1
|
Xu Z, Zhang X, Yang J, Cui X, Nuli Y, Wang J. High-voltage and intrinsically safe electrolytes for Li metal batteries. Nat Commun 2024; 15:9856. [PMID: 39543085 PMCID: PMC11564819 DOI: 10.1038/s41467-024-51958-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 08/20/2024] [Indexed: 11/17/2024] Open
Abstract
Current electrolytes of mixing different functional solvents inherit both merits and weaknesses of each solvent, thus cannot simultaneously meet all the requirements of high energy, long cycle life, and high safety for Li metal batteries (LMBs). Here, we design a high voltage and safe electrolyte (VSE) by integrating different functional groups into one molecule. The VSE electrolyte has a wide electrochemical stability window of ~5.6 V enabling a Li anode to achieve high Coulombic efficiency of >99.3%, Li | |LiNi0.8Co0.1Mn0.1O2 coin cell to maintain capacity retention of 92% after 500 cycles, and the 3.5-Ah-grade Li | |LiNi0.8Co0.1Mn0.1O2 pouch cell to deliver a high energy density of 531 Wh kg-1 without any flame and expansion after cycled under extreme conditions. The VSE electrolyte even enables 5.0 V Li | |LiNi0.5Mn1.5O4 cells to charge/discharge for 200 cycles without capacity decay. This work provides a promising direction for the rational design of high-voltage and intrinsically safe electrolytes for LMBs.
Collapse
Affiliation(s)
- Zhixin Xu
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiyue Zhang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Jun Yang
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Xuzixu Cui
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanna Nuli
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiulin Wang
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Chen Z, Wang Y, Wu Q, Wang C, He Q, Hu T, Han X, Chen J, Zhang Y, Chen J, Yang L, Wang X, Ma Y, Zhao J. Grain Boundary Filling Empowers (002)-Textured Zn Metal Anodes with Superior Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411004. [PMID: 39300904 DOI: 10.1002/adma.202411004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Aqueous Zn battery is promising for grid-level energy storage due to its high safety and low cost, but dendrite growth and side reactions at the Zn metal anode hinder its development. Designing Zn with (002) orientation improves the stability of the Zn anode, yet grain boundaries remain susceptible to corrosion and dendrite growth. Addressing these intergranular issues is crucial for enhancing the electrochemical performance of (002)-textured Zn. Here, a strategy based on grain boundary wetting to fill intergranular regions and mitigate these issues is reported. By systematically investigating boundary fillers and filling conditions, In metal is chosen as the filler, and one-step annealing is used to synergistically convert commercial Zn foils into single (002)-textured Zn while filling In into the boundaries. The inter-crystalline-modified (002)-textured Zn (IM(002) Zn) effectively inhibits corrosion and dendrite growth, resulting in excellent stability in batteries. This work offers new insights into Zn anode protection and the development of high-energy Zn batteries.
Collapse
Affiliation(s)
- Zibo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Yizhou Wang
- Materials Science and Engineering, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Qiang Wu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Cheng Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Qian He
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Tao Hu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Xuran Han
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Jialu Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Yu Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Jianyu Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xuebin Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| | - Yanwen Ma
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
- Suzhou Vocational Institute of Industrial Technology, Suzhou, 215104, P. R. China
| | - Jin Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
3
|
Liu P, Xiao Y, You J, Zhang B, Li T, Gao X, Li Y, Wang W. MgF 2 Interface Engineering Promotes the Growth and Stability of LiF-Rich Solid-Electrolyte Interphases on Si-C. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59488-59496. [PMID: 39429037 DOI: 10.1021/acsami.4c11705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Volume expansion of the Si-C anode during the charging/discharging process causes continuous fracture/formation of the solid electrolyte interface (SEI), which leads to rapid capacity fading. Here, we designed a MgF2-modified separator (MF-PP) to construct a fluorine-rich SEI layer by generating more LiF. The robust SEI layer formed can alleviate the volume stress and prevent crack growth in Si-C electrodes. After 450 cycles, the Si-C||MF-PP half cell retained a reversible capacity of 543.2 mAh g-1, while the LFP||MF-PP||Si-C full cell maintained a reversible capacity of 103.4 mAh g-1 with high Coulombic efficiency after 100 cycles. This facile and low-cost separator modification strategy provides an easily scalable approach to develop stable Si-based anodes for next-generation high-energy-density systems.
Collapse
Affiliation(s)
- Peng Liu
- School of Energy and Power Engineering Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Energy and Technology Institute, Nanjing 210094, P. R. China
| | - Yupeng Xiao
- School of Energy and Power Engineering Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Energy and Technology Institute, Nanjing 210094, P. R. China
| | - Jiyuan You
- School of Energy and Power Engineering Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Energy and Technology Institute, Nanjing 210094, P. R. China
| | - Bo Zhang
- School of Energy and Power Engineering Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Energy and Technology Institute, Nanjing 210094, P. R. China
| | - Tianle Li
- School of Energy and Power Engineering Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Energy and Technology Institute, Nanjing 210094, P. R. China
| | - Xiaotong Gao
- School of Energy and Power Engineering Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Energy and Technology Institute, Nanjing 210094, P. R. China
| | - Yuqian Li
- School of Energy and Power Engineering Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Energy and Technology Institute, Nanjing 210094, P. R. China
| | - Wenju Wang
- School of Energy and Power Engineering Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Energy and Technology Institute, Nanjing 210094, P. R. China
| |
Collapse
|
4
|
Gao H, Chen Y, Teng T, Yun X, Lu D, Zhou G, Zhao Y, Li B, Zhou X, Zheng C, Xiao P. Interface Engineering via Manipulating Solvation Chemistry for Liquid Lithium-Ion Batteries Operated≥100 °C. Angew Chem Int Ed Engl 2024; 63:e202410982. [PMID: 38935427 DOI: 10.1002/anie.202410982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 06/28/2024]
Abstract
High-performance and temperature-resistant lithium-ion batteries (LIBs), which are able to operate at elevated temperatures (i.e., >60 °C) are highly demanded in various fields, especially in military or aerospace exploration. However, their applications were largely impeded by the poor electrochemical performance and unsatisfying safety issues, which were induced by the severe side reactions between electrolytes and electrodes at high temperatures. Herein, with the synergetic effects of solvation chemistry and functional additive in the elaborately designed weakly solvating electrolyte, a unique robust organic/inorganic hetero-interphase, composed of gradient F, B-rich inorganic components and homogeneously distributed Si-rich organic components, was successfully constructed on both cathodes and anodes, which would effectively inhibit the constant decomposition of electrolytes and dissolution of transition metal ions, thus highly enhancing the high-temperature electrochemical performance. As a result, both cathodes and anodes, without compromising their low-temperature performance, can operate at temperatures ≥100 °C, with excellent capacity retentions of 96.1 % after 500 cycles and 93.5 % after ≥200 cycles, respectively, at 80 °C. Ah-level LiCoO2||graphite full cells with a cut-off voltage of 4.3 V also exhibited superior temperature-resistance with a capacity retention of 89.9 % at temperature as high as 120 °C. Moreover, the fully charged pouch cells exhibited highly enhanced safety, demonstrating their potentials in practical applications at ultrahigh temperatures.
Collapse
Affiliation(s)
- Hongjing Gao
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China
| | - Yufang Chen
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China
| | - Tao Teng
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China
| | - Xiaoru Yun
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China
| | - Di Lu
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yun Zhao
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Baohua Li
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xing Zhou
- College of System Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China
| | - Chunman Zheng
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China
| | - Peitao Xiao
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China
| |
Collapse
|
5
|
Hong L, Zhang Y, Mei P, Ai B, Zhang Y, Zhou C, Bao X, Zhang W. Temperature-Responsive Formation Cycling Enabling LiF-Rich Cathode-Electrolyte Interphase. Angew Chem Int Ed Engl 2024; 63:e202409069. [PMID: 39009555 DOI: 10.1002/anie.202409069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 07/14/2024] [Indexed: 07/17/2024]
Abstract
Formation of LiF-rich cathode-electrolyte interphase is highly desirable for wide-temperature battery, but its application is hindered by the unwanted side reactions associated with conventional method of introducing fluorinated additives. Here, we developed an additive-free strategy to produce LiF-rich cathode electrolyte interphase (CEI) by low-temperature formation cycling. Using LiNi0.33Mn0.33Co0.33O2 as a model cathode, the atomic ratio of LiF in the CEI formed at -5 °C is about 17.7 %, enhanced by ~550 % compared to CEI formed at 25 °C (2.7 %). The underlying mechanism is uncovered by both experiments and theoretic simulation, indicating that the decomposition of LiPF6 to LiF is transformed into spontaneous and exothermic on positively charged cathode surface and lowering the temperature shift chemical equilibrium towards the formation of LiF-rich CEI. Superior to conventional fluorinated additives, this approach is free from unwanted side reactions, imparting batteries with both high-temperature (60 °C) cyclability and low-temperature rate performance (capacity enhanced by 100 % at 3 C at -20 °C). This low-temperature formation cycling to construct LiF-rich CEI is extended to various cathode systems, such as LiNi0.8Mn0.1Co0.1O2, LiCoO2, LiMn2O4, demonstrating the versatility and potential impact of our strategy in advancing the performance and stability of wide-temperature batteries and beyond.
Collapse
Affiliation(s)
- Luxi Hong
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yi Zhang
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Pan Mei
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Bing Ai
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yuan Zhang
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Chenhuan Zhou
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Xiaoguang Bao
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P.R. China
| | - Wei Zhang
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P.R. China
| |
Collapse
|
6
|
Kumar Mishra G, Gautam M, Bhawana K, Sah Kalwar C, Patro M, Anshu, Mitra S. Exploring Chemical and Electrochemical Limitations in Sulfide Solid State Electrolytes: A Critical Review on Current Status and Manufacturing Scope. Chemistry 2024:e202402510. [PMID: 39370402 DOI: 10.1002/chem.202402510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/11/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
The escalating demand for sustainable energy storage solutions, driven by the depletion of fossil fuels has stimulated extensive research in advanced battery technologies. Over the past two decades, global primary energy consumption, initially satisfied by non-renewables, has raised environmental concerns. Despite the availability of renewable sources like solar and wind, storage challenges propel innovation in batteries. Lithium-ion batteries (LIBs) have gained recognition for their high energy density and cost-effectiveness. However, issues such as safety concerns, dendrite formation, and limited operational temperatures necessitate alternative solutions. A promising approach involves replacing flammable liquid electrolytes with non-flammable solid electrolytes (SEs). SEs represent a transformative shift in battery technology, offering stability, safety, and expanded temperature ranges. They effectively mitigate dendrite growth, enhancing battery reliability and lifespan. SEs also improve energy density, making them crucial for applications like portable gadgets, electric vehicles, and renewable energy storage. However, challenges such as ionic conductivity, chemical and thermal stability, mechanical strength, and manufacturability must be addressed. This review paper briefly identifies SE types, discusses their advantages and disadvantages, and explores ion transport fundamentals and all-solid-state batteries (ASSBs) production challenges. It comprehensively analyzes sulfide SEs (SSEs), focusing on recent advancements, chemical and electrochemical challenges, and potential future improvements. Electrochemical reactions, electrolyte materials, compositions, and cell designs are critically assessed for their impact on battery performance. The review also addresses challenges in ASSB production. The objective is to provide a comprehensive understanding of SSEs, laying the groundwork for advancing sustainable and efficient energy storage systems.
Collapse
Affiliation(s)
- Govind Kumar Mishra
- Electrochemical Energy Storage Laboratory, Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Manoj Gautam
- Electrochemical Energy Storage Laboratory, Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - K Bhawana
- Electrochemical Energy Storage Laboratory, Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Chhotelal Sah Kalwar
- Electrochemical Energy Storage Laboratory, Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Manisha Patro
- Electrochemical Energy Storage Laboratory, Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Anshu
- Electrochemical Energy Storage Laboratory, Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Sagar Mitra
- Electrochemical Energy Storage Laboratory, Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
7
|
Sang P, Tang S, Li F, Si Y, Fu Y. Organic Thiolate as Multifunctional Salt for Rechargeable Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406972. [PMID: 39240121 DOI: 10.1002/smll.202406972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Indexed: 09/07/2024]
Abstract
The practical application of lithium-sulfur (Li-S) batteries is hindered by the severe shuttle effect of soluble polysulfide intermediates and the unstable lithium anode interface. Conventional lithium salts (e.g., LiPF6, LiTFSI) just serve as conducting salts to provide necessary free lithium cations for internal ion transport, lacking full utilization of the anions. Herein, lithium 4-fluorobenzenethiolate (F-PhSLi) as a multifunctional salt for rechargeable Li-S batteries, which is able to chemically react with sulfur to alter the redox pathway of sulfur cathode, accelerate the sulfur redox kinetics, and inhibit the shuttle effect of polysulfides is reported. Meanwhile, due to the redox activity of F-PhSLi, the reactive electrolyte can offer additional capacity. In addition, it also can construct a stable LiF-rich solid electrolyte interface layer on the lithium metal anode. Such reactive electrolyte endows Li-S batteries with ultrahigh discharge specific capacity, improved sulfur utilization, long-term storage ability, enhanced rate capability, and outstanding low-temperature performance. This work presents a new solution for developing high performance Li-S batteries.
Collapse
Affiliation(s)
- Pengfei Sang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shuai Tang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Fengli Li
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang, 277160, P. R. China
| | - Yubing Si
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yongzhu Fu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
8
|
Zhu F, Xu L, Hu X, Yang M, Liu H, Gan C, Deng W, Zou G, Hou H, Ji X. Trace Fluorinated Carbon Dots Driven Li-Garnet Solid-State Batteries. Angew Chem Int Ed Engl 2024; 63:e202410016. [PMID: 38896116 DOI: 10.1002/anie.202410016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
Garnet solid-state electrolyte Li6.5La3Zr1.5Ta0.5O12 (LLZTO) holds significant promise. However, the practical utilization has been seriously impeded by the poor contact of Li|garnet and electron leakage. Herein, one new type of garnet-based solid-state battery is proposed with high performance through the disparity in interfacial energy, induced by the reaction between trace fluorinated carbon dots (FCDs) and Li. The work of adhesion of Li|garnet is increased by the acquired Li-FCD composite, which facilitates an intimate Li|garnet interface with the promoted uniform Li+ deposition, revealed by density functional theory (DFT) calculations. It is further validated that a concentrated C-Li2O-LiF component at the Li|garnet interface is spontaneously constructed, due to the significant disparity in interfacial energy between C-Li2O-LiF|LLZTO and C-Li2O-LiF|Li. Furthermore, The electron transport and Li dendrites penetration are effectively hindered by the formed Li2O and LiF. The Li-FCD|LLZTO|Li-FCD symmetrical cells demonstrate stable cycling performance for over 3000 hours at 0.3 mA cm-2 and 800 hours at 0.5 mA cm-2. Furthermore, the LFP|garnet|Li-FCD full cell exhibits remarkable cycling performance (91.6 % capacity retention after 500 cycles at 1 C). Our research has revealed a novel approach to establish a dendrite-free Li|garnet interface, laying the groundwork for future advancements in garnet-based solid-state batteries.
Collapse
Affiliation(s)
- Fangjun Zhu
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Laiqiang Xu
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xinyu Hu
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Mushi Yang
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Huaxin Liu
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Chaolun Gan
- Zhangjiagang Guotai Huarong New Chemical Materials Co., Ltd, Zhangjiagang, 215600, China
| | - Wentao Deng
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Guoqiang Zou
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Hongshuai Hou
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xiaobo Ji
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
9
|
Jin H, Pyo S, Seo H, Cho J, Han J, Han J, Yun H, Kim H, Lee J, Min B, Yoo J, Kim YS. LiF-Rich Solid Electrolyte Interphase Formation by Establishing Sacrificial Layer on the Separator. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401928. [PMID: 38700385 DOI: 10.1002/smll.202401928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/22/2024] [Indexed: 05/05/2024]
Abstract
The formation of a stable solid electrolyte interphase (SEI) layer is crucial for enhancing the safety and lifespan of Li metal batteries. Fundamentally, a homogeneous Li+ behavior by controlling the chemical reaction at the anode/electrolyte interface is the key to establishing a stable SEI layer. However, due to the highly reactive nature of Li metal anodes (LMAs), controlling the movement of Li+ at the anode/electrolyte interface remains challenging. Here, an advanced approach is proposed for coating a sacrificial layer called fluorinated self-assembled monolayer (FSL) on a boehmite-coated polyethylene (BPE) separator to form a stable SEI layer. By leveraging the strong affinity between the fluorine functional group and Li+, the rapid formation of a LiF-rich SEI layer in the cell production and early cycling stage is facilitated. This initial stable SEI formation promotes the subsequent homogeneous Li+ flux, thereby improving the LMA stability and yielding an enhanced battery lifespan. Further, the mechanism behind the stable SEI layer generation by controlling the Li+ dynamics through the FSL-treated BPE separator is comprehensively verified. Overall, this research offers significant contributions to the energy storage field by addressing challenges associated with LMAs, thus highlighting the importance of interfacial control in achieving a stable SEI layer.
Collapse
Affiliation(s)
- Huding Jin
- Institute of Chemical Processes, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, College of Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seonmi Pyo
- Battery Manufacturing Engineering Research & Development Team, Hyundai Motor Group, 37, Cheoldobangmulgwan-ro, Uiwang-si, Gyeonggi-do, 16082, Republic of Korea
| | - Harim Seo
- School of Energy Engineering, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu, 41566, Republic of Korea
| | - Jinil Cho
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Junghyup Han
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, College of Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Juyeon Han
- School of Energy Engineering, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu, 41566, Republic of Korea
| | - Heejun Yun
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Heebae Kim
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, College of Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jeewon Lee
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, College of Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Byeongyun Min
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, College of Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jeeyoung Yoo
- School of Energy Engineering, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu, 41566, Republic of Korea
| | - Youn Sang Kim
- Institute of Chemical Processes, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, College of Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
- Advanced Institute of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon, 16229, Republic of Korea
| |
Collapse
|
10
|
Xu H, Liu S, Li Z, Ding F, Liu J, Wang W, Song K, Liu T, Hu L. Synergistic effect of Ti 3C 2T x MXene/PAN nanofiber and LLZTO particles on high-performance PEO-based solid electrolyte for lithium metal battery. J Colloid Interface Sci 2024; 668:634-645. [PMID: 38696991 DOI: 10.1016/j.jcis.2024.04.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/21/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
Solid polymer electrolytes (SPEs) have been considered the most promising separators for all-solid-state lithium metal batteries (ASSLMBs) due to their ease of processing and low cost. However, the practical applications of SPEs in ASSLMBs are limited by their low ionic conductivities and mechanical strength. Herein, we developed a three-dimensional (3D) interconnected MXene (Ti3C2Tx) network and Li6.4La3Zr1.4Ta0.6O12 (LLZTO) particles synergistically reinforced polyethylene oxide (PEO)-based SPE, where the association of Li+ with ether-oxygen in PEO could be significantly weakened through the Lewis acid-base interactions between the electron-absorbing group (Ti-F, -O-) of Ti3C2Tx and Li+. Besides, the TFSI- in lithium salts could be immobilized by hydrogen bonds from the Ti-OH of Ti3C2Tx. The 3D interconnected Ti3C2Tx network not only alleviated the agglomeration of inorganic fillers (LLZTO), but also improved the mechanical strength of composite solid electrolyte (CSE). Consequently, the assembled Li||CSE||Li symmetric battery showed excellent cycling stability at 35 ℃ (stable cycling over 3000 h at 0.1 mA cm-2, 0.1 mAh cm-2) and -2 ℃ (stable cycling over 2500 h at 0.05 mA cm-2, 0.05 mAh cm-2). Impressively, the LiFePO4||CSE||Li battery showed a high discharge capacity of 145.3 mAh/g at 0.3 C after 300 cycles at 35 ℃. This rational structural design provided a new strategy for the preparation of high-performance solid-state electrolytes for lithium metal batteries.
Collapse
Affiliation(s)
- Hao Xu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Shuai Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Zhiang Li
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Fan Ding
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Jie Liu
- College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Weimin Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Kaikai Song
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, China
| | - Ting Liu
- Department of Hospital Infection Management, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266000, Shandong, China.
| | - Lina Hu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China.
| |
Collapse
|
11
|
Zhuang H, Xiao H, Zhang T, Zhang F, Han P, Xu M, Dai W, Jiao J, Jiang L, Gao Q. LiF-Rich Alloy-Doped SEI Enabling Ultra-Stable and High-Rate Li Metal Anode. Angew Chem Int Ed Engl 2024; 63:e202407315. [PMID: 38818545 DOI: 10.1002/anie.202407315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Li metal is regarded as the "Holy Grail" in the next generation of anode materials due to its high theoretical capacity and low redox potential. However, sluggish Li ions interfacial transport kinetics and uncontrollable Li dendrites growth limit practical application of the energy storage system in high-power device. Herein, separators are modified by the addition of a coating, which spontaneously grafts onto the Li anode interface for in situ lithiation. The resultant alloy possessing of strong electron-donating property promotes the decomposition of lithium bistrifluoromethane sulfonimide in the electrolyte to form a LiF-rich alloy-doped solid electrolyte interface (SEI) layer. High ionic alloy solid solution diffusivity and electric field dispersion modulation accelerate Li ions transport and uniform stripping/plating, resulting in a high-power dendrite-free Li metal anode interface. Surprisingly, the formulated SEI layer achieves an ultra-long cycle life of over 8000 h (20,000 cycles) for symmetric cells at a current density of 10 mA cm-2. It also ensures that the NCM(811)//PP@Au//Li full cell at ultra-high currents (40 C) completes the charging/discharging process in only 68 s to provide high capacity of 151 mAh g-1. The results confirm that this scalable strategy has great development potential in realizing high power dendrite-free Li metal anode.
Collapse
Affiliation(s)
- Huifeng Zhuang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Hong Xiao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Tengfei Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Fanchao Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Pinyu Han
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Mengyuan Xu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Wenjing Dai
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Junrong Jiao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qiuming Gao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
12
|
Lu G, Qiao Q, Zhang M, Zhang J, Li S, Jin C, Yuan H, Ju Z, Huang R, Liu Y, Luo J, Wang Y, Zhou G, Tao X, Nai J. High-voltage electrosynthesis of organic-inorganic hybrid with ultrahigh fluorine content toward fast Li-ion transport. SCIENCE ADVANCES 2024; 10:eado7348. [PMID: 39110803 PMCID: PMC11305396 DOI: 10.1126/sciadv.ado7348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Hybrid materials with a rational organic-inorganic configuration can offer multifunctionality and superior properties. This principle is crucial but challenging to be applied in designing the solid electrolyte interphase (SEI) on lithium metal anodes (LMAs), as it substantially affects Li+ transport from the electrolyte to the anode. Here, an artificial SEI with an ultrahigh fluorine content (as high as 70.12 wt %) can be successfully constructed on the LMA using a high-voltage electrosynthesis strategy. This SEI consists of ultrafine lithium fluoride nanocrystals embedded in a fluorinated organic matrix, exhibiting excellent passivation and mechanical strength. Notably, the organic-inorganic interface demonstrates a high dielectric constant that enables fast Li+ transport throughout the SEI. Consequently, LMA coated with this SEI substantially enhances the cyclability of both half-cells and full cells, even under rigorous conditions. This work demonstrates the potential of rationally designed hybrid materials via a unique electrosynthetic approach for advanced electrochemical systems.
Collapse
Affiliation(s)
- Gongxun Lu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qiangqiang Qiao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengtian Zhang
- Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jinsen Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuai Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengbin Jin
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
| | - Huadong Yuan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhijin Ju
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rong Huang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (SINANO), Suzhou 215123, China
| | - Yujing Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianmin Luo
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yao Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xinyong Tao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianwei Nai
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
13
|
Ye C, Ni K, Wang J, Ye W, Li S, Wang MS, Fan X, Zhu Y. Ultrauniform Plating of Lithium on 10-nm-Scale Ordered Carbon Grids for Long Lifespan Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401965. [PMID: 38631703 DOI: 10.1002/adma.202401965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Tailorable lithium (Li) nucleation and uniform early-stage plating is essential for long-lifespan Li metal batteries. Among factors influencing the early plating of Li anode, the substrate is critical, but a fine control of the substrate structure on a scale of ≈10 nm has been rarely achieved. Herein, a carbon consisting of ordered grids is prepared, as a model to investigate the effect of substrate structure on the Li nucleation. In contrast to the individual spherical Li nuclei formed on the flat graphene, an ultrauniform and nuclei-free Li plating is obtained on the ordered carbon with a grid size smaller than the thermodynamical critical radius of Li nucleation (≈26 nm). Simultaneously, an inorganic-rich solid-electrolyte-interphase is promoted by the cross-sectional carbon layers of such ordered grids which are exposed to the electrolyte. Consequently, the carbon grids with a grid size of ≈10 nm show a favorable cycling stability for more than 1100 cycles measured at 2 mA cm-2 in a half cell. With LiNi0.8Co0.1Mn0.1O2 as cathode, the assembled full cell with a cathode capacity of 3 mAh cm-2 and a negative/positive ratio of 1.67 demonstrates a stable cycling for over 130 cycles with a capacity retention of 88%.
Collapse
Affiliation(s)
- Chuanren Ye
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Kun Ni
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Jinze Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Weibin Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Shengyuan Li
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Ming-Sheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xiulin Fan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yanwu Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
14
|
Phan AL, Nan B, Le PML, Miao Q, Wu Z, Le K, Chen F, Engelhard M, Dan Nguyen T, Han KS, Heo J, Zhang W, Baek M, Xu J, Zhang X, Liu P, Ma L, Wang C. Lightweight Electrolyte Design for Li/Sulfurized Polyacrylonitrile (SPAN) Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406594. [PMID: 38940263 DOI: 10.1002/adma.202406594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Sulfurized polyacrylonitrile (SPAN) recently emerges as a promising cathode for high-energy lithium (Li) metal batteries owing to its high capacity, extended cycle life, and liberty from costly transition metals. As the high capacities of both Li metal and SPAN lead to relatively small electrode weights, the weight and specific energy density of Li/SPAN batteries are particularly sensitive to electrolyte weight, highlighting the importance of minimizing electrolyte density. Besides, the large volume changes of Li metal anode and SPAN cathode require inorganic-rich interphases that can guarantee intactness and protectivity throughout long cycles. This work addresses these crucial aspects with an electrolyte design where lightweight dibutyl ether (DBE) is used as a diluent for concentrated lithium bis(fluorosulfonyl)imide (LiFSI)-triethyl phosphate (TEP) solution. The designed electrolyte (d = 1.04 g mL-1) is 40%-50% lighter than conventional localized high-concentration electrolytes (LHCEs), leading to 12%-20% extra energy density at the cell level. Besides, the use of DBE introduces substantial solvent-diluent affinity, resulting in a unique solvation structure with strengthened capability to form favorable anion-derived inorganic-rich interphases, minimize electrolyte consumption, and improve cell cyclability. The electrolyte also exhibits low volatility and offers good protection to both Li metal anode and SPAN cathode under thermal abuse.
Collapse
Affiliation(s)
- An L Phan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Bo Nan
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Phung M L Le
- Energy & Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Qiushi Miao
- Department of Nanoengineering, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Zhaohui Wu
- Department of Nanoengineering, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Kha Le
- Energy & Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Fu Chen
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Mark Engelhard
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Thien Dan Nguyen
- Joint Center for Energy Storage Research, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Kee Sung Han
- Joint Center for Energy Storage Research, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jiyun Heo
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Weiran Zhang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Minsung Baek
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Jijian Xu
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Xiyue Zhang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Ping Liu
- Department of Nanoengineering, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Lin Ma
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Mechanical Engineering and Engineering Science, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Chunsheng Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
15
|
Kim D, Hu X, Yu B, Chen YI. Small Additives Make Big Differences: A Review on Advanced Additives for High-Performance Solid-State Li Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401625. [PMID: 38934341 DOI: 10.1002/adma.202401625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Solid-state lithium (Li) metal batteries, represent a significant advancement in energy storage technology, offering higher energy densities and enhanced safety over traditional Li-ion batteries. However, solid-state electrolytes (SSEs) face critical challenges such as lower ionic conductivity, poor stability at the electrode-electrolyte interface, and dendrite formation, potentially leading to short circuits and battery failure. The introduction of additives into SSEs has emerged as a transformative approach to address these challenges. A small amount of additives, encompassing a range from inorganic and organic materials to nanostructures, effectively improve ionic conductivity, drawing it nearer to that of their liquid counterparts, and strengthen mechanical properties to prevent cracking of SSEs and maintain stable interfaces. Importantly, they also play a critical role in inhibiting the growth of dendritic Li, thereby enhancing the safety and extending the lifespan of the batteries. In this review, the wide variety of additives that have been investigated, is comprehensively explored, emphasizing how they can be effectively incorporated into SSEs. By dissecting the operational mechanisms of these additives, the review hopes to provide valuable insights that can help researchers in developing more effective SSEs, leading to the creation of more efficient and reliable solid-state Li metal batteries.
Collapse
Affiliation(s)
- Donggun Kim
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Xin Hu
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Baozhi Yu
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Ying Ian Chen
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC, 3216, Australia
| |
Collapse
|
16
|
You X, Chen N, Xie G, Xu S, Sayed SY, Sang L. Dual-Component Interlayer Enables Uniform Lithium Deposition and Dendrite Suppression for Solid-State Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35761-35770. [PMID: 38904288 DOI: 10.1021/acsami.4c05227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
β-Lithium thiophosphate (LPS) exhibits high Li+ conductivity and has been identified as a promising ceramic electrolyte for safe and high-energy-density all-solid-state batteries. Integrating LPS into solid-state lithium (Li) batteries would enable the use of a Li electrode with the highest deliverable capacity. However, LPS-based batteries operate at a limited current density before short-circuiting, posing a major challenge for the development of application-relevant batteries. In this work, we designed a dual-component interfacial protective layer called LiSn-LiN that forms in situ between the Li electrode and LPS electrolyte. The LiSn component, Li22Sn5, exhibits enhanced Li diffusivity compared with the metallic lithium and facilitates a more uniform lithium deposition across the electrode surface, thus eliminating Li dendrite formation. Meanwhile, the LiN component, Li3N, shows enhanced mechanical stiffness compared with LPS and functions to suppress dendrite penetration. This chemically robust LiSn-LiN interlayer provides a more than doubled deliverable critical current density compared to systems without interfacial protection. Through combined XPS and XAFS analyses, we determined the local structure and the formation kinetics of the key functional Li22Sn5 phase formed via the electrochemical reduction of a Sn3N4 precursor. This work demonstrates an example of the structural-specific design of a protective interlayer with a desired function - dendrite suppression. The structure of a functional protective layer for a given solid-state battery should be tailored based on the given battery configuration and its unique interfacial chemistry.
Collapse
Affiliation(s)
- Xiang You
- Department of Chemistry, University of Alberta, Edmonton T6G 2N4, Canada
| | - Ning Chen
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Geng Xie
- Department of Chemistry, University of Alberta, Edmonton T6G 2N4, Canada
| | - Shihong Xu
- nanoFAB Fabrication and Characterization Centre, University of Alberta, Edmonton, Alberta T6G 2N4, Canada
| | | | - Lingzi Sang
- Department of Chemistry, University of Alberta, Edmonton T6G 2N4, Canada
| |
Collapse
|
17
|
Yang M, Yang K, Wu Y, Wang Z, Ma T, Wu D, Yang L, Xu J, Lu P, Peng J, Jiang Z, Zhu X, Gao Q, Xu F, Chen L, Li H, Wu F. Dendrite-Free All-Solid-State Lithium Metal Batteries by In Situ Phase Transformation of the Soft Carbon-Li 3N Interface Layer. ACS NANO 2024; 18:16842-16852. [PMID: 38912721 DOI: 10.1021/acsnano.4c02509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The accelerated formation of lithium dendrites has considerably impeded the advancement and practical deployment of all-solid-state lithium metal batteries (ASSLMBs). In this study, a soft carbon (SC)-Li3N interface layer was developed with both ionic and electronic conductivity, for which the in situ lithiation reaction not only lithiated SC into LiC6 with good electronic/ionic conductivity but also successfully transformed the mixed-phase Li3N into pure-phase β-Li3N with a high ionic conductivity/ion diffusion coefficient and stability to lithium metal. The mixed conductive interface layer facilitates fast Li+ transport at the interface and induces the homogeneous deposition of lithium metal inside it. This effectively inhibits the formation of lithium dendrites and greatly improves the performance of the ASSLMB. The ASSLMB assembled with the SC-Li3N interface layer exhibits high areal capacity (15 mA h cm-2), high current density (7.5 mA cm-2), and long cycle life (6000 cycles). These results indicate that this interface layer has great potential for practical applications in high-energy-density ASSLMBs.
Collapse
Affiliation(s)
- Ming Yang
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang 213300, Jiangsu, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Kaiqi Yang
- Beijing DP Technology Company Limited, Beijing 100080, China
| | - Yujing Wu
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang 213300, Jiangsu, China
- Yangtze River Delta Physics Research Center, Liyang 213300, Jiangsu, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixuan Wang
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang 213300, Jiangsu, China
- Yangtze River Delta Physics Research Center, Liyang 213300, Jiangsu, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Tenghuan Ma
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang 213300, Jiangsu, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Dengxu Wu
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang 213300, Jiangsu, China
- Yangtze River Delta Physics Research Center, Liyang 213300, Jiangsu, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Yang
- Material Digital R&D Center, China Iron and Steel Research Institute Group, Beijing 100081, China
| | - Jieru Xu
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang 213300, Jiangsu, China
- Yangtze River Delta Physics Research Center, Liyang 213300, Jiangsu, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pushun Lu
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang 213300, Jiangsu, China
- Yangtze River Delta Physics Research Center, Liyang 213300, Jiangsu, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Peng
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang 213300, Jiangsu, China
- Yangtze River Delta Physics Research Center, Liyang 213300, Jiangsu, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Jiang
- Yangtze River Delta Physics Research Center, Liyang 213300, Jiangsu, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiang Zhu
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang 213300, Jiangsu, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Qifa Gao
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang 213300, Jiangsu, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Fuqiang Xu
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang 213300, Jiangsu, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Liquan Chen
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang 213300, Jiangsu, China
- Yangtze River Delta Physics Research Center, Liyang 213300, Jiangsu, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Li
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang 213300, Jiangsu, China
- Yangtze River Delta Physics Research Center, Liyang 213300, Jiangsu, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Wu
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang 213300, Jiangsu, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
- Yangtze River Delta Physics Research Center, Liyang 213300, Jiangsu, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- CASOL Energy Company Limited, Liyang 213300, Jiangsu, China
| |
Collapse
|
18
|
Tan YH, Liu Z, Zheng JH, Ju ZJ, He XY, Hao W, Wu YC, Xu WS, Zhang HJ, Li GQ, Zhou LS, Zhou F, Tao X, Yao HB, Liang Z. Inorganic Composition Modulation of Solid Electrolyte Interphase for Fast Charging Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404815. [PMID: 38719211 DOI: 10.1002/adma.202404815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/28/2024] [Indexed: 05/15/2024]
Abstract
The solid electrolyte interphase (SEI) with lithium fluoride (LiF) is critical to the performance of lithium metal batteries (LMBs) due to its high stability and mechanical properties. However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI, which leads to localized Li ion oversaturation dendritic deposition and hinders the practical applications of LMBs at high-current regions (>3 C). To address this issue, a fluorophosphated SEI rich with fast ion-diffusing inorganic grain boundaries (LiF/Li3P) is introduced. By utilizing a sol electrolyte that contains highly dispersed porous LiF nanoparticles modified with phosphorus-containing functional groups, a fluorophosphated SEI is constructed and the presence of electrochemically active Li within these fast ion-diffusing grain boundaries (GBs-Li) that are non-nucleated is demonstrated, ensuring the stability of the Li || NCM811 cell for over 1000 cycles at fast-charging rates of 5 C (11 mA cm-2). Additionally, a practical, long cycling, and intrinsically safe LMB pouch cell with high energy density (400 Wh kg-1) is fabricated. The work reveals how SEI components and structure design can enable fast-charging LMBs.
Collapse
Affiliation(s)
- Yi-Hong Tan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhu Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jian-Hui Zheng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhi-Jin Ju
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao-Ya He
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Hao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ye-Chao Wu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wen-Shan Xu
- Monta Vista Energy Technologies Corporation, Anhui, 230601, China
| | - Hao-Jie Zhang
- Monta Vista Energy Technologies Corporation, Anhui, 230601, China
| | - Guo-Qing Li
- Monta Vista Energy Technologies Corporation, Anhui, 230601, China
| | - Li-Sha Zhou
- Monta Vista Energy Technologies Corporation, Anhui, 230601, China
| | - Fei Zhou
- Monta Vista Energy Technologies Corporation, Anhui, 230601, China
| | - Xinyong Tao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hong-Bin Yao
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zheng Liang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
19
|
Wang Y, Dong S, Gao Y, Lee PK, Tian Y, Meng Y, Hu X, Zhao X, Li B, Zhou D, Kang F. Difluoroester solvent toward fast-rate anion-intercalation lithium metal batteries under extreme conditions. Nat Commun 2024; 15:5408. [PMID: 38926355 PMCID: PMC11208432 DOI: 10.1038/s41467-024-49795-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Anion-intercalation lithium metal batteries (AILMBs) are appealing due to their low cost and fast intercalation/de-intercalation kinetics of graphite cathodes. However, the safety and cycliability of existing AILMBs are constrained by the scarcity of compatible electrolytes. Herein, we showcase that a difluoroester can be applied as electrolyte solvent to realize high-performance AILMBs, which not only endows high oxidation resistance, but also efficiently tunes the solvation shell to enable highly reversible and kinetically fast cathode reaction beyond the trifluoro counterpart. The difluoroester-based electrolyte demonstrates nonflammability, high ionic conductivity, and electrochemical stability, along with excellent electrode compatibility. The Li| |graphite AILMBs reach a high durability of 10000 cycles with only a 0.00128% capacity loss per cycle under fast-cycling of 1 A g-1, and retain ~63% of room-temperature capacity when discharging at -65 °C, meanwhile supply stable power output under deformation and overcharge conditions. The electrolyte design paves a promising path toward fast-rate, low-temperature, durable, and safe AILMBs.
Collapse
Affiliation(s)
- Yao Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Shuyu Dong
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yifu Gao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Pui-Kit Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yao Tian
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yuefeng Meng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xia Hu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xin Zhao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Baohua Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Dong Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Feiyu Kang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
20
|
Han X, Gong H, Li H, Sun J. Fast-Charging Phosphorus-Based Anodes: Promises, Challenges, and Pathways for Improvement. Chem Rev 2024; 124:6903-6951. [PMID: 38771983 DOI: 10.1021/acs.chemrev.3c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Fast-charging batteries are highly sought after. However, the current battery industry has used carbon as the preferred anode, which can suffer from dendrite formation problems at high current density, causing failure after prolonged cycling and posing safety hazards. The phosphorus (P) anode is being considered as a promising successor to graphite due to its safe lithiation potential, low ion diffusion energy barrier, and high theoretical storage capacity. Since 2019, fast-charging P-based anodes have realized the goals of extreme fast charging (XFC), which enables a 10 min recharging time to deliver a capacity retention larger than 80%. Rechargeable battery technologies that use P-based anodes, along with high-capacity conversion-type cathodes or high-voltage insertion-type cathodes, have thus garnered substantial attention from both the academic and industry communities. In spite of this activity, there remains a rather sparse range of high-performance and fast-charging P-based cell configurations. Herein, we first systematically examine four challenges for fast-charging P-based anodes, including the volumetric variation during the cycling process, the electrode interfacial instability, the dissolution of polyphosphides, and the long-lasting P/electrolyte side reactions. Next, we summarize a range of strategies with the potential to circumvent these challenges and rationally control electrochemical reaction processes at the P anode. We also consider both binders and electrode structures. We also propose other remaining issues and corresponding strategies for the improvement and understanding of the fast-charging P anode. Finally, we review and discuss the existing full cell configurations based on P anodes and forecast the potential feasibility of recycling spent P-based full cells according to the trajectory of recent developments in batteries. We hope this review affords a fresh perspective on P science and engineering toward fast-charging energy storage devices.
Collapse
Affiliation(s)
- Xinpeng Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Haochen Gong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hong Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, No. 78, Jiuhuabei Avenue, Quzhou City, Zhejiang Province 324000, China
| |
Collapse
|
21
|
Song L, Li R, Zhu H, Li Z, Liu G, Peng Z, Fan X, Yao X. Deeply Lithiated Carbonaceous Materials for Great Lithium Metal Protection in All-Solid-State Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400165. [PMID: 38618658 DOI: 10.1002/adma.202400165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/24/2024] [Indexed: 04/16/2024]
Abstract
Protection of lithium (Li) metal electrode is a core challenge for all-solid-state Li metal batteries (ASSLMBs). Carbon materials with variant structures have shown great effect of Li protection in liquid electrolytes, however, can accelerate the solid-state electrolyte (SE) decomposition owing to the high electronic conductivity, seriously limiting their application in ASSLMBs. Here, a novel strategy is proposed to tailor the carbon materials for efficient Li protection in ASSLMBs, by in situ forming a rational niobium-based Li-rich disordered rock salt (DRS) shell on the carbon materials, providing a favorable percolating Li+ diffusion network for speeding the carbon lithiation, and enabling simultaneously improved lithiophilicity and reduced electronic conductivity of the carbon structure at deep lithiation state. Using the proposed strategy, different carbon materials, such as graphitic carbon paper and carbon nanotubes, are tailored with great ability to speed the interfacial kinetics, homogenize the Li plating/stripping processes, and suppress the SE decompositions, enabling much improved performances of ASSLMBs under various conditions approaching the practical application. This strategy is expected to create a novel roadmap of Li protection for developing reliable high-energy-density ASSLMBs.
Collapse
Affiliation(s)
- Libo Song
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Ruhong Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haotian Zhu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhendong Li
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Gaozhan Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Zhe Peng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Xiulin Fan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiayin Yao
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
22
|
Li AM, Borodin O, Pollard TP, Zhang W, Zhang N, Tan S, Chen F, Jayawardana C, Lucht BL, Hu E, Yang XQ, Wang C. Methylation enables the use of fluorine-free ether electrolytes in high-voltage lithium metal batteries. Nat Chem 2024; 16:922-929. [PMID: 38570729 DOI: 10.1038/s41557-024-01497-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
Lithium metal batteries represent a promising technology for next-generation energy storage, but they still suffer from poor cycle life due to lithium dendrite formation and cathode cracking. Fluorinated solvents can improve battery longevity by improving LiF content in the solid-electrolyte interphase; however, the high cost and environmental concerns of fluorinated solvents limit battery viability. Here we designed a series of fluorine-free solvents through the methylation of 1,2-dimethoxyethane, which promotes inorganic LiF-rich interphase formation through anion reduction and achieves high oxidation stability. The anion-derived LiF interphases suppress lithium dendrite growth on the lithium anode and minimize cathode cracking under high-voltage operation. The Li+-solvent structure is investigated through in situ techniques and simulations to draw correlations between the interphase compositions and electrochemical performances. The methylation strategy provides an alternative pathway for electrolyte engineering towards high-voltage electrolytes while reducing dependence on expensive fluorinated solvents.
Collapse
Affiliation(s)
- Ai-Min Li
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA
| | - Oleg Borodin
- Battery Science Branch, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| | - Travis P Pollard
- Battery Science Branch, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| | - Weiran Zhang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA
| | - Nan Zhang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA
| | - Sha Tan
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Fu Chen
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | | | - Brett L Lucht
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | - Enyuan Hu
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Xiao-Qing Yang
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Chunsheng Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA.
| |
Collapse
|
23
|
Kim SH, Park N, Bo Lee W, Park JH. Functional Sulfate Additive-Derived Interfacial Layer for Enhanced Electrochemical Stability of PEO-Based Polymer Electrolytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309160. [PMID: 38152982 DOI: 10.1002/smll.202309160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/01/2023] [Indexed: 12/29/2023]
Abstract
Solid-state electrolyte batteries have attracted significant interest as promising next-generation batteries due to their achievable high energy densities and nonflammability. In particular, curable polymer network gel electrolytes exhibit superior ion conductivity and interfacial adhesion with electrodes compared to oxide or sulfide solid electrolytes, bringing them closer to commercialization. However, the limited electrochemical stability of matrix polymers, particularly those based on poly (ethylene oxide) (PEO), presents challenges in achieving stable electrochemical performance in high-voltage lithium metal batteries. Here, these studies report a sulfate additive-incorporated thermally crosslinked gel-type polymer electrolyte (SA-TGPE) composed of a PEO-based polymer matrix and a functional sulfate additive, 1,3-propanediolcyclic sulfate (PCS), which forms stable interfacial layers on electrodes. The electrode-electrolyte interface modified by the PCS enhances the electrochemical stability of the polymer electrolyte, effectively alleviating decomposition of the PEO-based polymer matrix on the cathode. Moreover, it also mitigates side reactions of the Ni-rich NCM cathode and dendrites of lithium metal anode. These studies provide a novel perspective by utilizing interfacial modification through electrolyte additives to resolve the electrochemical instability of PEO-based polymer electrolytes in high-voltage lithium metal batteries.
Collapse
Affiliation(s)
- Sun Ho Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Namjun Park
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jong Hyeok Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
24
|
Su H, Li J, Zhong Y, Liu Y, Gao X, Kuang J, Wang M, Lin C, Wang X, Tu J. A scalable Li-Al-Cl stratified structure for stable all-solid-state lithium metal batteries. Nat Commun 2024; 15:4202. [PMID: 38760354 PMCID: PMC11101657 DOI: 10.1038/s41467-024-48585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
Sulfides are promising electrolyte materials for all-solid-state Li metal batteries due to their high ionic conductivity and machinability. However, compatibility issues at the negative electrode/sulfide electrolyte interface hinder their practical implementation. Despite previous studies have proposed considerable strategies to improve the negative electrode/sulfide electrolyte interfacial stability, industrial-scale engineering solutions remain elusive. Here, we introduce a scalable Li-Al-Cl stratified structure, formed through the strain-activated separating behavior of thermodynamically unfavorable Li/Li9Al4 and Li/LiCl interfaces, to stabilize the negative electrode/sulfide electrolyte interface. In the Li-Al-Cl stratified structure, Li9Al4 and LiCl are enriched at the surface to serve as a robust solid electrolyte interphase and are diluted in bulk by Li metal to construct a skeleton. Enabled by its unique structural characteristic, the Li-Al-Cl stratified structure significantly enhances the stability of negative electrode/sulfide electrolyte interface. This work reports a strain-activated phase separation phenomenon and proposes a practical pathway for negative electrode/sulfide electrolyte interface engineering.
Collapse
Affiliation(s)
- Han Su
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jingru Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Yu Zhong
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China.
| | - Yu Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Xuhong Gao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Juner Kuang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Minkang Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Chunxi Lin
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Xiuli Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jiangping Tu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
25
|
Sun C, Li R, Weng S, Zhu C, Chen L, Jiang S, Li L, Xiao X, Liu C, Chen L, Deng T, Wang X, Fan X. Reduction-Tolerance Electrolyte Design for High-Energy Lithium Batteries. Angew Chem Int Ed Engl 2024; 63:e202400761. [PMID: 38497902 DOI: 10.1002/anie.202400761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
Lithium batteries employing Li or silicon (Si) anodes hold promise for the next-generation energy storage systems. However, their cycling behavior encounters rapid capacity degradation due to the vulnerability of solid electrolyte interphases (SEIs). Though anion-derived SEIs mitigate this degradation, the unavoidable reduction of solvents introduces heterogeneity to SEIs, leading to fractures during cycling. Here, we elucidate how the reductive stability of solvents, dominated by the electrophilicity (EPT) and coordination ability (CDA), delineates the SEI formed on Li or Si anodes. Solvents exhibiting lower EPT and CDA demonstrate enhanced tolerance to reduction, resulting in inorganic-rich SEIs with homogeneity. Guided by these criteria, we synthesized three promising solvents tailored for Li or Si anodes. The decomposition of these solvents is dictated by their EPTs under similar solvation structures, imparting distinct characteristics to SEIs and impacting battery performance. The optimized electrolyte, 1 M lithium bis(fluorosulfonyl)imide (LiFSI) in N-Pyrrolidine-trifluoromethanesulfonamide (TFSPY), achieves 600 cycles of Si anodes with a capacity retention of 81 % (1910 mAh g-1). In anode-free Cu||LiNi0.5Co0.2Mn0.3O2 (NCM523) pouch cells, this electrolyte sustains over 100 cycles with an 82 % capacity retention. These findings illustrate that reducing solvent decomposition benefits SEI formation, offering valuable insights for the designing electrolytes in high-energy lithium batteries.
Collapse
Affiliation(s)
- Chuangchao Sun
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ruhong Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Suting Weng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chunnan Zhu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Long Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Polytechnic Institute, Zhejiang University, Hangzhou, 310027, China
| | - Sen Jiang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Long Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xuezhang Xiao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chengwu Liu
- Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lixin Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Hangzhou, 310013, China
| | - Tao Deng
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Xuefeng Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiulin Fan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
26
|
Chen W, Hu Y, Liu Y, Wang S, Hu A, Lei T, Li Y, Li P, Chen D, Xia L, Xue L, Yan Y, Lu G, Zhou M, Fan Y, Yang H, Tao X, Wang X, Li Y, Xiong J. Ultralong Cycling and Safe Lithium-Sulfur Pouch Cells for Sustainable Energy Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312880. [PMID: 38330999 DOI: 10.1002/adma.202312880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Indexed: 02/10/2024]
Abstract
While layered metal oxides remain the dominant cathode materials for the state-of-the-art lithium-ion batteries, conversion-type cathodes such as sulfur present unique opportunities in developing cheaper, safer, and more energy-dense next-generation battery technologies. There has been remarkable progress in advancing the laboratory scale lithium-sulfur (Li-S) coin cells to a high level of performance. However, the relevant strategies cannot be readily translated to practical cell formats such as pouch cells and even battery pack. Here these key technical challenges are addressed by molecular engineering of the Li metal for hydrophobicization, fluorination and thus favorable anode chemistry. The introduced tris(2,4-di-tert-butylphenyl) phosphite (TBP) and tetrabutylammonium fluoride (TBA+F-) as well as cellulose membrane by rolling enables the formation of a functional thin layer that eliminates the vulnerability of Li metal towards the already demanding environment required (1.55% relative humidity) for cell production and gives rise to LiF-rich solid electrolyte interphase (SEI) to suppress dendrite growth. As a result, Li-S pouch cells assembled at a pilot production line survive 400 full charge/discharge cycles with an average Coulombic efficiency of 99.55% and impressive rate performance of 1.5 C. A cell-level energy density of 417 Wh kg-1 and power density of 2766 W kg-1 are also delivered via multilayer Li-S pouch cell. The Li-S battery pack can even power an unmanned aerial vehicle of 3 kg for a fairly long flight time. This work represents a big step forward acceleration in Li-S battery marketization for future energy storage featuring improved safety, sustainability, higher energy density as well as reduced cost.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yin Hu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yuanpeng Liu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
| | - Shuying Wang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Anjun Hu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Tianyu Lei
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yaoyao Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Peng Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Dongjiang Chen
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Li Xia
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Lanxin Xue
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yichao Yan
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Gongxun Lu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mingjie Zhou
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yuxin Fan
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Hui Yang
- Key Laboratory of Renewable Energy, China Tower Corporation Limited, Beijing, 100195, China
| | - Xinyong Tao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xianfu Wang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yanrong Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jie Xiong
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
27
|
Jin Y, Li Y, Lin R, Zhang X, Shuai Y, Xiong Y. In Situ Constructing Robust and Highly Conductive Solid Electrolyte with Tailored Interfacial Chemistry for Durable Li Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307942. [PMID: 38054774 DOI: 10.1002/smll.202307942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/18/2023] [Indexed: 12/07/2023]
Abstract
Employing nanofiber framework for in situ polymerized solid-state lithium metal batteries (SSLMBs) is impeded by the insufficient Li+ transport properties and severe dendritic Li growth. Both critical issues originate from the shortage of Li+ conduction highways and nonuniform Li+ flux, as randomly-scattered nanofiber backbone is highly prone to slippage during battery assembly. Herein, a robust fabric of Li0.33La0.56Ce0.06Ti0.94O3-δ/polyacrylonitrile framework (p-LLCTO/PAN) with inbuilt Li+ transport channels and high interfacial Li+ flux is reported to manipulate the critical current density of SSLMBs. Upon the merits of defective LLCTO fillers, TFSI- confinement and linear alignment of Li+ conduction pathways are realized inside 1D p-LLCTO/PAN tunnels, enabling remarkable ionic conductivity of 1.21 mS cm-1 (26 °C) and tLi+ of 0.93 for in situ polymerized polyvinylene carbonate (PVC) electrolyte. Specifically, molecular reinforcement protocol on PAN framework further rearranges the Li+ highway distribution on Li metal and alters Li dendrite nucleation pattern, boosting a homogeneous Li deposition behavior with favorable SEI interface chemistry. Accordingly, excellent capacity retention of 76.7% over 1000 cycles at 2 C for Li||LiFePO4 battery and 76.2% over 500 cycles at 1 C for Li||LiNi0.5Co0.2Mn0.3O2 battery are delivered by p-LLCTO/PAN/PVC electrolyte, presenting feasible route in overcoming the bottleneck of dendrite penetration in in situ polymerized SSLMBs.
Collapse
Affiliation(s)
- Yingmin Jin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and chemical engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yumeng Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and chemical engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ruifan Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and chemical engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xuebai Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and chemical engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yong Shuai
- Key Laboratory of Aerospace Thermophysics of MIIT, School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yueping Xiong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and chemical engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
28
|
Gao Y, Gao J, Zhang Z, Wu Y, Sun X, Zhao F, Zhang Y, Song D, Si W, Zhao Q, Yuan X, Wu J. Enhancing Ionic Conductivity and Electrochemical Stability of Li 3PS 4 via Zn, F Co-Doping for All-Solid-State Li-S Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18843-18854. [PMID: 38586920 DOI: 10.1021/acsami.4c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Sulfide solid-state electrolytes have garnered considerable attention owing to their notable ionic conductivity and mechanical properties. However, achieving an electrolyte characterized by both high ionic conductivity and a stable interface between the electrode and electrolyte remains challenging, impeding its widespread application. In this work, we present a novel sulfide solid-state electrolyte, Li3.04P0.96Zn0.04S3.92F0.08, prepared through a solid-phase reaction, and explore its usage in all-solid-state lithium sulfur batteries (ASSLSBs). The findings reveal that the Zn, F co-doped solid-state electrolyte exhibits an ionic conductivity of 1.23 × 10-3 S cm-1 and a low activation energy (Ea) of 9.8 kJ mol-1 at room temperature, illustrating the aliovalent co-doping's facilitation of Li-ion migration. Furthermore, benefiting from the formation of a LiF-rich interfacial layer between the electrolyte and the Li metal anode, the Li/Li3.04P0.96Zn0.04S3.92F0.08/Li symmetrical cell exhibits critical current densities (CCDs) of up to 1 mA cm-2 and maintains excellent cycling stability. Finally, the assembled ASSLSBs exhibit an initial discharge capacity of 1295.7 mAh g-1 at a rate of 0.05 C and at room temperature. The cell maintains a capacity retention of 70.5% for more than 600 cycles at a high rate of 2 C, representing a substantial improvement compared to the cell with Li3PS4. This work provides a new idea for the design of solid-state electrolytes and ASSLSBs.
Collapse
Affiliation(s)
- Yuan Gao
- School of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, P. R. China
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, P. R. China
| | - Jing Gao
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, P. R. China
| | - Zhibin Zhang
- School of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, P. R. China
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, P. R. China
| | - Yue Wu
- School of Rail Transportation, Shandong Jiaotong University, Jinan 250357, P. R. China
| | - Xiaolin Sun
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, P. R. China
| | - Fuhua Zhao
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, P. R. China
| | - Yuan Zhang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, P. R. China
| | - Depeng Song
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, P. R. China
| | - Wenyan Si
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, P. R. China
| | - Qing Zhao
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, P. R. China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, P. R. China
| | - Jianfei Wu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, P. R. China
- College of Materials Science and Optoelectronics Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
29
|
He Y, Wang L, Wang A, Zhang B, Pham H, Park J, He X. Insight into uniform filming of LiF-rich interphase via synergistic adsorption for high-performance lithium metal anode. EXPLORATION (BEIJING, CHINA) 2024; 4:20230114. [PMID: 38855613 PMCID: PMC11022620 DOI: 10.1002/exp.20230114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/08/2023] [Indexed: 06/11/2024]
Abstract
Multi-scale simulation is an important basis for constructing digital batteries to improve battery design and application. LiF-rich solid electrolyte interphase (SEI) is experimentally proven to be crucial for the electrochemical performance of lithium metal batteries. However, the LiF-rich SEI is sensitive to various electrolyte formulas and the fundamental mechanism is still unclear. Herein, the structure and formation mechanism of LiF-rich SEI in different electrolyte formulas have been reviewed. On this basis, it further discussed the possible filming mechanism of LiF-rich SEI determined by the initial adsorption of the electrolyte-derived species on the lithium metal anode (LMA). It proposed that individual LiF species follow the Volmer-Weber mode of film growth due to its poor wettability on LMA. Whereas, the synergistic adsorption of additive-derived species with LiF promotes the Frank-Vander Merwe mode of film growth, resulting in uniform LiF deposition on the LMA surface. This perspective provides new insight into the correlation between high LiF content, wettability of LiF, and highperformance of uniform LiF-rich SEI. It disclosed the importance of additive assistant synergistic adsorption on the uniform growth of LiF-rich SEI, contributing to the reasonable design of electrolyte formulas and high-performance LMA, and enlightening the way for multi-scale simulation of SEI.
Collapse
Affiliation(s)
- Yufang He
- Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijingChina
| | - Li Wang
- Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijingChina
| | - Aiping Wang
- Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijingChina
| | - Bo Zhang
- Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijingChina
| | - Hiep Pham
- Department of Mechanical Engineering and Aerospace EngineeringMissouri University of Science and TechnologyRolla, MOUSA
| | - Jonghyun Park
- Department of Mechanical Engineering and Aerospace EngineeringMissouri University of Science and TechnologyRolla, MOUSA
| | - Xiangming He
- Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijingChina
| |
Collapse
|
30
|
Wang Y, Yang X, Meng Y, Wen Z, Han R, Hu X, Sun B, Kang F, Li B, Zhou D, Wang C, Wang G. Fluorine Chemistry in Rechargeable Batteries: Challenges, Progress, and Perspectives. Chem Rev 2024; 124:3494-3589. [PMID: 38478597 DOI: 10.1021/acs.chemrev.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The renewable energy industry demands rechargeable batteries that can be manufactured at low cost using abundant resources while offering high energy density, good safety, wide operating temperature windows, and long lifespans. Utilizing fluorine chemistry to redesign battery configurations/components is considered a critical strategy to fulfill these requirements due to the natural abundance, robust bond strength, and extraordinary electronegativity of fluorine and the high free energy of fluoride formation, which enables the fluorinated components with cost effectiveness, nonflammability, and intrinsic stability. In particular, fluorinated materials and electrode|electrolyte interphases have been demonstrated to significantly affect reaction reversibility/kinetics, safety, and temperature tolerance of rechargeable batteries. However, the underlining principles governing material design and the mechanistic insights of interphases at the atomic level have been largely overlooked. This review covers a wide range of topics from the exploration of fluorine-containing electrodes, fluorinated electrolyte constituents, and other fluorinated battery components for metal-ion shuttle batteries to constructing fluoride-ion batteries, dual-ion batteries, and other new chemistries. In doing so, this review aims to provide a comprehensive understanding of the structure-property interactions, the features of fluorinated interphases, and cutting-edge techniques for elucidating the role of fluorine chemistry in rechargeable batteries. Further, we present current challenges and promising strategies for employing fluorine chemistry, aiming to advance the electrochemical performance, wide temperature operation, and safety attributes of rechargeable batteries.
Collapse
Affiliation(s)
- Yao Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Xu Yang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Yuefeng Meng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Zuxin Wen
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Ran Han
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Xia Hu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Bing Sun
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Feiyu Kang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Baohua Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Dong Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Chunsheng Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| |
Collapse
|
31
|
Su H, Zhong Y, Wang C, Liu Y, Hu Y, Li J, Wang M, Jiao L, Zhou N, Xiao B, Wang X, Sun X, Tu J. Deciphering the critical role of interstitial volume in glassy sulfide superionic conductors. Nat Commun 2024; 15:2552. [PMID: 38514649 PMCID: PMC10957893 DOI: 10.1038/s41467-024-46798-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Sulfide electrolytes represent a crucial category of superionic conductors for all-solid-state lithium metal batteries. Among sulfide electrolytes, glassy sulfide is highly promising due to its long-range disorder and grain-boundary-free nature. However, the lack of comprehension regarding glass formation chemistry has hindered their progress. Herein, we propose interstitial volume as the decisive factor influencing halogen dopant solubility within a glass matrix. We engineer a Li3PS4-Li4SiS4 complex structure within the sulfide glassy network to facilitate the release of interstitial volume. Consequently, we increase the dissolution capacity of LiI to 40 mol% in 75Li2S-25P2S5 glass. The synthesized glass exhibits one of the highest ionic conductivities among reported glass sulfides. Furthermore, we develop a glassy/crystalline composite electrolyte to mitigate the shortcomings of argyrodite-type sulfides by utilizing our synthesized glass as the filler. The composite electrolytes effectively mitigate Li intrusion. This work unveils a protocol for the dissolution of halogen dopants in glass electrolytes.
Collapse
Affiliation(s)
- Han Su
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Department of Mechanical and Materials Engineering, University of Western Ontario1151 Richmond St., London, ON, N6A 3K7, Canada
| | - Yu Zhong
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Changhong Wang
- Department of Mechanical and Materials Engineering, University of Western Ontario1151 Richmond St., London, ON, N6A 3K7, Canada.
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, PR China.
| | - Yu Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Department of Mechanical and Materials Engineering, University of Western Ontario1151 Richmond St., London, ON, N6A 3K7, Canada
| | - Yang Hu
- Department of Mechanical and Materials Engineering, University of Western Ontario1151 Richmond St., London, ON, N6A 3K7, Canada
| | - Jingru Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Minkang Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Longan Jiao
- Carl Zeiss (Shanghai) Co., Ltd., 60 Mei Yue Road, Pilot Free Trade Zone, Shanghai, 200131, PR China
| | - Ningning Zhou
- Carl Zeiss (Shanghai) Co., Ltd., 60 Mei Yue Road, Pilot Free Trade Zone, Shanghai, 200131, PR China
| | - Bing Xiao
- Carl Zeiss (Shanghai) Co., Ltd., 60 Mei Yue Road, Pilot Free Trade Zone, Shanghai, 200131, PR China
| | - Xiuli Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario1151 Richmond St., London, ON, N6A 3K7, Canada.
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, PR China.
| | - Jiangping Tu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
32
|
Wen Z, Fang W, Wang F, Kang H, Zhao S, Guo S, Chen G. Dual-Salt Electrolyte Additive Enables High Moisture Tolerance and Favorable Electric Double Layer for Lithium Metal Battery. Angew Chem Int Ed Engl 2024; 63:e202314876. [PMID: 38305641 DOI: 10.1002/anie.202314876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 02/03/2024]
Abstract
The carbonate electrolyte chemistry is a primary determinant for the development of high-voltage lithium metal batteries (LMBs). Unfortunately, their implementation is greatly plagued by sluggish electrode interfacial dynamics and insufficient electrolyte thermodynamic stability. Herein, lithium trifluoroacetate-lithium nitrate (LiTFA-LiNO3 ) dual-salt additive-reinforced carbonate electrolyte (LTFAN) is proposed for stabilizing high-voltage LMBs. We reveal that 1) the in situ generated inorganic-rich electrode-electrolyte interphase (EEI) enables rapid interfacial dynamics, 2) TFA- preferentially interacts with moisture over PF6 - to strengthen the moisture tolerance of designed electrolyte, and 3) NO3 - is found to be noticeably enriched at the cathode interface on charging, thus constructing Li+ -enriched, solvent-coordinated, thermodynamically favorable electric double layer (EDL). The superior moisture tolerance of LTFAN and the thermodynamically stable EDL constructed at cathode interface play a decisive role in upgrading the compatibility of carbonate electrolyte with high-voltage cathode. The LMBs with LTFAN realize 4.3 V-NCM523/4.4 V-NCM622 superior cycling reversibility and excellent rate capability, which is the leading level of documented records for carbonate electrode.
Collapse
Affiliation(s)
- Zuxin Wen
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083, P. R. China
| | - Wenqiang Fang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083, P. R. China
| | - Fenglin Wang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083, P. R. China
| | - Hong Kang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083, P. R. China
| | - Shuoqing Zhao
- School of Materials Science & Engineering and BIC-ESAT, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Shaojun Guo
- School of Materials Science & Engineering and BIC-ESAT, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Gen Chen
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
33
|
Jian Hu X, Ping Zheng Y, Wei Li Z, Xia C, Chua DHC, Hu X, Liu T, Bin Liu X, Ping Wu Z, Yu Xia B. Artificial LiF-Rich Interface Enabled by In situ Electrochemical Fluorination for Stable Lithium-Metal Batteries. Angew Chem Int Ed Engl 2024; 63:e202319600. [PMID: 38286751 DOI: 10.1002/anie.202319600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
Lithium (Li)-metal batteries are promising next-generation energy storage systems. One drawback of uncontrollable electrolyte degradation is the ability to form a fragile and nonuniform solid electrolyte interface (SEI). In this study, we propose the use of a fluorinated carbon nanotube (CNT) macrofilm (CMF) on Li metal as a hybrid anode, which can regulate the redox state at the anode/electrolyte interface. Due to the favorable reaction energy between the plated Li and fluorinated CNTs, the metal can be fluorinated directly to a LiF-rich SEI during the charging process, leading to a high Young's modulus (~2.0 GPa) and fast ionic transfer (~2.59×10-7 S cm-1 ). The obtained SEI can guide the homogeneous plating/stripping of Li during electrochemical processes while suppressing dendrite growth. In particular, the hybrid of endowed full cells with substantially enhanced cyclability allows for high capacity retention (~99.3 %) and remarkable rate capacity. This work can extend fluorination technology into a platform to control artificial SEI formation in Li-metal batteries, increasing the stability and long-term performance of the resulting material.
Collapse
Affiliation(s)
- Xun Jian Hu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology (JXUST), 86 Hongqi Road, Ganzhou, 341000, China
| | - Yi Ping Zheng
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology (JXUST), 86 Hongqi Road, Ganzhou, 341000, China
| | - Zhi Wei Li
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology (JXUST), 86 Hongqi Road, Ganzhou, 341000, China
| | - Chenfeng Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Daniel H C Chua
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Xin Hu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology (JXUST), 86 Hongqi Road, Ganzhou, 341000, China
| | - Ting Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology (JXUST), 86 Hongqi Road, Ganzhou, 341000, China
| | - Xian Bin Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology (JXUST), 86 Hongqi Road, Ganzhou, 341000, China
| | - Zi Ping Wu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology (JXUST), 86 Hongqi Road, Ganzhou, 341000, China
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| |
Collapse
|
34
|
Yang Y, Wang J, Li Z, Yang Z, Wang B, Zhao H. Constructing LiF-Dominated Interphases with Polymer Interwoven Outer Layer Enables Long-Term Cycling of Si Anodes. ACS NANO 2024; 18:7666-7676. [PMID: 38415604 DOI: 10.1021/acsnano.4c00998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Constructing a robust solid electrolyte interphase (SEI) is extremely critical to developing high-energy-density silicon (Si)-based lithium-ion batteries. However, it is still elusive how to accurately manipulate the chemical composition and structure of the SEI layer. Herein, a LiF-dominated SEI film intertwined by a highly elastic polymer is achieved by regulating the defluorination mechanism of the fluorinated carbonate additive on the Si electrode surface. The experimental and computational results confirm that the decomposition route of trans-difluoroethylene carbonate (DFEC) molecules can be significantly altered in the presence of lithium difluoro(oxalato)borate (LiDFOB) additive. The induction of direct defluorination of DFEC step by LiDFOB, as opposed to the breaking of C-O bonds without LiDFOB addition, is crucial in ensuring the exclusive formation of LiF-dominated SEI and maintaining the cyclic structure of DFEC. The defluorinated DFEC easily polymerizes to form poly(vinylene carbonate), enhancing the elasticity of the SEI. The resulting LiF-dominated SEI film with a polymer interwoven outer layer shows enhanced ionic conductivity and mechanical stability, which can effectively accelerate electrode reaction kinetics and maintain the structural stability of the Si electrode. As a result, the Si electrode with the electrolyte containing the designed dual-additive exhibits superior cycling stability and excellent rate performance, delivering a high reversible capacity of 1487.3 mAh g-1 after 1000 cycles at 2 A g-1.
Collapse
Affiliation(s)
- Yaozong Yang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Jie Wang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Municipal Key Laboratory of New Energy Materials and Technologies, Beijing 100083, People's Republic of China
| | - Zhaolin Li
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Municipal Key Laboratory of New Energy Materials and Technologies, Beijing 100083, People's Republic of China
| | - Zhao Yang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Bo Wang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, People's Republic of China
| | - Hailei Zhao
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Municipal Key Laboratory of New Energy Materials and Technologies, Beijing 100083, People's Republic of China
| |
Collapse
|
35
|
Basu S, Zhu W, Hwang GS. Structural Toughness of Fluorinated-Nitrided Interphase Passivation Layers for Lithium-Ion Batteries: A Reactive Molecular Dynamics Study. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38437707 DOI: 10.1021/acsami.3c16230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The performance of lithium-ion batteries largely depends on the stability of the solid electrolyte interphase (SEI) layer formed on the anode surface. Strategies to improve SEI robustness often rely on optimizing its composition through electrolytic additives. Recently, the amalgamation of fluorinated cosolvents with nitride sources as additives has been shown to enable the construction of sustainable fluorinated-nitrided SEI layers (FN-SEI). Furthermore, the presence of lithiophilic nitrides embedded in lithium fluoride (LiF) was found to contribute toward stability of a beneficial amorphous phase for interfacial passivation. However, there is a lack of understanding on how key indicators of mechanical longevity, like plasticity and fracture resistance, may evolve in such multiphase SEI building blocks. Herein, in conjunction with first-principles calculations, a reactive force field (ReaxFF) has been developed for deriving new mechanistic insights into the intriguing FN-SEI. Our studies demonstrate that owing to a significant elasticity mismatch, the hard nitride phases have a propensity to affect the native deformation modes when embedded in a soft amorphous LiF-rich matrix. Impact of the volume fraction and distribution of the nitride (Li3N) phases are discussed from the perspective of how they interfere with the propagation of shear bands. Interestingly, brittle-ductile-brittle regimes are recognized along the nitride infusion window, providing a glimpse into the effect of phase distribution on the structural toughness of the LiF-Li3N-enhanced SEI.
Collapse
Affiliation(s)
- Swastik Basu
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Wenbo Zhu
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Gyeong S Hwang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
36
|
Serbessa G, Taklu BW, Nikodimos Y, Temesgen NT, Muche ZB, Merso SK, Yeh TI, Liu YJ, Liao WS, Wang CH, Wu SH, Su WN, Yang CC, Hwang BJ. Boosting the Interfacial Stability of the Li 6PS 5Cl Electrolyte with a Li Anode via In Situ Formation of a LiF-Rich SEI Layer and a Ductile Sulfide Composite Solid Electrolyte. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10832-10844. [PMID: 38359779 PMCID: PMC10910511 DOI: 10.1021/acsami.3c14763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
Due to its good mechanical properties and high ionic conductivity, the sulfide-type solid electrolyte (SE) can potentially realize all-solid-state batteries (ASSBs). Nevertheless, challenges, including limited electrochemical stability, insufficient solid-solid contact with the electrode, and reactivity with lithium, must be addressed. These challenges contribute to dendrite growth and electrolyte reduction. Herein, a straightforward and solvent-free method was devised to generate a robust artificial interphase between lithium metal and a SE. It is achieved through the incorporation of a composite electrolyte composed of Li6PS5Cl (LPSC), polyethylene glycol (PEG), and lithium bis(fluorosulfonyl)imide (LiFSI), resulting in the in situ creation of a LiF-rich interfacial layer. This interphase effectively mitigates electrolyte reduction and promotes lithium-ion diffusion. Interestingly, including PEG as an additive increases mechanical strength by enhancing adhesion between sulfide particles and improves the physical contact between the LPSC SE and the lithium anode by enhancing the ductility of the LPSC SE. Moreover, it acts as a protective barrier, preventing direct contact between the SE and the Li anode, thereby inhibiting electrolyte decomposition and reducing the electronic conductivity of the composite SE, thus mitigating the dendrite growth. The Li|Li symmetric cells demonstrated remarkable cycling stability, maintaining consistent performance for over 3000 h at a current density of 0.1 mA cm-2, and the critical current density of the composite solid electrolyte (CSE) reaches 4.75 mA cm-2. Moreover, the all-solid-state lithium metal battery (ASSLMB) cell with the CSEs exhibits remarkable cycling stability and rate performance. This study highlights the synergistic combination of the in-situ-generated artificial SE interphase layer and CSEs, enabling high-performance ASSLMBs.
Collapse
Affiliation(s)
- Gashahun
Gobena Serbessa
- Nano-electrochemistry
Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan
- Battery
Research Center of Green Energy, Ming-Chi
University of Technology, New Taipei
City 24301, Taiwan
| | - Bereket Woldegbreal Taklu
- Nano-electrochemistry
Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei City 106, Taiwan
| | - Yosef Nikodimos
- Nano-electrochemistry
Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan
| | - Nigusu Tiruneh Temesgen
- Nano-electrochemistry
Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan
| | - Zabish Bilew Muche
- Nano-electrochemistry
Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan
| | - Semaw Kebede Merso
- Nano-electrochemistry
Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan
| | - Tsung-I Yeh
- Nano-electrochemistry
Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan
| | - Ya-Jun Liu
- Nano-electrochemistry
Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan
| | - Wei-Sheng Liao
- Nano-electrochemistry
Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei City 106, Taiwan
| | - Chia-Hsin Wang
- National
Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan
| | - She-Huang Wu
- Nano-electrochemistry
Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei City 106, Taiwan
- Sustainable
Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei City 106, Taiwan
| | - Wei-Nien Su
- Nano-electrochemistry
Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei City 106, Taiwan
- Sustainable
Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei City 106, Taiwan
| | - Chun-Chen Yang
- Battery
Research Center of Green Energy, Ming-Chi
University of Technology, New Taipei
City 24301, Taiwan
- Department
of Chemical Engineering, Ming Chi University
of Technology, New Taipei City 24301, Taiwan
| | - Bing Joe Hwang
- Nano-electrochemistry
Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan
- National
Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan
- Sustainable
Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei City 106, Taiwan
| |
Collapse
|
37
|
Wang Z, Mu Z, Ma T, Yan W, Wu D, Yang M, Peng J, Xia Y, Shi S, Chen L, Li H, Wu F. Soft Carbon-Thiourea with Fast Bulk Diffusion Kinetics for Solid-State Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310395. [PMID: 38050792 DOI: 10.1002/adma.202310395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Indexed: 12/06/2023]
Abstract
The development of all-solid-state lithium-metal batteries (ASSLMBs) is impeded by low coulomb efficiency, short lifetime, poor rate performance, and other problems caused by the rapid growth of lithium (Li) dendrites. Herein, a multiple-diffusion-channel N,S-doped soft carbon with expanded layer spacing is designed/developed by thiourea calcination for dendrite-free anodes. Since the enlarged layer spacing can improve Li+ transportation rate within the layers and N,S-doping can facilitate Li+ transport between the layers, the bulk phase diffusion (not just surface diffusion) kinetics can be improved, which in turn reduces the local current density, inhibits the growth of Li dendrites, and improves the rate performance. The resulting ASSLMB achieves record-high current density (15 mA cm-2 ), areal capacity (20 mAh cm-2 ), energy density (403 Wh kg-1 ), and ultra-long cycle life (13 000 cycles). >305 Wh kg-1 pouch cells are realized, representing one of the most critical breakthroughs for real-world application of ASSLMBs.
Collapse
Affiliation(s)
- Zhixuan Wang
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang, Jiangsu, 213300, China
- Yangtze River Delta Physics Research Center, Liyang, Jiangsu, 213300, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | | | - Tenghuan Ma
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang, Jiangsu, 213300, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenlin Yan
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang, Jiangsu, 213300, China
- Yangtze River Delta Physics Research Center, Liyang, Jiangsu, 213300, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CASOL Energy Co ltd, liyang, 213399, China
| | - Dengxu Wu
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang, Jiangsu, 213300, China
- Yangtze River Delta Physics Research Center, Liyang, Jiangsu, 213300, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CASOL Energy Co ltd, liyang, 213399, China
| | - Ming Yang
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang, Jiangsu, 213300, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Peng
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang, Jiangsu, 213300, China
- Yangtze River Delta Physics Research Center, Liyang, Jiangsu, 213300, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CASOL Energy Co ltd, liyang, 213399, China
| | - Yu Xia
- ByteDance, Beijing, 100098, China
| | | | - Liquan Chen
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang, Jiangsu, 213300, China
- Yangtze River Delta Physics Research Center, Liyang, Jiangsu, 213300, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CASOL Energy Co ltd, liyang, 213399, China
| | - Hong Li
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang, Jiangsu, 213300, China
- Yangtze River Delta Physics Research Center, Liyang, Jiangsu, 213300, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CASOL Energy Co ltd, liyang, 213399, China
| | - Fan Wu
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang, Jiangsu, 213300, China
- Yangtze River Delta Physics Research Center, Liyang, Jiangsu, 213300, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CASOL Energy Co ltd, liyang, 213399, China
| |
Collapse
|
38
|
Wan H, Xu J, Wang C. Designing electrolytes and interphases for high-energy lithium batteries. Nat Rev Chem 2024; 8:30-44. [PMID: 38097662 DOI: 10.1038/s41570-023-00557-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 01/13/2024]
Abstract
High-energy and stable lithium-ion batteries are desired for next-generation electric devices and vehicles. To achieve their development, the formation of stable interfaces on high-capacity anodes and high-voltage cathodes is crucial. However, such interphases in certain commercialized Li-ion batteries are not stable. Due to internal stresses during operation, cracks are formed in the interphase and electrodes; the presence of such cracks allows for the formation of Li dendrites and new interphases, resulting in a decay of the energy capacity. In this Review, we highlight electrolyte design strategies to form LiF-rich interphases in different battery systems. In aqueous electrolytes, the hydrophobic LiF can extend the electrochemical stability window of aqueous electrolytes. In organic liquid electrolytes, the highly lithiophobic LiF can suppress Li dendrite formation and growth. Electrolyte design aimed at forming LiF-rich interphases has substantially advanced high-energy aqueous and non-aqueous Li-ion batteries. The electrolyte and interphase design principles discussed here are also applicable to solid-state batteries, as a strategy to achieve long cycle life under low stack pressure, as well as to construct other metal batteries.
Collapse
Affiliation(s)
- Hongli Wan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA
| | - Jijian Xu
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA.
| | - Chunsheng Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA.
| |
Collapse
|
39
|
Marana N, Casassa S, Sgroi MF, Maschio L, Silveri F, D’Amore M, Ferrari AM. Stability and Formation of the Li 3PS 4/Li, Li 3PS 4/Li 2S, and Li 2S/Li Interfaces: A Theoretical Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18797-18806. [PMID: 38079509 PMCID: PMC10753886 DOI: 10.1021/acs.langmuir.3c02354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/27/2023]
Abstract
Solid electrolytes have shown superior behavior and many advantages over liquid electrolytes, including simplicity in battery design. However, some chemical and structural instability problems arise when solid electrolytes form a direct interface with the negative Li-metal electrode. In particular, it was recognized that the interface between the β-Li3PS4 crystal and lithium anode is quite unstable and tends to promote structural defects that inhibit the correct functioning of the device. As a possible way out of this problem, we propose a material, Li2S, as a passivating coating for the Li/β-Li3PS4 interface. We investigated the mutual affinity between Li/Li2S and Li2S/β-Li3PS4 interfaces by DFT methods and investigated the structural stability through the adhesion energy and mechanical stress. Furthermore, a topological analysis of the electron density identified preferential paths for the migration of Li ions.
Collapse
Affiliation(s)
- Naiara
Leticia Marana
- Theoretical
Group of Chemistry, Chemistry Department, Torino University, 10124 Torino, Italy
| | - Silvia Casassa
- Theoretical
Group of Chemistry, Chemistry Department, Torino University, 10124 Torino, Italy
| | - Mauro Francesco Sgroi
- Department
of Chemistry and NIS, University of Turin, 10125, Torino, Italy
- Istituto
Nazionale di Ricerca Metrologica, 10135 Torino, Italy
- CNR-Nano
and CNR-ITAE - National Research Council, 00185 Roma, Italy
| | - Lorenzo Maschio
- Theoretical
Group of Chemistry, Chemistry Department, Torino University, 10124 Torino, Italy
| | - Fabrizio Silveri
- Gemmate
Technologies s.r.l., Buttigliera
Alta, Torino, 10090 Italy
| | - Maddalena D’Amore
- Theoretical
Group of Chemistry, Chemistry Department, Torino University, 10124 Torino, Italy
| | - Anna Maria Ferrari
- Theoretical
Group of Chemistry, Chemistry Department, Torino University, 10124 Torino, Italy
| |
Collapse
|
40
|
A Review of Solid Electrolyte Interphase (SEI) and Dendrite Formation in Lithium Batteries. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
41
|
Liu Q, Chen Q, Tang Y, Cheng HM. Interfacial Modification, Electrode/Solid-Electrolyte Engineering, and Monolithic Construction of Solid-State Batteries. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
42
|
Li M, An H, Song Y, Liu Q, Wang J, Huo H, Lou S, Wang J. Ion-Dipole-Interaction-Induced Encapsulation of Free Residual Solvent for Long-Cycle Solid-State Lithium Metal Batteries. J Am Chem Soc 2023; 145:25632-25642. [PMID: 37943571 DOI: 10.1021/jacs.3c07482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Owing to high ionic conductivity and mechanical strength, poly(vinylidene fluoride) (PVDF) electrolytes have attracted increasing attention for solid-state lithium batteries, but highly reactive residual solvents severely plague cycling stability. Herein, we report a free-solvent-capturing strategy triggered by reinforced ion-dipole interactions between Li+ and residual solvent molecules. Lithium difluoro(oxalato)borate (LiDFOB) salt additive with electron-withdrawing capability serves as a redistributor of the Li+ electropositive state, which offers more binding sites for residual solvents. Benefiting from the modified coordination environment, the kinetically stable anion-derived interphases are preferentially formed, effectively mitigating the interfacial side reactions between the electrodes and electrolytes. As a result, the assembled solid-state battery shows a lifetime of over 2000 cycles with an average Coulombic efficiency of 99.9% and capacity retention of 80%. Our discovery sheds fresh light on the targeted regulation of the reactive residual solvent to extend the cycle life of solid-state batteries.
Collapse
Affiliation(s)
- Menglu Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin 150001, China
- Chongqing Research Institute of HIT, Chongqing 401135, China
| | - Hanwen An
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin 150001, China
- Chongqing Research Institute of HIT, Chongqing 401135, China
| | - Yajie Song
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin 150001, China
| | - Qingsong Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin 150001, China
- Chongqing Research Institute of HIT, Chongqing 401135, China
| | - Jian Wang
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, SK S7N 2V3, Canada
| | - Hua Huo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin 150001, China
| | - Shuaifeng Lou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin 150001, China
- Chongqing Research Institute of HIT, Chongqing 401135, China
| | - Jiajun Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin 150001, China
- Chongqing Research Institute of HIT, Chongqing 401135, China
| |
Collapse
|
43
|
Zhang Z, Han WQ. From Liquid to Solid-State Lithium Metal Batteries: Fundamental Issues and Recent Developments. NANO-MICRO LETTERS 2023; 16:24. [PMID: 37985522 PMCID: PMC10661211 DOI: 10.1007/s40820-023-01234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/30/2023] [Indexed: 11/22/2023]
Abstract
The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles, which have increasingly stringent energy density requirements. Lithium metal batteries (LMBs), with their ultralow reduction potential and high theoretical capacity, are widely regarded as the most promising technical pathway for achieving high energy density batteries. In this review, we provide a comprehensive overview of fundamental issues related to high reactivity and migrated interfaces in LMBs. Furthermore, we propose improved strategies involving interface engineering, 3D current collector design, electrolyte optimization, separator modification, application of alloyed anodes, and external field regulation to address these challenges. The utilization of solid-state electrolytes can significantly enhance the safety of LMBs and represents the only viable approach for advancing them. This review also encompasses the variation in fundamental issues and design strategies for the transition from liquid to solid electrolytes. Particularly noteworthy is that the introduction of SSEs will exacerbate differences in electrochemical and mechanical properties at the interface, leading to increased interface inhomogeneity-a critical factor contributing to failure in all-solid-state lithium metal batteries. Based on recent research works, this perspective highlights the current status of research on developing high-performance LMBs.
Collapse
Affiliation(s)
- Zhao Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Wei-Qiang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
44
|
Yu T, Li H, Liu Y, Li J, Tian J, Liu Z, Rao Y, Guo S, Zhou H. A prototype of dual-ion conductor for all-solid-state lithium batteries. SCIENCE ADVANCES 2023; 9:eadj8171. [PMID: 37922354 PMCID: PMC10624349 DOI: 10.1126/sciadv.adj8171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/03/2023] [Indexed: 11/05/2023]
Abstract
All-solid-state batteries (ASSBs) represent a promising battery strategy to achieve high energy density with great safety. However, inadequate kinetic property and poor interfacial compatibility remain great challenges, which impede their practical application. A prototype of dual-ion conductor of Li+ synchronized with Cu+ unlocks a four-electron redox reaction with high reversibility and fast kinetics. As a result, the constructed ASSB exhibited a high reversible capacity of 603.0 mA·hour g-1 and an excellent cycling retention of 93.2% over 1500 cycles. Moreover, because of the ion highway connecting active materials and catholytes constructed by dual-ion conductor, remarkable temperature tolerance (-60°C) and excellent rate performance (231.6 mA·hour g-1 at 20 mA cm-2) were achieved. The superior electrochemical performance can be ascribed to the migration pathway with small energy barrier and low tortuosity once the Cu+ introduced into Li6PS5Cl. This work creates a unique perspective of ASSBs with dual-ion conducting strategy, thus inspiring a potential developing strategy of state-of-the-art ASSBs.
Collapse
Affiliation(s)
- Tao Yu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518000, China
| | - Haoyu Li
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518000, China
| | - Yuankai Liu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518000, China
| | - Jingchang Li
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518000, China
| | - Jiaming Tian
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518000, China
| | - Zhaoguo Liu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518000, China
| | - Yuan Rao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518000, China
| | - Shaohua Guo
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518000, China
| | - Haoshen Zhou
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
45
|
Wan H, Wang Z, Zhang W, He X, Wang C. Interface design for all-solid-state lithium batteries. Nature 2023; 623:739-744. [PMID: 37880366 DOI: 10.1038/s41586-023-06653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/18/2023] [Indexed: 10/27/2023]
Abstract
The operation of high-energy all-solid-state lithium-metal batteries at low stack pressure is challenging owing to the Li dendrite growth at the Li anodes and the high interfacial resistance at the cathodes1-4. Here we design a Mg16Bi84 interlayer at the Li/Li6PS5Cl interface to suppress the Li dendrite growth, and a F-rich interlayer on LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes to reduce the interfacial resistance. During Li plating-stripping cycles, Mg migrates from the Mg16Bi84 interlayer to the Li anode converting Mg16Bi84 into a multifunctional LiMgSx-Li3Bi-LiMg structure with the layers functioning as a solid electrolyte interphase, a porous Li3Bi sublayer and a solid binder (welding porous Li3Bi onto the Li anode), respectively. The Li3Bi sublayer with its high ionic/electronic conductivity ratio allows Li to deposit only on the Li anode surface and grow into the porous Li3Bi sublayer, which ameliorates pressure (stress) changes. The NMC811 with the F-rich interlayer converts into F-doped NMC811 cathodes owing to the electrochemical migration of the F anion into the NMC811 at a high potential of 4.3 V stabilizing the cathodes. The anode and cathode interlayer designs enable the NMC811/Li6PS5Cl/Li cell to achieve a capacity of 7.2 mAh cm-2 at 2.55 mA cm-2, and the LiNiO2/Li6PS5Cl/Li cell to achieve a capacity of 11.1 mAh cm-2 with a cell-level energy density of 310 Wh kg-1 at a low stack pressure of 2.5 MPa. The Mg16Bi84 anode interlayer and F-rich cathode interlayer provide a general solution for all-solid-state lithium-metal batteries to achieve high energy and fast charging capability at low stack pressure.
Collapse
Affiliation(s)
- Hongli Wan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA
| | - Zeyi Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA
| | - Weiran Zhang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Xinzi He
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA
| | - Chunsheng Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA.
| |
Collapse
|
46
|
Han Q, Cai L, Huang P, Liu S, He C, Xu Z, Ying H, Han WQ. Fast Ionic Conducting Hydroxyapatite Solid Electrolyte Interphase Enables Ultra-Stable Zinc Metal Anodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48316-48325. [PMID: 37793088 DOI: 10.1021/acsami.3c11649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Zn metal has been extensively utilized as an anode in aqueous zinc-ion batteries attributed to its affordable cost and superior theoretical capacity. Nevertheless, the presence of dendrites and undesirable side reactions poses challenges to its widespread commercialization. To address these issues, herein, a surface coating composed of hydroxyapatite (HAP) was developed on the Zn anode to create an artificial solid electrolyte interphase. After the application of a hydroxyapatite layer, dendrites and corrosion of the Zn anode are sufficiently inhibited. Furthermore, the hydroxyapatite interphase with a low ionic diffusion barrier enables fast anodic redox kinetics. Consequently, the Zn@HAP symmetric cell possesses a durable lifespan over 2000 h at 1 mA cm-2, while maintaining minimal polarization. Moreover, the practical feasibilities of the Zn@HAP anode are also manifested in full batteries combined with MnO2 cathodes, exhibiting exceptional cycling performance up to 500 cycles at 1 A g-1 and excellent rate capability with a retention of 109 mAh g-1 at 5 A g-1.
Collapse
Affiliation(s)
- Qizhen Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lucheng Cai
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pengfei Huang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shenwen Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chaowei He
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zuojie Xu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hangjun Ying
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wei-Qiang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
47
|
Li X, Xu P, Ni H, Lin X, Wang Y, Fan J, Zheng M, Yuan R, Dong Q. Regulating SEI Components of Sodium Anode via Capturing Organic-Molecule Intermediates in Ester-Based Electrolyte. SMALL METHODS 2023; 7:e2300388. [PMID: 37316995 DOI: 10.1002/smtd.202300388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/30/2023] [Indexed: 06/16/2023]
Abstract
Highly reversible sodium metal anodes are still regarded as a stubborn hurdle in ester-based electrolytes due to the issue of uncontrollable dendrites and incredibly unstable interphase. Evidently, a strong protective film on sodium is decisive, while the quality of the protective film is mainly determined by its components. However, it is challenging to actively adjust the expected components. This work can regulate the solid electrolyte interphase (SEI) components by introducing a functional electrolyte additive (2-chloro-1,3-dimethylimidazoline hexafluorophosphate (CDIH, namely CDI+ +PF6 - )) into FEC/PC ester-based electrolyte. Specifically, the chloride element in the CDI+ can easily react to form a NaF/NaCl-rich SEI together with the decomposition products of FEC; then the CDI+ without chlorine as a gripper to capture the organic-molecule intermediates generated during FEC decomposition to greatly reduce the content of unstable organic components in SEI, which can be confirmed by molecular dynamic simulation and experiment. Eventually, a highly reversible Na deposition behavior can be delivered. As expected, under the action of CDIH additives, the Na||Na symmetrical cell performs an excellent long-term cycling (>800 h, 0.5 mA cm-2 -0.5 mAh cm-2 ) and rate performance (0.5-4 mA cm-2 ). Furthermore, the Na||PB full cell exhibits the outstanding electrochemical performance with small polarization.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Pan Xu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Hongbin Ni
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xiaodong Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yajing Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Jingmin Fan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Mingsen Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Ruming Yuan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Quanfeng Dong
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
48
|
Park S, Kim S, Lee JA, Ue M, Choi NS. Liquid electrolyte chemistries for solid electrolyte interphase construction on silicon and lithium-metal anodes. Chem Sci 2023; 14:9996-10024. [PMID: 37772127 PMCID: PMC10530773 DOI: 10.1039/d3sc03514j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/14/2023] [Accepted: 08/11/2023] [Indexed: 09/30/2023] Open
Abstract
Next-generation battery development necessitates the coevolution of liquid electrolyte and electrode chemistries, as their erroneous combinations lead to battery failure. In this regard, priority should be given to the alleviation of the volumetric stress experienced by silicon and lithium-metal anodes during cycling and the mitigation of other problems hindering their commercialization. This review summarizes the advances in sacrificial compound-based volumetric stress-adaptable interfacial engineering, which has primarily driven the development of liquid electrolytes for high-performance lithium batteries. Besides, we discuss how the regulation of lithium-ion solvation structures helps expand the range of electrolyte formulations and thus enhance the quality of solid electrolyte interphases (SEIs), improve lithium-ion desolvation kinetics, and realize longer-lasting SEIs on high-capacity anodes. The presented insights are expected to inspire the design and synthesis of next-generation electrolyte materials and accelerate the development of advanced electrode materials for industrial battery applications.
Collapse
Affiliation(s)
- Sewon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Saehun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Jeong-A Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Makoto Ue
- Research Organization for Nano & Life Innovation, Waseda University 513 Waseda-tsurumaki-cho Shinjuku-ku Tokyo 162-0041 Japan
| | - Nam-Soon Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| |
Collapse
|
49
|
Ransom B, Ramdas A, Lomeli E, Fidawi J, Sendek A, Devereaux T, Reed EJ, Schindler P. Electrolyte Coatings for High Adhesion Interfaces in Solid-State Batteries from First Principles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44394-44403. [PMID: 37682811 PMCID: PMC10520915 DOI: 10.1021/acsami.3c04452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/26/2023] [Indexed: 09/10/2023]
Abstract
We introduce an adhesion parameter that enables rapid screening for materials interfaces with high adhesion. This parameter is obtained by density functional theory calculations of individual single-material slabs rather than slabs consisting of combinations of two materials, eliminating the need to calculate all configurations of a prohibitively vast space of possible interface configurations. Cleavage energy calculations are used as an upper bound for electrolyte and coating energies and implemented in an adapted contact angle equation to derive the adhesion parameter. In addition to good adhesion, we impose further constraints in electrochemical stability window, abundance, bulk reactivity, and stability to screen for coating materials for next-generation solid-state batteries. Good adhesion is critical in combating delamination and resistance to lithium diffusivity in solid-state batteries. Here, we identify several promising coating candidates for the Li7La3Zr2O12 and sulfide electrolyte systems including the previously investigated electrode coating materials LiAlSiO4 and Li5AlO8, making them especially attractive for experimental optimization and commercialization.
Collapse
Affiliation(s)
- Brandi Ransom
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Akash Ramdas
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Eder Lomeli
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jad Fidawi
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Austin Sendek
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
- Aionics,
Inc., Palo Alto, California 94301, United States
| | - Tom Devereaux
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
- Stanford
Institute for Materials and Energy Sciences, Stanford University, Stanford, California 94305, United States
| | - Evan J. Reed
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Peter Schindler
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
50
|
Wu J, Gao Z, Tian Y, Zhao Y, Lin Y, Wang K, Guo H, Pan Y, Wang X, Kang F, Tavajohi N, Fan X, Li B. Unique Tridentate Coordination Tailored Solvation Sheath Toward Highly Stable Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303347. [PMID: 37272714 DOI: 10.1002/adma.202303347] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/17/2023] [Indexed: 06/06/2023]
Abstract
Electrolyte optimization by solvent molecule design is recognized as an effective approach for stabilizing lithium (Li) metal batteries. However, the coordination pattern of Li ions (Li+ ) with solvent molecules is sparsely considered. Here, an electrolyte design strategy is reported based on bi/tridentate chelation of Li+ and solvent to tune the solvation structure. As a proof of concept, a novel solvent with multi-oxygen coordination sites is demonstrated to facilitate the formation of an anion-aggregated solvation shell, enhancing the interfacial stability and de-solvation kinetics. As a result, the as-developed electrolyte exhibits ultra-stable cycling over 1400 h in symmetric cells with 50 µm-thin Li foils. When paired with high-loading LiFePO4 , full cells maintain 92% capacity over 500 cycles and deliver improved electrochemical performances over a wide temperature range from -10 to 60 °C. Furthermore, the concept is validated in a pouch cell (570 mAh), achieving a capacity retention of 99.5% after 100 cycles. This brand-new insight on electrolyte engineering provides guidelines for practical high-performance Li metal batteries.
Collapse
Affiliation(s)
- Junru Wu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Ziyao Gao
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yao Tian
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yun Zhao
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yilong Lin
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Kang Wang
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education) and Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, China
| | - Hexin Guo
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yanfang Pan
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xianshu Wang
- National and Local Joint Engineering Research Center of Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Feiyu Kang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Naser Tavajohi
- Department of Chemistry, Umeå University, Umeå, 90187, Sweden
| | - Xiulin Fan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Baohua Li
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|