1
|
Muller A, Morales-Montero P, Boss A, Hiltmann A, Castaneda-Alvarez C, Bhat AH, Arce CCM, Glauser G, Joyce SA, Clarke DJ, Machado RAR. Bacterial bioluminescence is an important regulator of multitrophic interactions in the soil. Cell Rep 2024; 43:114817. [PMID: 39365701 DOI: 10.1016/j.celrep.2024.114817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/14/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024] Open
Abstract
Enormous efforts have been made to understand the functions of bioluminescence; however, its relevance in soil ecosystems has barely been investigated. In addition, our understanding of the biological relevance of bioluminescence is hampered by the scarcity of tools to genetically manipulate this trait. Using the symbionts of entomopathogenic nematodes, Photorhabdus bacteria, we show that bioluminescence plays important regulatory roles in multitrophic interactions in the soil. Through genetic modifications and exploiting natural variability, we provide direct evidence for the multifunctional nature of bioluminescence. It regulates abiotic and biotic stress resistance, impacts other trophic levels, including nematodes, insects, and plants, and contributes to symbiosis. Our study contributes to understanding the factors that have driven the evolution and maintenance of this trait in belowground ecosystems.
Collapse
Affiliation(s)
- Arthur Muller
- Experimental Biology Group, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Patricia Morales-Montero
- Experimental Biology Group, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Anja Boss
- Experimental Biology Group, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Alexandre Hiltmann
- Experimental Biology Group, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Carlos Castaneda-Alvarez
- Experimental Biology Group, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Aashaq H Bhat
- Experimental Biology Group, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Carla C M Arce
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Susan A Joyce
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; School of Biochemistry and Cell Biology, University College Cork, T12 YN60 Cork, Ireland
| | - David J Clarke
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; School of Microbiology, University College Cork, T12 YN60 Cork, Ireland
| | - Ricardo A R Machado
- Experimental Biology Group, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
2
|
Lafont R, Dinan L. Insect Sterols and Steroids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39384701 DOI: 10.1007/5584_2024_823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Insects are incapable of biosynthesising sterols de novo so they need to obtain them from their diets or, in certain cases, from symbiotic microorganisms. Sterols serve a structural role in cellular membranes and act as precursors for signalling molecules and defence compounds. Many phytophagous insects dealkylate phytosterols to yield primarily cholesterol, which is also the main sterol that carnivorous and omnivorous insects obtain in their diets. Some phytophagous species have secondarily lost the capacity to dealkylate and consequently use phytosterols for structural and functional roles. The polyhydroxylated steroid hormones of insects, the ecdysteroids, are derived from cholesterol (or phytosterols in non-dealkylating phytophagous species) and regulate many crucial aspects of insect development and reproduction by means of precisely regulated titres resulting from controlled synthesis, storage and further metabolism/excretion. Ecdysteroids differ significantly from vertebrate steroid hormones in their chemical, biochemical and biological properties. Defensive steroids (cardenolides, bufadienolides, cucurbitacins and ecdysteroids) can be accumulated from host plants or biosynthesised within the insect, depending on species, stored in significant amounts in the insect and released when it is attacked. Other allelochemical steroids serve as pheromones. Vertebrate-type steroids have also been conclusively identified from insect sources, but debate continues about their significance. Side chain dealkylation of phytosterols, ecdysteroid metabolism and ecdysteroid mode of action are targets of potential insect control strategies.
Collapse
Affiliation(s)
- René Lafont
- BIOSIPE, Sorbonne Université, Paris, France.
| | | |
Collapse
|
3
|
Zhang L, Du Q. Parameter estimation of the hyperbolic frequency-modulated bat calls using hyperbolic scale transform. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:16-28. [PMID: 38949290 DOI: 10.1121/10.0026454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/02/2024] [Indexed: 07/02/2024]
Abstract
Echolocating bats are known to vary their waveforms at the phases of searching, approaching, and capturing the prey. It is meaningful to estimate the parameters of the calls for bat species identification and the technological improvements of the synthetic systems, such as radar and sonar. The type of bat calls is species-related, and many calls can be modeled as hyperbolic frequency- modulated (HFM) signals. To obtain the parameters of the HFM-modeled bat calls, a reversible integral transform, i.e., hyperbolic scale transform (HST), is proposed to transform a call into two-dimensional peaks in the "delay-scale" domain, based on which harmonic separation and parameter estimation are realized. Compared with the methods based on time-frequency analysis, the HST-based method does not need to extract the instantaneous frequency of the bat calls, only searching for peaks. The verification results show that the HST is suitable for analyzing the HFM-modeled bat calls containing multiple harmonics with a large energy difference, and the estimated parameters imply that the use of the waveforms from the searching phase to the capturing phase is beneficial to reduce the ranging bias, and the trends in parameters may be useful for bat species identification.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Early Warning Technology, Air Force Early Warning Academy, Wuhan, 430019, China
| | - Qinglei Du
- Department of Early Warning Technology, Air Force Early Warning Academy, Wuhan, 430019, China
| |
Collapse
|
4
|
Zhu C, Lu X, Cai T, Zhu K, Shi L, Chen Y, Wang T, Yang Y, Tu D, Fu Q, Huang J, Zhen Y. Firefly toxin lucibufagins evolved after the origin of bioluminescence. PNAS NEXUS 2024; 3:pgae215. [PMID: 38919269 PMCID: PMC11197309 DOI: 10.1093/pnasnexus/pgae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Fireflies were believed to originally evolve their novel bioluminescence as warning signals to advertise their toxicity to predators, which was later adopted in adult mating. Although the evolution of bioluminescence has been investigated extensively, the warning signal hypothesis of its origin has not been tested. In this study, we test this hypothesis by systematically determining the presence or absence of firefly toxin lucibufagins (LBGs) across firefly species and inferring the time of origin of LBGs. We confirm the presence of LBGs in the subfamily Lampyrinae, but more importantly, we reveal the absence of LBGs in other lineages, including the subfamilies of Luciolinae, Ototretinae, and Psilocladinae, two incertae sedis lineages, and the Rhagophthalmidae family. Ancestral state reconstructions for LBGs based on firefly phylogeny constructed using genomic data suggest that the presence of LBGs in the common ancestor of the Lampyrinae subfamily is highly supported but unsupported in more ancient nodes, including firefly common ancestors. Our results suggest that firefly LBGs probably evolved much later than the evolution of bioluminescence. We thus conclude that firefly bioluminescence did not originally evolve as direct warning signals for toxic LBGs and advise that future studies should focus on other hypotheses. Moreover, LBG toxins are known to directly target and inhibit the α subunit of Na+, K+-ATPase (ATPα). We further examine the effects of amino acid substitutions in firefly ATPα on its interactions with LBGs. We find that ATPα in LBG-containing fireflies is relatively insensitive to LBGs, which suggests that target-site insensitivity contributes to LBG-containing fireflies' ability to deal with their own toxins.
Collapse
Affiliation(s)
- Chengqi Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Xiaoli Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Tianlong Cai
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Kangli Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Lina Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yinjuan Chen
- Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Tianyu Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yaoming Yang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Dandan Tu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Qi Fu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Jing Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Ying Zhen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
5
|
Gough HM, Rubin JJ, Kawahara AY, Barber JR. Tiger beetles produce anti-bat ultrasound and are probable Batesian moth mimics. Biol Lett 2024; 20:20230610. [PMID: 38747686 PMCID: PMC11285850 DOI: 10.1098/rsbl.2023.0610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 07/31/2024] Open
Abstract
Echolocating bats and their eared insect prey are in an acoustic evolutionary war. Moths produce anti-bat sounds that startle bat predators, signal noxiousness, mimic unpalatable models and jam bat sonar. Tiger beetles (Cicindelidae) also purportedly produce ultrasound in response to bat attacks. Here we tested 19 tiger beetle species from seven genera and showed that they produce anti-bat signals to playback of authentic bat echolocation. The dominant frequency of beetle sounds substantially overlaps the sonar calls of sympatric bats. As tiger beetles are known to produce defensive chemicals such as benzaldehyde and hydrogen cyanide, we hypothesized that tiger beetle sounds are acoustically advertising their unpalatability. We presented captive big brown bats (Eptesicus fuscus) with seven different tiger beetle species and found that 90 out of 94 beetles were completely consumed, indicating that these tiger beetle species are not aposematically signalling. Instead, we show that the primary temporal and spectral characteristics of beetle warning sounds overlap with sympatric unpalatable tiger moth (Arctinae) sounds and that tiger beetles are probably Batesian mimics of noxious moth models. We predict that many insect taxa produce anti-bat sounds and that the acoustic mimicry rings of the night sky are hyperdiverse.
Collapse
Affiliation(s)
- Harlan M. Gough
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL32611, USA
- Department of Biology, University of Florida, Gainesville, FL32611, USA
| | - Juliette J. Rubin
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL32611, USA
- Department of Biology, University of Florida, Gainesville, FL32611, USA
| | - Akito Y. Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL32611, USA
| | - Jesse R. Barber
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL32611, USA
- Department of Biological Sciences, Boise State University, Boise, ID83725, USA
| |
Collapse
|
6
|
Uebel AS, Pedersen MB, Beedholm K, Stidsholt L, Skalshøi MR, Foskolos I, Madsen PT. Daubenton's bats maintain stereotypical echolocation behaviour and a lombard response during target interception in light. BMC ZOOL 2024; 9:9. [PMID: 38679717 PMCID: PMC11057132 DOI: 10.1186/s40850-024-00200-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024] Open
Abstract
Most bats hunt insects on the wing at night using echolocation as their primary sensory modality, but nevertheless maintain complex eye anatomy and functional vision. This raises the question of how and when insectivorous bats use vision during their largely nocturnal lifestyle. Here, we test the hypothesis that the small insectivorous bat, Myotis daubentonii, relies less on echolocation, or dispenses with it entirely, as visual cues become available during challenging acoustic noise conditions. We trained five wild-caught bats to land on a spherical target in both silence and when exposed to broad-band noise to decrease echo detectability, while light conditions were manipulated in both spectrum and intensity. We show that during noise exposure, the bats were almost three times more likely to use multiple attempts to solve the task compared to in silent controls. Furthermore, the bats exhibited a Lombard response of 0.18 dB/dBnoise and decreased call intervals earlier in their flight during masking noise exposures compared to in silent controls. Importantly, however, these adjustments in movement and echolocation behaviour did not differ between light and dark control treatments showing that small insectivorous bats maintain the same echolocation behaviour when provided with visual cues under challenging conditions for echolocation. We therefore conclude that bat echolocation is a hard-wired sensory system with stereotyped compensation strategies to both target range and masking noise (i.e. Lombard response) irrespective of light conditions. In contrast, the adjustments of call intervals and movement strategies during noise exposure varied substantially between individuals indicating a degree of flexibility that likely requires higher order processing and perhaps vocal learning.
Collapse
Affiliation(s)
- Astrid Saermark Uebel
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark.
| | | | - Kristian Beedholm
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Laura Stidsholt
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | | | - Ilias Foskolos
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Wildlife Ecology, Department of Ecoscience, Aarhus University, Aarhus, Denmark
| | - Peter Teglberg Madsen
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Leavell BC, Pantoja-Sánchez H, Vélez V, Hemingway CT, Wilhite K, Halfwerk W, Bernal XE. Ripple effects in a communication network: anti-eavesdropper defence elicits elaborated sexual signals in rival males. Proc Biol Sci 2023; 290:20231910. [PMID: 38113943 PMCID: PMC10730286 DOI: 10.1098/rspb.2023.1910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Emitting conspicuous signals into the environment to attract mates comes with the increased risk of interception by eavesdropping enemies. As a defence, a commonly described strategy is for signallers to group together in leks, diluting each individual's risk. Lekking systems are often highly social settings in which competing males dynamically alter their signalling behaviour to attract mates. Thus, signalling at the lek requires navigating fluctuations in risk, competition and reproductive opportunities. Here, we investigate how behavioural defence strategies directed at an eavesdropping enemy have cascading effects across the communication network. We investigated these behaviours in the túngara frog (Engystomops pustulosus), examining how a calling male's swatting defence directed at frog-biting midges indirectly affects the calling behaviour of his rival. We found that the rival responds to swat-induced water ripples by increasing his call rate and complexity. Then, performing phonotaxis experiments, we found that eavesdropping fringe-lipped bats (Trachops cirrhosus) do not exhibit a preference for a swatting male compared to his rival, but females strongly prefer the rival male. Defences to minimize attacks from eavesdroppers thus shift the mate competition landscape in favour of rival males. By modulating the attractiveness of signalling prey to female receivers, we posit that eavesdropping micropredators likely have an unappreciated impact on the ecology and evolution of sexual communication systems.
Collapse
Affiliation(s)
- Brian C. Leavell
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Hoover Pantoja-Sánchez
- Department of Electronic Engineering, University of Antioquia, Medellín, Antioquia, Colombia
| | - Viviana Vélez
- Program of Study and Control of Tropical Diseases, University of Antioquia, Medellín, Antioquia, Colombia
| | - Claire T. Hemingway
- Department of Ecology & Evolutionary Biology and Department of Psychology, University of Tennessee, Knoxville, TN, USA
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Kyle Wilhite
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Wouter Halfwerk
- Department of Ecological Science, VU University, Amsterdam, The Netherlands
| | - Ximena E. Bernal
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Smithsonian Tropical Research Institute, Apartado, Balboa, Ancón, Panamá
| |
Collapse
|
8
|
Kikuchi DW, Allen WL, Arbuckle K, Aubier TG, Briolat ES, Burdfield-Steel ER, Cheney KL, Daňková K, Elias M, Hämäläinen L, Herberstein ME, Hossie TJ, Joron M, Kunte K, Leavell BC, Lindstedt C, Lorioux-Chevalier U, McClure M, McLellan CF, Medina I, Nawge V, Páez E, Pal A, Pekár S, Penacchio O, Raška J, Reader T, Rojas B, Rönkä KH, Rößler DC, Rowe C, Rowland HM, Roy A, Schaal KA, Sherratt TN, Skelhorn J, Smart HR, Stankowich T, Stefan AM, Summers K, Taylor CH, Thorogood R, Umbers K, Winters AE, Yeager J, Exnerová A. The evolution and ecology of multiple antipredator defences. J Evol Biol 2023; 36:975-991. [PMID: 37363877 DOI: 10.1111/jeb.14192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 06/28/2023]
Abstract
Prey seldom rely on a single type of antipredator defence, often using multiple defences to avoid predation. In many cases, selection in different contexts may favour the evolution of multiple defences in a prey. However, a prey may use multiple defences to protect itself during a single predator encounter. Such "defence portfolios" that defend prey against a single instance of predation are distributed across and within successive stages of the predation sequence (encounter, detection, identification, approach (attack), subjugation and consumption). We contend that at present, our understanding of defence portfolio evolution is incomplete, and seen from the fragmentary perspective of specific sensory systems (e.g., visual) or specific types of defences (especially aposematism). In this review, we aim to build a comprehensive framework for conceptualizing the evolution of multiple prey defences, beginning with hypotheses for the evolution of multiple defences in general, and defence portfolios in particular. We then examine idealized models of resource trade-offs and functional interactions between traits, along with evidence supporting them. We find that defence portfolios are constrained by resource allocation to other aspects of life history, as well as functional incompatibilities between different defences. We also find that selection is likely to favour combinations of defences that have synergistic effects on predator behaviour and prey survival. Next, we examine specific aspects of prey ecology, genetics and development, and predator cognition that modify the predictions of current hypotheses or introduce competing hypotheses. We outline schema for gathering data on the distribution of prey defences across species and geography, determining how multiple defences are produced, and testing the proximate mechanisms by which multiple prey defences impact predator behaviour. Adopting these approaches will strengthen our understanding of multiple defensive strategies.
Collapse
Affiliation(s)
- David W Kikuchi
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
- Evolutionary Biology, Universität Bielefeld, Bielefeld, Germany
| | | | - Kevin Arbuckle
- Department of Biosciences, Swansea University, Swansea, UK
| | - Thomas G Aubier
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier Toulouse III, UMR 5174, CNRS/IRD, Toulouse, France
| | | | - Emily R Burdfield-Steel
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Karen L Cheney
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Klára Daňková
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marianne Elias
- Institut de Systématique, Evolution, Biodiversité, CNRS, MNHN, Sorbonne Université, EPHE, Université des Antilles, Paris, France
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Liisa Hämäläinen
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Marie E Herberstein
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Thomas J Hossie
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Mathieu Joron
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Krushnamegh Kunte
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Brian C Leavell
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Carita Lindstedt
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Ugo Lorioux-Chevalier
- Laboratoire Écologie, Évolution, Interactions des Systèmes Amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, Cayenne, France
| | - Melanie McClure
- Laboratoire Écologie, Évolution, Interactions des Systèmes Amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, Cayenne, France
| | | | - Iliana Medina
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Viraj Nawge
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Erika Páez
- Institut de Systématique, Evolution, Biodiversité, CNRS, MNHN, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Arka Pal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Olivier Penacchio
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
- Computer Vision Center, Computer Science Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jan Raška
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tom Reader
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Bibiana Rojas
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
- Department of Biology and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Katja H Rönkä
- HiLIFE Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Daniela C Rößler
- Zukunftskolleg, University of Konstanz, Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Candy Rowe
- Institute of Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Hannah M Rowland
- Max Planck Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Arlety Roy
- Laboratoire Écologie, Évolution, Interactions des Systèmes Amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, Cayenne, France
| | - Kaitlin A Schaal
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | | | - John Skelhorn
- Institute of Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Hannah R Smart
- Hawkesbury Institute of the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Ted Stankowich
- Department of Biological Sciences, California State University, Long Beach, California, USA
| | - Amanda M Stefan
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Kyle Summers
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | | | - Rose Thorogood
- HiLIFE Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kate Umbers
- Hawkesbury Institute of the Environment, Western Sydney University, Penrith, New South Wales, Australia
- School of Science Western Sydney University, Penrith, New South Wales, Australia
| | - Anne E Winters
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Justin Yeager
- Grupo de Biodiversidad Medio Ambiente y Salud, Universidad de Las Américas, Quito, Ecuador
| | - Alice Exnerová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
9
|
Simon R, Varkevisser J, Mendoza E, Hochradel K, Elsinga R, Wiersma PG, Middelburg E, Zoeter E, Scharff C, Riebel K, Halfwerk W. RoboFinch: A versatile audio‐visual synchronised robotic bird model for laboratory and field research on songbirds. Methods Ecol Evol 2023. [DOI: 10.1111/2041-210x.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Ralph Simon
- Department of Ecological Science VU University Amsterdam Amsterdam The Netherlands
- Behavioral Ecology and Conservation Lab Nuremberg Zoo Nuremberg Germany
| | | | - Ezequiel Mendoza
- Department of Animal Behavior, Institute of Biology Freie Universität Berlin Berlin Germany
| | - Klaus Hochradel
- Institute of Measurement and Sensor Technology UMIT‐Private University for Health Sciences, Medical Informatics and Technology GmbH Hall in Tirol Austria
| | - Rogier Elsinga
- Department of Ecological Science VU University Amsterdam Amsterdam The Netherlands
| | - Peter G. Wiersma
- Department of Ecological Science VU University Amsterdam Amsterdam The Netherlands
| | - Esmee Middelburg
- Institute of Biology Leiden Leiden University Leiden The Netherlands
| | - Eva Zoeter
- Institute of Biology Leiden Leiden University Leiden The Netherlands
| | - Constance Scharff
- Department of Animal Behavior, Institute of Biology Freie Universität Berlin Berlin Germany
| | - Katharina Riebel
- Institute of Biology Leiden Leiden University Leiden The Netherlands
| | - Wouter Halfwerk
- Department of Ecological Science VU University Amsterdam Amsterdam The Netherlands
| |
Collapse
|
10
|
Owens ACS, Van den Broeck M, De Cock R, Lewis SM. Behavioral responses of bioluminescent fireflies to artificial light at night. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.946640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bioluminescent insects have been the subject of scientific interest and popular wonder for millennia. But in the 21st century, the fireflies, click beetles, and cave glow-worms that brighten our nights are threatened by an unprecedented competitor: anthropogenic light pollution. Artificial lights can obscure the light-based signals on which these and other bioluminescent organisms rely to court mates, deter predators, and attract prey. In the following review we summarize a recent influx of research into the behavioral consequences of artificial light at night for firefly beetles (Coleoptera: Lampyridae), which we organize into four distinct courtship signaling systems. We conclude by highlighting several opportunities for further research to advance this emerging field and by offering a set of up-to-date lighting recommendations that can help land managers and other stakeholders balance public safety and ecological sustainability.
Collapse
|
11
|
Drinkwater E, Allen WL, Endler JA, Hanlon RT, Holmes G, Homziak NT, Kang C, Leavell BC, Lehtonen J, Loeffler‐Henry K, Ratcliffe JM, Rowe C, Ruxton GD, Sherratt TN, Skelhorn J, Skojec C, Smart HR, White TE, Yack JE, Young CM, Umbers KDL. A synthesis of deimatic behaviour. Biol Rev Camb Philos Soc 2022; 97:2237-2267. [DOI: 10.1111/brv.12891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Eleanor Drinkwater
- Department of Animal Science Writtle University College Writtle Chelmsford CM1 3RR UK
| | - William L. Allen
- Department of Biosciences Swansea University Sketty Swansea SA2 8PP UK
| | - John A. Endler
- Centre for Integrative Ecology, School of Life & Environmental Sciences Deakin University Waurn Ponds VIC 3216 Australia
| | | | - Grace Holmes
- Biosciences Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne NE2 4HH UK
| | - Nicholas T. Homziak
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History University of Florida Gainesville FL 32611 USA
- Entomology and Nematology Department University of Florida Gainesville FL 32611 USA
| | - Changku Kang
- Department of Biosciences Mokpo National University Muan Jeollanamdo 58554 South Korea
- Department of Agricultural Biotechnology Seoul National University Seoul 08826 South Korea
- Department of Agriculture and Life Sciences Seoul National University Seoul 08826 South Korea
| | - Brian C. Leavell
- Department of Biological Sciences Purdue University West Lafayette IN 47907 USA
| | - Jussi Lehtonen
- Faculty of Science, School of Life and Environmental Sciences The University of Sydney Sydney NSW 2006 Australia
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä 40014 Finland
| | | | - John M. Ratcliffe
- Department of Biology University of Toronto Mississauga Mississauga ON L5L 1C6 Canada
| | - Candy Rowe
- Biosciences Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne NE2 4HH UK
| | - Graeme D. Ruxton
- School of Biology University of St Andrews St Andrews Fife KY16 9TH UK
| | - Tom N. Sherratt
- Department of Biology Carleton University Ottawa ON K1S 5B6 Canada
| | - John Skelhorn
- Biosciences Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne NE2 4HH UK
| | - Chelsea Skojec
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History University of Florida Gainesville FL 32611 USA
- Entomology and Nematology Department University of Florida Gainesville FL 32611 USA
| | - Hannah R. Smart
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW 2751 Australia
| | - Thomas E. White
- Faculty of Science, School of Life and Environmental Sciences The University of Sydney Sydney NSW 2006 Australia
| | - Jayne E. Yack
- Department of Biology Carleton University Ottawa ON K1S 5B6 Canada
| | | | - Kate D. L. Umbers
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW 2751 Australia
- School of Science Western Sydney University Penrith NSW 2751 Australia
| |
Collapse
|
12
|
Powell GS, Saxton NA, Pacheco YM, Stanger-Hall KF, Martin GJ, Kusy D, Felipe Lima Da Silveira L, Bocak L, Branham MA, Bybee SM. Beetle bioluminescence outshines extant aerial predators. Proc Biol Sci 2022; 289:20220821. [PMID: 35855602 PMCID: PMC9297012 DOI: 10.1098/rspb.2022.0821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We understand very little about the timing and origins of bioluminescence, particularly as a predator avoidance strategy. Understanding the timing of its origins, however, can help elucidate the evolution of this ecologically important signal. Using fireflies, a prevalent bioluminescent group where bioluminescence primarily functions as aposematic and sexual signals, we explore the origins of this signal in the context of their potential predators. Divergence time estimations were performed using genomic-scale datasets providing a robust estimate for the origin of firefly bioluminescence as both a terrestrial and as an aerial signal. Our results recover the origin of terrestrial beetle bioluminescence at 141.17 (122.63-161.17) Ma and firefly aerial bioluminescence at 133.18 (117.86-152.47) Ma using a large dataset focused on Lampyridae; and terrestrial bioluminescence at 148.03 (130.12-166.80) Ma, with the age of aerial bioluminescence at 104.97 (99.00-120.90) Ma using a complementary Elateroidea dataset. These ages pre-date the origins of all known extant aerial predators (i.e. bats and birds) and support much older terrestrial predators (assassin bugs, frogs, ground beetles, lizards, snakes, hunting spiders and harvestmen) as the drivers of terrestrial bioluminescence in beetles. These ages also support the hypothesis that sexual signalling was probably the original function of this signal in aerial fireflies.
Collapse
Affiliation(s)
- Gareth S. Powell
- Department of Biology and Monte L. Bean Museum, Brigham Young University, 4102 LSB, Provo, UT 84602, USA
| | - Natalie A. Saxton
- Research and Collections Division, The Cleveland Museum of Natural History, 1 Wade Oval Drive, Cleveland, OH 44106, USA,Department of Biology, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA
| | - Yelena M. Pacheco
- Plant Biology Department, University of Georgia, 4510 Miller Plant Sciences Building, Athens, GA 30602, USA
| | - Kathrin F. Stanger-Hall
- Plant Biology Department, University of Georgia, 4510 Miller Plant Sciences Building, Athens, GA 30602, USA
| | - Gavin J. Martin
- School of Math and Sciences, Laramie County Community College, 1400 E. College Dr., Cheyenne, WY 82007, USA
| | - Dominik Kusy
- Laboratory of Biodiversity and Molecular Evolution, Czech Advanced Technology Research Institute (CRH), Palacky University, Slechtitelu 27, Olomouc 783 71, Czech Republic
| | - Luiz Felipe Lima Da Silveira
- Biology Department, Western Carolina University, 206 Stillwell Building, 1 University Dr., Cullowhee, NC 2723, USA
| | - Ladislav Bocak
- Laboratory of Biodiversity and Molecular Evolution, Czech Advanced Technology Research Institute (CRH), Palacky University, Slechtitelu 27, Olomouc 783 71, Czech Republic
| | - Marc A. Branham
- Department of Entomology and Nematology, University of Florida, P.O. Box 110620, Gainesville, FL 32611, USA
| | - Seth M. Bybee
- Department of Biology and Monte L. Bean Museum, Brigham Young University, 4102 LSB, Provo, UT 84602, USA
| |
Collapse
|
13
|
Anti-bat ultrasound production in moths is globally and phylogenetically widespread. Proc Natl Acad Sci U S A 2022; 119:e2117485119. [PMID: 35704762 DOI: 10.1073/pnas.2117485119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Warning signals are well known in the visual system, but rare in other modalities. Some moths produce ultrasonic sounds to warn bats of noxious taste or to mimic unpalatable models. Here, we report results from a long-term study across the globe, assaying moth response to playback of bat echolocation. We tested 252 genera, spanning most families of large-bodied moths, and document anti-bat ultrasound production in 52 genera, with eight subfamily origins described. Based on acoustic analysis of ultrasonic emissions and palatability experiments with bats, it seems that acoustic warning and mimicry are the raison d'être for sound production in most moths. However, some moths use high-duty-cycle ultrasound capable of jamming bat sonar. In fact, we find preliminary evidence of independent origins of sonar jamming in at least six subfamilies. Palatability data indicate that jamming and warning are not mutually exclusive strategies. To explore the possible organization of anti-bat warning sounds into acoustic mimicry rings, we intensively studied a community of moths in Ecuador and, using machine-learning approaches, found five distinct acoustic clusters. While these data represent an early understanding of acoustic aposematism and mimicry across this megadiverse insect order, it is likely that ultrasonically signaling moths comprise one of the largest mimicry complexes on earth.
Collapse
|
14
|
Dunn KN, Davis SR, Herhold HW, Stanger-Hall KF, Bybee SM, Branham MA. Morphological changes in the tracheal system associated with light organs of the firefly Photinus pyralis (Coleoptera: Lampyridae) across life stages. PLoS One 2022; 17:e0268112. [PMID: 35648743 PMCID: PMC9159635 DOI: 10.1371/journal.pone.0268112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/24/2022] [Indexed: 11/18/2022] Open
Abstract
Oxygen is an important and often limiting reagent of a firefly’s bioluminescent chemical reaction. Therefore, the development of the tracheal system and its subsequent modification to support the function of firefly light organs are key to understanding this process. We employ micro-CT scanning, 3D rendering, and confocal microscopy to assess the abdominal tracheal system in Photinus pyralis from the external spiracles to the light organ’s internal tracheal brush, a feature named here for the first time. The abdominal spiracles in firefly larvae and pupae are of the biforous type, with a filter apparatus and appear to have an occlusor muscle to restrict airflow. The first abdominal spiracle in the adult firefly is enlarged and bears an occlusor muscle, and abdominal spiracles two through eight are small, with a small atrium and bilobed closing apparatus. Internal tracheal system features, including various branches, trunks, and viscerals, were homologized across life stages. In adults, the sexually dimorphic elaboration and increase in volume associated with tracheal features of luminous segments emphasizes the importance of gas exchange during the bioluminescent process.
Collapse
Affiliation(s)
- Kristin N. Dunn
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Steven R. Davis
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, United States of America
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
| | - Hollister W. Herhold
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
| | - Kathrin F. Stanger-Hall
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Seth M. Bybee
- Department of Biology, Monte L. Bean Life Science Museum, Brigham Young University, Provo, Utah, United States of America
| | - Marc A. Branham
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
15
|
Page RA, ter Hofstede HM. Sensory and Cognitive Ecology of Bats. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012921-052635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We see stunning morphological diversity across the animal world. Less conspicuous but equally fascinating are the sensory and cognitive adaptations that determine animals’ interactions with their environments and each other. We discuss the development of the fields of sensory and cognitive ecology and the importance of integrating these fields to understand the evolution of adaptive behaviors. Bats, with their extraordinarily high ecological diversity, are ideal animals for this purpose. An explosion in recent research allows for better understanding of the molecular, genetic, neural, and behavioral bases for sensory ecology and cognition in bats. We give examples of studies that illuminate connections between sensory and cognitive features of information filtering, evolutionary trade-offs in sensory and cognitive processing, and multimodal sensing and integration. By investigating the selective pressures underlying information acquisition, processing, and use in bats, we aim to illuminate patterns and processes driving sensory and cognitive evolution.
Collapse
Affiliation(s)
- Rachel A. Page
- Smithsonian Tropical Research Institute, Apartado 0843–03092, Balboa, Ancón, República de Panamá
| | - Hannah M. ter Hofstede
- Smithsonian Tropical Research Institute, Apartado 0843–03092, Balboa, Ancón, República de Panamá
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| |
Collapse
|
16
|
Abu Seri N, Abd Rahman A. Fireflies in South East Asia: Species Diversity, Distribution, and Habitat (2015-2021). PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE 2021; 44. [DOI: 10.47836/pjtas.44.4.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Fireflies are one of the most famous luminous insects that emit bioluminescence. The most famous fireflies in Southeast Asia are Pteroptyx , of the order Coleoptera and the Lampyridae family. This review paper combined the data on the species diversity and firefly distribution in Southeast Asian countries such as Malaysia, the Philippines, Indonesia, Cambodia, Myanmar, Singapore, Sri Lanka, Papua New Guinea, Laos, Thailand, and Vietnam published in 2015-2021. Some countries have limited data and no studies to identify firefly species and their habitat from 2015 to 2021; the data before 2015 was used. Furthermore, the lack of studies by Southeast Asian researchers regarding the richness of firefly species has been reviewed. Malaysian and Thailand researchers are among the forerunners in the study related to fireflies in the Southeast Asian region compared to other Southeast Asian countries. Lastly, not much is known about the display trees or habitat of fireflies in many areas such as the Philippines, Indonesia, Cambodia, Myanmar, Singapore, Sri Lanka, Papua New Guinea, Laos, Thailand, and Vietnam. More studies are warranted to be conducted in the future on firefly species and their habitat.
Collapse
|
17
|
MacKay RN, Wood TC, Moore PA. Running away or running to? Do prey make decisions solely based on the landscape of fear or do they also include stimuli from a landscape of safety? J Exp Biol 2021; 224:272127. [PMID: 34515298 DOI: 10.1242/jeb.242687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/02/2021] [Indexed: 12/31/2022]
Abstract
Predator-prey interactions are a key part of ecosystem function, and non-consumptive effects fall under the landscape of fear theory. Under the landscape of fear, the antipredator responses of prey are based on the spatial and temporal distribution of predatory cues in the environment. However, the aversive stimuli (fear) are not the only stimuli prey can utilize when making behavioral decisions. Prey might also be using attractive stimuli that represent safety to guide decision making. Using a novel, orthogonal design, we were able to spatially separate aversive and attractive stimuli to determine whether prey are utilizing safety cues to navigate their environment. Crayfish Faxonius rusticus were placed in the center of a behavioral arena. Aversive stimuli of either predatory bass Micropterus salmoides cues or conspecific alarm cues increased along the x-axis of the behavioral arena. Safety cues (shelters) increased along the y-axis by decreasing the number of shelter openings in this direction. Crayfish were allowed two phases to explore the arena: one without the fearful stimuli and one with the stimuli. Linear mixed models were conducted to determine whether movement behaviors and habitat utilization were affected by the phase of the trial and the type of aversive stimuli. Crayfish responded more strongly to alarm cues than to fear cues, with only alarm cues significantly impacting habitat utilization. When responding to alarm cues, crayfish used safety cues as well as fear cues to relocate themselves within the arena. Based on these results, we argue that crayfish utilize a landscape of safety in conjunction with a landscape of fear when navigating their environment.
Collapse
Affiliation(s)
- Rebecca N MacKay
- Laboratory for Sensory Ecology, Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Tyler C Wood
- Department of Biomedical Sciences, Grand Valley State University, 1 Campus Drive, Allendale, MI 49401, USA
| | - Paul A Moore
- Laboratory for Sensory Ecology, Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| |
Collapse
|
18
|
Berger A, Petschenka G, Degenkolb T, Geisthardt M, Vilcinskas A. Insect Collections as an Untapped Source of Bioactive Compounds-Fireflies (Coleoptera: Lampyridae) and Cardiotonic Steroids as a Proof of Concept. INSECTS 2021; 12:689. [PMID: 34442254 PMCID: PMC8396437 DOI: 10.3390/insects12080689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 11/20/2022]
Abstract
Natural history collections provide an invaluable basis for systematics, ecology, and conservation. Besides being an important source of DNA, museum specimens may also contain a plethora of natural products. Especially, dried insect collections represent a global repository with billions of inventoried vouchers. Due to their vast diversity, insects possess a great variety of defensive compounds, which they either produce autogenously or derive from the environment. Here, we present a case study on fireflies (Coleoptera: Lampyridae), which produce bufadienolides as a defense against predators. These toxins belong to the cardiotonic steroids, which are used for the treatment of cardiac diseases and specifically inhibit the animal enzyme Na+/K+-ATPase. Bufadienolides have been reported from only seven out of approximately 2000 described firefly species. Using a non-destructive approach, we screened 72 dry coleopteran specimens for bufadienolides using HPLC-DAD and HPLC-MS. We found bufadienolides including five novel compounds in 21 species of the subfamily Lampyrinae. The absence of bufadienolides in the phylogenetically related net-winged beetles (Lycidae) and the lampyrid subfamilies Luciolinae and Lamprohizinae indicates a phylogenetic pattern of bufadienolide synthesis. Our results emphasize the value of natural history collections as an archive of chemical information for ecological and evolutionary basic research and as an untapped source for novel bioactive compounds.
Collapse
Affiliation(s)
- Andreas Berger
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany; (A.B.); (T.D.)
| | - Georg Petschenka
- Department of Applied Entomology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Strasse 5, 70599 Stuttgart, Germany
| | - Thomas Degenkolb
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany; (A.B.); (T.D.)
| | | | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany; (A.B.); (T.D.)
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergs-weg 12, 35392 Giessen, Germany
| |
Collapse
|
19
|
Owens ACS, Lewis SM. Effects of artificial light on growth, development, and dispersal of two North American fireflies (Coleoptera: Lampyridae). JOURNAL OF INSECT PHYSIOLOGY 2021; 130:104200. [PMID: 33607160 DOI: 10.1016/j.jinsphys.2021.104200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 05/23/2023]
Abstract
Holometabolous insects exhibit complex life cycles in which both morphology and ecological niche change dramatically during development. In the larval stage, many insects have soft, slow-moving bodies and poor vision, limiting their ability to respond to environmental threats. Artificial light at night (ALAN) is an environmental perturbation known to severely impact the fitness of adult insects by disrupting both temporal and spatial orientation. The impact of ALAN on earlier life stages, however, is largely unknown. We conducted a series of laboratory experiments to investigate how two distinct forms of ALAN affect the development and movement of immature Photuris sp. and Photinus obscurellus fireflies. Although long-term exposure to dim light at night (dLAN), akin to urban skyglow, did not impact overall survivorship or duration of egg, larval, and pupal stages in either species, it did accelerate weight gain in early-instar Photuris larvae. Late-instar Photuris exposed to point sources of ALAN at the start of their nightly foraging period were also significantly more likely to burrow beneath the soil surface, rather than disperse across it. ALAN may therefore impede dispersal of firefly larvae away from illuminated areas, which could have downstream consequences for the reproductive fitness of adults.
Collapse
Affiliation(s)
- Avalon C S Owens
- Tufts University, Department of Biology, 200 College Avenue, Medford, MA 02155, United States.
| | - Sara M Lewis
- Tufts University, Department of Biology, 200 College Avenue, Medford, MA 02155, United States
| |
Collapse
|
20
|
Krivoruchko K, Goldshtein A, Boonman A, Eitan O, Ben-Simon J, Thong VD, Yovel Y. Fireflies produce ultrasonic clicks during flight as a potential aposematic anti-bat signal. iScience 2021; 24:102194. [PMID: 33733061 PMCID: PMC7937554 DOI: 10.1016/j.isci.2021.102194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/29/2020] [Accepted: 02/10/2021] [Indexed: 11/21/2022] Open
Abstract
Fireflies are known for emitting light signals for intraspecific communication. However, in doing so, they reveal themselves to many potential nocturnal predators from a large distance. Therefore, many fireflies evolved unpalatable compounds and probably use their light signals as anti-predator aposematic signals. Fireflies are occasionally attacked by predators despite their warning flashes. Bats are among the most substantial potential firefly predators. Using their echolocation, bats might detect a firefly from a short distance and attack it in between two flashes. We thus aimed to examine whether fireflies use additional measures of warning, specifically focusing on sound signals. We recorded four species from different genera of fireflies in Vietnam and Israel and found that all of them generated ultrasonic clicks centered around bats' hearing range. Clicks were synchronized with the wingbeat and are probably produced by the wings. We hypothesize that ultrasonic clicks can serve as part of a multimodal aposematic display.
Collapse
Affiliation(s)
- Ksenia Krivoruchko
- Department of Neuroscience, Rappaport Research Institute and Faculty of Medicine, Technion, Haifa, Israel
| | - Aya Goldshtein
- School of Zoology, Faculty of Life sciences, Tel Aviv University, Tel Aviv, Israel
| | - Arjan Boonman
- School of Zoology, Faculty of Life sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ofri Eitan
- School of Zoology, Faculty of Life sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan Ben-Simon
- School of Zoology, Faculty of Life sciences, Tel Aviv University, Tel Aviv, Israel
| | - Vu Dinh Thong
- Institute of Ecology and Biological Resources, VAST, Cầu Giấy, Hà Nội, Vietnam
- Graduate University of Science and Technology, VAST, Cầu Giấy, Hà Nội, Vietnam
| | - Yossi Yovel
- School of Zoology, Faculty of Life sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
21
|
Oba Y, Konishi K, Yano D, Shibata H, Kato D, Shirai T. Resurrecting the ancient glow of the fireflies. SCIENCE ADVANCES 2020; 6:6/49/eabc5705. [PMID: 33268373 PMCID: PMC7710365 DOI: 10.1126/sciadv.abc5705] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
The color of firefly bioluminescence is determined by the structure of luciferase. Firefly luciferase genes have been isolated from more than 30 species, producing light ranging in color from green to orange-yellow. Here, we reconstructed seven ancestral firefly luciferase genes, characterized the enzymatic properties of the recombinant proteins, and determined the crystal structures of the gene from ancestral Lampyridae. Results showed that the synthetic luciferase for the last common firefly ancestor exhibited green light caused by a spatial constraint on the luciferin molecule in enzyme, while fatty acyl-CoA synthetic activity, an original function of firefly luciferase, was diminished in exchange. All known firefly species are bioluminescent in the larvae, with a common ancestor arising approximately 100 million years ago. Combined, our findings propose that, within the mid-Cretaceous forest, the common ancestor of fireflies evolved green light luciferase via trade-off of the original function, which was likely aposematic warning display against nocturnal predation.
Collapse
Affiliation(s)
- Y Oba
- Department of Environmental Biology, Chubu University, Kasugai 487-8501, Japan.
| | - K Konishi
- Department of Environmental Biology, Chubu University, Kasugai 487-8501, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - D Yano
- Department of Environmental Biology, Chubu University, Kasugai 487-8501, Japan
| | - H Shibata
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
| | - D Kato
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
| | - T Shirai
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama 526-0829, Japan.
| |
Collapse
|
22
|
Chatragadda R. Terrestrial and marine bioluminescent organisms from the Indian subcontinent: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:747. [PMID: 33150454 DOI: 10.1007/s10661-020-08685-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
The inception of bioluminescence by Harvey (1952) has led to a Nobel Prize to Osamu Shimomura (Chemistry, 2008) in biological research. Consequently, in recent years, bioluminescence-based assays to monitor toxic pollutants as a real-time marker, to study various diseases and their propagation in plants and animals, are developed in many countries. The emission ability of bioluminescence is improved by gene modification, and also, search for novel bioluminescent systems is underway. Over 100 species of organisms belonging to different taxa are known to be luminous in India. However, the diversity and distribution of luminous organisms and their applications are studied scarcely in the Indian scenario. In this context, the present review provides an overview of the current understanding of various bioluminescent organisms, functions, and applications. A detailed checklist of known bioluminescent organisms from India's marine, terrestrial, and freshwater ecosystems is detailed. This review infers that Indian scientists are needed to extend their research on various aspects of luminescent organisms such as biodiversity, genomics, and chemical mechanisms for conservation, ecological, and biomedical applications.
Collapse
Affiliation(s)
- Ramesh Chatragadda
- Biological Oceanography Division (BOD), CSIR-National Institute of Oceanography (CSIR-NIO), Dona Paula, Goa, 403004, India.
| |
Collapse
|
23
|
Dowdy NJ, Conner WE. Nonchalant Flight in Tiger Moths (Erebidae: Arctiinae) Is Correlated With Unpalatability. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Page RA, Bernal XE. The challenge of detecting prey: Private and social information use in predatory bats. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13439] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Ximena E. Bernal
- Smithsonian Tropical Research Institute Balboa Panamá
- Department of Biological Sciences Purdue University West Lafayette Indiana
| |
Collapse
|
25
|
The Cognitive Ecology of Stimulus Ambiguity: A Predator-Prey Perspective. Trends Ecol Evol 2019; 34:1048-1060. [PMID: 31416642 DOI: 10.1016/j.tree.2019.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 11/22/2022]
Abstract
Organisms face the cognitive challenge of making decisions based on imperfect information. Predators and prey, in particular, are confronted with ambiguous stimuli when foraging and avoiding attacks. These challenges are accentuated by variation imposed by environmental, physiological, and cognitive factors. While the cognitive factors influencing perceived ambiguity are often assumed to be fixed, contemporary findings reveal that perceived ambiguity is instead the dynamic outcome of interactive cognitive processes. Here, we present a framework that integrates recent advances in neurophysiology and sensory ecology with a classic decision-making model, signal detection theory (SDT), to understand the cognitive mechanisms that shape perceived stimulus ambiguity in predators and prey. Since stimulus ambiguity is pervasive, the framework discussed here provides insights that extend into nonforaging contexts.
Collapse
|
26
|
Halfwerk W, Varkevisser J, Simon R, Mendoza E, Scharff C, Riebel K. Toward Testing for Multimodal Perception of Mating Signals. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00124] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
McCallum E. Caution! A firefly approaches…. J Exp Biol 2018. [DOI: 10.1242/jeb.170266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|