1
|
Tong T, Chen R, Ke Y, Wang Q, Wang X, Sun Q, Chen J, Gu Z, Yu Y, Wei H, Hao Y, Fan X, Zhang Q. Giant Second Harmonic Generation in Supertwisted WS 2 Spirals Grown in Step-Edge Particle-Induced Non-Euclidean Surfaces. ACS NANO 2024; 18:21939-21947. [PMID: 39115247 DOI: 10.1021/acsnano.4c02807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
In moiré crystals resulting from the stacking of twisted two-dimensional (2D) layered materials, a subtle adjustment in the twist angle surprisingly gives rise to a wide range of correlated optical and electrical properties. Herein, we report the synthesis of supertwisted WS2 spirals and the observation of giant second harmonic generation (SHG) in these spirals. Supertwisted WS2 spirals featuring different twist angles are synthesized on a Euclidean or step-edge particle-induced non-Euclidean surface using carefully designed water-assisted chemical vapor deposition. We observed an oscillatory dependence of SHG intensity on layer number, attributed to atomically phase-matched nonlinear dipoles within layers of supertwisted spiral crystals where inversion symmetry is restored. Through an investigation into the twist angle evolution of SHG intensity, we discovered that the stacking model between layers plays a crucial role in determining the nonlinearity, and the SHG signals in supertwisted spirals exhibit enhancements by a factor of 2 to 136 when compared with the SHG of the single-layer structure. These findings provide helpful perspectives on the rational growth of 2D twisted structures and the implementation of twist angle adjustable endowing them great potential for exploring strong coupling correlation physics and applications in the field of twistronics.
Collapse
Affiliation(s)
- Tong Tong
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ruijie Chen
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yuxuan Ke
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Qian Wang
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xinchao Wang
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Qinjun Sun
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jie Chen
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhiyuan Gu
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ying Yu
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hongyan Wei
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yuying Hao
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaopeng Fan
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Wang J, He L, Zhang Y, Nong H, Li S, Wu Q, Tan J, Liu B. Locally Strained 2D Materials: Preparation, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2314145. [PMID: 38339886 DOI: 10.1002/adma.202314145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/28/2024] [Indexed: 02/12/2024]
Abstract
2D materials are promising for strain engineering due to their atomic thickness and exceptional mechanical properties. In particular, non-uniform and localized strain can be induced in 2D materials by generating out-of-plane deformations, resulting in novel phenomena and properties, as witnessed in recent years. Therefore, the locally strained 2D materials are of great value for both fundamental studies and practical applications. This review discusses techniques for introducing local strains to 2D materials, and their feasibility, advantages, and challenges. Then, the unique effects and properties that arise from local strain are explored. The representative applications based on locally strained 2D materials are illustrated, including memristor, single photon emitter, and photodetector. Finally, concluding remarks on the challenges and opportunities in the emerging field of locally strained 2D materials are provided.
Collapse
Affiliation(s)
- Jingwei Wang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Liqiong He
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yunhao Zhang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Huiyu Nong
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Shengnan Li
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Qinke Wu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Junyang Tan
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
3
|
Li S, Ouyang D, Zhang N, Zhang Y, Murthy A, Li Y, Liu S, Zhai T. Substrate Engineering for Chemical Vapor Deposition Growth of Large-Scale 2D Transition Metal Dichalcogenides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211855. [PMID: 37095721 DOI: 10.1002/adma.202211855] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The large-scale production of 2D transition metal dichalcogenides (TMDs) is essential to realize their industrial applications. Chemical vapor deposition (CVD) has been considered as a promising method for the controlled growth of high-quality and large-scale 2D TMDs. During a CVD process, the substrate plays a crucial role in anchoring the source materials, promoting the nucleation and stimulating the epitaxial growth. It thus significantly affects the thickness, microstructure, and crystal quality of the products, which are particularly important for obtaining 2D TMDs with expected morphology and size. Here, an insightful review is provided by focusing on the recent development associated with the substrate engineering strategies for CVD preparation of large-scale 2D TMDs. First, the interaction between 2D TMDs and substrates, a key factor for the growth of high-quality materials, is systematically discussed by combining the latest theoretical calculations. Based on this, the effect of various substrate engineering approaches on the growth of large-area 2D TMDs is summarized in detail. Finally, the opportunities and challenges of substrate engineering for the future development of 2D TMDs are discussed. This review might provide deep insight into the controllable growth of high-quality 2D TMDs toward their industrial-scale practical applications.
Collapse
Affiliation(s)
- Shaohua Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Decai Ouyang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Na Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yi Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Akshay Murthy
- Superconducting Quantum Materials and Systems Division, Fermi National Accelerator Laboratory (FNAL), Batavia, IL, 60510, USA
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, P. R. China
| | - Shiyuan Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
4
|
Seravalli L, Esposito F, Bosi M, Aversa L, Trevisi G, Verucchi R, Lazzarini L, Rossi F, Fabbri F. Built-in tensile strain dependence on the lateral size of monolayer MoS 2 synthesized by liquid precursor chemical vapor deposition. NANOSCALE 2023; 15:14669-14678. [PMID: 37624579 DOI: 10.1039/d3nr01687k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Strain engineering is an efficient tool to tune and tailor the electrical and optical properties of 2D materials. The built-in strain can be tuned during the synthesis process of a two-dimensional semiconductor, such as molybdenum disulfide, by employing different growth substrates with peculiar thermal properties. In this work, we demonstrate that the built-in strain of MoS2 monolayers, grown on a SiO2/Si substrate by liquid precursor chemical vapor deposition, is mainly dependent on the size of the monolayer. In fact, we identify a critical size equal to 20 μm, from which the built-in strain increases drastically. The built-in strain is the maximum for a 60 μm sized monolayer, leading to 1.2% tensile strain with a partial release of strain close to the monolayer triangular vertexes due to the formation of nanocracks. These findings also imply that the standard method for evaluation of the number of layers based on the Raman mode separation can become unreliable for highly strained monolayers with a lateral size above 20 μm.
Collapse
Affiliation(s)
- L Seravalli
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37/a, 43124 Parma, Italy
| | - F Esposito
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37/a, 43124 Parma, Italy
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/a, 43124 Parma, Italy
| | - M Bosi
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37/a, 43124 Parma, Italy
| | - L Aversa
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), FBK Trento unit, Via alla Cascata 56/C, 38123 Povo, Trento, Italy
| | - G Trevisi
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37/a, 43124 Parma, Italy
| | - R Verucchi
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), FBK Trento unit, Via alla Cascata 56/C, 38123 Povo, Trento, Italy
| | - L Lazzarini
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37/a, 43124 Parma, Italy
| | - F Rossi
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37/a, 43124 Parma, Italy
| | - F Fabbri
- NEST, Istituto Nanoscienze - CNR, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy.
| |
Collapse
|
5
|
Wei N, Ding Y, Zhang J, Li L, Zeng M, Fu L. Curvature geometry in 2D materials. Natl Sci Rev 2023; 10:nwad145. [PMID: 37389139 PMCID: PMC10306360 DOI: 10.1093/nsr/nwad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 07/01/2023] Open
Abstract
The two-dimensional (2D) material family can be regarded as the extreme externalization form of the matter in the planar 2D space. These atomically thin materials have abundant curvature structures, which will significantly affect their atomic configurations and physicochemical properties. Curvature engineering offers a new tuning freedom beyond the thoroughly studied layer number, grain boundaries, stacking order, etc. The precise control of the curvature geometry in 2D materials can redefine this material family. Special attention will be given to this emerging field and highlight possible future directions. With the step-by-step achievement in understanding the curvature engineering effect in 2D materials and establishing reliable delicate curvature controlling strategies, a brand-new era of 2D materials research could be developed.
Collapse
Affiliation(s)
- Nan Wei
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yiran Ding
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jiaqian Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Linyi Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | | | - Lei Fu
- Corresponding author. E-mail:
| |
Collapse
|
6
|
Gupta S, Wu W, Huang S, Yakobson BI. Single-Photon Emission from Two-Dimensional Materials, to a Brighter Future. J Phys Chem Lett 2023; 14:3274-3284. [PMID: 36977324 DOI: 10.1021/acs.jpclett.2c03674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Single photons, often called flying qubits, have enormous promise to realize scalable quantum technologies ranging from an unhackable communication network to quantum computers. However, finding an ideal single-photon emitter (SPE) is a great challenge. Recently, two-dimensional (2D) materials have shown great potential as hosts for SPEs that are bright and operate under ambient conditions. This Perspective enumerates the metrics required for an SPE source and highlights that 2D materials, because of reduced dimensionality, exhibit interesting physical effects and satisfy several metrics, making them excellent candidates to host SPEs. The performance of SPE candidates discovered in 2D materials, hexagonal boron nitride and transition metal dichalcogenides, will be assessed based on the metrics, and the remaining challenges will be highlighted. Lastly, strategies to mitigate such challenges by developing design rules to deterministically create SPE sources will be presented.
Collapse
Affiliation(s)
- Sunny Gupta
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Wenjing Wu
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| | - Shengxi Huang
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| | - Boris I Yakobson
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Smalley-Curl Institute for Nanoscale Science and Technology, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
7
|
Ci P, Zhao Y, Sun M, Rho Y, Chen Y, Grigoropoulos CP, Jin S, Li X, Wu J. Breaking Rotational Symmetry in Supertwisted WS 2 Spirals via Moiré Magnification of Intrinsic Heterostrain. NANO LETTERS 2022; 22:9027-9035. [PMID: 36346996 PMCID: PMC9706673 DOI: 10.1021/acs.nanolett.2c03347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Twisted stacking of van der Waals materials with moiré superlattices offers a new way to tailor their physical properties via engineering of the crystal symmetry. Unlike well-studied twisted bilayers, little is known about the overall symmetry and symmetry-driven physical properties of continuously supertwisted multilayer structures. Here, using polarization-resolved second harmonic generation (SHG) microscopy, we report threefold (C3) rotational symmetry breaking in supertwisted WS2 spirals grown on non-Euclidean surfaces, contrasting the intact symmetry of individual monolayers. This symmetry breaking is attributed to a geometrical magnifying effect in which small relative strain between adjacent twisted layers (heterostrain), verified by Raman spectroscopy and multiphysics simulations, generates significant distortion in the moiré pattern. Density-functional theory calculations can explain the C3 symmetry breaking and unusual SHG response by the interlayer wave function coupling. These findings thus pave the way for further developments in the so-called "3D twistronics".
Collapse
Affiliation(s)
- Penghong Ci
- Department
of Materials Science and Engineering, University
of California, Berkeley, California94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
- Institute
for Advanced Study, Shenzhen University, Shenzhen518060, China
| | - Yuzhou Zhao
- Department
of Chemistry, University of Wisconsin -
Madison, Madison, Wisconsin53706, United States
| | - Muhua Sun
- National
Center for Electron Microscopy in Beijing, School of Materials Science
and Engineering, Tsinghua University, Beijing100084, China
| | - Yoonsoo Rho
- Department
of Mechanical Engineering, University of
California, Berkeley, California94720, United States
- Physical
& Life Sciences and NIF & Photon Sciences, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Yabin Chen
- School
of Aerospace Engineering, Beijing Institute
of Technology, Beijing, 100081, China
| | - Costas P. Grigoropoulos
- Department
of Mechanical Engineering, University of
California, Berkeley, California94720, United States
| | - Song Jin
- Department
of Chemistry, University of Wisconsin -
Madison, Madison, Wisconsin53706, United States
| | - Xiaoguang Li
- Institute
for Advanced Study, Shenzhen University, Shenzhen518060, China
| | - Junqiao Wu
- Department
of Materials Science and Engineering, University
of California, Berkeley, California94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| |
Collapse
|
8
|
Martella C, Campi D, Tummala PP, Kozma E, Targa P, Codegoni D, Bernasconi M, Lamperti A, Molle A. Extreme Bendability of Atomically Thin MoS 2 Grown by Chemical Vapor Deposition Assisted by Perylene-Based Promoter. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224050. [PMID: 36432336 PMCID: PMC9697825 DOI: 10.3390/nano12224050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 05/14/2023]
Abstract
Shaping two-dimensional (2D) materials in arbitrarily complex geometries is a key to designing their unique physical properties in a controlled fashion. This is an elegant solution, taking benefit from the extreme flexibility of the 2D layers but requiring the ability to force their spatial arrangement from flat to curved geometries in a delicate balance among free-energy contributions from strain, slip-and-shear mechanisms, and adhesion to the substrate. Here, we report on a chemical vapor deposition approach, which takes advantage of the surfactant effects of organic molecules, namely the tetrapotassium salt of perylene-3,4,9,10-tetracarboxylic acid (PTAS), to conformally grow atomically thin layers of molybdenum disulphide (MoS2) on arbitrarily nanopatterned substrates. Using atomically resolved transmission electron microscope images and density functional theory calculations, we show that the most energetically favorable condition for the MoS2 layers consists of its adaptation to the local curvature of the patterned substrate through a shear-and-slip mechanism rather than strain accumulation. This conclusion also reveals that the perylene-based molecules have a role in promoting the adhesion of the layers onto the substrate, no matter the local-scale geometry.
Collapse
Affiliation(s)
- Christian Martella
- CNR IMM, Unit of Agrate Brianza, Via C. Olivetti 2, I-20864 Agrate Brianza, Italy
- Correspondence: (C.M.); (D.C.); (A.L.); (A.M.)
| | - Davide Campi
- Department of Material Science, University of Milano-Bicocca, Via R. Cozzi 55, I-20125 Milano, Italy
- Correspondence: (C.M.); (D.C.); (A.L.); (A.M.)
| | - Pinaka Pani Tummala
- CNR IMM, Unit of Agrate Brianza, Via C. Olivetti 2, I-20864 Agrate Brianza, Italy
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Via della Garzetta 48, I-25133 Brescia, Italy
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Erika Kozma
- CNR SCITEC, Unit of Milan, Via Corti 12, I-20133 Milano, Italy
| | - Paolo Targa
- STMicroelectronics, Via C. Olivetti 2, I-20864 Agrate Brianza, Italy
| | - Davide Codegoni
- STMicroelectronics, Via C. Olivetti 2, I-20864 Agrate Brianza, Italy
| | - Marco Bernasconi
- Department of Material Science, University of Milano-Bicocca, Via R. Cozzi 55, I-20125 Milano, Italy
| | - Alessio Lamperti
- CNR IMM, Unit of Agrate Brianza, Via C. Olivetti 2, I-20864 Agrate Brianza, Italy
- Correspondence: (C.M.); (D.C.); (A.L.); (A.M.)
| | - Alessandro Molle
- CNR IMM, Unit of Agrate Brianza, Via C. Olivetti 2, I-20864 Agrate Brianza, Italy
- Correspondence: (C.M.); (D.C.); (A.L.); (A.M.)
| |
Collapse
|
9
|
Radial bound states in the continuum for polarization-invariant nanophotonics. Nat Commun 2022; 13:4992. [PMID: 36008419 PMCID: PMC9411165 DOI: 10.1038/s41467-022-32697-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
All-dielectric nanophotonics underpinned by the physics of bound states in the continuum (BICs) have demonstrated breakthrough applications in nanoscale light manipulation, frequency conversion and optical sensing. Leading BIC implementations range from isolated nanoantennas with localized electromagnetic fields to symmetry-protected metasurfaces with controllable resonance quality (Q) factors. However, they either require structured light illumination with complex beam-shaping optics or large, fabrication-intense arrays of polarization-sensitive unit cells, hindering tailored nanophotonic applications and on-chip integration. Here, we introduce radial quasi-bound states in the continuum (radial BICs) as a new class of radially distributed electromagnetic modes controlled by structural asymmetry in a ring of dielectric rod pair resonators. The radial BIC platform provides polarization-invariant and tunable high-Q resonances with strongly enhanced near fields in an ultracompact footprint as low as 2 µm2. We demonstrate radial BIC realizations in the visible for sensitive biomolecular detection and enhanced second-harmonic generation from monolayers of transition metal dichalcogenides, opening new perspectives for compact, spectrally selective, and polarization-invariant metadevices for multi-functional light-matter coupling, multiplexed sensing, and high-density on-chip photonics. In their work on radial BICs, the authors realize a nanophotonic platform with high resonance Q factors and drastically reduced spatial footprint ideally suited for enhanced on-chip biomolecular sensing and nonlinear light generation.
Collapse
|
10
|
Gupta S, Yu H, Yakobson BI. Designing 1D correlated-electron states by non-Euclidean topography of 2D monolayers. Nat Commun 2022; 13:3103. [PMID: 35662243 PMCID: PMC9166785 DOI: 10.1038/s41467-022-30818-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/16/2022] [Indexed: 11/09/2022] Open
Abstract
Two-dimensional (2D) bilayers, twisted to particular angles to display electronic flat bands, are being extensively explored for physics of strongly correlated 2D systems. However, the similar rich physics of one-dimensional (1D) strongly correlated systems remains elusive as it is largely inaccessible by twists. Here, a distinctive way to create 1D flat bands is proposed, by either stamping or growing a 2D monolayer on a non-Euclidean topography-patterned surface. Using boron nitride (hBN) as an example, our analysis employing elastic plate theory, density-functional and coarse-grained tight-binding method reveals that hBN's bi-periodic sinusoidal deformation creates pseudo- electric and magnetic fields with unexpected spatial dependence. A combination of these fields leads to anisotropic confinement and 1D flat bands. Moreover, changing the periodic undulations can tune the bandwidth, to drive the system to different strongly correlated regimes such as density waves, Luttinger liquid, and Mott insulator. The 1D nature of these states differs from those obtained in twisted materials and can be exploited to study the exciting physics of 1D quantum systems.
Collapse
Affiliation(s)
- Sunny Gupta
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, 77005, USA
| | - Henry Yu
- Applied Physics Program, Rice University, Houston, TX, 77005, USA
| | - Boris I Yakobson
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, 77005, USA.
- Department of Chemistry, Rice University, Houston, TX, 77005, USA.
- Smalley-Curl Institute for Nanoscale Science and Technology, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
11
|
Yu H, Kutana A, Yakobson BI. Electron Optics and Valley Hall Effect of Undulated Graphene. NANO LETTERS 2022; 22:2934-2940. [PMID: 35290731 DOI: 10.1021/acs.nanolett.2c00103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electron optics is the systematic use of electromagnetic (EM) fields to control electron motions. In graphene, strain induces pseudo-electromagnetic fields to guide electron motion. Here we demonstrate the use of substrate topography to impart desirable strain on graphene to induce static pseudo-EM fields. We derive the quasi-classical equation of motion for Dirac Fermions in a pseudo-EM field in graphene and establish the correspondence between the quasi-classical and quantum mechanical snake states. Based on the trajectory analysis, we design sculpted substrates to realize various "optical devices" such as a converging lens or a collimator, and further propose a setup to achieve valley Hall effect solely through substrate patterning, without any external fields, to be used in valleytronics applications. Finally, we discuss how the predicted strain/pseudo-EM field patterns can be experimentally sustained by typical substrates and generalized to other 2D materials.
Collapse
Affiliation(s)
- Henry Yu
- Applied Physics Program, Rice University, Houston, Texas 7700, United States
- Materials Science & Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Alex Kutana
- Materials Science & Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Boris I Yakobson
- Applied Physics Program, Rice University, Houston, Texas 7700, United States
- Materials Science & Nanoengineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
12
|
Ambient Pressure Chemical Vapor Deposition of Flat and Vertically Aligned MoS2 Nanosheets. NANOMATERIALS 2022; 12:nano12060973. [PMID: 35335786 PMCID: PMC8949030 DOI: 10.3390/nano12060973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023]
Abstract
Molybdenum disulfide (MoS2) got tremendous attention due to its atomically thin body, rich physics, and high carrier mobility. The controlled synthesis of large area and high crystalline monolayer MoS2 nanosheets on diverse substrates remains a challenge for potential practical applications. Synthesizing different structured MoS2 nanosheets with horizontal and vertical orientations with respect to the substrate surface would bring a configurational versatility with benefit for numerous applications, including nanoelectronics, optoelectronics, and energy technologies. Among the proposed methods, ambient pressure chemical vapor deposition (AP-CVD) is a promising way for developing large-scale MoS2 nanosheets because of its high flexibility and facile approach. Here, we show an effective way for synthesizing large-scale horizontally and vertically aligned MoS2 on different substrates such as flat SiO2/Si, pre-patterned SiO2 and conductive substrates (TaN) benefit various direct TMDs production. In particular, we show precise control of CVD optimization for yielding high-quality MoS2 layers by changing growth zone configuration and the process steps. We demonstrated that the influence of configuration variability by local changes of the S to MoO3 precursor positions in the growth zones inside the CVD reactor is a key factor that results in differently oriented MoS2 formation. Finally, we show the layer quality and physical properties of as-grown MoS2 by means of different characterizations: Raman spectroscopy, scanning electron microscopy (SEM), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS). These experimental findings provide a strong pathway for conformally recasting AP-CVD grown MoS2 in many different configurations (i.e., substrate variability) or motifs (i.e., vertical or planar alignment) with potential for flexible electronics, optoelectronics, memories to energy storage devices.
Collapse
|
13
|
Zhou D, Fuentes-Cabrera M, Singh A, Unocic RR, Carrillo JMY, Xiao K, Li Y, Li B. Atomic Edge-Guided Polyethylene Crystallization on Monolayer Two-Dimensional Materials. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dong Zhou
- Department of Mechanical Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
- Hybrid Nano-Architectures and Advanced Manufacturing Laboratory, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Miguel Fuentes-Cabrera
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Akash Singh
- Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Raymond R. Unocic
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jan Michael Y. Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kai Xiao
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yumeng Li
- Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Bo Li
- Department of Mechanical Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
- Hybrid Nano-Architectures and Advanced Manufacturing Laboratory, Villanova University, Villanova, Pennsylvania 19085, United States
| |
Collapse
|
14
|
Wang K, Zhang L, Nguyen GD, Sang X, Liu C, Yu Y, Ko W, Unocic RR, Puretzky AA, Rouleau CM, Geohegan DB, Fu L, Duscher G, Li AP, Yoon M, Xiao K. Selective Antisite Defect Formation in WS 2 Monolayers via Reactive Growth on Dilute W-Au Alloy Substrates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106674. [PMID: 34738669 DOI: 10.1002/adma.202106674] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Defects are ubiquitous in 2D materials and can affect the structure and properties of the materials and also introduce new functionalities. Methods to adjust the structure and density of defects during bottom-up synthesis are required to control the growth of 2D materials with tailored optical and electronic properties. Here, the authors present an Au-assisted chemical vapor deposition approach to selectively form SW and S2W antisite defects, whereby one or two sulfur atoms substitute for a tungsten atom in WS2 monolayers. Guided by first-principles calculations, they describe a new method that can maintain tungsten-poor growth conditions relative to sulfur via the low solubility of W atoms in a gold/W alloy, thereby significantly reducing the formation energy of the antisite defects during the growth of WS2 . The atomic structure and composition of the antisite defects are unambiguously identified by Z-contrast scanning transmission electron microscopy and electron energy-loss spectroscopy, and their total concentration is statistically determined, with levels up to ≈5.0%. Scanning tunneling microscopy/spectroscopy measurements and first-principles calculations further verified these antisite defects and revealed the localized defect states in the bandgap of WS2 monolayers. This bottom-up synthesis method to form antisite defects should apply in the synthesis of other 2D materials.
Collapse
Affiliation(s)
- Kai Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Lizhi Zhang
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37916, USA
| | - Giang D Nguyen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Xiahan Sang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
- Nanostructure Research Centre, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Chenze Liu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Yiling Yu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Wonhee Ko
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Raymond R Unocic
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Alexander A Puretzky
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Christopher M Rouleau
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - David B Geohegan
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Lei Fu
- College of Chemistry and Molecular Science, Wuhan University, Wuhan, 430072, China
| | - Gerd Duscher
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37916, USA
| | - An-Ping Li
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Mina Yoon
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Kai Xiao
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
15
|
Kim JM, Haque MF, Hsieh EY, Nahid SM, Zarin I, Jeong KY, So JP, Park HG, Nam S. Strain Engineering of Low-Dimensional Materials for Emerging Quantum Phenomena and Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021:e2107362. [PMID: 34866241 DOI: 10.1002/adma.202107362] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Recent discoveries of exotic physical phenomena, such as unconventional superconductivity in magic-angle twisted bilayer graphene, dissipationless Dirac fermions in topological insulators, and quantum spin liquids, have triggered tremendous interest in quantum materials. The macroscopic revelation of quantum mechanical effects in quantum materials is associated with strong electron-electron correlations in the lattice, particularly where materials have reduced dimensionality. Owing to the strong correlations and confined geometry, altering atomic spacing and crystal symmetry via strain has emerged as an effective and versatile pathway for perturbing the subtle equilibrium of quantum states. This review highlights recent advances in strain-tunable quantum phenomena and functionalities, with particular focus on low-dimensional quantum materials. Experimental strategies for strain engineering are first discussed in terms of heterogeneity and elastic reconfigurability of strain distribution. The nontrivial quantum properties of several strain-quantum coupled platforms, including 2D van der Waals materials and heterostructures, topological insulators, superconducting oxides, and metal halide perovskites, are next outlined, with current challenges and future opportunities in quantum straintronics followed. Overall, strain engineering of quantum phenomena and functionalities is a rich field for fundamental research of many-body interactions and holds substantial promise for next-generation electronics capable of ultrafast, dissipationless, and secure information processing and communications.
Collapse
Affiliation(s)
- Jin Myung Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Md Farhadul Haque
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ezekiel Y Hsieh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shahriar Muhammad Nahid
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ishrat Zarin
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kwang-Yong Jeong
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- Department of Physics, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jae-Pil So
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Hong-Gyu Park
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Republic of Korea
| | - SungWoo Nam
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
16
|
Dong J, Zhang L, Wu B, Ding F, Liu Y. Theoretical Study of Chemical Vapor Deposition Synthesis of Graphene and Beyond: Challenges and Perspectives. J Phys Chem Lett 2021; 12:7942-7963. [PMID: 34387496 DOI: 10.1021/acs.jpclett.1c02316] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) materials have attracted great attention in recent years because of their unique dimensionality and related properties. Chemical vapor deposition (CVD), a crucial technique for thin-film epitaxial growth, has become the most promising method of synthesizing 2D materials. Different from traditional thin-film growth, where strong chemical bonds are involved in both thin films and substrates, the interaction in 2D materials and substrates involves the van der Waals force and is highly anisotropic, and therefore, traditional thin-film growth theories cannot be applied to 2D material CVD synthesis. During the last 15 years, extensive theoretical studies were devoted to the CVD synthesis of 2D materials. This Perspective attempts to present a theoretical framework for 2D material CVD synthesis as well as the challenges and opportunities in exploring CVD mechanisms. We hope that this Perspective can provide an in-depth understanding of 2D material CVD synthesis and can further stimulate 2D material synthesis.
Collapse
Affiliation(s)
- Jichen Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Leining Zhang
- Centre for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan 44919, South Korea
| | - Bin Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Feng Ding
- Centre for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan 44919, South Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
17
|
Xia Y, Berry J, Haataja MP. Defect-Enabled Phase Programming of Transition Metal Dichalcogenide Monolayers. NANO LETTERS 2021; 21:4676-4683. [PMID: 34042458 DOI: 10.1021/acs.nanolett.1c00742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ability to tune the local electronic transport properties of group VI transition metal dichalcogenide (TMD) monolayers by strain-induced structural phase transformations ("phase programming") has stimulated much interest in the potential applications of such layers as ultrathin programmable and dynamically switchable nanoelectronics components. In this manuscript, we propose a new approach toward controlling TMD monolayer phases by employing macroscopic in-plane strains to amplify heterogeneous strains arising from tailored, spatially extended defects within the monolayer. The efficacy of our proposed approach is demonstrated via numerical simulations of emerging domains localized around arrays of holes, grain boundaries, and compositional heterointerfaces. Quantitative relations between the macroscopic strains required, spatial resolution of domain patterns, and defect configurations are developed. In particular, the introduction of arrays of holes is identified as the most feasible phase programming route.
Collapse
Affiliation(s)
- Yang Xia
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Joel Berry
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Mikko P Haataja
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Institute for Science and Technology of Materials (PRISM), Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
18
|
Zhang L, Dong J, Ding F. Strategies, Status, and Challenges in Wafer Scale Single Crystalline Two-Dimensional Materials Synthesis. Chem Rev 2021; 121:6321-6372. [PMID: 34047544 DOI: 10.1021/acs.chemrev.0c01191] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The successful exfoliation of graphene has given a tremendous boost to research on various two-dimensional (2D) materials in the last 15 years. Different from traditional thin films, a 2D material is composed of one to a few atomic layers. While atoms within a layer are chemically bonded, interactions between layers are generally weak van der Waals (vdW) interactions. Due to their particular dimensionality, 2D materials exhibit special electronic, magnetic, mechanical, and thermal properties, not found in their 3D counterparts, and therefore they have great potential in various applications, such as 2D materials-based devices. To fully realize their large-scale practical applications, especially in devices, wafer scale single crystalline (WSSC) 2D materials are indispensable. In this review, we present a detailed overview on strategies toward the synthesis of WSSC 2D materials while highlighting the recent progress on WSSC graphene, hexagonal boron nitride (hBN), and transition metal dichalcogenide (TMDC) synthesis. The challenges that need to be addressed in future studies have also been described. In general, there have been two distinct routes to synthesize WSSC 2D materials: (i) allowing only one nucleus on a wafer scale substrate to be formed and developed into a large single crystal and (ii) seamlessly stitching a large number of unidirectionally aligned 2D islands on a wafer scale substrate, which is generally single crystalline. Currently, the synthesis of WSSC graphene has been realized by both routes, and WSSC hBN and MoS2 have been synthesized by route (ii). On the other hand, the growth of other WSSC 2D materials and WSSC multilayer 2D materials still remains a big challenge. In the last section, we wrap up this review by summarizing the future challenges and opportunities in the synthesis of various WSSC 2D materials.
Collapse
Affiliation(s)
- Leining Zhang
- Centre for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan 44919, South Korea.,School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Jichen Dong
- Centre for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan 44919, South Korea.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Feng Ding
- Centre for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan 44919, South Korea.,School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| |
Collapse
|
19
|
Koo Y, Kim Y, Choi SH, Lee H, Choi J, Lee DY, Kang M, Lee HS, Kim KK, Lee G, Park KD. Tip-Induced Nano-Engineering of Strain, Bandgap, and Exciton Funneling in 2D Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008234. [PMID: 33709476 DOI: 10.1002/adma.202008234] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/04/2021] [Indexed: 06/12/2023]
Abstract
The tunability of the bandgap, absorption and emission energies, photoluminescence (PL) quantum yield, exciton transport, and energy transfer in transition metal dichalcogenide (TMD) monolayers provides a new class of functions for a wide range of ultrathin photonic devices. Recent strain-engineering approaches have enabled to tune some of these properties, yet dynamic control at the nanoscale with real-time and -space characterizations remains a challenge. Here, a dynamic nano-mechanical strain-engineering of naturally-formed wrinkles in a WSe2 monolayer, with real-time investigation of nano-spectroscopic properties is demonstrated using hyperspectral adaptive tip-enhanced PL (a-TEPL) spectroscopy. First, nanoscale wrinkles are characterized through hyperspectral a-TEPL nano-imaging with <15 nm spatial resolution, which reveals the modified nano-excitonic properties by the induced tensile strain at the wrinkle apex, for example, an increase in the quantum yield due to the exciton funneling, decrease in PL energy up to ≈10 meV, and a symmetry change in the TEPL spectra caused by the reconfigured electronic bandstructure. Then the local strain is dynamically engineered by pressing and releasing the wrinkle apex through an atomic force tip control. This nano-mechanical strain-engineering allows to tune the exciton dynamics and emission properties at the nanoscale in a reversible fashion. In addition, a systematic switching and modulation platform of the wrinkle emission is demonstrated, which provides a new strategy for robust, tunable, and ultracompact nano-optical sources in atomically thin semiconductors.
Collapse
Affiliation(s)
- Yeonjeong Koo
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yongchul Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Soo Ho Choi
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyeongwoo Lee
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jinseong Choi
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Dong Yun Lee
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Mingu Kang
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyun Seok Lee
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Ki Kang Kim
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Geunsik Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Wave Energy Materials, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kyoung-Duck Park
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
20
|
Yu Y, Jung GS, Liu C, Lin YC, Rouleau CM, Yoon M, Eres G, Duscher G, Xiao K, Irle S, Puretzky AA, Geohegan DB. Strain-Induced Growth of Twisted Bilayers during the Coalescence of Monolayer MoS 2 Crystals. ACS NANO 2021; 15:4504-4517. [PMID: 33651582 DOI: 10.1021/acsnano.0c08516] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tailoring the grain boundaries (GBs) and twist angles between two-dimensional (2D) crystals are two crucial synthetic challenges to deterministically enable envisioned applications such as moiré excitons, emerging magnetism, or single-photon emission. Here, we reveal how twisted 2D bilayers can be synthesized from the collision and coalescence of two growing monolayer MoS2 crystals during chemical vapor deposition. The twisted bilayer (TB) moiré angles are found to preserve the misorientation angle (θ) of the colliding crystals. The shapes of the TB regions are rationalized by a kink propagation model that predicts the GB formed by the coalescing crystals. Optical spectroscopy measurements reveal a θ-dependent long-range strain in crystals with stitched grain boundaries and a sharp (θ > 20°) threshold for the appearance of TBs, which relieves this strain. Reactive molecular dynamics simulations explain this strain from the continued growth of the crystals during coalescence due to the insertion of atoms at unsaturated defects along the GB, a process that self-terminates when the defects become saturated. The simulations also reproduce atomic-resolution electron microscopy observations of faceting along the GB, which is shown to arise from the growth-induced long-range strain. These facets align with the axes of the colliding crystals to provide favorable nucleation sites for second-layer growth of a TB with twist angles that preserve the misorientation angle θ. This interplay between strain generation and aligned nucleation provides a synthetic pathway for the growth of TBs with deterministic angles.
Collapse
Affiliation(s)
- Yiling Yu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Gang Seob Jung
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Chenze Liu
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Yu-Chuan Lin
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Christopher M Rouleau
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Mina Yoon
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Gyula Eres
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Gerd Duscher
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Kai Xiao
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Stephan Irle
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Alexander A Puretzky
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - David B Geohegan
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
21
|
DiStefano JG, Murthy AA, Hao S, Dos Reis R, Wolverton C, Dravid VP. Topology of transition metal dichalcogenides: the case of the core-shell architecture. NANOSCALE 2020; 12:23897-23919. [PMID: 33295919 DOI: 10.1039/d0nr06660e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Non-planar architectures of the traditionally flat 2D materials are emerging as an intriguing paradigm to realize nascent properties within the family of transition metal dichalcogenides (TMDs). These non-planar forms encompass a diversity of curvatures, morphologies, and overall 3D architectures that exhibit unusual characteristics across the hierarchy of length-scales. Topology offers an integrated and unified approach to describe, harness, and eventually tailor non-planar architectures through both local and higher order geometry. Topological design of layered materials intrinsically invokes elements highly relevant to property manipulation in TMDs, such as the origin of strain and its accommodation by defects and interfaces, which have broad implications for improved material design. In this review, we discuss the importance and impact of geometry on the structure and properties of TMDs. We present a generalized geometric framework to classify and relate the diversity of possible non-planar TMD forms. We then examine the nature of curvature in the emerging core-shell architecture, which has attracted high interest due to its versatility and design potential. We consider the local structure of curved TMDs, including defect formation, strain, and crystal growth dynamics, and factors affecting the morphology of core-shell structures, such as synthesis conditions and substrate morphology. We conclude by discussing unique aspects of TMD architectures that can be leveraged to engineer targeted, exotic properties and detail how advanced characterization tools enable detection of these features. Varying the topology of nanomaterials has long served as a potent methodology to engineer unusual and exotic properties, and the time is ripe to apply topological design principles to TMDs to drive future nanotechnology innovation.
Collapse
Affiliation(s)
- Jennifer G DiStefano
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Zhao Y, Zhang C, Kohler DD, Scheeler JM, Wright JC, Voyles PM, Jin S. Supertwisted spirals of layered materials enabled by growth on non-Euclidean surfaces. Science 2020; 370:442-445. [DOI: 10.1126/science.abc4284] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/02/2020] [Indexed: 11/02/2022]
Affiliation(s)
- Yuzhou Zhao
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Chenyu Zhang
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Daniel D. Kohler
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Jason M. Scheeler
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - John C. Wright
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Paul M. Voyles
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Song Jin
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
23
|
Cheng Z, Sun J, Zhang B, Lu Z, Ma F, Zhang G, Xue Q. Strain Effects of Vertical Separation and Horizontal Sliding in Commensurate Two-Dimensional Homojunctions. J Phys Chem Lett 2020; 11:5815-5822. [PMID: 32614591 DOI: 10.1021/acs.jpclett.0c01713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Strain, as an economic yet controllable approach for structural modulation, frequently plays a vital role in the preparation and performance optimization of two-dimensional nanomaterials (TNMs). Here, utilizing first-principles simulations, the analysis of energetics shows that the biaxial stretching and compressing could facilitate the vertical separation and horizontal sliding in graphene (Gr/Gr), hexagonal boron nitride (h-BN/h-BN), and molybdenum disulfide (MoS2/MoS2) bilayers. The quantification of electron redistribution between layers confirmed that the shifts of interlayer charge density (ρinter-) and its relative values (Δρinter-) are responsible for the vertical separation and horizontal sliding facilitated by biaxial strain. More effortless horizontal sliding was enabled by a smoother potential energy surface because a smaller Δρinter- can be acquired under compression, whereas more effortless vertical separation followed a more vulnerable surface energy because a lower ρinter- occurs under tensile strain. The vertical and horizontal division of strain effect provides a novel idea for further understanding its pivotal roles in strain engineering of commensurate-contact TNMs, such as mechanical exfoliation and solid lubrication.
Collapse
Affiliation(s)
- Ziwen Cheng
- Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Nanoscience and Nanotechnology, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Junhui Sun
- Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Mechanical Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
| | - Bozhao Zhang
- Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhibin Lu
- Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Ma
- Institute of Nanoscience and Nanotechnology, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Guangan Zhang
- Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qunji Xue
- Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
24
|
Affiliation(s)
- Sergei V Kalinin
- The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
25
|
Gu Y, Cai H, Dong J, Yu Y, Hoffman AN, Liu C, Oyedele AD, Lin YC, Ge Z, Puretzky AA, Duscher G, Chisholm MF, Rack PD, Rouleau CM, Gai Z, Meng X, Ding F, Geohegan DB, Xiao K. Two-Dimensional Palladium Diselenide with Strong In-Plane Optical Anisotropy and High Mobility Grown by Chemical Vapor Deposition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906238. [PMID: 32173918 DOI: 10.1002/adma.201906238] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/14/2019] [Accepted: 02/18/2020] [Indexed: 05/12/2023]
Abstract
Two-dimensional (2D) palladium diselenide (PdSe2 ) has strong interlayer coupling and a puckered pentagonal structure, leading to remarkable layer-dependent electronic structures and highly anisotropic in-plane optical and electronic properties. However, the lack of high-quality, 2D PdSe2 crystals grown by bottom-up approaches limits the study of their exotic properties and practical applications. In this work, chemical vapor deposition growth of highly crystalline few-layer (≥2 layers) PdSe2 crystals on various substrates is reported. The high quality of the PdSe2 crystals is confirmed by low-frequency Raman spectroscopy, scanning transmission electron microscopy, and electrical characterization. In addition, strong in-plane optical anisotropy is demonstrated via polarized Raman spectroscopy and second-harmonic generation maps of the PdSe2 flakes. A theoretical model based on kinetic Wulff construction theory and density functional theory calculations is developed and described the observed evolution of "square-like" shaped PdSe2 crystals into rhombus due to the higher nucleation barriers for stable attachment on the (1,1) and (1,-1) edges, which results in their slower growth rates. Few-layer PdSe2 field-effect transistors reveal tunable ambipolar charge carrier conduction with an electron mobility up to ≈294 cm2 V-1 s-1 , which is comparable to that of exfoliated PdSe2 , indicating the promise of this anisotropic 2D material for electronics.
Collapse
Affiliation(s)
- Yiyi Gu
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Hui Cai
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jichen Dong
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yiling Yu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Anna N Hoffman
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Chenze Liu
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Akinola D Oyedele
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, 37966, USA
| | - Yu-Chuan Lin
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Zhuozhi Ge
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Alexander A Puretzky
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Gerd Duscher
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Matthew F Chisholm
- Materials Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Philip D Rack
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Christopher M Rouleau
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Zheng Gai
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Xiangmin Meng
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Feng Ding
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - David B Geohegan
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Kai Xiao
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|