of wearables in Germany. Health Informatics J 2024; 30:14604582241260607. [PMID: 38900846 DOI: 10.1177/14604582241260607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Background: Wearables have the potential to transform healthcare by enabling early detection and monitoring of chronic diseases. This study aimed to assess wearables' acceptance, usage, and reasons for non-use. Methods: Anonymous questionnaires were used to collect data in Germany on wearable ownership, usage behaviour, acceptance of health monitoring, and willingness to share data. Results: Out of 643 respondents, 550 participants provided wearable acceptance data. The average age was 36.6 years, with 51.3% female and 39.6% residing in rural areas. Overall, 33.8% reported wearing a wearable, primarily smartwatches or fitness wristbands. Men (63.3%) and women (57.8%) expressed willingness to wear a sensor for health monitoring, and 61.5% were open to sharing data with healthcare providers. Concerns included data security, privacy, and perceived lack of need. Conclusion: The study highlights the acceptance and potential of wearables, particularly for health monitoring and data sharing with healthcare providers. Addressing data security and privacy concerns could enhance the adoption of innovative wearables, such as implants, for early detection and monitoring of chronic diseases.
Collapse
Affiliation(s)
- Michael Hindelang
- TUM School of Medicine and Health, Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany; Pettenkofer School of Public Health, Munich, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology - IBE, LMU Munich, Munich, Germany
| | - Hannah Wecker
- TUM School of Medicine and Health, Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Tilo Biedermann
- TUM School of Medicine and Health, Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Alexander Zink
- TUM School of Medicine and Health, Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany; Division of Dermatology and Venereology, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
25
|
Ferreira R, Silva AP, Nunes-Pereira J. Current On-Skin Flexible Sensors, Materials, Manufacturing Approaches, and Study Trends for Health Monitoring: A Review. ACS Sens 2024; 9:1104-1133. [PMID: 38394033 PMCID: PMC10964246 DOI: 10.1021/acssensors.3c02555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Due to an ever-increasing amount of the population focusing more on their personal health, thanks to rising living standards, there is a pressing need to improve personal healthcare devices. These devices presently require laborious, time-consuming, and convoluted procedures that heavily rely on cumbersome equipment, causing discomfort and pain for the patients during invasive methods such as sample-gathering, blood sampling, and other traditional benchtop techniques. The solution lies in the development of new flexible sensors with temperature, humidity, strain, pressure, and sweat detection and monitoring capabilities, mimicking some of the sensory capabilities of the skin. In this review, a comprehensive presentation of the themes regarding flexible sensors, chosen materials, manufacturing processes, and trends was made. It was concluded that carbon-based composite materials, along with graphene and its derivates, have garnered significant interest due to their electromechanical stability, extraordinary electrical conductivity, high specific surface area, variety, and relatively low cost.
Collapse
Affiliation(s)
- Rodrigo
G. Ferreira
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Abílio P. Silva
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - João Nunes-Pereira
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
26
|
Tseng HS, Chen YL, Zhang PY, Hsiao YS. Additive Blending Effects on PEDOT:PSS Composite Films for Wearable Organic Electrochemical Transistors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13384-13398. [PMID: 38454789 PMCID: PMC10958448 DOI: 10.1021/acsami.3c14961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Organic electrochemical transistors (OECTs) employing conductive polymers (CPs) have gained remarkable prominence and have undergone extensive advancements in wearable and implantable bioelectronic applications in recent years. Among the diverse arrays of CPs, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a common choice for the active-layer channel in p-type OECTs, showing a remarkably high transconductance for the high amplification of signals in biosensing applications. This investigation focuses on the novel engineering of PEDOT:PSS composite materials by seamlessly integrating several additives, namely, dimethyl sulfoxide (DMSO), (3-glycidyloxypropyl)trimethoxysilane (GOPS), and a nonionic fluorosurfactant (NIFS), to fine-tune their electrical conductivity, self-healing capability, and stretchability. To elucidate the intricate influences of the DMSO, GOPS, and NIFS additives on the formation of PEDOT:PSS composite films, theoretical calculations were performed, encompassing the solubility parameters and surface energies of the constituent components of the NIFS, PEDOT, PSS, and PSS-GOPS polymers. Furthermore, we conducted a comprehensive array of material analyses, which reveal the intricacies of the phase separation phenomenon and its interaction with the materials' characteristics. Our research identified the optimal composition for the PEDOT:PSS composite films, characterized by outstanding self-healing and stretchable capabilities. This composition has proven to be highly effective for constructing an active-layer channel in the form of OECT-based biosensors fabricated onto polydimethylsiloxane substrates for detecting dopamine. Overall, these findings represent significant progress in the application of PEDOT:PSS composite films in wearable bioelectronics and pave the way for the development of state-of-the-art biosensing technologies.
Collapse
Affiliation(s)
- Hsueh-Sheng Tseng
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| | - Ying-Lin Chen
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| | - Pin-Yu Zhang
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| | - Yu-Sheng Hsiao
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
27
|
Niu J, Lin S, Chen D, Wang Z, Cao C, Gao A, Cui S, Liu Y, Hong Y, Zhi X, Cui D. A Fully Elastic Wearable Electrochemical Sweat Detection System of Tree-Bionic Microfluidic Structure for Real-Time Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306769. [PMID: 37932007 DOI: 10.1002/smll.202306769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Indexed: 11/08/2023]
Abstract
Fresh sweat contains a diverse range of physiological indicators that can effectively reflect changes in the body. However, existing wearable sweat detection systems face challenges in efficiently collecting and detecting fresh sweat in real-time. Additionally, they often lack the necessary deformation capabilities, resulting in discomfort for the wearer. Here, a fully elastic wearable electrochemical sweat detection system is developed that integrates a sweat-collecting microfluidic chip, a multi-parameter electrochemical sensor, a micro-heater, and a sweat detection elastic circuit board system. The unique tree-bionic structure of the microfluidic chip significantly enhances the efficiency of fresh sweat collection and discharge, enabling real-time detection by the electrochemical sensors. The sweat multi-parameter electrochemical sensor offers high-precision and high-sensitivity measurements of sodium ions, potassium ions, lactate, and glucose. The electronic system is built on an elastic circuit board that matches perfectly to wrinkled skin, ensuring improved wearing comfort and enabling multi-channel data sampling, processing, and wireless transmission. This state-of-the-art system represents a significant advancement in the field of elastic wearable sweat detection and holds promising potential for extending its capabilities to the detection of other sweat markers or various wearable applications.
Collapse
Affiliation(s)
- Jiaqi Niu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Di Chen
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhitao Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Cheng Cao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ang Gao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shengsheng Cui
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yanlei Liu
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuping Hong
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiao Zhi
- School of Biomedical Engineering, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
28
|
Saha T, Mukherjee S, Dickey MD, Velev OD. Harvesting and manipulating sweat and interstitial fluid in microfluidic devices. LAB ON A CHIP 2024; 24:1244-1265. [PMID: 38197332 DOI: 10.1039/d3lc00874f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Microfluidic devices began to be used to facilitate sweat and interstitial fluid (ISF) sensing in the mid-2010s. Since then, numerous prototypes involving microfluidics have been developed in different form factors for sensing biomarkers found in these fluids under in vitro, ex vivo, and in vivo (on-body) settings. These devices transport and manipulate biofluids using microfluidic channels composed of silicone, polymer, paper, or fiber. Fluid flow transport and sample management can be achieved by controlling the flow rate, surface morphology of the channel, and rate of fluid evaporation. Although many devices have been developed for estimating sweat rate, electrolyte, and metabolite levels, only a handful have been able to proceed beyond laboratory testing and reach the stage of clinical trials and commercialization. To further this technology, this review reports on the utilization of microfluidics towards sweat and ISF management and transport. The review is distinguished from other recent reviews by focusing on microfluidic principles of sweat and ISF generation, transport, extraction, and management. Challenges and prospects are highlighted, with a discussion on how to transition such prototypes towards personalized healthcare monitoring systems.
Collapse
Affiliation(s)
- Tamoghna Saha
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Sneha Mukherjee
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
29
|
Lightman SL. Clinical Endocrinology-Time for a Reset? J Endocr Soc 2024; 8:bvae024. [PMID: 38440109 PMCID: PMC10910589 DOI: 10.1210/jendso/bvae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Indexed: 03/06/2024] Open
Abstract
Measurement of blood levels of circulating hormones has always been the cornerstone of the biochemical diagnosis of endocrine diseases, with the objective of detecting hormone excess or insufficiency. Unfortunately, the dynamic nature of hormone secretion means single-point measurements of many hormones often lack diagnostic validity. Endocrinologists have devised complex dynamic tests as indirect assessments of the functioning of the hormone system under investigation. Recent advances in the measurement of dynamic hormone changes across the day now offer an opportunity to reconsider whether there might be better ways both to diagnose and to monitor the therapy of endocrine conditions.
Collapse
Affiliation(s)
- Stafford L Lightman
- Translational Health Sciences, The Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| |
Collapse
|
30
|
Zhang P, Zhu B, Du P, Travas-Sejdic J. Electrochemical and Electrical Biosensors for Wearable and Implantable Electronics Based on Conducting Polymers and Carbon-Based Materials. Chem Rev 2024; 124:722-767. [PMID: 38157565 DOI: 10.1021/acs.chemrev.3c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Bioelectronic devices are designed to translate biological information into electrical signals and vice versa, thereby bridging the gap between the living biological world and electronic systems. Among different types of bioelectronics devices, wearable and implantable biosensors are particularly important as they offer access to the physiological and biochemical activities of tissues and organs, which is significant in diagnosing and researching various medical conditions. Organic conducting and semiconducting materials, including conducting polymers (CPs) and graphene and carbon nanotubes (CNTs), are some of the most promising candidates for wearable and implantable biosensors. Their unique electrical, electrochemical, and mechanical properties bring new possibilities to bioelectronics that could not be realized by utilizing metals- or silicon-based analogues. The use of organic- and carbon-based conductors in the development of wearable and implantable biosensors has emerged as a rapidly growing research field, with remarkable progress being made in recent years. The use of such materials addresses the issue of mismatched properties between biological tissues and electronic devices, as well as the improvement in the accuracy and fidelity of the transferred information. In this review, we highlight the most recent advances in this field and provide insights into organic and carbon-based (semi)conducting materials' properties and relate these to their applications in wearable/implantable biosensors. We also provide a perspective on the promising potential and exciting future developments of wearable/implantable biosensors.
Collapse
Affiliation(s)
- Peikai Zhang
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Bicheng Zhu
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
31
|
Jiang X, Shi C, Wang Z, Huang L, Chi L. Healthcare Monitoring Sensors Based on Organic Transistors: Surface/Interface Strategy and Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308952. [PMID: 37951211 DOI: 10.1002/adma.202308952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Indexed: 11/13/2023]
Abstract
Organic transistors possess inherent advantages such as flexibility, biocompatibility, customizable chemical structures, solution-processability, and amplifying capabilities, making them highly promising for portable healthcare sensor applications. Through convenient and diverse modifications at the material and device surfaces or interfaces, organic transistors allow for a wide range of sensor applications spanning from chemical and biological to physical sensing. In this comprehensive review, the surface and interface engineering aspect associated with four types of typical healthcare sensors is focused. The device operation principles and sensing mechanisms are systematically analyzed and highlighted, and particularly surface/interface functionalization strategies that contribute to the enhancement of sensing performance are focused. An outlook and perspective on the critical issues and challenges in the field of healthcare sensing using organic transistors are provided as well.
Collapse
Affiliation(s)
- Xingyu Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Cheng Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zi Wang
- Suzhou Laboratory, 388 Ruoshui Road, Suzhou, 215123, P. R. China
| | - Lizhen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
32
|
Pan D, Hu J, Wang B, Xia X, Cheng Y, Wang C, Lu Y. Biomimetic Wearable Sensors: Emerging Combination of Intelligence and Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303264. [PMID: 38044298 PMCID: PMC10837381 DOI: 10.1002/advs.202303264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/03/2023] [Indexed: 12/05/2023]
Abstract
Owing to the advancement of interdisciplinary concepts, for example, wearable electronics, bioelectronics, and intelligent sensing, during the microelectronics industrial revolution, nowadays, extensively mature wearable sensing devices have become new favorites in the noninvasive human healthcare industry. The combination of wearable sensing devices with bionics is driving frontier developments in various fields, such as personalized medical monitoring and flexible electronics, due to the superior biocompatibilities and diverse sensing mechanisms. It is noticed that the integration of desired functions into wearable device materials can be realized by grafting biomimetic intelligence. Therefore, herein, the mechanism by which biomimetic materials satisfy and further enhance system functionality is reviewed. Next, wearable artificial sensory systems that integrate biomimetic sensing into portable sensing devices are introduced, which have received significant attention from the industry owing to their novel sensing approaches and portabilities. To address the limitations encountered by important signal and data units in biomimetic wearable sensing systems, two paths forward are identified and current challenges and opportunities are presented in this field. In summary, this review provides a further comprehensive understanding of the development of biomimetic wearable sensing devices from both breadth and depth perspectives, offering valuable guidance for future research and application expansion of these devices.
Collapse
Affiliation(s)
- Donglei Pan
- College of Light Industry and Food EngineeringGuangxi UniversityNanningGuangxi530004China
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Jiawang Hu
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Bin Wang
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Xuanjie Xia
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Yifan Cheng
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Cheng‐Hua Wang
- College of Light Industry and Food EngineeringGuangxi UniversityNanningGuangxi530004China
| | - Yuan Lu
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| |
Collapse
|
33
|
Ayankojo AG, Reut J, Syritski V. Electrochemically Synthesized MIP Sensors: Applications in Healthcare Diagnostics. BIOSENSORS 2024; 14:71. [PMID: 38391990 PMCID: PMC10886925 DOI: 10.3390/bios14020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024]
Abstract
Early-stage detection and diagnosis of diseases is essential to the prompt commencement of treatment regimens, curbing the spread of the disease, and improving human health. Thus, the accurate detection of disease biomarkers through the development of robust, sensitive, and selective diagnostic tools has remained cutting-edge scientific research for decades. Due to their merits of being selective, stable, simple, and having a low preparation cost, molecularly imprinted polymers (MIPs) are increasingly becoming artificial substitutes for natural receptors in the design of state-of-the-art sensing devices. While there are different MIP preparation approaches, electrochemical synthesis presents a unique and outstanding method for chemical sensing applications, allowing the direct formation of the polymer on the transducer as well as simplicity in tuning the film properties, thus accelerating the trend in the design of commercial MIP-based sensors. This review evaluates recent achievements in the applications of electrosynthesized MIP sensors for clinical analysis of disease biomarkers, identifying major trends and highlighting interesting perspectives on the realization of commercial MIP-endowed testing devices for rapid determination of prevailing diseases.
Collapse
Affiliation(s)
| | | | - Vitali Syritski
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; (A.G.A.); (J.R.)
| |
Collapse
|
34
|
Xu B, Chang H, Yang G, Xu Z, Li J, Gu Z, Li J. An integrated wearable sticker based on extended-gate AlGaN/GaN high electron mobility transistors for real-time cortisol detection in human sweat. Analyst 2024; 149:958-967. [PMID: 38197472 DOI: 10.1039/d3an02115g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Cortisol hormone imbalances can be detected through non-invasive sweat monitoring using field-effect transistor (FET) biosensors, which provide rapid and sensitive detection. However, challenges like skin compatibility and integration with sweat collection have hindered FET biosensors as wearable sensing platforms. In this study, we present an integrated wearable sticker for real-time cortisol detection based on an extended-gate AlGaN/GaN high electron mobility transistor (HEMT) combined with a soft bottom substrate and flexible channel for sweat collection. The developed devices exhibit excellent linearity (R2 = 0.990) and a high sensitivity of 1.245 μA dec-1 for cortisol sensing from 1 nM to 100 μM in high-ionic-strength solution, with successful cortisol detection demonstrated using authentic human sweat samples. Additionally, the chip's microminiature design effectively reduces bending impact during the wearable process of traditional soft binding sweat sensors. The extendedgate structure design of the HEMT chip enhances both width-to-length ratio and active sensing area, resulting in an exceptionally low detection limit of 100 fM. Futhermore, due to GaN material's inherent stability, this device exhibits long-term stability with sustained performance within a certain attenuation range even after 60 days. These stickers possess small, lightweight, and portable features that enable real-time cortisol detection within 5 minutes through direct sweat collection. The application of this technology holds great potential in the field of personal health management, facilitating users to conveniently monitor their mental and physical conditions.
Collapse
Affiliation(s)
- Boxuan Xu
- The College of Materials Science and Engineering, Shanghai University, Shanghai, 200072, People's Republic of China.
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
| | - Hui Chang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - Guo Yang
- School of Electrical and Mechanical Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Zhan Xu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - Jun Li
- The College of Materials Science and Engineering, Shanghai University, Shanghai, 200072, People's Republic of China.
| | - Zhiqi Gu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
| | - Jiadong Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| |
Collapse
|
35
|
Sharma A, Wulff A, Thomas A, Sonkusale S. Ultrasensitive electrochemical sensor for detection of salivary cortisol in stress conditions. Mikrochim Acta 2024; 191:103. [PMID: 38231275 DOI: 10.1007/s00604-023-06169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024]
Abstract
A natural stress response induces elevated cortisol levels in biological fluids, such as saliva. While current sensor technologies can detect cortisol in real time, their sensitivity and reliability for human subjects have not been assured. This is due to relatively low concentrations of salivary cortisol, which fluctuate throughout the day and vary significantly between individuals. To address these challenges, we present an improved electrochemical biosensor leveraging graphene's exceptional conductivity and physicochemical properties. A 1-pyrenebutyric acid N-hydroxysuccinimide ester (PBASE-NHS)-modified commercial graphene foam (GF) electrode is presented to realize an ultra-sensitive biosensor for cortisol detection directly in human saliva. The biosensor fabrication process entails the attachment of anti-cortisol monoclonal antibodies (mAb-cort) onto a PBASE-NHS/GF electrode through noncovalent immobilization on the vertically stratified graphene foam electrode surface. This unique immobilization strategy preserves graphene's structural integrity and electrical conductivity while facilitating antibody immobilization. The binding of cortisol to immobilized mAb-cort is read out via differential pulse voltammetry using ferri/ferro redox reactions. The immunosensor demonstrates an exceptional dynamic range of 1.0 fg mL-1 to 10,000 pg mL-1 (R2 = 0.9914) with a detection limit of 0.24 fg mL-1 (n = 3) for cortisol. Furthermore, we have established the reliability of cortisol sensors in monitoring human saliva. We have also performed multiple modes of validation, one against the established enzyme-linked immunosorbent assay (ELISA) and a second by a third-party service Salimetric on 16 student volunteers exposed to different stress levels, showing excellent correlation (r = 0.9961). These findings suggest the potential for using mAb-cort/PBASE-NHS/GF-based cortisol electrodes for monitoring salivary cortisol in the general population.
Collapse
Affiliation(s)
- Atul Sharma
- Nano Lab, Advanced Technology Laboratory, Tufts University, Medford, MA, 02155, USA
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA, 02155, USA
| | - Alia Wulff
- Department of Psychology, Tufts University, Medford, MA, 02155, USA
| | - Ayanna Thomas
- Department of Psychology, Tufts University, Medford, MA, 02155, USA
| | - Sameer Sonkusale
- Nano Lab, Advanced Technology Laboratory, Tufts University, Medford, MA, 02155, USA.
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
36
|
Omar R, Yuan M, Wang J, Sublaban M, Saliba W, Zheng Y, Haick H. Self-powered freestanding multifunctional microneedle-based extended gate device for personalized health monitoring. SENSORS AND ACTUATORS. B, CHEMICAL 2024; 398:134788. [PMID: 38164440 PMCID: PMC10652171 DOI: 10.1016/j.snb.2023.134788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 01/03/2024]
Abstract
Online monitoring of prognostic biomarkers is critically important when diagnosing disorders and assessing individuals' health, especially for chronic and infectious diseases. Despite this, current diagnosis techniques are time-consuming, labor-intensive, and performed offline. In this context, developing wearable devices for continuous measurements of multiple biomarkers from body fluids has considerable advantages including availability, rapidity, convenience, and minimal invasiveness over the conventional painful and time-consuming tools. However, there is still a significant challenge in powering these devices over an extended period, especially for applications that require continuous and long-term health monitoring. Herein, a new freestanding, wearable, multifunctional microneedle-based extended gate field effect transistor biosensor is fabricated for online detection of multiple biomarkers from the interstitial fluid including sodium, calcium, potassium, and pH along with excellent electrical response, reversibility, and precision. In addition, a hybrid powering system of triboelectric nanogenerator and solar cell was developed for creating a freestanding, closed-loop platform for continuous charging of the device's battery and integrated with an Internet of Things technology to broadcast the measurements online, suggesting a stand-alone, stable multifunctional tool which paves the way for advanced practical personalized health monitoring and diagnosis.
Collapse
Affiliation(s)
- Rawan Omar
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, PR China
| | - Jing Wang
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Majd Sublaban
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Walaa Saliba
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Youbin Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 320003, Israel
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ,United Kingdom
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 320003, Israel
| |
Collapse
|
37
|
Ok J, Park S, Jung YH, Kim TI. Wearable and Implantable Cortisol-Sensing Electronics for Stress Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211595. [PMID: 36917076 DOI: 10.1002/adma.202211595] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Cortisol is a steroid hormone that is released from the body in response to stress. Although a moderate level of cortisol secretion can help the body maintain homeostasis, excessive secretion can cause various diseases, such as depression and anxiety. Conventional methods for cortisol measurement undergo procedures that limit continuous monitoring, typically collecting samples of bodily fluids, followed by separate analysis in a laboratory setting that takes several hours. Thus, recent studies demonstrate wearable, miniaturized sensors integrated with electronic modules that enable wireless real-time analysis. Here, the primary focus is on wearable and implantable electronic devices that continuously measure cortisol concentration. Diverse types of cortisol-sensing techniques, such as antibody-, DNA-aptamer-, and molecularly imprinted polymer-based sensors, as well as wearable and implantable devices that aim to continuously monitor cortisol in a minimally invasive fashion are discussed. In addition to the cortisol monitors that directly measure stress levels, other schemes that indirectly measure stress, such as electrophysiological signals and sweat are also summarized. Finally, the challenges and future directions in stress monitoring and management electronics are reviewed.
Collapse
Affiliation(s)
- Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sumin Park
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yei Hwan Jung
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
38
|
Weber CJ, Clay OM, Lycan RE, Anderson GK, Simoska O. Advances in electrochemical biosensor design for the detection of the stress biomarker cortisol. Anal Bioanal Chem 2024; 416:87-106. [PMID: 37989847 DOI: 10.1007/s00216-023-05047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
The monitoring of stress levels in humans has become increasingly relevant, given the recent incline of stress-related mental health disorders, lifestyle impacts, and chronic physiological diseases. Long-term exposure to stress can induce anxiety and depression, heart disease, and risky behaviors, such as drug and alcohol abuse. Biomarker molecules can be quantified in biological fluids to study human stress. Cortisol, specifically, is a hormone biomarker produced in the adrenal glands with biofluid concentrations that directly correlate to stress levels in humans. The rapid, real-time detection of cortisol is necessary for stress management and predicting the onset of psychological and physical ailments. Current methods, including mass spectrometry and immunoassays, are effective for sensitive cortisol quantification. However, these techniques provide only single measurements which pose challenges in the continuous monitoring of stress levels. Additionally, these analytical methods often require trained personnel to operate expensive instrumentation. Alternatively, low-cost electrochemical biosensors enable the real-time detection and continuous monitoring of cortisol levels while also providing adequate analytical figures of merit (e.g., sensitivity, selectivity, sensor response times, detection limits, and reproducibility) in a simple design platform. This review discusses the recent developments in electrochemical biosensor design for the detection of cortisol in human biofluids. Special emphasis is given to biosensor recognition elements, including antibodies, molecularly imprinted polymers (MIPs), and aptamers, as critical components of electrochemical biosensors for cortisol detection. Furthermore, the advantages and limiting factors of various electrochemical techniques and sensing in complex biofluid matrices are overviewed. Remarks on the current challenges and future perspectives regarding electrochemical biosensors for stress monitoring are provided, including matrix effects (pH dependence and biological interferences), wearability, and large-scale production.
Collapse
Affiliation(s)
- Courtney J Weber
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Olivia M Clay
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Reese E Lycan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Gracie K Anderson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Olja Simoska
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
39
|
Watkins Z, McHenry A, Heikenfeld J. Wearing the Lab: Advances and Challenges in Skin-Interfaced Systems for Continuous Biochemical Sensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:223-282. [PMID: 38273210 DOI: 10.1007/10_2023_238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Continuous, on-demand, and, most importantly, contextual data regarding individual biomarker concentrations exemplify the holy grail for personalized health and performance monitoring. This is well-illustrated for continuous glucose monitoring, which has drastically improved outcomes and quality of life for diabetic patients over the past 2 decades. Recent advances in wearable biosensing technologies (biorecognition elements, transduction mechanisms, materials, and integration schemes) have begun to make monitoring of other clinically relevant analytes a reality via minimally invasive skin-interfaced devices. However, several challenges concerning sensitivity, specificity, calibration, sensor longevity, and overall device lifetime must be addressed before these systems can be made commercially viable. In this chapter, a logical framework for developing a wearable skin-interfaced device for a desired application is proposed with careful consideration of the feasibility of monitoring certain analytes in sweat and interstitial fluid and the current development of the tools available to do so. Specifically, we focus on recent advancements in the engineering of biorecognition elements, the development of more robust signal transduction mechanisms, and novel integration schemes that allow for continuous quantitative analysis. Furthermore, we highlight the most compelling and promising prospects in the field of wearable biosensing and the challenges that remain in translating these technologies into useful products for disease management and for optimizing human performance.
Collapse
Affiliation(s)
- Zach Watkins
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| | - Adam McHenry
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Jason Heikenfeld
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
40
|
Schindler-Gmelch L, Capito K, Steudte-Schmiedgen S, Kirschbaum C, Berking M. Hair Cortisol Research in Posttraumatic Stress Disorder - 10 Years of Insights and Open Questions. A Systematic Review. Curr Neuropharmacol 2024; 22:1697-1719. [PMID: 37550910 PMCID: PMC11284720 DOI: 10.2174/1570159x21666230807112425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Cortisol is one of the most extensively studied biomarkers in the context of trauma/posttraumatic stress disorder (PTSD). For more than a decade, hair cortisol concentrations (HCC) have been measured in this context, leading to a two-staged dysregulation model. Specifically, an elevated secretion during/immediately after trauma exposure eventually reverts to hyposecretion with increasing time since trauma exposure has been postulated. OBJECTIVE The aim of our systematic review was to re-evaluate the two-staged secretion model with regard to the accumulated diagnostic, prognostic, and intervention-related evidence of HCC in lifetime trauma exposure and PTSD. Further, we provide an overview of open questions, particularly with respect to reporting standards and quality criteria. METHOD A systematic literature search yielded 5,046 records, of which 31 studies were included. RESULTS For recent/ongoing (traumatic) stress, the predictions of cortisol hypersecretion could be largely confirmed. However, for the assumed hyposecretion temporally more distal to trauma exposure, the results are more ambiguous. As most studies did not report holistic overviews of trauma history and confounding influences, this may largely be attributable to methodological limitations. Data on the prognostic and intervention-related benefits of HCC remain sparse. CONCLUSION Over the last decade, important insights could be gained about long-term cortisol secretion patterns following lifetime trauma exposure and PTSD. This systematic review integrates these insights into an updated secretion model for trauma/PTSD. We conclude with recommendations for improving HCC research in the context of trauma/PTSD in order to answer the remaining open questions.
Collapse
Affiliation(s)
- Lena Schindler-Gmelch
- Department of Clinical Psychology and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klara Capito
- Department of Clinical Psychology and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Susann Steudte-Schmiedgen
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | | | - Matthias Berking
- Department of Clinical Psychology and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
41
|
Zhang Y, Chen D, He W, Chen N, Zhou L, Yu L, Yang Y, Yuan Q. Interface-Engineered Field-Effect Transistor Electronic Devices for Biosensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306252. [PMID: 38048547 DOI: 10.1002/adma.202306252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/17/2023] [Indexed: 12/06/2023]
Abstract
Promising advances in molecular medicine have promoted the urgent requirement for reliable and sensitive diagnostic tools. Electronic biosensing devices based on field-effect transistors (FETs) exhibit a wide range of benefits, including rapid and label-free detection, high sensitivity, easy operation, and capability of integration, possessing significant potential for application in disease screening and health monitoring. In this perspective, the tremendous efforts and achievements in the development of high-performance FET biosensors in the past decade are summarized, with emphasis on the interface engineering of FET-based electrical platforms for biomolecule identification. First, an overview of engineering strategies for interface modulation and recognition element design is discussed in detail. For a further step, the applications of FET-based electrical devices for in vitro detection and real-time monitoring in biological systems are comprehensively reviewed. Finally, the key opportunities and challenges of FET-based electronic devices in biosensing are discussed. It is anticipated that a comprehensive understanding of interface engineering strategies in FET biosensors will inspire additional techniques for developing highly sensitive, specific, and stable FET biosensors as well as emerging designs for next-generation biosensing electronics.
Collapse
Affiliation(s)
- Yun Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Duo Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Wang He
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Na Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Liping Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Lilei Yu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Quan Yuan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
42
|
Xu C, Solomon SA, Gao W. Artificial Intelligence-Powered Electronic Skin. NAT MACH INTELL 2023; 5:1344-1355. [PMID: 38370145 PMCID: PMC10868719 DOI: 10.1038/s42256-023-00760-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/18/2023] [Indexed: 02/20/2024]
Abstract
Skin-interfaced electronics is gradually changing medical practices by enabling continuous and noninvasive tracking of physiological and biochemical information. With the rise of big data and digital medicine, next-generation electronic skin (e-skin) will be able to use artificial intelligence (AI) to optimize its design as well as uncover user-personalized health profiles. Recent multimodal e-skin platforms have already employed machine learning (ML) algorithms for autonomous data analytics. Unfortunately, there is a lack of appropriate AI protocols and guidelines for e-skin devices, resulting in overly complex models and non-reproducible conclusions for simple applications. This review aims to present AI technologies in e-skin hardware and assess their potential for new inspired integrated platform solutions. We outline recent breakthroughs in AI strategies and their applications in engineering e-skins as well as understanding health information collected by e-skins, highlighting the transformative deployment of AI in robotics, prosthetics, virtual reality, and personalized healthcare. We also discuss the challenges and prospects of AI-powered e-skins as well as predictions for the future trajectory of smart e-skins.
Collapse
Affiliation(s)
- Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Samuel A. Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
43
|
Ali F, Koc M. 3D Printed Polymer Piezoelectric Materials: Transforming Healthcare through Biomedical Applications. Polymers (Basel) 2023; 15:4470. [PMID: 38231894 PMCID: PMC10708359 DOI: 10.3390/polym15234470] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 01/19/2024] Open
Abstract
Three-dimensional (3D) printing is a promising manufacturing platform in biomedical engineering. It offers significant advantages in fabricating complex and customized biomedical products with accuracy, efficiency, cost-effectiveness, and reproducibility. The rapidly growing field of three-dimensional printing (3DP), which emphasizes customization as its key advantage, is actively searching for functional materials. Among these materials, piezoelectric materials are highly desired due to their linear electromechanical and thermoelectric properties. Polymer piezoelectrics and their composites are in high demand as biomaterials due to their controllable and reproducible piezoelectric properties. Three-dimensional printable piezoelectric materials have opened new possibilities for integration into biomedical fields such as sensors for healthcare monitoring, controlled drug delivery systems, tissue engineering, microfluidic, and artificial muscle actuators. Overall, this review paper provides insights into the fundamentals of polymer piezoelectric materials, the application of polymer piezoelectric materials in biomedical fields, and highlights the challenges and opportunities in realizing their full potential for functional applications. By addressing these challenges, integrating 3DP and piezoelectric materials can lead to the development of advanced sensors and devices with enhanced performance and customization capabilities for biomedical applications.
Collapse
Affiliation(s)
- Fawad Ali
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar;
| | | |
Collapse
|
44
|
Nguyen TTH, Nguyen CM, Huynh MA, Vu HH, Nguyen TK, Nguyen NT. Field effect transistor based wearable biosensors for healthcare monitoring. J Nanobiotechnology 2023; 21:411. [PMID: 37936115 PMCID: PMC10629051 DOI: 10.1186/s12951-023-02153-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
The rapid advancement of wearable biosensors has revolutionized healthcare monitoring by screening in a non-invasive and continuous manner. Among various sensing techniques, field-effect transistor (FET)-based wearable biosensors attract increasing attention due to their advantages such as label-free detection, fast response, easy operation, and capability of integration. This review explores the innovative developments and applications of FET-based wearable biosensors for healthcare monitoring. Beginning with an introduction to the significance of wearable biosensors, the paper gives an overview of structural and operational principles of FETs, providing insights into their diverse classifications. Next, the paper discusses the fabrication methods, semiconductor surface modification techniques and gate surface functionalization strategies. This background lays the foundation for exploring specific FET-based biosensor designs, including enzyme, antibody and nanobody, aptamer, as well as ion-sensitive membrane sensors. Subsequently, the paper investigates the incorporation of FET-based biosensors in monitoring biomarkers present in physiological fluids such as sweat, tears, saliva, and skin interstitial fluid (ISF). Finally, we address challenges, technical issues, and opportunities related to FET-based biosensor applications. This comprehensive review underscores the transformative potential of FET-based wearable biosensors in healthcare monitoring. By offering a multidimensional perspective on device design, fabrication, functionalization and applications, this paper aims to serve as a valuable resource for researchers in the field of biosensing technology and personalized healthcare.
Collapse
Affiliation(s)
- Thi Thanh-Ha Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Cong Minh Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Environment and Science (ESC), Griffith University, Nathan, QLD, 4111, Australia
| | - Minh Anh Huynh
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Hoang Huy Vu
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
45
|
Kaushal JB, Raut P, Kumar S. Organic Electronics in Biosensing: A Promising Frontier for Medical and Environmental Applications. BIOSENSORS 2023; 13:976. [PMID: 37998151 PMCID: PMC10669243 DOI: 10.3390/bios13110976] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
The promising field of organic electronics has ushered in a new era of biosensing technology, thus offering a promising frontier for applications in both medical diagnostics and environmental monitoring. This review paper provides a comprehensive overview of organic electronics' remarkable progress and potential in biosensing applications. It explores the multifaceted aspects of organic materials and devices, thereby highlighting their unique advantages, such as flexibility, biocompatibility, and low-cost fabrication. The paper delves into the diverse range of biosensors enabled by organic electronics, including electrochemical, optical, piezoelectric, and thermal sensors, thus showcasing their versatility in detecting biomolecules, pathogens, and environmental pollutants. Furthermore, integrating organic biosensors into wearable devices and the Internet of Things (IoT) ecosystem is discussed, wherein they offer real-time, remote, and personalized monitoring solutions. The review also addresses the current challenges and future prospects of organic biosensing, thus emphasizing the potential for breakthroughs in personalized medicine, environmental sustainability, and the advancement of human health and well-being.
Collapse
Affiliation(s)
- Jyoti Bala Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.B.K.); (P.R.)
| | - Pratima Raut
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.B.K.); (P.R.)
| | - Sanjay Kumar
- Durham School of Architectural Engineering and Construction, Scott Campus, University of Nebraska-Lincoln, Omaha, NE 68182, USA
| |
Collapse
|
46
|
Karuppaiah G, Lee MH, Bhansali S, Manickam P. Electrochemical sensors for cortisol detection: Principles, designs, fabrication, and characterisation. Biosens Bioelectron 2023; 239:115600. [PMID: 37611448 DOI: 10.1016/j.bios.2023.115600] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
Psychological stress is a major factor contributing to health discrepancies among individuals. Sustained exposure to stress triggers signalling pathways in the brain, which leading to the release of stress hormones in the body. Cortisol, a steroid hormone, is a significant biomarker for stress management due to its responsibility in the body's reply to stress. The release of cortisol in bloodstream prepares the body for a "fight or flight" response by increasing heart rate, blood pressure, metabolism, and suppressing the immune system. Detecting cortisol in biological samples is crucial for understanding its role in stress and personalized healthcare. Traditional techniques for cortisol detection have limitations, prompting researchers to explore alternative strategies. Electrochemical sensing has emerged as a reliable method for point-of-care (POC) cortisol detection. This review focuses on the progress made in electrochemical sensors for cortisol detection, covering their design, principle, and electroanalytical methodologies. The analytical performance of these sensors is also analysed and summarized. Despite significant advancements, the development of electrochemical cortisol sensors faces challenges such as biofouling, sample preparation, sensitivity, flexibility, stability, and recognition layer performance. Therefore, the need to develop more sensitive electrodes and materials is emphasized. Finally, we discussed the potential strategies for electrode design and provides examples of sensing approaches. Moreover, the encounters of translating research into real world applications are addressed.
Collapse
Affiliation(s)
- Gopi Karuppaiah
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India; School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Shekhar Bhansali
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA.
| | - Pandiaraj Manickam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India.
| |
Collapse
|
47
|
Lamaoui A, Mani V, Durmus C, Salama KN, Amine A. Molecularly imprinted polymers: A closer look at the template removal and analyte binding. Biosens Bioelectron 2023; 243:115774. [PMID: 39492184 DOI: 10.1016/j.bios.2023.115774] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
Molecularly imprinted polymers (MIPs), which first appeared over half a century ago, are now attracting considerable attention as artificial receptors, particularly for sensing. MIPs, especially applied to biomedical analysis in biofluids, contribute significantly to patient diagnosis at the point of care, thereby allowing health monitoring. Despite the importance given to MIPs, removal of templates and binding of analytes have received little attention and are currently the least focused steps in MIP development. This critical review is dedicated to a comprehensive analysis and discussion of cutting-edge concepts and methodologies in the removal and binding steps pertaining to various types of analytes, including ions, molecules, epitopes, proteins, viruses, and bacteria. The central objective of this review is to comprehensively examine and discuss a range of removal methods, including soxhlet extraction, immersion, microwave-assisted technique, ultrasonication, electrochemical approach, and proteolytic digestion, among others. Additionally, we will explore various binding methods, such as soaking, drop-casting, and batch sorption, to provide a comprehensive overview of the subject. Furthermore, the current challenges and perspectives in removal and binding are highlighted. Our review, at the interface of chemistry and sensors, will offer a wide range of opportunities for researchers whose interests include MIPs, (bio)sensors, analytical chemistry, and diagnostics.
Collapse
Affiliation(s)
- Abderrahman Lamaoui
- Laboratoire Génie des Procedés & Environnement, Faculté des Sciences et Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco
| | - Veerappan Mani
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ceren Durmus
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Khaled Nabil Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Aziz Amine
- Laboratoire Génie des Procedés & Environnement, Faculté des Sciences et Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco.
| |
Collapse
|
48
|
Wu G, Zhang ET, Qiang Y, Esmonde C, Chen X, Wei Z, Song Y, Zhang X, Schneider MJ, Li H, Sun H, Weng Z, Santaniello S, He J, Lai RY, Li Y, Bruchas MR, Zhang Y. Long-Term In Vivo Molecular Monitoring Using Aptamer-Graphene Microtransistors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562080. [PMID: 37905115 PMCID: PMC10614860 DOI: 10.1101/2023.10.18.562080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Long-term, real-time molecular monitoring in complex biological environments is critical for our ability to understand, prevent, diagnose, and manage human diseases. Aptamer-based electrochemical biosensors possess the promise due to their generalizability and a high degree of selectivity. Nevertheless, the operation of existing aptamer-based biosensors in vivo is limited to a few hours. Here, we report a first-generation long-term in vivo molecular monitoring platform, named aptamer-graphene microtransistors (AGMs). The AGM incorporates a layer of pyrene-(polyethylene glycol)5-alcohol and DNase inhibitor-doped polyacrylamide hydrogel coating to reduce biofouling and aptamer degradation. As a demonstration of function and generalizability, the AGM achieves the detection of biomolecules such as dopamine and serotonin in undiluted whole blood at 37 °C for 11 days. Furthermore, the AGM successfully captures optically evoked dopamine release in vivo in mice for over one week and demonstrates the capability to monitor behaviorally-induced endogenous dopamine release even after eight days of implantation in freely moving mice. The results reported in this work establish the potential for chronic aptamer-based molecular monitoring platforms, and thus serve as a new benchmark for molecular monitoring using aptamer-based technology.
Collapse
Affiliation(s)
- Guangfu Wu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Eric T. Zhang
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Yingqi Qiang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Colin Esmonde
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Zichao Wei
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Yang Song
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Xincheng Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Michael J. Schneider
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Huijie Li
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - He Sun
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Zhengyan Weng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Sabato Santaniello
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Rebecca Y. Lai
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Michael R. Bruchas
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Yi Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
49
|
Yadav A, Patil R, Dutta S. Advanced Self-Powered Biofuel Cells with Capacitor and Nanogenerator for Biomarker Sensing. ACS APPLIED BIO MATERIALS 2023; 6:4060-4080. [PMID: 37787456 DOI: 10.1021/acsabm.3c00640] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Self-powered biofuel cells (BFCs) have evolved for highly sensitive detection of biomarkers such as noncodon micro ribonucleic acids (miRNAs) in the presence of interfering substrates. Self-charging supercapacitive BFCs for in vivo and in vitro cellular microenvironments represent the most prevalent sensing mechanism for diagnosis. Therefore, self-powered biosensing (SPB) with a capacitor and contact separation with a triboelectric nanogenerator (TENG) offers electrochemical and colorimetric dual-mode detection via improved electrical signal intensity. In this review, we discuss three major components: stretchable self-powered BFC design, miRNA sensing, and impedance spectroscopy. A specific focus is given to 1) assembling of sensors for biomarkers, 2) electrical output signal intensification, and 3) role of supercapacitors and nanogenerators in SPBs. We outline the key features of stretchable SPBs and the sequence of miRNA sensing by SPBs. We have emphasized the need of a supercapacitor and nanogenerator for SPBs in the context of advanced assembly of the sensing unit. Finally, we outline the role of impedance spectroscopy in the detection and estimation of biomarkers. We highlight key challenges in SPBs for biomarker sensing, which needs improved sensing accuracy, integration strategies of electrochemical biosensing for in vitro and in vivo microenvironments, and the impact of miRNA sensing on cancer diagnostics. This article attempts a specific focus on the accuracy and limitations of sensing unit for miRNA biomarkers and associated tool for boosting electrical signal intensity for a potential big step further.
Collapse
Affiliation(s)
- Anubha Yadav
- Electrochemical Energy & Sensor Research Laboratory Amity Institute of Click Chemistry Research & Studies, Amity University, Sector 125, Noida 201301, Uttar Pradesh, India
| | - Rahul Patil
- Electrochemical Energy & Sensor Research Laboratory Amity Institute of Click Chemistry Research & Studies, Amity University, Sector 125, Noida 201301, Uttar Pradesh, India
| | - Saikat Dutta
- Electrochemical Energy & Sensor Research Laboratory Amity Institute of Click Chemistry Research & Studies, Amity University, Sector 125, Noida 201301, Uttar Pradesh, India
| |
Collapse
|
50
|
Mugo SM, Robertson SV, Lu W. A molecularly imprinted screen-printed carbon electrode for electrochemical epinephrine, lactate, and cortisol metabolites detection in human sweat. Anal Chim Acta 2023; 1278:341714. [PMID: 37709457 DOI: 10.1016/j.aca.2023.341714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023]
Abstract
This study presents a novel approach to the detection of epinephrine, lactate, and cortisol biomarkers in human sweat using molecularly-imprinted polymers (MIP) embedded screen printed carbon electrode (SPCE) sensors. The epinephrine and lactate MIP SPCE sensors were fabricated by epinephrine or lactate-imprinted polyaniline co-polymerized with 3-aminophenylboronic acid and gold nanoparticles (PANI-co-PBA/AuNP) selective membrane on a commercial SPCE. The cortisol sensor was comprised of a cortisol-imprinted poly(glycidyl methacryate-co-ethylene glycol dimethacrylate) (poly (GMA-co-EGDMA)@AuNP selective membrane deposited on a SPCE. Both cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used as modes of analysis for the MIP SPCE sensors. All sensors exhibited a rapid (∼1 min) and selective response to the epinephrine, lactate, and cortisol target analytes, with excellent precision between scans for both CV and DPV analysis modes. For CV, the LOD for epinephrine, lactate, and cortisol was 8.2 nM, 13 mM, and 0.042 μM, respectively. The LOD for DPV were 0.60 nM, 2.2 mM, and 0.025 μM for epinephrine, lactate, and cortisol, respectively. The MIP SPCE sensor platforms were further validated through the successful quantification of epinephrine, lactate, and cortisol in human sweat.
Collapse
Affiliation(s)
- Samuel M Mugo
- Department of Physical Sciences, MacEwan University, Edmonton, ABT5J4S2, Canada.
| | - Scott V Robertson
- Department of Physical Sciences, MacEwan University, Edmonton, ABT5J4S2, Canada
| | - Weihao Lu
- Department of Physical Sciences, MacEwan University, Edmonton, ABT5J4S2, Canada
| |
Collapse
|