1
|
Wu L, Song Y. Recent innovations in interfacial strategies for DLP 3D printing process optimization. MATERIALS HORIZONS 2024. [PMID: 39470616 DOI: 10.1039/d4mh01160k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Three-dimensional (3D) printing, also known as additive manufacturing, is capable of transforming computer-aided designs into intricate structures directly and on demand. This technology has garnered significant attention in recent years. Among the various approaches, digital light processing (DLP) 3D printing, which utilizes polymers or prepolymers as the ink, has emerged as the leading new technology, driven by high demand across diverse fields such as customized production, healthcare, education, and art design. DLP 3D printing technology employs cured slices as molding units and is recognized for its potential to achieve both high printing speed and resolution. Recent insights into the DLP printing process highlight its inherent interface transformations between liquid and solid states. This review summarizes key aspects of the printing process, speed, precision, and material diversity optimization, from the view of interfacial interactions between solid and liquid phases which are influenced by resin formation, curing surfaces and light source properties. These interactions include those at the liquid resin-UV pattern interface, the cured structure-curing surface interface, the liquid resin-curing surface interface, and the liquid resin-cured structure interface, each contributing to the unique characteristics of the printed results. Finally, this review addresses the current challenges and limitations of DLP 3D printing, providing valuable insights for future improvements and guiding potential innovations in the field.
Collapse
Affiliation(s)
- Lei Wu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Yanlin Song
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| |
Collapse
|
2
|
Chin KCH, Ovsepyan G, Boydston AJ. Multi-color dual wavelength vat photopolymerization 3D printing via spatially controlled acidity. Nat Commun 2024; 15:3867. [PMID: 38719871 PMCID: PMC11078982 DOI: 10.1038/s41467-024-48159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Dual wavelength vat photopolymerization (DW-VP) has emerged as a powerful approach to create multimaterial objects. However, only a limited range of properties have been showcased. In this work, we report the 3D printing (3DP) of multi-color objects from a single resin vat using DW-VP. This was accomplished by concurrently curing resin with visible light and modulating local resin color with 365-nm ultraviolet (UV) light. The key advance was to use a photoacid generator (PAG) in combination with pH responsive dyes in the 3DP resins. The specific color is dictated by the extent of reaction, or local acidity in our case, and controlled by the light dosage and pattern of UV light applied. Multi-color object formation was implemented in two-step processes involving first 3DP to set the object structure, followed by UV exposure, as well as single processes that leveraged DW-VP to create a broad range of vibrant colors and patterns.
Collapse
Affiliation(s)
- Kyle C H Chin
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA
| | - Grant Ovsepyan
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA
| | - Andrew J Boydston
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA.
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA.
- Department of Materials Science and Engineering, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|
3
|
Ahn SJ, Lee H, Cho KJ. 3D printing with a 3D printed digital material filament for programming functional gradients. Nat Commun 2024; 15:3605. [PMID: 38714684 PMCID: PMC11076495 DOI: 10.1038/s41467-024-47480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/01/2024] [Indexed: 05/10/2024] Open
Abstract
Additive manufacturing, or 3D printing attracts growing attention as a promising method for creating functionally graded materials. Fused deposition modeling (FDM) is widely available, but due to its simple process, creating spatial gradation of diverse properties using FDM is challenging. Here, we present a 3D printed digital material filament that is structured towards 3D printing of functional gradients, utilizing only a readily available FDM printer and filaments. The DM filament consists of multiple base materials combined with specific concentrations and distributions, which are FDM printed. When the DM filament is supplied to the same printer, its constituent materials are homogeneously blended during extrusion, resulting in the desired properties in the final structure. This enables spatial programming of material properties in extreme variations, including mechanical strength, electrical conductivity, and color, which are otherwise impossible to achieve with traditional FDMs. Our approach can be readily adopted to any standard FDM printer, enabling low-cost production of functional gradients.
Collapse
Affiliation(s)
- Sang-Joon Ahn
- Soft Robotics Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Mechanical Engineering, Institute of Advanced Machines and Design, Seoul National University, Seoul, Republic of Korea
| | - Howon Lee
- Department of Mechanical Engineering, Institute of Advanced Machines and Design, Seoul National University, Seoul, Republic of Korea.
| | - Kyu-Jin Cho
- Soft Robotics Research Center, Seoul National University, Seoul, Republic of Korea.
- Department of Mechanical Engineering, Institute of Advanced Machines and Design, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Wang H, Hao Y, Guo K, Liu L, Xia B, Gao X, Zheng X, Huang J. Quantitative Biofabrication Platform for Collagen-Based Peripheral Nerve Grafts with Structural and Chemical Guidance. Adv Healthc Mater 2024; 13:e2303505. [PMID: 37988388 DOI: 10.1002/adhm.202303505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Owing to its crucial role in the human body, collagen has immense potential as a material for the biofabrication of tissues and organs. However, highly refined fabrication using collagen remains difficult, primarily because of its notably soft properties. A quantitative biofabrication platform to construct collagen-based peripheral nerve grafts, incorporating bionic structural and chemical guidance cues, is introduced. A viscoelastic model for collagen, which facilitates simulating material relaxation and fabricating collagen-based neural grafts, achieving a maximum channel density similar to that of the native nerve structure of longitudinal microchannel arrays, is established. For axonal regeneration over considerable distances, a gradient printing control model and quantitative method are developed to realize the high-precision gradient distribution of nerve growth factor required to obtain nerve grafts through one-step bioprinting. Experiments verify that the bioprinted graft effectively guides linear axonal growth in vitro and in vivo. This study should advance biofabrication methods for a variety of human tissue-engineering applications requiring tailored cues.
Collapse
Affiliation(s)
- Heran Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiming Hao
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Kai Guo
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China
| | - Bing Xia
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xue Gao
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiongfei Zheng
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
5
|
Luo Y, Kim J. Achieving the ideal balance between biological and mechanical requirements in composite bone scaffolds through a voxel-based approach. Comput Methods Biomech Biomed Engin 2024:1-14. [PMID: 38231253 DOI: 10.1080/10255842.2024.2304709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Achieving successful bone regeneration necessitates the design of scaffolds that meet diverse biological and mechanical requirements, often leading to conflicts in the design parameters. A key conflict arises between scaffold porosity and stiffness. Increasing porosity facilitates cell infiltration and nutrient exchange, promoting bone regeneration. However, higher porosity compromises scaffold stiffness, which is crucial for providing structural support in the defective region. Furthermore, appropriate scaffold stiffness is crucial for preventing stress shielding. Conventional geometry-based design methods utilizing single-phase materials have limited flexibility in resolving such conflicts. To address this challenge, we propose a voxel-based method for designing composite scaffolds composed of hydroxyapatite (HA) and polylactic acid (PLA). Our strategy involves first satisfying primary biological requirements by selecting appropriate porosity, pore shape, and size. Subsequently, scaffold stiffness requirements are met by selecting suitable phase materials and tuning their contents. The study demonstrates that the voxel-based approach effectively balances both biological and mechanical requirements in scaffold design. This method addresses the limitations of traditional designs by achieving an optimal balance between porosity and stiffness, which is crucial for scaffold performance in biomedical applications. Moreover, the scaffolds designed using this method can be manufactured using voxel-based 3D printing technology, which is emerging in the field. Future advancements in voxel-based 3D printing technology will further enhance the feasibility and practicality of this approach for bone tissue engineering applications.
Collapse
Affiliation(s)
- Yunhua Luo
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Canada
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, Canada
| | - Jonghyun Kim
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
6
|
Saldívar MC, Tay E, Isaakidou A, Moosabeiki V, Fratila-Apachitei LE, Doubrovski EL, Mirzaali MJ, Zadpoor AA. Bioinspired rational design of bi-material 3D printed soft-hard interfaces. Nat Commun 2023; 14:7919. [PMID: 38086804 PMCID: PMC10716482 DOI: 10.1038/s41467-023-43422-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/08/2023] [Indexed: 04/06/2024] Open
Abstract
Durable interfacing of hard and soft materials is a major design challenge caused by the ensuing stress concentrations. In nature, soft-hard interfaces exhibit remarkable mechanical performance, with failures rarely happening at the interface. Here, we mimic the strategies observed in nature to design efficient soft-hard interfaces. We base our geometrical designs on triply periodic minimal surfaces (i.e., Octo, Diamond, and Gyroid), collagen-like triple helices, and randomly distributed particles. A combination of computational simulations and experimental techniques, including uniaxial tensile and quad-lap shear tests, are used to characterize the mechanical performance of the interfaces. Our analyses suggest that smooth interdigitated connections, compliant gradient transitions, and either decreasing or constraining strain concentrations lead to simultaneously strong and tough interfaces. We generate additional interfaces where the abovementioned toughening mechanisms work synergistically to create soft-hard interfaces with strengths approaching the upper achievable limit and enhancing toughness values by 50%, as compared to the control group.
Collapse
Affiliation(s)
- M C Saldívar
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - E Tay
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - A Isaakidou
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - V Moosabeiki
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - L E Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - E L Doubrovski
- Faculty of Industrial Design Engineering (IDE), Delft University of Technology (TU Delft), Landbergstraat, 15, 2628 CE, Delft, The Netherlands
| | - M J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - A A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands
| |
Collapse
|
7
|
Jacobson NM, Brusilovsky J, Ducey R, Stence NV, Barker AJ, Mitchell MB, Smith L, MacCurdy R, Weaver JC. The Inner Complexities of Multimodal Medical Data: Bitmap-Based 3D Printing for Surgical Planning Using Dynamic Physiology. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:855-868. [PMID: 37886401 PMCID: PMC10599423 DOI: 10.1089/3dp.2022.0265] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Motivated by the need to develop more informative and data-rich patient-specific presurgical planning models, we present a high-resolution method that enables the tangible replication of multimodal medical data. By leveraging voxel-level control of multimaterial three-dimensional (3D) printing, our method allows for the digital integration of disparate medical data types, such as functional magnetic resonance imaging, tractography, and four-dimensional flow, overlaid upon traditional magnetic resonance imaging and computed tomography data. While permitting the explicit translation of multimodal medical data into physical objects, this approach also bypasses the need to process data into mesh-based boundary representations, alleviating the potential loss and remodeling of information. After evaluating the optical characteristics of test specimens generated with our correlative data-driven method, we culminate with multimodal real-world 3D-printed examples, thus highlighting current and potential applications for improved surgical planning, communication, and clinical decision-making through this approach.
Collapse
Affiliation(s)
- Nicholas M. Jacobson
- School of Engineering, Design, and Computation—Inworks Innovation Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jane Brusilovsky
- School of Engineering, Design, and Computation—Inworks Innovation Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Nicholas V. Stence
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Children's Hospital Colorado, Heart Institute and Advanced Imaging Lab, Aurora, Colorado
| | - Alex J. Barker
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Children's Hospital Colorado, Heart Institute and Advanced Imaging Lab, Aurora, Colorado
| | - Max B. Mitchell
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Children's Hospital Colorado, Heart Institute and Advanced Imaging Lab, Aurora, Colorado
| | - Lawrence Smith
- School of Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - Robert MacCurdy
- School of Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - James C. Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
8
|
Zhang Y, Huang Z, Wang H, Li J. Regulation of the Interface Compatibility of the 3D-Printing Interpenetration Networks Toward Reduced Structure Anisotropy and Enhanced Performances. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37377379 DOI: 10.1021/acsami.3c06514] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Digital light processing three-dimensional (DLP 3D) printing, as a promising manufacturing technology with the capability of fabricating 3D objects with complex shapes, typically develops inconsistent material properties due to the stair-stepping effect caused by weak layer-interface compatibility. Here, we report the regulation of the interface compatibility of the 3D-printing resin with versatile photocuring characteristics and the subsequent mechanical, thermal, and dielectric performances by introducing the interpenetration network (IPN). The preparation procedures, interface structure, flexural and tensile strength, modulus, and dielectric performances of the IPN are presented. The greater penetration depth in 3D printing and the subsequently thermocured epoxy network passing through the printing interface synergistically enhance the interface compatibility of 3D-printing samples, with an unobvious printing texture on the surface of the 3D-printing objects. The mechanical performances of the IPN demonstrate little anisotropy, with a bending strength twice as much as the photosensitive resin. Dynamic mechanical analysis of the IPN indicates that the storage modulus increases by 70% at room temperature and the glass transition temperature (Tg) increases by 57%. The dielectric performance of the IPN demonstrates a 36% decrease in dielectric constant and a 28.4% increase in breakdown strength. Molecular dynamics studies have shown that the IPN takes on higher nonbonded energies and hydrogen bonds than the photosensitive resin, indicating a stronger bonding force between molecular chains, thus leading to better physical properties. These results illustrate the effectiveness of the IPN toward enhanced 3D-printing interlayer compatibility for excellent mechanical, thermal, and electrical performances.
Collapse
Affiliation(s)
- Yingfan Zhang
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Zhengyong Huang
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Haohuan Wang
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Jian Li
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
9
|
Wu L, Dong Z. Interfacial Regulation for 3D Printing based on Slice-Based Photopolymerization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300903. [PMID: 37147788 DOI: 10.1002/adma.202300903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/21/2023] [Indexed: 05/07/2023]
Abstract
3D printing, also known as additive manufacturing, can turn computer-aided designs into delicate structures directly and on demand by eliminating expensive molds, dies, or lithographic masks. Among the various technical forms, light-based 3D printing mainly involved the control of polymer-based matter fabrication and realized a field of manufacturing with high tunability of printing format, speed, and precision. Emerging slice- and light-based 3D-printing methods have prosperously advanced in recent years but still present challenges to the versatility of printing continuity, printing process, and printing details control. Herein, the field of slice- and light-based 3D printing is discussed and summarized from the view of interfacial regulation strategies to improve the printing continuity, printing process control, and the character of printed results, and several potential strategies to construct complex 3D structures of distinct characteristics with extra external fields, which are favorable for the further improvement and development of 3D printing, are proposed.
Collapse
Affiliation(s)
- Lei Wu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Zaupa A, Terraza C, Abarzúa-Illanes PN, Byres N, Zavala G, Cuenca J, Hidalgo C, Viafara-Garcia SM, Wolf B, Pino-Lagos K, Blaker JJ, Rumbak M, Khoury M, Enrione J, Acevedo JP. A Psychrophilic GelMA: Breaking Technical and Immunological Barriers for Multimaterial High-Resolution 3D Bioprinting. Biomacromolecules 2023; 24:150-165. [PMID: 36542545 PMCID: PMC9833123 DOI: 10.1021/acs.biomac.2c01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/16/2022] [Indexed: 12/24/2022]
Abstract
The increasing demand for tissue replacement has encouraged scientists worldwide to focus on developing new biofabrication technologies. Multimaterials/cells printed with stringent resolutions are necessary to address the high complexity of tissues. Advanced inkjet 3D printing can use multimaterials and attain high resolution and complexity of printed structures. However, a decisive yet limiting aspect of translational 3D bioprinting is selecting the befitting material to be used as bioink; there is a complete lack of cytoactive bioinks with adequate rheological, mechanical, and reactive properties. This work strives to achieve the right balance between resolution and cell support through methacrylamide functionalization of a psychrophilic gelatin and new fluorosurfactants used to engineer a photo-cross-linkable and immunoevasive bioink. The syntonized parameters following optimal formulation conditions allow proficient printability in a PolyJet 3D printer comparable in resolution to a commercial synthetic ink (∼150 μm). The bioink formulation achieved the desired viability (∼80%) and proliferation of co-printed cells while demonstrating in vivo immune tolerance of printed structures. The practical usage of existing high-resolution 3D printing systems using a novel bioink is shown here, allowing 3D bioprinted structures with potentially unprecedented complexity.
Collapse
Affiliation(s)
- Alessandro Zaupa
- Laboratory
of Nano-Regenerative Medicine, Centro de Investigación Biomédica
e Innovación, Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile
| | - Claudia Terraza
- Laboratory
of Nano-Regenerative Medicine, Centro de Investigación Biomédica
e Innovación, Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile
- Cells
for Cells, Santiago 7620001, Chile
| | - Phammela N. Abarzúa-Illanes
- Laboratory
of Nano-Regenerative Medicine, Centro de Investigación Biomédica
e Innovación, Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile
| | - Nicholas Byres
- Laboratory
of Nano-Regenerative Medicine, Centro de Investigación Biomédica
e Innovación, Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile
- Cells
for Cells, Santiago 7620001, Chile
| | - Gabriela Zavala
- Laboratory
of Nano-Regenerative Medicine, Centro de Investigación Biomédica
e Innovación, Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile
- Consorcio
Regenero, Santiago 7620001, Chile
- IMPACT,
Center of Interventional Medicine for Precision and Advanced Cellular
Therapy, Santiago 7620001, Chile
| | - Jimena Cuenca
- Laboratory
of Nano-Regenerative Medicine, Centro de Investigación Biomédica
e Innovación, Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile
- Cells
for Cells, Santiago 7620001, Chile
- Consorcio
Regenero, Santiago 7620001, Chile
- IMPACT,
Center of Interventional Medicine for Precision and Advanced Cellular
Therapy, Santiago 7620001, Chile
| | - Carmen Hidalgo
- Laboratory
of Nano-Regenerative Medicine, Centro de Investigación Biomédica
e Innovación, Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile
- IMPACT,
Center of Interventional Medicine for Precision and Advanced Cellular
Therapy, Santiago 7620001, Chile
| | - Sergio M. Viafara-Garcia
- Laboratory
of Nano-Regenerative Medicine, Centro de Investigación Biomédica
e Innovación, Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile
- IMPACT,
Center of Interventional Medicine for Precision and Advanced Cellular
Therapy, Santiago 7620001, Chile
| | - Bettina Wolf
- School
of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | - Karina Pino-Lagos
- Centro de
Investigación Biomédica e Innovación, Facultad
de Medicina, Universidad de los Andes, Santiago 7620001, Chile
| | - Jonny J. Blaker
- Bio-Active
Materials Group, Department of Materials, MSS Tower, The University of Manchester, Manchester M13 9PL, United Kingdom
- Department
of Materials, MSS Tower, The University
of Manchester, Manchester M13 9PL, United Kingdom
| | - Mayan Rumbak
- Stratasys
Ltd., 1 Holtzman Street, Tamar Science Park, Rehovot 7612401, Israel
| | - Maroun Khoury
- Laboratory
of Nano-Regenerative Medicine, Centro de Investigación Biomédica
e Innovación, Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile
- Cells
for Cells, Santiago 7620001, Chile
- Consorcio
Regenero, Santiago 7620001, Chile
- IMPACT,
Center of Interventional Medicine for Precision and Advanced Cellular
Therapy, Santiago 7620001, Chile
| | - Javier Enrione
- Biopolymer
Research and Engineering Lab (BiopREL), School of Nutrition and Dietetics,
Faculty of Medicine, Universidad de los
Andes, Santiago 7620001, Chile
| | - Juan Pablo Acevedo
- Laboratory
of Nano-Regenerative Medicine, Centro de Investigación Biomédica
e Innovación, Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile
- Cells
for Cells, Santiago 7620001, Chile
- IMPACT,
Center of Interventional Medicine for Precision and Advanced Cellular
Therapy, Santiago 7620001, Chile
| |
Collapse
|
11
|
Cheng J, Wang R, Sun Z, Liu Q, He X, Li H, Ye H, Yang X, Wei X, Li Z, Jian B, Deng W, Ge Q. Centrifugal multimaterial 3D printing of multifunctional heterogeneous objects. Nat Commun 2022; 13:7931. [PMID: 36566233 PMCID: PMC9789974 DOI: 10.1038/s41467-022-35622-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/13/2022] [Indexed: 12/26/2022] Open
Abstract
There are growing demands for multimaterial three-dimensional (3D) printing to manufacture 3D object where voxels with different properties and functions are precisely arranged. Digital light processing (DLP) is a high-resolution fast-speed 3D printing technology suitable for various materials. However, multimaterial 3D printing is challenging for DLP as the current multimaterial switching methods require direct contact onto the printed part to remove residual resin. Here we report a DLP-based centrifugal multimaterial (CM) 3D printing method to generate large-volume heterogeneous 3D objects where composition, property and function are programmable at voxel scale. Centrifugal force enables non-contact, high-efficiency multimaterial switching, so that the CM 3D printer can print heterogenous 3D structures in large area (up to 180 mm × 130 mm) made of materials ranging from hydrogels to functional polymers, and even ceramics. Our CM 3D printing method exhibits excellent capability of fabricating digital materials, soft robots, and ceramic devices.
Collapse
Affiliation(s)
- Jianxiang Cheng
- grid.263817.90000 0004 1773 1790Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Rong Wang
- grid.263817.90000 0004 1773 1790Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Zechu Sun
- grid.263817.90000 0004 1773 1790Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Qingjiang Liu
- grid.263817.90000 0004 1773 1790Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Xiangnan He
- grid.263817.90000 0004 1773 1790Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Honggeng Li
- grid.263817.90000 0004 1773 1790Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Haitao Ye
- grid.263817.90000 0004 1773 1790Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.35030.350000 0004 1792 6846Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR China
| | - Xingxin Yang
- grid.411863.90000 0001 0067 3588School of Electronics and Communication Engineering, Guangzhou University, Guangzhou, 510006 China
| | - Xinfeng Wei
- grid.263817.90000 0004 1773 1790Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Zhenqing Li
- grid.263817.90000 0004 1773 1790Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Bingcong Jian
- grid.263817.90000 0004 1773 1790Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Weiwei Deng
- grid.263817.90000 0004 1773 1790Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Qi Ge
- grid.263817.90000 0004 1773 1790Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| |
Collapse
|
12
|
Chen J, Zhao L, Zhou K. Multi-Jet Fusion 3D Voxel Printing of Conductive Elastomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205909. [PMID: 36125341 DOI: 10.1002/adma.202205909] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/30/2022] [Indexed: 06/15/2023]
Abstract
3D voxel printing enables the fabrication of parts with site-specific materials and properties at voxel-scale resolution, while the current research mainly focuses on the variations in mechanical properties and colors. In this work, the design and fabrication of voxelated conductive elastomers using Multi Jet Fusion 3D voxel printing actualized by a newly developed multifunctional agent (MA) are investigated. The MA, mainly consisting of carbon nanotubes and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, serves as an infrared-absorbing colorant, a reinforcement, and a conductive filler simultaneously. By controlling the drop-on-demand dispensing of the agents on thermoplastic polyurethane powder, the electrical conductivity across a single printed part can be tailored over a wide range from 10-10 to 10-1 S cm-1 at a voxel resolution of ≈100 µm. Assembly-free strain sensors comprising conductive sensing layers and insulating frames are fabricated to demonstrate the capability of the technique in manufacturing all-printed wearable devices.
Collapse
Affiliation(s)
- Jiayao Chen
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Lihua Zhao
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- 3D Lab, HP Labs, HP Inc., Palo Alto, CA, 94304, USA
| | - Kun Zhou
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
13
|
Guy BJ, Morris A, Mirjalili SA. Toward Emulating Human Movement: Adopting a Data-Driven Bitmap-Based "Voxel" Multimaterial Workflow to Create a Flexible 3D Printed Neonatal Lower Limb. 3D PRINTING AND ADDITIVE MANUFACTURING 2022; 9:349-364. [PMID: 36660289 PMCID: PMC9831563 DOI: 10.1089/3dp.2021.0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
It is increasingly common to produce physical anatomical medical models using high-fidelity multiproperty 3D printing to assist doctor-patient communication, presurgical planning, and surgical simulation. Currently, most medical models are created using image thresholding and traditional mesh-based segmentation techniques to produce mono-material boundaries (STL file formats) of anatomical features. Existing medical modeling manufacturing methods restrict shape specification to one material or density, which result in anatomically simple 3D printed medical models with no gradated material qualities. Currently, available high-resolution functionally graded multimaterial 3D printed medical models are rigid and do not represent biomechanical movement. To bypass the identified limitations of current 3D printing medical modeling workflows, we present a bitmap-based "voxel" multimaterial additive manufacturing workflow for the production of highly realistic and flexible anatomical models of the neonatal lower limb using computed tomographic ("CT") data. By interpolating and re-slicing a biomedical volumetric data set at the native 3D printer z resolution of 27 μm and using CT scan attenuation properties (Hounsfield units) to guide material mixing ratios, producing highly realistic models of the neonatal lower limb at a significantly faster rate than other manufacturing methods. The presented medical modeling workflow has considerable potential to improve medical modeling manufacturing methods by translating medical data directly into 3D printing files aiding in anatomical education and surgical simulation practices, especially in neonatal research and clinical training.
Collapse
Affiliation(s)
- Bernard Joseph Guy
- Industrial Design Department, School of Design Innovation, Victoria University of Wellington, Wellington, New Zealand
| | - Ana Morris
- Industrial Design Department, School of Design Innovation, Victoria University of Wellington, Wellington, New Zealand
| | - Seyed Ali Mirjalili
- Anatomy and Medical Imaging Department, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Guimarães CF, Soto F, Wang J, Akin D, Reis RL, Demirci U. Engineered living bioassemblies for biomedical and functional material applications. Curr Opin Biotechnol 2022; 77:102756. [PMID: 35930844 DOI: 10.1016/j.copbio.2022.102756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/03/2022]
Abstract
Recent breakthroughs in biofabrication of bioasemblies, consisting of the engineered structures composed of biological or biosynthetic components into a single construct, have found a wide range of practical applications in medicine and engineering. This review presents an overview of how the bottom-up assembly of living entities could drive advances in medicine, by developing tunable biological models and more precise methods for quantifying biological events. Moreover, we delve into advances beyond biomedical applications, where bioassemblies can be manipulated as functional robots and construction materials. Finally, we address the potential challenges and opportunities in the field of engineering living bioassemblies, toward building new design principles for the next generation of bioengineering applications.
Collapse
Affiliation(s)
- Carlos F Guimarães
- 3B's Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal; ICVS/3B's, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal; Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, CA 94304-5427, USA
| | - Fernando Soto
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, CA 94304-5427, USA
| | - Jie Wang
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, CA 94304-5427, USA
| | - Demir Akin
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, CA 94304-5427, USA; Center for Cancer Nanotechnology Excellence for Translational Diagnostics, Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Rui L Reis
- 3B's Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal; ICVS/3B's, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal.
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, CA 94304-5427, USA
| |
Collapse
|
15
|
Borish M, Gibson BT, Adkins C, Mhatre P. Automated Process Planning for Embossing and Functionally Grading Materials via Site-Specific Control in Large-Format Metal-Based Additive Manufacturing. MATERIALS 2022; 15:ma15124152. [PMID: 35744211 PMCID: PMC9230119 DOI: 10.3390/ma15124152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/27/2022] [Accepted: 06/04/2022] [Indexed: 11/16/2022]
Abstract
The potential for site-specific, process-parameter control is an attribute of additive manufacturing (AM) that makes it highly attractive as a manufacturing process. The research interest in the functionally grading material properties of numerous AM processes has been high for years. However, one of the issues that slows developmental progress in this area is process planning. It is not uncommon for manual programming methods and bespoke solutions to be utilized for site-specific control efforts. This article presents the development of slicing software that contains a fully automated process planning approach for enabling through-thickness, process-parameter control for a range of AM processes. The technique includes the use of parent and child geometries for controlling the locations of site-specific parameters, which are overlayed onto unmodified toolpaths, i.e., a vector-based planning approach is used in which additional information, such as melt pool size for large-scale metal AM processes, is assigned to the vectors. This technique has the potential for macro- and micro-structural modifications to printed objects. A proof-of-principle experiment is highlighted in which this technique was used to generate dynamic bead geometries that were deposited to induce a novel surface embossing effect, and additional software examples are presented that highlight software support for more complex objects.
Collapse
|
16
|
Salazar-Gamarra R, Cárdenas-Bocanegra A, Masch U, Da Costa Moraes CA, Seelaus R, Lopes Da Silva JV, Lauria Dib L. Color translation from monoscopic photogrammetry +ID Methodology into a Polyjet final 3D printed facial prosthesis. F1000Res 2022; 11:582. [PMID: 38434006 PMCID: PMC10904947 DOI: 10.12688/f1000research.111196.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 03/05/2024] Open
Abstract
Background: The artistic techniques necessary to fabricate facial prostheses mainly depend on individual skill and are not a resource easily reproduced. Digital technology has contributed to improved outcomes, often combining analog and new digital techniques in the same workflow. Methods: This article aims to present an innovative workflow to produce a final colored 3D printed and facial prosthesis by UV-map color translation into colored resin 3D printing. A modified +ID Methodology was used to obtain 3D models with the calibrated 3D printable patient's skin color. No hands-on physical molding, manual sculpture, or intrinsic silicone coloration was used. Results: The outcome resulted in acceptable aesthetics, adaptation, and an approximate color match after extrinsic coloration. The patient reported good comfort and acceptance. Conclusions: A direct resin 3D printed prosthesis may be a viable alternative, especially for rapid delivery as an immediate prosthesis or an option when there is no experienced anaplastogist to manufacture a conventional prosthesis.
Collapse
Affiliation(s)
- Rodrigo Salazar-Gamarra
- Norbert Wiener University - Digital Transformation Research Centre, Lima, 15046, Peru
- Plus Identity (+ID) Institute, São Paulo, 04057-000, Brazil
| | | | | | | | - Rosemary Seelaus
- The Craniofacial Center, Department of Surgery, University of Illinois at Chicago, Chicago, 60612, USA
| | | | - Luciano Lauria Dib
- Plus Identity (+ID) Institute, São Paulo, 04057-000, Brazil
- Paulista University, São Paulo, 04057-000, Brazil
| |
Collapse
|
17
|
Huie JM, Summers AP. The effects of soft and rough substrates on suction-based adhesion. J Exp Biol 2022; 225:275104. [PMID: 35467004 DOI: 10.1242/jeb.243773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/19/2022] [Indexed: 11/20/2022]
Abstract
The Northern clingfish (Gobiesox maeandricus) has a suction-based adhesive disc that can stick to incredibly rough surfaces, a challenge for stiff commercial suction cups. Both clingfish discs and bioinspired suction cups have stiff cores but flexible edges that can deform to overcome surface irregularities. Compliant surfaces are common in nature and technical settings, but performance data for fish and commercial cups is gathered from stiff surfaces. We quantified the interaction between substrate compliance, surface roughness, and suction performance for the Northern clingfish, commercial suction cups, and three biomimetic suction cups with disc rims of varying compliance. We found that all cups stick better on stiffer substrates and worse on more compliant ones, as indicated by peak stress values. On compliant substrates, surface roughness had little effect on adhesion, even for commercial cups that normally fail on hard, rough surfaces. We propose that suction performance on compliant substrates can be explained in part by effective elastic modulus, the combined elastic modulus from a cup-substrate interaction. Of all the tested cups, the biomimetic cups performed the best on compliant surfaces, highlighting their potential to be used in medical and marine geotechnical fields. Lastly, we discuss the overmolding technique used to generate the bioinspired cups and how it is an important tool for studying biology.
Collapse
Affiliation(s)
- Jonathan M Huie
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA.,Biology and SAFS,, Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - Adam P Summers
- Biology and SAFS,, Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| |
Collapse
|
18
|
Auxetic Metamaterials for Biomedical Devices: Current Situation, Main Challenges, and Research Trends. MATERIALS 2022; 15:ma15041439. [PMID: 35207976 PMCID: PMC8874587 DOI: 10.3390/ma15041439] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 01/23/2023]
Abstract
Auxetic metamaterials are characterized by a negative Poisson ratio (NPR) and display an unexpected property of lateral expansion when stretched and densification when compressed. Auxetic properties can be achieved by designing special microstructures, hence their classification as metamaterials, and can be manufactured with varied raw materials and methods. Since work in this field began, auxetics have been considered for different biomedical applications, as some biological tissues have auxetic-like behaviour due to their lightweight structure and morphing properties, which makes auxetics ideal for interacting with the human body. This research study is developed with the aim of presenting an updated overview of auxetic metamaterials for biomedical devices. It stands out for providing a comprehensive view of medical applications for auxetics, including a focus on prosthetics, orthotics, ergonomic appliances, performance enhancement devices, in vitro medical devices for interacting with cells, and advanced medicinal clinical products, especially tissue engineering scaffolds with living cells. Innovative design and simulation approaches for the engineering of auxetic-based products are covered, and the relevant manufacturing technologies for prototyping and producing auxetics are analysed, taking into consideration those capable of processing biomaterials and enabling multi-scale and multi-material auxetics. An engineering design rational for auxetics-based medical devices is presented with integrative purposes. Finally, key research, development and expected technological breakthroughs are discussed.
Collapse
|
19
|
Persembe E, Parra-Cabrera C, Clasen C, Ameloot R. Binder-jetting 3D printer capable of voxel-based control over deposited ink volume, adaptive layer thickness, and selective multi-pass printing. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:125106. [PMID: 34972415 DOI: 10.1063/5.0072715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Abstract
The limited control over the printing process in commercial powder bed 3D printers hinders the exploration of novel materials and applications. In this study, a custom binder-jetting 3D printer was developed. The resulting fine-grained control over the printing process enables features such as voxel-based control over the printed ink volume, adaptive layer thickness, and selective multi-pass printing. A protocol was developed to optimize the 3D printing process for new build materials and binders, in which resolution tests were used as a guideline for improving the dimensional accuracy. As a demonstration of the voxel-based control over the printing process, a functionally graded object was printed.
Collapse
Affiliation(s)
- E Persembe
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - C Parra-Cabrera
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - C Clasen
- Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, Leuven 3001, Belgium
| | - R Ameloot
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| |
Collapse
|
20
|
Ravanbakhsh H, Karamzadeh V, Bao G, Mongeau L, Juncker D, Zhang YS. Emerging Technologies in Multi-Material Bioprinting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104730. [PMID: 34596923 PMCID: PMC8971140 DOI: 10.1002/adma.202104730] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/10/2021] [Indexed: 05/09/2023]
Abstract
Bioprinting, within the emerging field of biofabrication, aims at the fabrication of functional biomimetic constructs. Different 3D bioprinting techniques have been adapted to bioprint cell-laden bioinks. However, single-material bioprinting techniques oftentimes fail to reproduce the complex compositions and diversity of native tissues. Multi-material bioprinting as an emerging approach enables the fabrication of heterogeneous multi-cellular constructs that replicate their host microenvironments better than single-material approaches. Here, bioprinting modalities are reviewed, their being adapted to multi-material bioprinting is discussed, and their advantages and challenges, encompassing both custom-designed and commercially available technologies are analyzed. A perspective of how multi-material bioprinting opens up new opportunities for tissue engineering, tissue model engineering, therapeutics development, and personalized medicine is offered.
Collapse
Affiliation(s)
- Hossein Ravanbakhsh
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, McGill University, Montreal, QC, H3A0C3, Canada
| | - Vahid Karamzadeh
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3A0G1, Canada
| | - Guangyu Bao
- Department of Mechanical Engineering, McGill University, Montreal, QC, H3A0C3, Canada
| | - Luc Mongeau
- Department of Mechanical Engineering, McGill University, Montreal, QC, H3A0C3, Canada
| | - David Juncker
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3A0G1, Canada
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|
21
|
He Y, Abdi M, Trindade GF, Begines B, Dubern J, Prina E, Hook AL, Choong GYH, Ledesma J, Tuck CJ, Rose FRAJ, Hague RJM, Roberts CJ, De Focatiis DSA, Ashcroft IA, Williams P, Irvine DJ, Alexander MR, Wildman RD. Exploiting Generative Design for 3D Printing of Bacterial Biofilm Resistant Composite Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100249. [PMID: 34050725 PMCID: PMC8336490 DOI: 10.1002/advs.202100249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/22/2021] [Indexed: 05/25/2023]
Abstract
As the understanding of disease grows, so does the opportunity for personalization of therapies targeted to the needs of the individual. To bring about a step change in the personalization of medical devices it is shown that multi-material inkjet-based 3D printing can meet this demand by combining functional materials, voxelated manufacturing, and algorithmic design. In this paper composite structures designed with both controlled deformation and reduced biofilm formation are manufactured using two formulations that are deposited selectively and separately. The bacterial biofilm coverage of the resulting composites is reduced by up to 75% compared to commonly used silicone rubbers, without the need for incorporating bioactives. Meanwhile, the composites can be tuned to meet user defined mechanical performance with ±10% deviation. Device manufacture is coupled to finite element modelling and a genetic algorithm that takes the user-specified mechanical deformation and computes the distribution of materials needed to meet this under given load constraints through a generative design process. Manufactured products are assessed against the mechanical and bacterial cell-instructive specifications and illustrate how multifunctional personalization can be achieved using generative design driven multi-material inkjet based 3D printing.
Collapse
Affiliation(s)
- Yinfeng He
- Faculty of EngineeringUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Meisam Abdi
- School of Engineering and Sustainable DevelopmentDe Montfort UniversityLeicesterLE1 9BHUK
| | - Gustavo F. Trindade
- Faculty of EngineeringUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
- Advanced Materials and Healthcare TechnologiesSchool of PharmacyUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Belén Begines
- Department of Organic and Medicinal ChemistrySchool of PharmacyUniversity of SevilleSeville41012Spain
| | - Jean‐Frédéric Dubern
- National Biofilms Innovation CentreUniversity of Nottingham Biodiscovery InstituteSchool of Life SciencesUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Elisabetta Prina
- Advanced Materials and Healthcare TechnologiesSchool of PharmacyUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Andrew L. Hook
- Advanced Materials and Healthcare TechnologiesSchool of PharmacyUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Gabriel Y. H. Choong
- Faculty of EngineeringUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Javier Ledesma
- Faculty of EngineeringUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Christopher J. Tuck
- Faculty of EngineeringUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Felicity R. A. J. Rose
- University of Nottingham Biodiscovery InstituteSchool of PharmacyUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Richard J. M. Hague
- Faculty of EngineeringUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Clive J. Roberts
- Advanced Materials and Healthcare TechnologiesSchool of PharmacyUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | | | - Ian A. Ashcroft
- Faculty of EngineeringUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Paul Williams
- National Biofilms Innovation CentreUniversity of Nottingham Biodiscovery InstituteSchool of Life SciencesUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Derek J. Irvine
- Faculty of EngineeringUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Morgan R. Alexander
- Advanced Materials and Healthcare TechnologiesSchool of PharmacyUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Ricky D. Wildman
- Faculty of EngineeringUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| |
Collapse
|
22
|
Decante G, Costa JB, Silva-Correia J, Collins MN, Reis RL, Oliveira JM. Engineering bioinks for 3D bioprinting. Biofabrication 2021; 13. [PMID: 33662949 DOI: 10.1088/1758-5090/abec2c] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
In recent years, three-dimensional (3D) bioprinting has attracted wide research interest in biomedical engineering and clinical applications. This technology allows for unparalleled architecture control, adaptability and repeatability that can overcome the limits of conventional biofabrication techniques. Along with the emergence of a variety of 3D bioprinting methods, bioinks have also come a long way. From their first developments to support bioprinting requirements, they are now engineered to specific injury sites requirements to mimic native tissue characteristics and to support biofunctionality. Current strategies involve the use of bioinks loaded with cells and biomolecules of interest, without altering their functions, to deliverin situthe elements required to enhance healing/regeneration. The current research and trends in bioink development for 3D bioprinting purposes is overviewed herein.
Collapse
Affiliation(s)
- Guy Decante
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João B Costa
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maurice N Collins
- Bernal Institute, School of Engineering, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
23
|
Sanders ED, Pereira A, Paulino GH. Optimal and continuous multilattice embedding. SCIENCE ADVANCES 2021; 7:7/16/eabf4838. [PMID: 33853782 PMCID: PMC8046378 DOI: 10.1126/sciadv.abf4838] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Because of increased geometric freedom at a widening range of length scales and access to a growing material space, additive manufacturing has spurred renewed interest in topology optimization of parts with spatially varying material properties and structural hierarchy. Simultaneously, a surge of micro/nanoarchitected materials have been demonstrated. Nevertheless, multiscale design and micro/nanoscale additive manufacturing have yet to be sufficiently integrated to achieve free-form, multiscale, biomimetic structures. We unify design and manufacturing of spatially varying, hierarchical structures through a multimicrostructure topology optimization formulation with continuous multimicrostructure embedding. The approach leads to an optimized layout of multiple microstructural materials within an optimized macrostructure geometry, manufactured with continuously graded interfaces. To make the process modular and controllable and to avoid prohibitively expensive surface representations, we embed the microstructures directly into the 3D printer slices. The ideas provide a critical, interdisciplinary link at the convergence of material and structure in optimal design and manufacturing.
Collapse
Affiliation(s)
- E D Sanders
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - A Pereira
- Department of Mechanical Engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22451-900, Brazil
| | - G H Paulino
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
24
|
Mu X, Agostinacchio F, Xiang N, Pei Y, Khan Y, Guo C, Cebe P, Motta A, Kaplan DL. Recent Advances in 3D Printing with Protein-Based Inks. Prog Polym Sci 2021; 115:101375. [PMID: 33776158 PMCID: PMC7996313 DOI: 10.1016/j.progpolymsci.2021.101375] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Three-dimensional (3D) printing is a transformative manufacturing strategy, allowing rapid prototyping, customization, and flexible manipulation of structure-property relationships. Proteins are particularly appealing to formulate inks for 3D printing as they serve as essential structural components of living systems, provide a support presence in and around cells and for tissue functions, and also provide the basis for many essential ex vivo secreted structures in nature. Protein-based inks are beneficial in vivo due to their mechanics, chemical and physical match to the specific tissue, and full degradability, while also to promoting implant-host integration and serving as an interface between technology and biology. Exploiting the biological, chemical, and physical features of protein-based inks can provide key opportunities to meet the needs of tissue engineering and regenerative medicine. Despite these benefits, protein-based inks impose nontrivial challenges to 3D printing such as concentration and rheological features and reconstitution of the structural hierarchy observed in nature that is a source of the robust mechanics and functions of these materials. This review introduces photo-crosslinking mechanisms and rheological principles that underpins a variety of 3D printing techniques. The review also highlights recent advances in the design, development, and biomedical utility of monolithic and composite inks from a range of proteins, including collagen, silk, fibrinogen, and others. One particular focus throughout the review is to introduce unique material characteristics of proteins, including amino acid sequences, molecular assembly, and secondary conformations, which are useful for designing printing inks and for controlling the printed structures. Future perspectives of 3D printing with protein-based inks are also provided to support the promising spectrum of biomedical research accessible to these materials.
Collapse
Affiliation(s)
- Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Francesca Agostinacchio
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Department of Industrial Engineering, University of Trento, via Sommarive 9, Trento 38123, Italy
| | - Ning Xiang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Ying Pei
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yousef Khan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Chengchen Guo
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Peggy Cebe
- Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, via Sommarive 9, Trento 38123, Italy
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
25
|
Development, characterization, and applications of multi-material stereolithography bioprinting. Sci Rep 2021; 11:3171. [PMID: 33542283 PMCID: PMC7862383 DOI: 10.1038/s41598-021-82102-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 01/14/2021] [Indexed: 01/30/2023] Open
Abstract
As a 3D bioprinting technique, hydrogel stereolithography has historically been limited in its ability to capture the spatial heterogeneity that permeates mammalian tissues and dictates structure-function relationships. This limitation stems directly from the difficulty of preventing unwanted material mixing when switching between different liquid bioinks. Accordingly, we present the development, characterization, and application of a multi-material stereolithography bioprinter that provides controlled material selection, yields precise regional feature alignment, and minimizes bioink mixing. Fluorescent tracers were first used to highlight the broad design freedoms afforded by this fabrication strategy, complemented by morphometric image analysis to validate architectural fidelity. To evaluate the bioactivity of printed gels, 344SQ lung adenocarcinoma cells were printed in a 3D core/shell architecture. These cells exhibited native phenotypic behavior as evidenced by apparent proliferation and formation of spherical multicellular aggregates. Cells were also printed as pre-formed multicellular aggregates, which appropriately developed invasive protrusions in response to hTGF-β1. Finally, we constructed a simplified model of intratumoral heterogeneity with two separate sub-populations of 344SQ cells, which together grew over 14 days to form a dense regional interface. Together, these studies highlight the potential of multi-material stereolithography to probe heterotypic interactions between distinct cell types in tissue-specific microenvironments.
Collapse
|
26
|
Wang H, Guo K, Zhang L, Zhu H, Li S, Li S, Gao F, Liu X, Gu Q, Liu L, Zheng X. Valve-based consecutive bioprinting method for multimaterial tissue-like constructs with controllable interfaces. Biofabrication 2021; 13. [PMID: 33440361 DOI: 10.1088/1758-5090/abdb86] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/13/2021] [Indexed: 01/02/2023]
Abstract
Bioprinting is a promising technology focusing on tissue manufacturing, whose vital problem is the precise assembly of multiple materials. As the primary solution, the extrusion-based multi-printhead bioprinting (MPB) method could cause material interface defects and inefficient motion time during multimaterial switching. We present a valve-based consecutive bioprinting (VCB) method to resolve these problems, containing an integrated precise switching printhead and a well-matched voxelated digital model. The rotary valve isolates the bio-inks' elastic potential energy in the cartridge from precision interface assembling based on the Maxwell viscoelastic model. We study the coordinated control approach of the valve rotation and pressure adjustment to actualize the seamless switching, leading to a controllable multimaterial interface, including boundary and suture. Furthermore, we compare the VCB method and MPB method, quantitatively and comprehensively, indicating that the VCB method obtained greater mechanical strength (increased by 44.37%) and higher printing efficiency (increased by 29.48%). As an exemplar, we fabricate a muscle-like tissue with vascular tree and suture interface encapsulating C2C12 and human dermal fibroblasts (HDFB) cells, then placed in complete medium with continuous perfusion for five days. Our study suggests that the VCB method is sufficient to fabricate heterogeneous tissues with complex multimaterial interfaces.
Collapse
Affiliation(s)
- Heran Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation Chinese Academy of Sciences, Nanta Street 114, Shenyang, Shenyang, Liaoning, 110016, CHINA
| | - Kai Guo
- Shenyang Institute of Automation Chinese Academy of Sciences, Nanta Street 114, Shenyang, Shenyang, Liaoning, 110016, CHINA
| | - Liming Zhang
- Shenyang Institute of Automation Chinese Academy of Sciences, Nanta Street 114, Shenyang, Shenyang, Liaoning, 110016, CHINA
| | - Huixuan Zhu
- Shenyang Institute of Automation Chinese Academy of Sciences, Nanta Street 114, Shenyang, Shenyang, Liaoning, 110016, CHINA
| | - Shijie Li
- Shenyang Institute of Automation Chinese Academy of Sciences, Nanta Street 114, Shenyang, Shenyang, Liaoning, 110016, CHINA
| | - Song Li
- Shenyang Institute of Automation Chinese Academy of Sciences, Nanta Street 114, Shenyang, Shenyang, Liaoning, 110016, CHINA
| | - Feiyang Gao
- Shenyang Institute of Automation Chinese Academy of Sciences, Nanta Street 114, Shenyang, Shenyang, Liaoning, 110016, CHINA
| | - Xin Liu
- Institute of Zoology Chinese Academy of Sciences, Beichenxi Road, Beijing, Chaoyang District, Beijing, 100101, CHINA
| | - Qi Gu
- Institute of Zoology Chinese Academy of Sciences, Beichenxi Road, Beijing, Chaoyang District, 100101, CHINA
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation Chinese Academy of Sciences, Nanta Street 114, Shenyang, Shenyang, Liaoning, 110016, CHINA
| | - Xiongfei Zheng
- State Key Laboratory of Robotics, Shenyang Institute of Automation Chinese Academy of Sciences, Nanta Street 114, Shenyang, Shenyang, Liaoning, 110016, CHINA
| |
Collapse
|
27
|
Daly AC, Prendergast ME, Hughes AJ, Burdick JA. Bioprinting for the Biologist. Cell 2021; 184:18-32. [PMID: 33417859 DOI: 10.1016/j.cell.2020.12.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/29/2020] [Accepted: 12/01/2020] [Indexed: 12/30/2022]
Abstract
Building tissues from scratch to explore entirely new cell configurations could revolutionize fundamental understanding in biology. Bioprinting is an emerging technology to do this. Although typically applied to engineer tissues for therapeutic tissue repair or drug screening, there are many opportunities for bioprinting within biology, such as for exploring cellular crosstalk or cellular morphogenesis. The overall goals of this Primer are to provide an overview of bioprinting with the biologist in mind, outline the steps in extrusion bioprinting (the most widely used and accessible technology), and discuss alternative bioprinting technologies and future opportunities for bioprinting in biology.
Collapse
Affiliation(s)
- Andrew C Daly
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Alex J Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
Zorzetto L, Andena L, Briatico-Vangosa F, De Noni L, Thomassin JM, Jérôme C, Grossman Q, Mertens A, Weinkamer R, Rink M, Ruffoni D. Properties and role of interfaces in multimaterial 3D printed composites. Sci Rep 2020; 10:22285. [PMID: 33335195 PMCID: PMC7747733 DOI: 10.1038/s41598-020-79230-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
In polyjet printing photopolymer droplets are deposited on a build tray, leveled off by a roller and cured by UV light. This technique is attractive to fabricate heterogeneous architectures combining compliant and stiff constituents. Considering the layer-by-layer nature, interfaces between different photopolymers can be formed either before or after UV curing. We analyzed the properties of interfaces in 3D printed composites combining experiments with computer simulations. To investigate photopolymer blending, we characterized the mechanical properties of the so-called digital materials, obtained by mixing compliant and stiff voxels according to different volume fractions. We then used nanoindentation to measure the spatial variation in mechanical properties across bimaterial interfaces at the micrometer level. Finally, to characterize the impact of finite-size interfaces, we fabricated and tested composites having compliant and stiff layers alternating along different directions. We found that interfaces formed by deposition after curing were sharp whereas those formed before curing showed blending of the two materials over a length scale bigger than individual droplet size. We found structural and functional differences of the layered composites depending on the printing orientation and corresponding interface characteristics, which influenced deformation mechanisms. With the wide dissemination of 3D printing techniques, our results should be considered in the development of architectured materials with tailored interfaces between building blocks.
Collapse
Affiliation(s)
- Laura Zorzetto
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Quartier Polytech 1, 4000, Liège, Belgium
| | - Luca Andena
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico Di Milano, Milan, Italy
| | | | - Lorenzo De Noni
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico Di Milano, Milan, Italy
| | - Jean-Michel Thomassin
- Center for Education and Research on Macromolecules, University of Liège, Liège, Belgium
| | - Christine Jérôme
- Center for Education and Research on Macromolecules, University of Liège, Liège, Belgium
| | - Quentin Grossman
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Quartier Polytech 1, 4000, Liège, Belgium
| | - Anne Mertens
- Metallic Materials Science Unit, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
| | - Richard Weinkamer
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Marta Rink
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico Di Milano, Milan, Italy
| | - Davide Ruffoni
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Quartier Polytech 1, 4000, Liège, Belgium.
| |
Collapse
|
29
|
Wang KC, Jones A, Kambhampati S, Gilotra MN, Liacouras PC, Stuelke S, Shiu B, Leong N, Hasan SA, Siegel EL. CT-Based 3D Printing of the Glenoid Prior to Shoulder Arthroplasty: Bony Morphology and Model Evaluation. J Digit Imaging 2020; 32:816-826. [PMID: 30820811 DOI: 10.1007/s10278-019-00177-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
To demonstrate the 3D printed appearance of glenoid morphologies relevant to shoulder replacement surgery and to evaluate the benefits of printed models of the glenoid with regard to surgical planning. A retrospective review of patients referred for shoulder CT was performed, leading to a cohort of nine patients without arthroplasty hardware and exhibiting glenoid changes relevant to shoulder arthroplasty planning. Thin slice CT images were used to create both humerus-subtracted volume renderings of the glenoid, as well as 3D surface models of the glenoid, and 11 printed models were created. Volume renderings, surface models, and printed models were reviewed by a musculoskeletal radiologist for accuracy. Four fellowship-trained orthopaedic surgeons specializing in shoulder surgery reviewed each case individually as follows: First, the source CT images were reviewed, and a score for the clarity of the bony morphologies relevant to shoulder arthroplasty surgery was given. The volume rendering was reviewed, and the clarity was again scored. Finally, the printed model was reviewed, and the clarity again scored. Each printed model was also scored for morphologic complexity, expected usefulness of the printed model, and physical properties of the model. Mann-Whitney-Wilcoxon signed rank tests of the clarity scores were calculated, and the Spearman's ρ correlation coefficient between complexity and usefulness scores was computed. Printed models demonstrated a range of glenoid bony changes including osteophytes, glenoid bone loss, retroversion, and biconcavity. Surgeons rated the glenoid morphology as more clear after review of humerus-subtracted volume rendering, compared with review of the source CT images (p = 0.00903). Clarity was also better with 3D printed models compared to CT (p = 0.00903) and better with 3D printed models compared to humerus-subtracted volume rendering (p = 0. 00879). The expected usefulness of printed models demonstrated a positive correlation with morphologic complexity, with Spearman's ρ 0.73 (p = 0.0108). 3D printing of the glenoid based on pre-operative CT provides a physical representation of patient anatomy. Printed models enabled shoulder surgeons to appreciate glenoid bony morphology more clearly compared to review of CT images or humerus-subtracted volume renderings. These models were more useful as glenoid complexity increased.
Collapse
Affiliation(s)
- Kenneth C Wang
- Baltimore VA Medical Center, Baltimore, MD, USA. .,Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, School of Medicine, Baltimore, MD, USA.
| | - Anja Jones
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | | | - Mohit N Gilotra
- Baltimore VA Medical Center, Baltimore, MD, USA.,Department of Orthopaedics, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Peter C Liacouras
- 3D Medical Applications Center, Department of Radiology, Walter Reed National Military Medical Center, Radiology and Radiological Services & Naval Postgraduate Dental School, Uniform Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Brian Shiu
- Department of Orthopaedics, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Natalie Leong
- Baltimore VA Medical Center, Baltimore, MD, USA.,Department of Orthopaedics, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - S Ashfaq Hasan
- Baltimore VA Medical Center, Baltimore, MD, USA.,Department of Orthopaedics, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Eliot L Siegel
- Baltimore VA Medical Center, Baltimore, MD, USA.,Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
3D printing of multi-scalable structures via high penetration near-infrared photopolymerization. Nat Commun 2020; 11:3462. [PMID: 32651379 PMCID: PMC7351743 DOI: 10.1038/s41467-020-17251-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/19/2020] [Indexed: 12/18/2022] Open
Abstract
3D printing consisted of in-situ UV-curing module can build complex 3D structures, in which direct ink writing can handle versatile materials. However, UV-based direct ink writing (DIW) is facing a trade-off between required curing intensity and effectiveness range, and it cannot implement multiscale parallelization at ease. We overcome these difficulties by ink design and introducing near-infrared (NIR) laser assisted module, and this increases the scalability of direct ink writing to solidify the deposited filament with diameter up to 4 mm, which is much beyond any of existing UV-assisted DIW. The NIR effectiveness range can expand to tens of centimeters and deliver the embedded writing capability. We also demonstrate its parallel manufacturing capability for simultaneous curing of multi-color filaments and freestanding objects. The strategy owns further advantages to be integrated with other types of ink-based 3D printing technologies for extensive applications. Currently UV-based direct ink writing (DIW) is facing a trade-off between required curing intensity and effectiveness range. Here the authors overcome this problem by introducing near-infrared photopolymerization into DIW
Collapse
|
31
|
Tino R, Yeo A, Leary M, Brandt M, Kron T. A Systematic Review on 3D-Printed Imaging and Dosimetry Phantoms in Radiation Therapy. Technol Cancer Res Treat 2020; 18:1533033819870208. [PMID: 31514632 PMCID: PMC6856980 DOI: 10.1177/1533033819870208] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Additive manufacturing or 3-dimensional printing has become a widespread technology with many applications in medicine. We have conducted a systematic review of its application in radiation oncology with a particular emphasis on the creation of phantoms for image quality assessment and radiation dosimetry. Traditionally used phantoms for quality assurance in radiotherapy are often constraint by simplified geometry and homogenous nature to perform imaging analysis or pretreatment dosimetric verification. Such phantoms are limited due to their ability in only representing the average human body, not only in proportion and radiation properties but also do not accommodate pathological features. These limiting factors restrict the patient-specific quality assurance process to verify image-guided positioning accuracy and/or dose accuracy in "water-like" condition. METHODS AND RESULTS English speaking manuscripts published since 2008 were searched in 5 databases (Google Scholar, Scopus, PubMed, IEEE Xplore, and Web of Science). A significant increase in publications over the 10 years was observed with imaging and dosimetry phantoms about the same total number (52 vs 50). Key features of additive manufacturing are the customization with creation of realistic pathology as well as the ability to vary density and as such contrast. Commonly used printing materials, such as polylactic acid, acrylonitrile butadiene styrene, high-impact polystyrene and many more, are utilized to achieve a wide range of achievable X-ray attenuation values from -1000 HU to 500 HU and higher. Not surprisingly, multimaterial printing using the polymer jetting technology is emerging as an important printing process with its ability to create heterogeneous phantoms for dosimetry in radiotherapy. CONCLUSION Given the flexibility and increasing availability and low cost of additive manufacturing, it can be expected that its applications for radiation medicine will continue to increase.
Collapse
Affiliation(s)
- Rance Tino
- RMIT Centre for Additive Manufacture, Innovative Manufacturing Research Group (Medical Manufacturing), RMIT University, Melbourne, Australia.,ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology, Brisbane, Australia.,Physical Sciences Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Adam Yeo
- Physical Sciences Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Martin Leary
- RMIT Centre for Additive Manufacture, Innovative Manufacturing Research Group (Medical Manufacturing), RMIT University, Melbourne, Australia.,ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology, Brisbane, Australia
| | - Milan Brandt
- RMIT Centre for Additive Manufacture, Innovative Manufacturing Research Group (Medical Manufacturing), RMIT University, Melbourne, Australia.,ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology, Brisbane, Australia
| | - Tomas Kron
- ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology, Brisbane, Australia.,Physical Sciences Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
32
|
Skylar-Scott MA, Mueller J, Visser CW, Lewis JA. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 2019; 575:330-335. [PMID: 31723289 DOI: 10.1038/s41586-019-1736-8] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/09/2019] [Indexed: 01/01/2023]
Abstract
There is growing interest in voxelated matter that is designed and fabricated voxel by voxel1-4. Currently, inkjet-based three-dimensional (3D) printing is the only widely adopted method that is capable of creating 3D voxelated materials with high precision1-4, but the physics of droplet formation requires the use of low-viscosity inks to ensure successful printing5. By contrast, direct ink writing, an extrusion-based 3D printing method, is capable of patterning a much broader range of materials6-13. However, it is difficult to generate multimaterial voxelated matter by extruding monolithic cylindrical filaments in a layer-by-layer manner. Here we report the design and fabrication of voxelated soft matter using multimaterial multinozzle 3D (MM3D) printing, in which the composition, function and structure of the materials are programmed at the voxel scale. Our MM3D printheads exploit the diode-like behaviour that arises when multiple viscoelastic materials converge at a junction to enable seamless, high-frequency switching between up to eight different materials to create voxels with a volume approaching that of the nozzle diameter cubed. As exemplars, we fabricate a Miura origami pattern14 and a millipede-like soft robot that locomotes by co-printing multiple epoxy and silicone elastomer inks of stiffness varying by several orders of magnitude. Our method substantially broadens the palette of voxelated materials that can be designed and manufactured in complex motifs.
Collapse
Affiliation(s)
- Mark A Skylar-Scott
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Jochen Mueller
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Claas W Visser
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Jennifer A Lewis
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA. .,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
33
|
Tolmachov OE. Shielding of non-target cells using RNA vectors conferring gene transfer resistance: A strategy to enhance targeting accuracy and reduce side-effects in therapeutic gene delivery. Med Hypotheses 2019; 132:109328. [PMID: 31421422 DOI: 10.1016/j.mehy.2019.109328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/29/2019] [Accepted: 07/24/2019] [Indexed: 11/18/2022]
|