1
|
Lee D, Jo MG, Min KY, Choi MY, Kim YM, Kim HS, Choi WS. IL-10 + regulatory B cells mitigate atopic dermatitis by suppressing eosinophil activation. Sci Rep 2024; 14:18164. [PMID: 39107352 PMCID: PMC11303538 DOI: 10.1038/s41598-024-68660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Atopic dermatitis (AD) presents significant therapeutic challenges due to its poorly understood etiology. Eosinophilia, a hallmark of allergic inflammation, is implicated in AD pathogenesis. Interleukin-10 (IL-10)-producing regulatory B (Breg) cells exhibit potent anti-inflammatory effects. However, their role in controlling AD-related eosinophilia is not well understood. To investigate the impact of eosinophils on AD, we employed IL-5Rα-deficient (Il5ra-/-) mice, which lack functional eosinophils. Induction of AD in these mice resulted in attenuated disease symptoms, underscoring the critical role of eosinophils in AD development. Additionally, the adoptive transfer of purified Breg cells into mice with AD significantly alleviated disease severity. Mechanistic studies revealed that IL-10 produced by Breg cells directly inhibits eosinophil activation and infiltration into the skin. In vitro experiments further confirmed that Breg cells inhibited eosinophil peroxidase secretion in an IL-10-dependent manner. Our collective findings demonstrate that IL-10 from Breg cells alleviates AD by suppressing eosinophil activation and tissue infiltration. This study elucidates a novel regulatory mechanism of Breg cells, providing a foundation for future Breg-mediated therapeutic strategies for AD.
Collapse
Affiliation(s)
- Dajeong Lee
- School of Medicine, Konkuk University, Chungju, 27478, Korea
| | - Min Geun Jo
- School of Medicine, Konkuk University, Chungju, 27478, Korea
| | - Keun Young Min
- School of Medicine, Konkuk University, Chungju, 27478, Korea
| | - Min Yeong Choi
- School of Medicine, Konkuk University, Chungju, 27478, Korea
| | - Young Mi Kim
- College of Pharmacy, Duksung Women's University, Seoul, 01369, Korea
| | - Hyuk Soon Kim
- Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Korea.
| | - Wahn Soo Choi
- School of Medicine, Konkuk University, Chungju, 27478, Korea.
- Institute of Biomedical Sciences & Technology, Konkuk University, Seoul, 05029, Korea.
| |
Collapse
|
2
|
Cochran SJ, Dunigan-Russell K, Hutton GM, Nguyen H, Schladweiler MC, Jones DP, Williams WC, Fisher AA, Gilmour MI, Dye JA, Smith MR, Miller CN, Gowdy KM. Repeated exposure to eucalyptus wood smoke alters pulmonary gene and metabolic profiles in male Long-Evans rats. Toxicol Sci 2024; 199:332-348. [PMID: 38544285 PMCID: PMC11131017 DOI: 10.1093/toxsci/kfae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Exposure to wildfire smoke is associated with both acute and chronic cardiopulmonary illnesses, which are of special concern for wildland firefighters who experience repeated exposure to wood smoke. It is necessary to better understand the underlying pathophysiology by which wood smoke exposure increases pulmonary disease burdens in this population. We hypothesize that wood smoke exposure produces pulmonary dysfunction, lung inflammation, and gene expression profiles associated with future pulmonary complications. Male Long-Evans rats were intermittently exposed to smoldering eucalyptus wood smoke at 2 concentrations, low (11.0 ± 1.89 mg/m3) and high (23.7 ± 0.077 mg/m3), over a 2-week period. Whole-body plethysmography was measured intermittently throughout. Lung tissue and lavage fluid were collected 24 h after the final exposure for transcriptomics and metabolomics. Increasing smoke exposure upregulated neutrophils and select cytokines in the bronchoalveolar lavage fluid. In total, 3446 genes were differentially expressed in the lungs of rats in the high smoke exposure and only 1 gene in the low smoke exposure (Cd151). Genes altered in the high smoke group reflected changes to the Eukaryotic Initiation Factor 2 stress and oxidative stress responses, which mirrored metabolomics analyses. xMWAS-integrated analysis revealed that smoke exposure significantly altered pathways associated with oxidative stress, lung morphogenesis, and tumor proliferation pathways. These results indicate that intermittent, 2-week exposure to eucalyptus wood smoke leads to transcriptomic and metabolic changes in the lung that may predict future lung disease development. Collectively, these findings provide insight into cellular signaling pathways that may contribute to the chronic pulmonary conditions observed in wildland firefighters.
Collapse
Affiliation(s)
- Samuel J Cochran
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Katelyn Dunigan-Russell
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Grace M Hutton
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Helen Nguyen
- Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, Research Triangle Park, North Carolina 27711, USA
| | - Mette C Schladweiler
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Wanda C Williams
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Anna A Fisher
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - M Ian Gilmour
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Janice A Dye
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - M Ryan Smith
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
- Atlanta Veterans Affairs Healthcare System, Decatur, Georgia 30033, USA
| | - Colette N Miller
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Kymberly M Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| |
Collapse
|
3
|
Mehrani Y, Morovati S, Tajik T, Sarmadi S, Bitaraf A, Sourani Z, Shahverdi M, Javadi H, Kakish JE, Bridle BW, Karimi K. Communication between Mast Cells and Group 2 Innate Lymphoid Cells in the Skin. Cells 2024; 13:462. [PMID: 38474426 DOI: 10.3390/cells13050462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
The skin is a dynamic organ with a complex immune network critical for maintaining balance and defending against various pathogens. Different types of cells in the skin, such as mast cells (MCs) and group 2 innate lymphoid cells (ILC2s), contribute to immune regulation and play essential roles in the early immune response to various triggers, including allergens. It is beneficial to dissect cell-to-cell interactions in the skin to elucidate the mechanisms underlying skin immunity. The current manuscript concentrates explicitly on the communication pathways between MCs and ILC2s in the skin, highlighting their ability to regulate immune responses, inflammation, and tissue repair. Furthermore, it discusses how the interactions between MCs and ILC2s play a crucial role in various skin conditions, such as autoimmune diseases, dermatological disorders, and allergic reactions. Understanding the complex interactions between MCs and ILC2s in different skin conditions is crucial to developing targeted treatments for related disorders. The discovery of shared pathways could pave the way for novel therapeutic interventions to restore immunological balance in diseased skin tissues.
Collapse
Affiliation(s)
- Yeganeh Mehrani
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran
| | - Solmaz Morovati
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz 71557-13876, Iran
| | - Tahmineh Tajik
- Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran
| | - Soroush Sarmadi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran 14199-63114, Iran
| | - Ali Bitaraf
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran 14167-53955, Iran
| | - Zahra Sourani
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord 88186-34141, Iran
| | - Mohammad Shahverdi
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord 88186-34141, Iran
- Clinical Biochemistry Research Center, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord 88157-13471, Iran
| | - Helia Javadi
- Department of Medical Sciences, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Julia E Kakish
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
4
|
Lian SL, Lu YT, Lu YJ, Yao YL, Wang XL, Jiang RQ. Tumor-associated macrophages promoting PD-L1 expression in infiltrating B cells through the CXCL12/CXCR4 axis in human hepatocellular carcinoma. Am J Cancer Res 2024; 14:832-853. [PMID: 38455420 PMCID: PMC10915331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/04/2024] [Indexed: 03/09/2024] Open
Abstract
The inflammation-related tumor microenvironment (TME) is one of the major driving forces of hepatocarcinogenesis. We aimed to investigate cell-to-cell communication among Hepatocellular Carcinoma (HCC) through re-analyzing HCC single-cell RNA-seq data, and to confirm such cellular interaction through in vitro and in vivo study. We found a subset of Regulatory B cells with PD-L1 expression (PD-L1+ Bregs), mainly located in adjacent HCC tissues. In co-localization with PD-L1+ Bregs, a subset of Tumor Associated Macrophages with high expression of CXCL12 (CXCL12+ TAMs) was also mainly located in adjacent HCC tissues. Moreover, CXCL12+ TAMs can be stimulated in vitro using an HCC conditional medium. Using CellChat analysis and Multiplex Immunohistochemistry staining (mIHC), CXCL12+ TAMs were found to be first recruited by Cancer-Associated Fibroblasts (CAFs) through a CD74/macrophage migration inhibitory factor (MIF) pattern, and further differentiated into TGF-β-enriched tissues. Furthermore, CXCL12+ TAMs recruited PD-L1+ Bregs via the CXCL12/CXCR4 axis, and CXCR4 expression was significantly positively correlated to PD-L1 expression in PD-L1+ Bregs. At last, we confirmed the communications among CAFs, Macrophages and B cells and their tumor-promoting effects by using an orthotopic mouse model of HCC. Immunosuppressive HCC TME involving cell-to-cell communications comprised MIF-secreting CAFs, CXCL12-secreting TAMs, and PD-L1-producing Bregs, and their regulation could be promising therapeutic targets in future immunotherapy for human HCC.
Collapse
Affiliation(s)
- Sen-Lin Lian
- Medical School, Nanjing UniversityNanjing 210093, Jiangsu, The People’s Republic of China
| | - Yun-Tao Lu
- Medical School, Nanjing UniversityNanjing 210093, Jiangsu, The People’s Republic of China
| | - Yi-Jun Lu
- Medical School, Nanjing UniversityNanjing 210093, Jiangsu, The People’s Republic of China
| | - Yong-Liang Yao
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu UniversityKunshan 215300, Jiangsu, The People’s Republic of China
| | - Xiao-Lin Wang
- Department of Thoracic Surgery, Northern Jiangsu People’s Hospital and Clinical Medical College of Yangzhou UniversityYangzhou 225001, Jiangsu, The People’s Republic of China
| | - Run-Qiu Jiang
- Medical School, Nanjing UniversityNanjing 210093, Jiangsu, The People’s Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing UniversityNanjing 210093, Jiangsu, The People’s Republic of China
- Jiangsu Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjing 210093, Jiangsu, The People’s Republic of China
| |
Collapse
|
5
|
Zheremyan EA, Ustiugova AS, Karamushka NM, Uvarova AN, Stasevich EM, Bogolyubova AV, Kuprash DV, Korneev KV. Breg-Mediated Immunoregulation in the Skin. Int J Mol Sci 2024; 25:583. [PMID: 38203754 PMCID: PMC10778726 DOI: 10.3390/ijms25010583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Wound healing is a complex process involving a coordinated series of events aimed at restoring tissue integrity and function. Regulatory B cells (Bregs) are a subset of B lymphocytes that play an essential role in fine-tuning immune responses and maintaining immune homeostasis. Recent studies have suggested that Bregs are important players in cutaneous immunity. This review summarizes the current understanding of the role of Bregs in skin immunity in health and pathology, such as diabetes, psoriasis, systemic sclerosis, cutaneous lupus erythematosus, cutaneous hypersensitivity, pemphigus, and dermatomyositis. We discuss the mechanisms by which Bregs maintain tissue homeostasis in the wound microenvironment through the promotion of angiogenesis, suppression of effector cells, and induction of regulatory immune cells. We also mention the potential clinical applications of Bregs in promoting wound healing, such as the use of adoptive Breg transfer.
Collapse
Affiliation(s)
- Elina A. Zheremyan
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alina S. Ustiugova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nina M. Karamushka
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Aksinya N. Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ekaterina M. Stasevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Dmitry V. Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Kirill V. Korneev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- National Research Center for Hematology, 125167 Moscow, Russia
| |
Collapse
|
6
|
Hyun SY, Kim EY, Kang M, Park JW, Hong KS, Chung HM, Choi WS, Park SP, Noh G, Kim HS. Embryonic-stem-cell-derived mesenchymal stem cells relieve experimental contact urticaria by regulating the functions of mast cells and T cells. Sci Rep 2023; 13:22694. [PMID: 38123643 PMCID: PMC10733409 DOI: 10.1038/s41598-023-50258-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Abstract
Contact urticaria (CU) is an inflammatory skin disorder triggered by specific substances upon skin contact, leading to immediate acute or chronic manifestations characterized by swelling and redness. While mesenchymal stem cells (MSCs) are increasingly recognized for their therapeutic potential in immune diseases, research on the efficacy and mechanisms of stem cell therapy for urticaria remains scarce. This study investigates the regulatory role of embryonic-stem-cell-derived multipotent MSCs (M-MSCs) administered in a CU mouse model. Therapeutic effects of M-MSC administration were assessed in a Trimellitic anhydride-induced contact urticaria model, revealing significant inhibition of urticarial reactions, including ear swelling, itchiness, and skin lesion. Moreover, M-MSC administration exerted control over effector T cell activities in major lymphoid and peripheral tissues, while also suppressing mast cell degranulation in peripheral tissues. Notably, the inhibitory effects mediated by M-MSCs were found to be TGF-β-dependent. Our study demonstrates the capacity of M-MSCs to regulate contact urticaria in a murine model, harmonizing the activation of inflammatory T cells and mast cells. Additionally, we suggest that TGF-β derived from M-MSCs could play a pivotal role as an inhibitory mechanism in contact urticaria.
Collapse
Affiliation(s)
- Seung Yeun Hyun
- Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Korea
| | | | - Minseong Kang
- Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Korea
| | - Jeong Won Park
- Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Korea
| | | | - Hyung-Min Chung
- Mirae Cell Bio Co., Ltd., Seoul, 04795, Korea
- School of Medicine, Konkuk University, Seoul, 05029, Korea
| | - Wahn Soo Choi
- School of Medicine, Konkuk University, Seoul, 05029, Korea
| | - Se-Pill Park
- Mirae Cell Bio Co., Ltd., Seoul, 04795, Korea.
- Department of Bio Medical Informatics, College of Applied Life Sciences, Jeju National University, Jeju, 63243, Korea.
| | - Geunwoong Noh
- Department of Allergy, Allergy and Clinical Immunology Center, Cheju Halla General Hospital, Jeju, 63127, Korea.
| | - Hyuk Soon Kim
- Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Korea.
| |
Collapse
|
7
|
Zheng H, Cao P, Su Z, Xia L. Insights into the roles of IL-10-producing regulatory B cells in cardiovascular disorders: recent advances and future perspectives. J Leukoc Biol 2023; 114:315-324. [PMID: 37284816 DOI: 10.1093/jleuko/qiad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
Interleukin-10-producing regulatory B (B10) cells mediate the immunomodulatory functions of biosystems by secreting anti-inflammatory factors, thus playing vital roles in cardiovascular diseases such as viral myocarditis, myocardial infarction, and ischemia-reperfusion injury. However, several challenges hinder B10 cells from regulating the immunoreactivity of organisms in specific cardiovascular diseases, such as atherosclerotic disease. Regarding the regulatory mechanisms of B10 cells, the interplay between B10 cells and the cardiovascular and immune systems is complex and requires clarification. In this study, we summarize the roles of B10 cells in bacterial and aseptic heart injuries, address their regulatory functions in different stages of cardiovascular disorders, and discuss their challenges and opportunities in addressing cardiovascular diseases from bench to bedside.
Collapse
Affiliation(s)
- Huiqin Zheng
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Zhenjiang 212001, China
- International Genome Center, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, China
| | - Pei Cao
- International Genome Center, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, China
- Institute of Medical Immunology, Jiangsu University, No. 438 Jiefang Road, Zhenjiang 212001, China
| | - Lin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Zhenjiang 212001, China
- Institute of Hematological Disease, Jiangsu University, No. 438 Jiefang Road, Zhenjiang 212001, China
| |
Collapse
|
8
|
Yamaguchi HL, Yamaguchi Y, Peeva E. Role of Innate Immunity in Allergic Contact Dermatitis: An Update. Int J Mol Sci 2023; 24:12975. [PMID: 37629154 PMCID: PMC10455292 DOI: 10.3390/ijms241612975] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Our understanding of allergic contact dermatitis mechanisms has progressed over the past decade. Innate immune cells that are involved in the pathogenesis of allergic contact dermatitis include Langerhans cells, dermal dendritic cells, macrophages, mast cells, innate lymphoid cells (ILCs), neutrophils, eosinophils, and basophils. ILCs can be subcategorized as group 1 (natural killer cells; ILC1) in association with Th1, group 2 (ILC2) in association with Th2, and group 3 (lymphoid tissue-inducer cells; ILC3) in association with Th17. Pattern recognition receptors (PRRs) including toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) in innate immune cells recognize damage-associated molecular patterns (DAMPs) and cascade the signal to produce several cytokines and chemokines including tumor necrosis factor (TNF)-α, interferon (IFN)-α, IFN-γ, interleukin (IL)-1β, IL-4, IL-6, IL-12, IL-13, IL-17, IL-18, and IL-23. Here we discuss the recent findings showing the roles of the innate immune system in allergic contact dermatitis during the sensitization and elicitation phases.
Collapse
Affiliation(s)
| | - Yuji Yamaguchi
- Inflammation & Immunology Research Unit, Pfizer, Collegeville, PA 19426, USA
| | - Elena Peeva
- Inflammation & Immunology Research Unit, Pfizer, Cambridge, MA 02139, USA
| |
Collapse
|
9
|
Circulating Regulatory B-Lymphocytes in Patients with Acute Myocardial Infarction: A Pilot Study. J Cardiovasc Dev Dis 2022; 10:jcdd10010002. [PMID: 36661897 PMCID: PMC9865555 DOI: 10.3390/jcdd10010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Inflammation plays on important role in plaque instability and acute coronary syndromes. The anti-inflammatory effects of B-regulatory lymphocytes (B-regs) in atherosclerosis was tested mainly in animal models with inconclusive results. Herein, we studied for the first time, levels of circulating B-regs in patients with acute myocardial infarction (MI). Methods: We examined circulating levels of B-regs by flow cytometry in 29 patients with recent ST-segment elevation MI and 18 patients with stable angina pectoris (SAP) and coronary artery disease. We re-assessed B-reg levels on average 4 months later. Results: The mean level of CD20+ cells was similar in patients with MI and patients with SAP (p = 0.60). The levels of CD24hiCD38hi cells among CD20+ cells were 5.7 ± 4% and 11.6 ± 6% in patients with MI and SAP, respectively, (p < 0.001). The level of CD24hiCD38hi B-regs remained related to acute MI after correcting for age, gender, and risk factors. Circulating levels of CD24hiCD38hi B-regs in patients with MI did not change significantly at follow-up in a small patient groups (p = 0.408). Conclusions: Circulating B-regs are reduced in patients with MI compared to patients with SAP. This finding may shed further light on the inflammatory pathophysiologic factors related to plaque rupture.
Collapse
|
10
|
Feng B, Lin L, Li L, Long X, Liu C, Zhao Z, Li S, Li Y. Glucocorticoid induced group 2 innate lymphoid cell overactivation exacerbates experimental colitis. Front Immunol 2022; 13:863034. [PMID: 36032134 PMCID: PMC9411106 DOI: 10.3389/fimmu.2022.863034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/14/2022] [Indexed: 11/24/2022] Open
Abstract
Abnormal activation of the innate and adaptive immune systems has been observed in inflammatory bowel disease (IBD) patients. Anxiety and depression increase the risk of IBD by activating the adaptive immune system. However, whether anxiety affects innate immunity and its impact on IBD severity remains elusive. This study investigated the mechanism by which anxiety contributes to IBD development in a murine model of acute wrap restraint stress (WRS). Here, we found that anxiety-induced overactivation of group 2 innate lymphoid cells (ILC2) aggravated colonic inflammation. Overactivation of the hypothalamic–pituitary–adrenal (HPA) axis is a hallmark of the physiological change of anxiety. Corticosterone (CORT), a stress hormone, is a marker of HPA axis activation and is mainly secreted by HPA activation. We hypothesized that the overproduction of CORT stimulated by anxiety exacerbated colonic inflammation due to the abnormally elevated function of ILC2. The results showed that ILC2 secreted more IL-5 and IL-13 in the WRS mice than in the control mice. Meanwhile, WRS mice experienced more body weight loss, shorter colon length, higher concentrations of IL-6 and TNF-α, more severely impaired barrier function, and more severe inflammatory cell infiltration. As expected, the serum corticosterone levels were elevated after restraint stress. Dexamethasone (DEX) was then injected to mimic HPA axis activation induced CORT secretion. DEX injection can also stimulate ILC2 to secrete more type II cytokines and exacerbate oxazolone (OXA) induced colitis. Blocking the IL-13/STAT6 signaling pathway alleviated colitis in WRS and DEX-injected mice. In conclusion, the overactivation of ILC2 induced by CORT contributed to the development of OXA-induced colitis in mice.
Collapse
Affiliation(s)
- Bingcheng Feng
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lin Lin
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Long
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Liu
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zixiao Zhao
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shiyang Li
- Advanced Medical Research Institute, Shandong University, Jinan, China
- *Correspondence: Shiyang Li, ; Yanqing Li,
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Shiyang Li, ; Yanqing Li,
| |
Collapse
|
11
|
Numata T, Harada K, Nakae S. Roles of Mast Cells in Cutaneous Diseases. Front Immunol 2022; 13:923495. [PMID: 35874756 PMCID: PMC9298983 DOI: 10.3389/fimmu.2022.923495] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/16/2022] [Indexed: 01/05/2023] Open
Abstract
Mast cells are present in all vascularized tissues of the body. They are especially abundant in tissues that are in frequent contact with the surrounding environment and act as potential sources of inflammatory and/or regulatory mediators during development of various infections and diseases. Mature mast cells’ cytoplasm contains numerous granules that store a variety of chemical mediators, cytokines, proteoglycans, and proteases. Mast cells are activated via various cell surface receptors, including FcϵRI, toll-like receptors (TLR), Mas-related G-protein-coupled receptor X2 (MRGPRX2), and cytokine receptors. IgE-mediated mast cell activation results in release of histamine and other contents of their granules into the extracellular environment, contributing to host defense against pathogens. TLRs, play a crucial role in host defense against various types of pathogens by recognizing pathogen-associated molecular patterns. On the other hand, excessive/inappropriate mast cell activation can cause various disorders. Here, we review the published literature regarding the known and potential inflammatory and regulatory roles of mast cells in cutaneous inflammation, including atopic dermatitis, psoriasis, and contact dermatitis GVHD, as well as in host defense against pathogens.
Collapse
Affiliation(s)
- Takafumi Numata
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Kazutoshi Harada
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Susumu Nakae
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
12
|
Honda T, Keith YH. Novel Insights Into the Immune-Regulatory Functions of Mast Cells in the Cutaneous Immune Response. Front Immunol 2022; 13:898419. [PMID: 35634300 PMCID: PMC9134104 DOI: 10.3389/fimmu.2022.898419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Abstract
Skin is a frontline organ that is continuously exposed to external stimuli, including pathogens. Various immune cells reside in the skin under physiological conditions and protect the body from the entry of pathogens/antigens by interacting with each other and orchestrating diverse cutaneous immune responses. To avoid unnecessary inflammation and tissue damage during the elimination of external pathogens and antigens, skin possesses regulatory systems that fine-tune these immune reactions. Mast cells (MCs) are one of the skin-resident immune cell populations that play both effector and regulatory functions in the cutaneous immune response. So far, the interleukin-10-mediated mechanisms have mostly been investigated as the regulatory mechanisms of MCs. Recent studies have elucidated other regulatory mechanisms of MCs, such as the maintenance of regulatory T/B cells and the programmed cell death protein-1/programmed cell death-ligand 1-mediated inhibitory pathway. These regulatory pathways of MCs have been suggested to play important roles in limiting the excessive inflammation in inflammatory skin diseases, such as contact and atopic dermatitis. The regulatory functions of MCs may also be involved in the escape mechanisms of antitumor responses in skin cancers, such as melanoma. Understanding and controlling the regulatory functions of skin MCs may lead to novel therapeutic strategies for inflammatory skin diseases and skin cancers.
Collapse
Affiliation(s)
- Tetsuya Honda
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- *Correspondence: Tetsuya Honda,
| | - Yuki Honda Keith
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
13
|
Bai M, Xu L, Zhu H, Xue J, Liu T, Sun F, Yao H, Zhao Z, Wang Z, Yao R, Hu F, Su Y. Impaired granzyme B-producing regulatory B cells in systemic lupus erythematosus. Mol Immunol 2021; 140:217-224. [PMID: 34749262 DOI: 10.1016/j.molimm.2021.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/25/2021] [Accepted: 09/28/2021] [Indexed: 10/19/2022]
Abstract
Granzyme B (GrB)-producing B cells are proposed to be a kind of regulatory B cells (Bregs) and have been revealed to be implicated in the pathogenesis of autoimmune diseases. Nevertheless, their role in SLE remains elusive. In this study, the frequencies of GrB-producing Bregs in peripheral blood of heathy control (HC) and systemic lupus erythematosus (SLE) were evaluated by flow cytometry, and their correlation with SLE patient clinical and immunological features were analyzed. The expression of GrB in HC and SLE B cells were also further detected by RT-qPCR analysis and ELISpot. The function of GrB-producing Bregs in HC and SLE patients was further investigated by in vitro CD4+ effector T cells-B cells co-culture assays with GrB blockade. We found that GrB-producing Bregs were significantly decreased in SLE patients and correlated with the clinical and immunological features. Moreover, these cells were functionally impaired under SLE circumstance. The negative correlation between GrB-producing Bregs and CD4+ T cells observed in healthy individuals disappeared in SLE patients. In vitro cell co-culture assay further showed that GrB-producing Bregs from SLE patients failed to suppress the Th1, Th2 and Th17 cell inflammatory responses, partially due to the dampened capacity of down-regulating TCR zeta and inducing T cell apoptosis. Taken together, these results revealed the disturbance of GrB-producing Bregs in SLE that might contribute to the disease initiation and progression.
Collapse
Affiliation(s)
- Mingxin Bai
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Liling Xu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Huaqun Zhu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jimeng Xue
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Tian Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Feng Sun
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Haihong Yao
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Zhen Zhao
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Ziye Wang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Ranran Yao
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Yin Su
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.
| |
Collapse
|
14
|
Faßbender S, Sondenheimer K, Majora M, Schindler J, Opitz FV, Pollet M, Haarmann-Stemmann T, Krutmann J, Weighardt H. Keratinocytes Counteract UVB-Induced Immunosuppression in Mice Via HIF-1a Signaling. J Invest Dermatol 2021; 142:1183-1193. [PMID: 34571000 DOI: 10.1016/j.jid.2021.07.185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 01/20/2023]
Abstract
The transcription factor Hypoxia-Inducible Factor-1alpha (HIF-1a) regulates cellular metabolism under hypoxia but also immune responses and UVB-induced skin reactions. In keratinocytes, HIF-1a is an environmental sensor orchestrating the adaptation to environmental changes. Here, we investigated the role of HIF-1a in keratinocytes for skin reactions to acute and chronic UVB exposure in mice. The function of HIF-1a in keratinocytes under UVB exposure was analyzed in conditional keratinocyte-specific HIF-1a-KO (in short "cKO") mice. cKO mice were hypersensitive to acute high-dose UVB irradiation compared to wildtype (WT), displaying increased cell death and delayed barrier repair. After chronic low-dose UVB treatment, cKO mice also had stronger epidermal damage but reduced infiltration of dermal macrophages and T helper cells compared to WT mice. Irradiated cKO mice revealed accumulation of regulatory lymphocytes in dorsal skin-draining lymph nodes compared to WT and unirradiated mice. This was reflected by augmented IL-10 release of lymph node cells and a weaker contact hypersensitivity reaction to DNFB in UVB-exposed cKO mice compared to WT and unirradiated controls. In summary, we found that keratinocyte-specific HIF-1a expression is crucial for adaptation to UVB exposure and inhibits the development of UVB-induced immunosuppression in mice. Therefore, HIF-1a signaling in keratinocytes could ameliorate photoaging-related skin disorders.
Collapse
Affiliation(s)
- Sonja Faßbender
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Strasse 31, D-53115 Bonn, Germany; IUF Leibniz Research Institute for Environmental Medicine, Auf´m Hennekamp 50, D-40225 Duesseldorf, Germany.
| | - Kevin Sondenheimer
- IUF Leibniz Research Institute for Environmental Medicine, Auf´m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Marc Majora
- IUF Leibniz Research Institute for Environmental Medicine, Auf´m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Jennifer Schindler
- IUF Leibniz Research Institute for Environmental Medicine, Auf´m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Friederike V Opitz
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Strasse 31, D-53115 Bonn, Germany; IUF Leibniz Research Institute for Environmental Medicine, Auf´m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Marius Pollet
- IUF Leibniz Research Institute for Environmental Medicine, Auf´m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Thomas Haarmann-Stemmann
- IUF Leibniz Research Institute for Environmental Medicine, Auf´m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Jean Krutmann
- IUF Leibniz Research Institute for Environmental Medicine, Auf´m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Heike Weighardt
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Strasse 31, D-53115 Bonn, Germany; IUF Leibniz Research Institute for Environmental Medicine, Auf´m Hennekamp 50, D-40225 Duesseldorf, Germany
| |
Collapse
|
15
|
Liu K, Huang A, Nie J, Tan J, Xing S, Qu Y, Jiang K. IL-35 Regulates the Function of Immune Cells in Tumor Microenvironment. Front Immunol 2021; 12:683332. [PMID: 34093586 PMCID: PMC8176033 DOI: 10.3389/fimmu.2021.683332] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Interleukin-35 (IL-35) is a heterodimeric cytokine composed of Epstein-Barr virus-induced gene 3 (EBI3) and IL-12p35 that has recently been shown to play diverse and important roles in the tumor microenvironment (TME). Owing to its immunosuppressive activity and ability to promote tumor growth and progression, IL-35 is widely recognized as a key mediator of TME status. Immune cells are key mediators of diverse tumor-related phenotypes, and immunosuppressive cytokines such as IL-35 can promote tumor growth and metastasis in TME. These influences should be considered together. Since tumor immunotherapy based on immune checkpoint blockade remains ineffective in many patients due to tumoral resistance, a new target or efficacy enhancing factor is urgently needed. Suppressing IL-35 production and activity has been demonstrated as an effective factor that inhibits tumor cells viability, and further investigation of this cytokine is warranted. However, the mechanistic basis for IL-35-mediated regulation of immune cells in the TME remains to be fully clarified. In the present review, we explore the roles of IL-35 in regulating immune cells within the TME. In addition, we highlight IL-35 as a specific immunological target and discuss its possible relevance in the context of immunotherapy. Lastly, we sought to summarize potential future research directions that may guide the advancement of current understanding regarding the role of this important cytokine as a regulator of oncogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ke Jiang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
IL-10 in Mast Cell-Mediated Immune Responses: Anti-Inflammatory and Proinflammatory Roles. Int J Mol Sci 2021; 22:ijms22094972. [PMID: 34067047 PMCID: PMC8124430 DOI: 10.3390/ijms22094972] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/31/2022] Open
Abstract
Mast cells (MCs) play critical roles in Th2 immune responses, including the defense against parasitic infections and the initiation of type I allergic reactions. In addition, MCs are involved in several immune-related responses, including those in bacterial infections, autoimmune diseases, inflammatory bowel diseases, cancers, allograft rejections, and lifestyle diseases. Whereas antigen-specific IgE is a well-known activator of MCs, which express FcεRI on the cell surface, other receptors for cytokines, growth factors, pathogen-associated molecular patterns, and damage-associated molecular patterns also function as triggers of MC stimulation, resulting in the release of chemical mediators, eicosanoids, and various cytokines. In this review, we focus on the role of interleukin (IL)-10, an anti-inflammatory cytokine, in MC-mediated immune responses, in which MCs play roles not only as initiators of the immune response but also as suppressors of excessive inflammation. IL-10 exhibits diverse effects on the proliferation, differentiation, survival, and activation of MCs in vivo and in vitro. Furthermore, IL-10 derived from MCs exerts beneficial and detrimental effects on the maintenance of tissue homeostasis and in several immune-related diseases including contact hypersensitivity, auto-immune diseases, and infections. This review introduces the effects of IL-10 on various events in MCs, and the roles of MCs in IL-10-related immune responses and as a source of IL-10.
Collapse
|
17
|
Song MH, Gupta A, Kim HO, Oh K. Lysophosphatidylcholine aggravates contact hypersensitivity by promoting neutrophil infiltration and IL17 expression. BMB Rep 2021. [PMID: 33172544 PMCID: PMC8093940 DOI: 10.5483/bmbrep.2021.54.4.193] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Mi Hye Song
- Department of Pathology, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Anupriya Gupta
- Department of Pathology, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Hye One Kim
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Korea
| | - Kwonik Oh
- Department of Pathology, Hallym University College of Medicine, Chuncheon 24252, Korea
- Institute of Medical Science, Hallym University College of Medicine, Chuncheon 24252, Korea
| |
Collapse
|
18
|
Voss M, Kotrba J, Gaffal E, Katsoulis-Dimitriou K, Dudeck A. Mast Cells in the Skin: Defenders of Integrity or Offenders in Inflammation? Int J Mol Sci 2021; 22:ijms22094589. [PMID: 33925601 PMCID: PMC8123885 DOI: 10.3390/ijms22094589] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) are best-known as key effector cells of immediate-type allergic reactions that may even culminate in life-threatening anaphylactic shock syndromes. However, strategically positioned at the host–environment interfaces and equipped with a plethora of receptors, MCs also play an important role in the first-line defense against pathogens. Their main characteristic, the huge amount of preformed proinflammatory mediators embedded in secretory granules, allows for a rapid response and initiation of further immune effector cell recruitment. The same mechanism, however, may account for detrimental overshooting responses. MCs are not only detrimental in MC-driven diseases but also responsible for disease exacerbation in other inflammatory disorders. Focusing on the skin as the largest immune organ, we herein review both beneficial and detrimental functions of skin MCs, from skin barrier integrity via host defense mechanisms to MC-driven inflammatory skin disorders. Moreover, we emphasize the importance of IgE-independent pathways of MC activation and their role in sustained chronic skin inflammation and disease exacerbation.
Collapse
Affiliation(s)
- Martin Voss
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Johanna Kotrba
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Evelyn Gaffal
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, 39120 Magdeburg, Germany;
| | - Konstantinos Katsoulis-Dimitriou
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Anne Dudeck
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
- Health Campus Immunology, Infectiology and Inflammation, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
19
|
Ding T, Su R, Wu R, Xue H, Wang Y, Su R, Gao C, Li X, Wang C. Frontiers of Autoantibodies in Autoimmune Disorders: Crosstalk Between Tfh/Tfr and Regulatory B Cells. Front Immunol 2021; 12:641013. [PMID: 33841422 PMCID: PMC8033031 DOI: 10.3389/fimmu.2021.641013] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Balance of Tfh/Tfr cell is critically important for the maintenance of immune tolerance, as evidenced by the fact that T follicular helper (Tfh) cells are central to the autoantibodies generation through providing necessary help for germinal center (GC) B cells, whereas T follicular regulatory (Tfr) cells significantly inhibit autoimmune inflammation process through restraining Tfh cell responses. However, signals underlying the regulation of Tfh and Tfr cells are largely undefined. Regulatory B cells (Bregs) is a heterogeneous subpopulation of B cells with immunosuppressive function. Considerable advances have been made in their functions to produce anti‐inflammatory cytokines and to regulate Th17, Th1, and Treg cells in autoimmune diseases. The recent identification of their correlations with dysregulated Tfr/Tfh cells and autoantibody production makes Bregs an important checkpoint in GC response. Bregs exert profound impacts on the differentiation, function, and distribution of Tfh and Tfr cells in the immune microenvironment. Thus, unraveling mechanistic information on Tfh-Breg and Tfr-Breg interactions will inspire novel implications for the establishment of homeostasis and prevention of autoantibodies in diverse diseases. This review summarizes the dysregulation of Tfh/Tfr cells in autoimmune diseases with a focus on the emerging role of Bregs in regulating the balance between Tfh and Tfr cells. The previously unsuspected crosstalk between Bregs and Tfh/Tfr cells will be beneficial to understand the cellular mechanisms of autoantibody production and evoke a revolution in immunotherapy for autoimmune diseases.
Collapse
Affiliation(s)
- Tingting Ding
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Xue
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanyan Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ronghui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
20
|
Azeem M, Kader H, Kerstan A, Hetta HF, Serfling E, Goebeler M, Muhammad K. Intricate Relationship Between Adaptive and Innate Immune System in Allergic Contact Dermatitis. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:699-709. [PMID: 33380932 PMCID: PMC7757059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Allergic contact dermatitis (ACD) is a complex immunological allergic disease characterized by the interplay between the innate and adaptive immune system. Initially, the role of the innate immune system was believed to be confined to the initial sensitization phase, while adaptive immune reactions were linked with the advanced elicitation phase. However, recent data predicted a comparatively mixed and interdependent role of both immune systems throughout the disease progression. Therefore, the actual mechanisms of disease progression are more complex and interlinked. The aim of this review is to combine such findings that enhanced our understanding of the pathomechanisms of ACD. Here, we focused on the main cell types from both immune domains, which are involved in ACD, such as CD4+ and CD8+ T cells, B cells, neutrophils, and innate lymphoid cells (ILCs). Such insights can be useful for devising future therapeutic interventions for ACD.
Collapse
Affiliation(s)
- Muhammad Azeem
- Department of Molecular Pathology, Institute of
Pathology, University of Würzburg, Würzburg, Germany
| | - Hidaya Kader
- Department of Biology, College of Science, United Arab
Emirates University, Al Ain, United Arab Emirates
| | - Andreas Kerstan
- Department of Dermatology, Venereology and Allergology,
University Hospital Würzburg, Würzburg, Germany
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology,
Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Internal Medicine, University of
Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Edgar Serfling
- Department of Molecular Pathology, Institute of
Pathology, University of Würzburg, Würzburg, Germany
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology,
University Hospital Würzburg, Würzburg, Germany
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab
Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
21
|
Mast Cell Functions Linking Innate Sensing to Adaptive Immunity. Cells 2020; 9:cells9122538. [PMID: 33255519 PMCID: PMC7761480 DOI: 10.3390/cells9122538] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Although mast cells (MCs) are known as key drivers of type I allergic reactions, there is increasing evidence for their critical role in host defense. MCs not only play an important role in initiating innate immune responses, but also influence the onset, kinetics, and amplitude of the adaptive arm of immunity or fine-tune the mode of the adaptive reaction. Intriguingly, MCs have been shown to affect T-cell activation by direct interaction or indirectly, by modifying the properties of antigen-presenting cells, and can even modulate lymph node-borne adaptive responses remotely from the periphery. In this review, we provide a summary of recent findings that explain how MCs act as a link between the innate and adaptive immunity, all the way from sensing inflammatory insult to orchestrating the final outcome of the immune response.
Collapse
|
22
|
Shang J, Zha H, Sun Y. Phenotypes, Functions, and Clinical Relevance of Regulatory B Cells in Cancer. Front Immunol 2020; 11:582657. [PMID: 33193391 PMCID: PMC7649814 DOI: 10.3389/fimmu.2020.582657] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
In immune system, B cells are classically positive modulators that regulate inflammation and immune responses. Regulatory B cells (Bregs) are a subset of B cells which play crucial roles in various conditions, including infection, allergies, autoimmune diseases, transplantation, and tumors. Until now, unequivocal surface markers for Bregs still lack consensus, although numerous Breg subsets have been identified. Generally, Bregs exert their immunoregulatory functions mainly through cytokine secretion and intercellular contact. In the tumor microenvironment, Bregs suppress effector T cells, induce regulatory T cells and target other tumor-infiltrating immune cells, such as myeloid-derived suppressor cells, natural killer cells and macrophages, to hamper anti-tumor immunity. Meanwhile, the cross-regulations between Bregs and tumor cells often result in tumor escape from immunosurveillance. In addition, accumulating evidence suggests that Bregs are closely associated with many clinicopathological factors of cancer patients and might be potential biomarkers for accessing patient survival. Thus, Bregs are potential therapeutic targets for future immunotherapy in cancer patients. In this review, we will discuss the phenotypes, functions, and clinical relevance of Bregs in cancer.
Collapse
Affiliation(s)
- Jin Shang
- Department of Health Service, Guard Bureau of the Joint Staff Department, Central Military Commission of PLA, Beijing, China
| | - Haoran Zha
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yufa Sun
- Department of Health Service, Guard Bureau of the Joint Staff Department, Central Military Commission of PLA, Beijing, China
| |
Collapse
|
23
|
Valeri V, Tonon S, Vibhushan S, Gulino A, Belmonte B, Adori M, Karlsson Hedestam GB, Gautier G, Tripodo C, Blank U, Mion F, Pucillo CEM. Mast cells crosstalk with B cells in the gut and sustain IgA response in the inflamed intestine. Eur J Immunol 2020; 51:445-458. [PMID: 32920851 DOI: 10.1002/eji.202048668] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/20/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022]
Abstract
B lymphocytes are among the cell types whose effector functions are modulated by mast cells (MCs). The B/MC crosstalk emerged in several pathological settings, notably the colon of inflammatory bowel disease (IBD) patients is a privileged site in which MCs and IgA+ cells physically interact. Herein, by inducing conditional depletion of MCs in red MC and basophil (RMB) mice, we show that MCs control B cell distribution in the gut and IgA serum levels. Moreover, in dextran sulfate sodium (DSS)-treated RMB mice, the presence of MCs is fundamental for the enlargement of the IgA+ population in the bowel and the increase of systemic IgA production. Since both conventional B-2 and peritoneal-derived B cells populate the intestine and communicate with MCs in physiological conditions and during inflammation, we further explored this interplay through the use of co-cultures. We show that MCs finely regulate different aspects of splenic B cell biology while peritoneal B cells are unresponsive to the supporting effects provided by MCs. Interestingly, peritoneal B cells induce a pro-inflammatory skewing in MCs, characterized by increased ST2 and TNF-α expression. Altogether, this study uncovers the versatility of the B/MC liaison and highlights key aspects for the resolution of intestinal inflammation.
Collapse
Affiliation(s)
- Viviana Valeri
- Department of Medicine, University of Udine, Udine, Italy
| | - Silvia Tonon
- Department of Medicine, University of Udine, Udine, Italy
| | - Shamila Vibhushan
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France.,Université de Paris, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Alessandro Gulino
- Department of Health Science, Tumor Immunology Unit, Human Pathology Section, Palermo University School of Medicine, Palermo, Italy
| | - Beatrice Belmonte
- Department of Health Science, Tumor Immunology Unit, Human Pathology Section, Palermo University School of Medicine, Palermo, Italy
| | - Monika Adori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Gregory Gautier
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France.,Université de Paris, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Claudio Tripodo
- Department of Health Science, Tumor Immunology Unit, Human Pathology Section, Palermo University School of Medicine, Palermo, Italy
| | - Ulrich Blank
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France.,Université de Paris, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Francesca Mion
- Department of Medicine, University of Udine, Udine, Italy
| | | |
Collapse
|
24
|
Baba Y, Saito Y, Kotetsu Y. Heterogeneous subsets of B-lineage regulatory cells (Breg cells). Int Immunol 2020; 32:155-162. [PMID: 31630184 DOI: 10.1093/intimm/dxz068] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/16/2019] [Indexed: 12/18/2022] Open
Abstract
B cells represent a key cellular component of humoral immunity. Besides antigen presentation and antibody production, B cells also play a role in immune regulation and induction of tolerance through several mechanisms. Our understanding of B-lineage cells with regulatory ability has been revolutionized by the delineation of heterogeneous subsets of these cells. Specific environmental signals may further determine the polarization and function of B-lineage regulatory cells. With the availability of new genetic, molecular and pharmacological tools, considerable advances have been made toward our understanding of the surface phenotype, developmental processes and functions of these cells. These exciting discoveries, some of which are still controversial, also raise many new questions, which makes the inhibitory function of B cells a rapidly growing field in immunopathology. Here we review highlights of the regulatory activity of B cells and the recent advances in the function and phenotype of these B-cell subsets in healthy and diseased states.
Collapse
Affiliation(s)
- Yoshihiro Baba
- Division of Immunology and Genome Biology, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Yuichi Saito
- Division of Immunology and Genome Biology, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Yasuaki Kotetsu
- Division of Immunology and Genome Biology, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Japan
| |
Collapse
|