1
|
Wang X, Kundu A, Xu B, Hameed S, Rothem N, Rabkin S, Rogić L, Thompson L, McLeod A, Greven M, Pelc D, Sochnikov I, Kalisky B, Klein A. Multiferroicity in plastically deformed SrTiO 3. Nat Commun 2024; 15:7442. [PMID: 39198418 PMCID: PMC11358528 DOI: 10.1038/s41467-024-51615-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Quantum materials have a fascinating tendency to manifest novel and unexpected electronic states upon proper manipulation. Ideally, such manipulation should induce strong and irreversible changes and lead to new relevant length scales. Plastic deformation introduces large numbers of dislocations into a material, which can organize into extended structures and give rise to qualitatively new physics as a result of the huge localized strains. However, this approach is largely unexplored in the context of quantum materials, which are traditionally grown to be as pristine and clean as possible. Here we show that plastic deformation induces robust magnetism in the quantum paraelectric SrTiO3, a property that is completely absent in the pristine material. We combine scanning magnetic measurements and near-field optical microscopy to find that the magnetic order is localized along dislocation walls and coexists with ferroelectric order along the walls. The magnetic signals can be switched on and off via external stress and altered by external electric fields, which demonstrates that plastically deformed SrTiO3 is a quantum multiferroic. These results establish plastic deformation as a versatile knob for the manipulation of the electronic properties of quantum materials.
Collapse
Affiliation(s)
- Xi Wang
- Department of Physics, Bar-Ilan University, Ramat Gan, Israel
- Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Anirban Kundu
- Department of Physics, Ariel University, Ariel, Israel
| | - Bochao Xu
- Department of Physics, University of Connecticut, Storrs, CT, USA
| | - Sajna Hameed
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Nadav Rothem
- Department of Physics, Bar-Ilan University, Ramat Gan, Israel
- Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Shai Rabkin
- Department of Physics, Bar-Ilan University, Ramat Gan, Israel
- Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Luka Rogić
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Liam Thompson
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Alexander McLeod
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Martin Greven
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Damjan Pelc
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Ilya Sochnikov
- Department of Physics, University of Connecticut, Storrs, CT, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, USA
- Materials Science and Engineering Department, University of Connecticut, Storrs, CT, USA
| | - Beena Kalisky
- Department of Physics, Bar-Ilan University, Ramat Gan, Israel.
- Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat Gan, Israel.
| | - Avraham Klein
- Department of Physics, Ariel University, Ariel, Israel.
| |
Collapse
|
2
|
Al-Tawhid AH, Poage SJ, Salmani-Rezaie S, Gonzalez A, Chikara S, Muller DA, Kumah DP, Gastiasoro MN, Lorenzana J, Ahadi K. Enhanced Critical Field of Superconductivity at an Oxide Interface. NANO LETTERS 2023; 23:6944-6950. [PMID: 37498750 DOI: 10.1021/acs.nanolett.3c01571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The nature of superconductivity and its interplay with strong spin-orbit coupling at the KTaO3(111) interfaces remain a subject of debate. To address this problem, we grew epitaxial LaMnO3/KTaO3(111) heterostructures. We show that superconductivity is robust against the in-plane magnetic field, with the critical field of superconductivity reaching ∼25 T in optimally doped heterostructures. The superconducting order parameter is highly sensitive to the carrier density. We argue that spin-orbit coupling drives the formation of anomalous quasiparticles with vanishing magnetic moment, providing significant condensate immunity against magnetic fields beyond the Pauli paramagnetic limit. These results offer design opportunities for superconductors with extreme resilience against the applied magnetic fields.
Collapse
Affiliation(s)
- Athby H Al-Tawhid
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27265, United States
| | - Samuel J Poage
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27265, United States
| | - Salva Salmani-Rezaie
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Antonio Gonzalez
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27265, United States
| | - Shalinee Chikara
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Divine P Kumah
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Maria N Gastiasoro
- Donostia International Physics Center, 20018 Donostia-San Sebastian, Spain
| | - José Lorenzana
- ISC-CNR and Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy
| | - Kaveh Ahadi
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27265, United States
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
3
|
Negi A, Rodriguez A, Zhang X, Comstock AH, Yang C, Sun D, Jiang X, Kumah D, Hu M, Liu J. Thickness-Dependent Thermal Conductivity and Phonon Mean Free Path Distribution in Single-Crystalline Barium Titanate. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301273. [PMID: 37092575 PMCID: PMC10323618 DOI: 10.1002/advs.202301273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Nanosized perovskite ferroelectrics are widely employed in several electromechanical, photonics, and thermoelectric applications. Scaling of ferroelectric materials entails a severe reduction in the lattice (phonon) thermal conductivity, particularly at sub-100 nm length scales. Such thermal conductivity reduction can be accurately predicted using the information of phonon mean free path (MFP) distribution. The current understanding of phonon MFP distribution in perovskite ferroelectrics is still inconclusive despite the critical thermal management implications. Here, high-quality single-crystalline barium titanate (BTO) thin films, a representative perovskite ferroelectric material, are grown at several thicknesses. Using experimental thermal conductivity measurements and first-principles based modeling (including four-phonon scattering), the phonon MFP distribution is determined in BTO. The simulation results agree with the measured thickness-dependent thermal conductivity. The results show that the phonons with sub-100 nm MFP dominate the thermal transport in BTO, and phonons with MFP exceeding 10 nm contribute ≈35% to the total thermal conductivity, in significant contrast to previously published experimental results. The experimentally validated phonon MFP distribution is consistent with the theoretical predictions of other complex crystals with strong anharmonicity. This work paves the way for thermal management in nanostructured and ferroelectric-domain-engineered systems for oxide perovskite-based functional materials.
Collapse
Affiliation(s)
- Ankit Negi
- Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighNC27695USA
| | - Alejandro Rodriguez
- Department of Mechanical EngineeringUniversity of South CarolinaColumbiaSC29208USA
| | - Xuanyi Zhang
- Department of PhysicsNorth Carolina State UniversityRaleighNC27695USA
| | | | - Cong Yang
- Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighNC27695USA
| | - Dali Sun
- Department of PhysicsNorth Carolina State UniversityRaleighNC27695USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighNC27695USA
| | - Divine Kumah
- Department of PhysicsNorth Carolina State UniversityRaleighNC27695USA
| | - Ming Hu
- Department of Mechanical EngineeringUniversity of South CarolinaColumbiaSC29208USA
| | - Jun Liu
- Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighNC27695USA
| |
Collapse
|
4
|
Baki A, Abdeldayem M, Morales C, Flege JI, Klimm D, Bierwagen O, Schwarzkopf J. Potential of La-Doped SrTiO 3 Thin Films Grown by Metal-Organic Vapor Phase Epitaxy for Thermoelectric Applications. CRYSTAL GROWTH & DESIGN 2023; 23:2522-2530. [PMID: 37065440 PMCID: PMC10101556 DOI: 10.1021/acs.cgd.2c01438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/27/2023] [Indexed: 06/19/2023]
Abstract
La-doped SrTiO3 thin films with high structural quality were homoepitaxially grown by the metal-organic vapor phase epitaxy (MOVPE) technique. Thermogravimetric characterization of the metal-organic precursors determines suitable flash evaporator temperatures for transferring the liquid source materials in the gas phase of the reactor chamber. An adjustment of the charge carrier concentration in the films, which is necessary for optimizing the thermoelectric power factor, was performed by introducing a defined amount of the metal-organic compound La(tmhd)3 and tetraglyme to the liquid precursor solution. X-ray diffraction and atomic force microscopy verified the occurrence of the pure perovskite phase exhibiting a high structural quality for all La concentrations. The electrical conductivity of the films obtained from Hall-effect measurements increases linearly with the La concentration in the gas phase, which is attributed to the incorporation of La3+ ions on the Sr2+ perovskite sites by substitution inferred from photoemission spectroscopy. The resulting structural defects were discussed concerning the formation of occasional Ruddlesden-Popper-like defects. The thermoelectric properties determined by Seebeck measurements demonstrate the high potential of SrTiO3 thin films grown by MOVPE for thermoelectric applications.
Collapse
Affiliation(s)
- Aykut Baki
- Leibniz-Institut
für Kristallzüchtung, Max-Born-Straße 2, 12489 Berlin, Germany
| | - Mohamed Abdeldayem
- Leibniz-Institut
für Kristallzüchtung, Max-Born-Straße 2, 12489 Berlin, Germany
| | - Carlos Morales
- Brandenburgische
Technische Universität Cottbus-Senftenberg, FG Angewandte Physik
und Halbleiterspektroskopie, Konrad-Zuse-Straße 1, 03046 Cottbus, Germany
| | - Jan Ingo Flege
- Brandenburgische
Technische Universität Cottbus-Senftenberg, FG Angewandte Physik
und Halbleiterspektroskopie, Konrad-Zuse-Straße 1, 03046 Cottbus, Germany
| | - Detlef Klimm
- Leibniz-Institut
für Kristallzüchtung, Max-Born-Straße 2, 12489 Berlin, Germany
| | - Oliver Bierwagen
- Paul-Drude-Institut
für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin, Germany
| | - Jutta Schwarzkopf
- Leibniz-Institut
für Kristallzüchtung, Max-Born-Straße 2, 12489 Berlin, Germany
| |
Collapse
|
5
|
Li X, Han B, Zhu R, Shi R, Wu M, Sun Y, Li Y, Liu B, Wang L, Zhang J, Tan C, Gao P, Bai X. Dislocation-tuned ferroelectricity and ferromagnetism of the BiFeO 3/SrRuO 3 interface. Proc Natl Acad Sci U S A 2023; 120:e2213650120. [PMID: 36940334 PMCID: PMC10068816 DOI: 10.1073/pnas.2213650120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/05/2023] [Indexed: 03/22/2023] Open
Abstract
Misfit dislocations at a heteroepitaxial interface produce huge strain and, thus, have a significant impact on the properties of the interface. Here, we use scanning transmission electron microscopy to demonstrate a quantitative unit-cell-by-unit-cell mapping of the lattice parameters and octahedral rotations around misfit dislocations at the BiFeO3/SrRuO3 interface. We find that huge strain field is achieved near dislocations, i.e., above 5% within the first three unit cells of the core, which is typically larger than that achieved from the regular epitaxy thin-film approach, thus significantly altering the magnitude and direction of the local ferroelectric dipole in BiFeO3 and magnetic moments in SrRuO3 near the interface. The strain field and, thus, the structural distortion can be further tuned by the dislocation type. Our atomic-scale study helps us to understand the effects of dislocations in this ferroelectricity/ferromagnetism heterostructure. Such defect engineering allows us to tune the local ferroelectric and ferromagnetic order parameters and the interface electromagnetic coupling, providing new opportunities to design nanosized electronic and spintronic devices.
Collapse
Affiliation(s)
- Xiaomei Li
- International Center for Quantum Materials, School of Physics, Peking University, Beijing100871, China
- School of Integrated Circuits, East China Normal University, Shanghai200241, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing100871, China
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
| | - Bo Han
- International Center for Quantum Materials, School of Physics, Peking University, Beijing100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing100871, China
| | - Ruixue Zhu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing100871, China
| | - Ruochen Shi
- International Center for Quantum Materials, School of Physics, Peking University, Beijing100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing100871, China
| | - Mei Wu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing100871, China
| | - Yuanwei Sun
- International Center for Quantum Materials, School of Physics, Peking University, Beijing100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing100871, China
| | - Yuehui Li
- International Center for Quantum Materials, School of Physics, Peking University, Beijing100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing100871, China
| | - Bingyao Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing100871, China
| | - Lifen Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Jingmin Zhang
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing100871, China
| | - Congbing Tan
- Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, School of Physics and Electronics, Hunan University of Science and Technology, Xiangtan411201, China
| | - Peng Gao
- International Center for Quantum Materials, School of Physics, Peking University, Beijing100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing100871, China
- Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing100871, China
- Hefei National Laboratory, Hefei230088, China
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
6
|
Arnault EG, Al-Tawhid AH, Salmani-Rezaie S, Muller DA, Kumah DP, Bahramy MS, Finkelstein G, Ahadi K. Anisotropic superconductivity at KTaO 3(111) interfaces. SCIENCE ADVANCES 2023; 9:eadf1414. [PMID: 36791191 PMCID: PMC9931206 DOI: 10.1126/sciadv.adf1414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
A two-dimensional, anisotropic superconductivity was recently found at the KTaO3(111) interfaces. The nature of the anisotropic superconducting transition remains a subject of debate. To investigate the origins of the observed behavior, we grew epitaxial KTaO3(111)-based heterostructures. We show that the superconductivity is robust against the in-plane magnetic field and violates the Pauli limit. We also show that the Cooper pairs are more resilient when the bias is along [11[Formula: see text]] (I ∥ [11[Formula: see text]]) and the magnetic field is along [1[Formula: see text]0] (B ∥ [1[Formula: see text]0]). We discuss the anisotropic nature of superconductivity in the context of electronic structure, orbital character, and spin texture at the KTaO3(111) interfaces. The results point to future opportunities to enhance superconducting transition temperatures and critical fields in crystalline, two-dimensional superconductors with strong spin-orbit coupling.
Collapse
Affiliation(s)
| | - Athby H. Al-Tawhid
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27265, USA
| | - Salva Salmani-Rezaie
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| | - David A. Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| | - Divine P. Kumah
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Mohammad S. Bahramy
- Department of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | | | - Kaveh Ahadi
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27265, USA
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
7
|
Putri YE, Wendari TP, Arham RA, Muharmi M, Satria D, Rahmayeni R, Wellia DV. Optical response of SrTiO 3 thin films grown via a sol-gel-hydrothermal method. CHIMICA TECHNO ACTA 2023. [DOI: 10.15826/chimtech.2023.10.1.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
The polycrystalline SrTiO3 thin films were prepared by the sol-gel-hydrothermal method on glass substrates. The synthesis pathway was initiated by preparing a clear TiO2 solution using the sol-gel method. This clear solution was then deposited on a glass substrate using the dip coating technique, followed by the transformation of a thin layer of TiO2 into SrTiO3 by the hydrothermal method. The crystal structure, bond interactions, and band gap energy of SrTiO3 thin layers were characterized using X-ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), and UV–Vis Diffuse Reflectance Spectroscopy (UV-DRS). The XRD patterns of all SrTiO3 thin layers indicated the perovskite structure of the samples. The FTIR spectrum showed an interaction of the silanol groups on the surface of the glass substrate with Ti–O–Ti of SrTiO3 layers. The characteristics of the UV-DRS spectrum were influenced by the thickness of the SrTiO3 layer formed on the glass substrate. The findings of this work provide insights for producing SrTiO3 layers with specified thickness and morphology.
Collapse
|
8
|
Zhang J, Wu H, Zhao G, Han L, Zhang J. A Review on Strain Study of Cuprate Superconductors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193340. [PMID: 36234468 PMCID: PMC9565469 DOI: 10.3390/nano12193340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/13/2023]
Abstract
Cuprate superconductors have attracted extensive attention due to their broad promising application prospects. Among the factors affecting superconductivity, the effect of strain cannot be ignored, which can significantly enhance or degrade superconductivity. In this review, we discuss and summarize the methods of applying strain to cuprate superconductors, strain measurement techniques, and the influence of strain on superconductivity. Among them, we pay special attention to the study of strain in high-temperature superconducting (HTS) films and coating. We expect this review can guide further research in the field of cuprate superconductors.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
| | - Haiyan Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
| | - Guangzhen Zhao
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
| | - Lu Han
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
| | - Jun Zhang
- School of Pharmacy, Dali University, Dali 671000, China
| |
Collapse
|
9
|
Volkov PA, Chandra P, Coleman P. Superconductivity from energy fluctuations in dilute quantum critical polar metals. Nat Commun 2022; 13:4599. [PMID: 35933482 PMCID: PMC9357083 DOI: 10.1038/s41467-022-32303-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 07/25/2022] [Indexed: 11/09/2022] Open
Abstract
Superconductivity in low carrier density metals challenges the conventional electron-phonon theory due to the absence of retardation required to overcome Coulomb repulsion. Here we demonstrate that pairing mediated by energy fluctuations, ubiquitously present close to continuous phase transitions, occurs in dilute quantum critical polar metals and results in a dome-like dependence of the superconducting Tc on carrier density, characteristic of non-BCS superconductors. In quantum critical polar metals, the Coulomb repulsion is heavily screened, while the critical transverse optical phonons decouple from the electron charge. In the resulting vacuum, long-range attractive interactions emerge from the energy fluctuations of the critical phonons, resembling the gravitational interactions of a chargeless dark matter universe. Our estimates show that this mechanism may explain the critical temperatures observed in doped SrTiO3. We provide predictions for the enhancement of superconductivity near polar quantum criticality in two- and three-dimensional materials that can be used to test our theory.
Collapse
Affiliation(s)
- Pavel A Volkov
- Center for Materials Theory, Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA.
| | - Premala Chandra
- Center for Materials Theory, Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA
| | - Piers Coleman
- Center for Materials Theory, Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA.,Department of Physics, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
10
|
Erlandsen R, Dahm RT, Trier F, Scuderi M, Di Gennaro E, Sambri A, Reffeldt Kirchert CK, Pryds N, Granozio FM, Jespersen TS. A Two-Dimensional Superconducting Electron Gas in Freestanding LaAlO 3/SrTiO 3 Micromembranes. NANO LETTERS 2022; 22:4758-4764. [PMID: 35679577 DOI: 10.1021/acs.nanolett.2c00992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Freestanding oxide membranes constitute an intriguing material platform for new functionalities and allow integration of oxide electronics with technologically important platforms such as silicon. Sambri et al. recently reported a method to fabricate freestanding LaAlO3/SrTiO3 (LAO/STO) membranes by spalling of strained heterostructures. Here, we first develop a scheme for the high-yield fabrication of membrane devices on silicon. Second, we show that the membranes exhibit metallic conductivity and a superconducting phase below ∼200 mK. Using anisotropic magnetotransport we extract the superconducting phase coherence length ξ ≈ 36-80 nm and establish an upper bound on the thickness of the superconducting electron gas d ≈ 17-33 nm, thus confirming its two-dimensional character. Finally, we show that the critical current can be modulated using a silicon-based backgate. The ability to form superconducting nanostructures of LAO/STO membranes, with electronic properties similar to those of the bulk counterpart, opens opportunities for integrating oxide nanoelectronics with silicon-based architectures.
Collapse
Affiliation(s)
- Ricci Erlandsen
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, Building 310, 2800 Kgs. Lyngby, Denmark
| | - Rasmus Tindal Dahm
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, Building 310, 2800 Kgs. Lyngby, Denmark
| | - Felix Trier
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, Building 310, 2800 Kgs. Lyngby, Denmark
| | - Mario Scuderi
- Institute for Microelectronics and Microsystems (CNR-IMM), Strada VIII n.5 Zona Industriale, I-95121 Catania, Italy
| | - Emiliano Di Gennaro
- Dipartimento di Fisica "Ettore Pancini", Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cinthia, I-80126 Napoli, Italy
| | - Alessia Sambri
- CNR-SPIN, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy
| | | | - Nini Pryds
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, Building 310, 2800 Kgs. Lyngby, Denmark
| | - Fabio Miletto Granozio
- CNR-SPIN, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy
| | - Thomas Sand Jespersen
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
11
|
Abstract
SignificanceSemiconductor interfaces are among the most important in use in modern technology. The properties they exhibit can either enable or disable the characteristics of the materials they connect for functional performance. While much is known about important junctions involving conventional semiconductors such as Si and GaAs, there are several unsolved mysteries surrounding interfaces between oxide semiconductors. Here we resolve a long-standing issue concerning the measurement of anomalously low dielectric constants in SrTiO3 films with record high electron mobilities. We show that the junction between doped and undoped SrTiO3 required to make dielectric constant measurements masks the dielectric properties of the undoped film. Through modeling, we extract the latter and show that it is much higher than previously measured.
Collapse
|
12
|
Yue J, Ayino Y, Truttmann TK, Gastiasoro MN, Persky E, Khanukov A, Lee D, Thoutam LR, Kalisky B, Fernandes RM, Pribiag VS, Jalan B. Anomalous transport in high-mobility superconducting SrTiO 3 thin films. SCIENCE ADVANCES 2022; 8:eabl5668. [PMID: 35613270 PMCID: PMC9132441 DOI: 10.1126/sciadv.abl5668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
The study of subtle effects on transport in semiconductors requires high-quality epitaxial structures with low defect density. Using hybrid molecular beam epitaxy (MBE), SrTiO3 films with a low-temperature mobility exceeding 42,000 cm2 V-1 s-1 at a low carrier density of 3 × 1017 cm-3 were achieved. A sudden and sharp decrease in residual resistivity accompanied by an enhancement in the superconducting transition temperature were observed across the second Lifshitz transition where the third band becomes occupied, revealing dominant intraband scattering. These films further revealed an anomalous behavior in the Hall carrier density as a consequence of the antiferrodistortive (AFD) transition and the temperature dependence of the Hall scattering factor. Using hybrid MBE growth, phenomenological modeling, temperature-dependent transport measurements, and scanning superconducting quantum interference device imaging, we provide critical insights into the important role of inter- versus intraband scattering and of AFD domain walls on normal-state and superconducting properties of SrTiO3.
Collapse
Affiliation(s)
- Jin Yue
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yilikal Ayino
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tristan K. Truttmann
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Maria N. Gastiasoro
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eylon Persky
- Department of Physics and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Alex Khanukov
- Department of Physics and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dooyong Lee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laxman R. Thoutam
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Beena Kalisky
- Department of Physics and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Rafael M. Fernandes
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vlad S. Pribiag
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bharat Jalan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
13
|
Mikheev E, Zimmerling T, Estry A, Moll PJW, Goldhaber-Gordon D. Ionic Liquid Gating of SrTiO 3 Lamellas Fabricated with a Focused Ion Beam. NANO LETTERS 2022; 22:3872-3878. [PMID: 35576585 DOI: 10.1021/acs.nanolett.1c04447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we combine two previously incompatible techniques for defining electronic devices: shaping three-dimensional crystals by focused ion beam (FIB), and two-dimensional electrostatic accumulation of charge carriers. The principal challenge for this integration is nanometer-scale surface damage inherent to any FIB-based fabrication. We address this by using a sacrificial protective layer to preserve a selected pristine surface. The test case presented here is accumulation of 2D carriers by ionic liquid gating at the surface of a micron-scale SrTiO3 lamella. Preservation of surface quality is reflected in superconductivity of the accumulated carriers. This technique opens new avenues for realizing electrostatic charge tuning in materials that are not available as large or exfoliatable single crystals, and for patterning the geometry of the accumulated carriers.
Collapse
Affiliation(s)
- Evgeny Mikheev
- Department of Physics, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Tino Zimmerling
- Max-Planck-Institute for Chemical Physics of Solids, 01187 Dresden, Germany
| | - Amelia Estry
- Max-Planck-Institute for Chemical Physics of Solids, 01187 Dresden, Germany
- Laboratory of Quantum Materials (QMAT), Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Philip J W Moll
- Max-Planck-Institute for Chemical Physics of Solids, 01187 Dresden, Germany
- Laboratory of Quantum Materials (QMAT), Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - David Goldhaber-Gordon
- Department of Physics, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
14
|
Chiu CC, Ho SZ, Lee JM, Shao YC, Shen Y, Liu YC, Chang YW, Zheng YZ, Huang R, Chang CF, Kuo CY, Duan CG, Huang SW, Yang JC, Chuang YD. Presence of Delocalized Ti 3d Electrons in Ultrathin Single-Crystal SrTiO 3. NANO LETTERS 2022; 22:1580-1586. [PMID: 35073104 DOI: 10.1021/acs.nanolett.1c04434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Strontium titanate (STO), with a wide spectrum of emergent properties such as ferroelectricity and superconductivity, has received significant attention in the community of strongly correlated materials. In the strain-free STO film grown on the SrRuO3 buffer layer, the existing polar nanoregions can facilitate room-temperature ferroelectricity when the STO film thickness approaches 10 nm. Here we show that around this thickness scale, the freestanding STO films without the influence of a substrate show the tetragonal structure at room temperature, contrasting with the cubic structure seen in bulk form. The spectroscopic measurements reveal the modified Ti-O orbital hybridization that causes the Ti ion to deviate from its nominal 4+ valency (3d0 configuration) with excess delocalized 3d electrons. Additionally, the Ti ion in TiO6 octahedron exhibits an off-center displacement. The inherent symmetry lowering in ultrathin freestanding films offers an alternative way to achieve tunable electronic structures that are of paramount importance for future technological applications.
Collapse
Affiliation(s)
- Chun-Chien Chiu
- Department of Physics, National Cheng Kung University, Tainan 701, Taiwan
| | - Sheng-Zhu Ho
- Department of Physics, National Cheng Kung University, Tainan 701, Taiwan
| | - Jenn-Min Lee
- MAX IV Laboratory, Lund University, P.O. Box 118, 221 00 Lund, Sweden
| | - Yu-Cheng Shao
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yang Shen
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Yu-Chen Liu
- Department of Physics, National Cheng Kung University, Tainan 701, Taiwan
| | - Yao-Wen Chang
- Department of Physics, National Cheng Kung University, Tainan 701, Taiwan
| | - Yun-Zhe Zheng
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Rong Huang
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Chun-Fu Chang
- Max-Planck Institute for Chemical Physics of Solids, Dresden 01187, Germany
| | - Chang-Yang Kuo
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chun-Gang Duan
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Shih-Wen Huang
- MAX IV Laboratory, Lund University, P.O. Box 118, 221 00 Lund, Sweden
- Swiss Light Source, Paul Scherrer Institut, CH5232 Villigen PSI, Switzerland
| | - Jan-Chi Yang
- Department of Physics, National Cheng Kung University, Tainan 701, Taiwan
- Center for Quantum Frontiers of Research & Technology (QFort), National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-De Chuang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
15
|
Berry T, Fry-Petit AM, Sinha M, Zhang Q, Auffermann G, McQueen TM, Rudin SP, Phelan WA. The Role of Phonons and Oxygen Vacancies in Non-Cubic SrVO 3. Inorg Chem 2022; 61:3007-3017. [PMID: 35143187 DOI: 10.1021/acs.inorgchem.1c03201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Combining neutron diffraction with pair distribution function analysis, we have uncovered hidden reduced symmetry in the correlated metallic d1 perovskite, SrVO3. Specifically, we show that both the local and global structures are better described using a GdFeO3 distorted (orthorhombic) model as opposed to the ideal cubic ABO3 perovskite type. Recent reports of imaginary phonon frequencies in the density functional theory (DFT)-calculated phonon dispersion for cubic SrVO3 suggest a possible origin of this observed non-cubicity. Namely, the imaginary frequencies computed could indicate that the cubic crystal structure is unstable at T = 0 K. However, our DFT calculations provide compelling evidence that point defects in the form of oxygen vacancies, and not an observable symmetry breaking associated with calculated imaginary frequencies, primarily result in the observed non-cubicity of SrVO3. These experimental and computational results are broadly impactful because they reach into the thin-film and theoretical communities who have shown that SrVO3 is a technologically viable transparent conducting oxide material and have used SrVO3 to develop theoretical methods, respectively.
Collapse
Affiliation(s)
- Tanya Berry
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for Quantum Matter and Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, United States.,Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Allyson Marie Fry-Petit
- Department of Chemistry and Biochemistry, California State University, Fullerton, California 92831, United States
| | - Mekhola Sinha
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for Quantum Matter and Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, United States.,Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Qiang Zhang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Gudrun Auffermann
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, Dresden 01187, Germany
| | - Tyrel M McQueen
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for Quantum Matter and Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, United States.,Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sven P Rudin
- Los Alamos National Laboratory, Mail Stop B221, Los Alamos, New Mexico 87545, United States
| | - W Adam Phelan
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for Quantum Matter and Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, United States.,Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States.,Los Alamos National Laboratory, Mail Stop E574, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
16
|
Hameed S, Pelc D, Anderson ZW, Klein A, Spieker RJ, Yue L, Das B, Ramberger J, Lukas M, Liu Y, Krogstad MJ, Osborn R, Li Y, Leighton C, Fernandes RM, Greven M. Enhanced superconductivity and ferroelectric quantum criticality in plastically deformed strontium titanate. NATURE MATERIALS 2022; 21:54-61. [PMID: 34608284 DOI: 10.1038/s41563-021-01102-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The properties of quantum materials are commonly tuned using experimental variables such as pressure, magnetic field and doping. Here we explore a different approach using irreversible, plastic deformation of single crystals. We show that compressive plastic deformation induces low-dimensional superconductivity well above the superconducting transition temperature (Tc) of undeformed SrTiO3, with evidence of possible superconducting correlations at temperatures two orders of magnitude above the bulk Tc. The enhanced superconductivity is correlated with the appearance of self-organized dislocation structures, as revealed by diffuse neutron and X-ray scattering. We also observe deformation-induced signatures of quantum-critical ferroelectric fluctuations and inhomogeneous ferroelectric order using Raman scattering. Our results suggest that strain surrounding the self-organized dislocation structures induces local ferroelectricity and quantum-critical dynamics that strongly influence Tc, consistent with a theory of superconductivity enhanced by soft polar fluctuations. Our results demonstrate the potential of plastic deformation and dislocation engineering for the manipulation of electronic properties of quantum materials.
Collapse
Affiliation(s)
- S Hameed
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - D Pelc
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA.
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Z W Anderson
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - A Klein
- Department of Physics, Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | - R J Spieker
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - L Yue
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - B Das
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - J Ramberger
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - M Lukas
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia
| | - Y Liu
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - M J Krogstad
- Materials Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - R Osborn
- Materials Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Y Li
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - C Leighton
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - R M Fernandes
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - M Greven
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
17
|
Thoutam LR, Truttmann TK, Rajapitamahuni AK, Jalan B. Hysteretic Magnetoresistance in a Non-Magnetic SrSnO 3 Film via Thermal Coupling to Dynamic Substrate Behavior. NANO LETTERS 2021; 21:10006-10011. [PMID: 34807629 DOI: 10.1021/acs.nanolett.1c03653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hysteretic magnetoresistance (MR) is often used as a signature of ferromagnetism in conducting oxide films and heterostructures. Here, magnetotransport is investigated in a nonmagnetic La-doped SrSnO3 film. A 12 nm La:SrSnO3/2 nm SrSnO3/GdScO3 (110) film with insulating behavior exhibited a robust hysteresis loop in the MR at T < 5 K accompanied by an anomaly at ∼±3 T at T < 2.5 K. Furthermore, MR with the field in-plane yielded a value exceeding 100% at 1.8 K. Using detailed temperature-, angle- and magnetic field-dependent resistance measurements, we illustrate the origin of hysteresis is not due to magnetism in the film but rather is associated with the magnetocaloric effect of the substrate. Given GdScO3 and similar substrates are commonly used, this work highlights the importance of thermal coupling to processes in the substrates which must be carefully accounted for in the data interpretation for heterostructures utilizing these substrates.
Collapse
Affiliation(s)
- Laxman Raju Thoutam
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Tristan K Truttmann
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Anil Kumar Rajapitamahuni
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Bharat Jalan
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
18
|
Dubnack O, Müller FA. Oxidic 2D Materials. MATERIALS 2021; 14:ma14185213. [PMID: 34576436 PMCID: PMC8469416 DOI: 10.3390/ma14185213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/18/2022]
Abstract
The possibility of producing stable thin films, only a few atomic layers thick, from a variety of materials beyond graphene has led to two-dimensional (2D) materials being studied intensively in recent years. By reducing the layer thickness and approaching the crystallographic monolayer limit, a variety of unexpected and technologically relevant property phenomena were observed, which also depend on the subsequent arrangement and possible combination of individual layers to form heterostructures. These properties can be specifically used for the development of multifunctional devices, meeting the requirements of the advancing miniaturization of modern manufacturing technologies and the associated need to stabilize physical states even below critical layer thicknesses of conventional materials in the fields of electronics, magnetism and energy conversion. Differences in the structure of potential two-dimensional materials result in decisive influences on possible growth methods and possibilities for subsequent transfer of the thin films. In this review, we focus on recent advances in the rapidly growing field of two-dimensional materials, highlighting those with oxidic crystal structure like perovskites, garnets and spinels. In addition to a selection of well-established growth techniques and approaches for thin film transfer, we evaluate in detail their application potential as free-standing monolayers, bilayers and multilayers in a wide range of advanced technological applications. Finally, we provide suggestions for future developments of this promising research field in consideration of current challenges regarding scalability and structural stability of ultra-thin films.
Collapse
Affiliation(s)
- Oliver Dubnack
- Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany;
| | - Frank A. Müller
- Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany;
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
- Correspondence:
| |
Collapse
|
19
|
Abstract
Advances in physical vapor deposition techniques have led to a myriad of quantum materials and technological breakthroughs, affecting all areas of nanoscience and nanotechnology which rely on the innovation in synthesis. Despite this, one area that remains challenging is the synthesis of atomically precise complex metal oxide thin films and heterostructures containing "stubborn" elements that are not only nontrivial to evaporate/sublimate but also hard to oxidize. Here, we report a simple yet atomically controlled synthesis approach that bridges this gap. Using platinum and ruthenium as examples, we show that both the low vapor pressure and the difficulty in oxidizing a "stubborn" element can be addressed by using a solid metal-organic compound with significantly higher vapor pressure and with the added benefits of being in a preoxidized state along with excellent thermal and air stability. We demonstrate the synthesis of high-quality single crystalline, epitaxial Pt, and RuO2 films, resulting in a record high residual resistivity ratio (=27) in Pt films and low residual resistivity, ∼6 μΩ·cm, in RuO2 films. We further demonstrate, using SrRuO3 as an example, the viability of this approach for more complex materials with the same ease and control that has been largely responsible for the success of the molecular beam epitaxy of III-V semiconductors. Our approach is a major step forward in the synthesis science of "stubborn" materials, which have been of significant interest to the materials science and the condensed matter physics community.
Collapse
|
20
|
Juraschek DM, Narang P. Highly Confined Phonon Polaritons in Monolayers of Perovskite Oxides. NANO LETTERS 2021; 21:5098-5104. [PMID: 34101474 DOI: 10.1021/acs.nanolett.1c01002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) materials are able to strongly confine light hybridized with collective excitations of atoms, enabling electric-field enhancements and novel spectroscopic applications. Recently, freestanding monolayers of perovskite oxides have been synthesized, which possess highly infrared-active phonon modes and a complex interplay of competing interactions. Here, we show that this new class of 2D materials exhibits highly confined phonon polaritons by evaluating central figures of merit for phonon polaritons in the tetragonal phases of the 2D perovskites SrTiO3, KTaO3, and LiNbO3, using density functional theory calculations. Specifically, we compute the 2D phonon-polariton dispersions, the propagation-quality, confinement, and deceleration factors, and we show that they are comparable to those found in the prototypical 2D dielectric hexagonal boron nitride. Our results suggest that monolayers of perovskite oxides are promising candidates for polaritonic platforms that enable new possibilities in terms of tunability and spectral ranges.
Collapse
Affiliation(s)
- Dominik M Juraschek
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Prineha Narang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
21
|
Jia T, Chen Z, Rebec SN, Hashimoto M, Lu D, Devereaux TP, Lee D, Moore RG, Shen Z. Magic Doping and Robust Superconductivity in Monolayer FeSe on Titanates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003454. [PMID: 33977049 PMCID: PMC8097367 DOI: 10.1002/advs.202003454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/11/2021] [Indexed: 06/12/2023]
Abstract
The enhanced superconductivity in monolayer FeSe on titanates opens a fascinating pathway toward the rational design of high-temperature superconductors. Utilizing the state-of-the-art oxide plus chalcogenide molecular beam epitaxy systems in situ connected to a synchrotron angle-resolved photoemission spectroscope, epitaxial LaTiO3 layers with varied atomic thicknesses are inserted between monolayer FeSe and SrTiO3, for systematic modulation of interfacial chemical potential. With the dramatic increase of electron accumulation at the LaTiO3/SrTiO3 surface, providing a substantial surge of work function mismatch across the FeSe/oxide interface, the charge transfer and the superconducting gap in the monolayer FeSe are found to remain markedly robust. This unexpected finding indicate the existence of an intrinsically anchored "magic" doping within the monolayer FeSe systems.
Collapse
Affiliation(s)
- Tao Jia
- Stanford Institute for Materials and Energy SciencesSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
- Departments of Physics, Applied Physics, and Materials Science and EngineeringGeballe Laboratory for Advanced MaterialsStanford UniversityStanfordCA94305USA
| | - Zhuoyu Chen
- Stanford Institute for Materials and Energy SciencesSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
- Departments of Physics, Applied Physics, and Materials Science and EngineeringGeballe Laboratory for Advanced MaterialsStanford UniversityStanfordCA94305USA
| | - Slavko N. Rebec
- Stanford Institute for Materials and Energy SciencesSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
- Departments of Physics, Applied Physics, and Materials Science and EngineeringGeballe Laboratory for Advanced MaterialsStanford UniversityStanfordCA94305USA
| | - Makoto Hashimoto
- Stanford Synchrotron Radiation LightsourceSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | - Donghui Lu
- Stanford Synchrotron Radiation LightsourceSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | - Thomas P. Devereaux
- Stanford Institute for Materials and Energy SciencesSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
- Departments of Physics, Applied Physics, and Materials Science and EngineeringGeballe Laboratory for Advanced MaterialsStanford UniversityStanfordCA94305USA
| | - Dung‐Hai Lee
- Department of PhysicsUniversity of California at BerkeleyBerkeleyCA94720USA
- Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Robert G. Moore
- Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Zhi‐Xun Shen
- Stanford Institute for Materials and Energy SciencesSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
- Departments of Physics, Applied Physics, and Materials Science and EngineeringGeballe Laboratory for Advanced MaterialsStanford UniversityStanfordCA94305USA
| |
Collapse
|
22
|
Ma J, Yang R, Chen H. A large modulation of electron-phonon coupling and an emergent superconducting dome in doped strong ferroelectrics. Nat Commun 2021; 12:2314. [PMID: 33875661 PMCID: PMC8055897 DOI: 10.1038/s41467-021-22541-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/17/2021] [Indexed: 11/09/2022] Open
Abstract
We use first-principles methods to study doped strong ferroelectrics (taking BaTiO3 as a prototype). Here, we find a strong coupling between itinerant electrons and soft polar phonons in doped BaTiO3, contrary to Anderson/Blount’s weakly coupled electron mechanism for "ferroelectric-like metals”. As a consequence, across a polar-to-centrosymmetric phase transition in doped BaTiO3, the total electron-phonon coupling is increased to about 0.6 around the critical concentration, which is sufficient to induce phonon-mediated superconductivity of about 2 K. Lowering the crystal symmetry of doped BaTiO3 by imposing epitaxial strain can further increase the superconducting temperature via a sizable coupling between itinerant electrons and acoustic phonons. Our work demonstrates a viable approach to modulating electron-phonon coupling and inducing phonon-mediated superconductivity in doped strong ferroelectrics and potentially in polar metals. Our results also show that the weakly coupled electron mechanism for "ferroelectric-like metals” is not necessarily present in doped strong ferroelectrics. Usually the coupling between polar phonons and itinerant electrons is weak in polar metals. Here, the authors show that in doped ferroelectrics (approximate polar metals), this coupling can be increased across the structural phase transition and as a result, phonon-mediated superconductivity emerges.
Collapse
Affiliation(s)
- Jiaji Ma
- NYU-ECNU Institute of Physics, NYU Shanghai, Shanghai, China
| | - Ruihan Yang
- NYU-ECNU Institute of Physics, NYU Shanghai, Shanghai, China
| | - Hanghui Chen
- NYU-ECNU Institute of Physics, NYU Shanghai, Shanghai, China. .,Department of Physics, New York University, New York, NY, USA.
| |
Collapse
|
23
|
Baki A, Stöver J, Schulz T, Markurt T, Amari H, Richter C, Martin J, Irmscher K, Albrecht M, Schwarzkopf J. Influence of Sr deficiency on structural and electrical properties of SrTiO 3 thin films grown by metal-organic vapor phase epitaxy. Sci Rep 2021; 11:7497. [PMID: 33820911 PMCID: PMC8021553 DOI: 10.1038/s41598-021-87007-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/23/2021] [Indexed: 02/01/2023] Open
Abstract
Homoepitaxial growth of SrTiO3 thin films on 0.5 wt% niobium doped SrTiO3 (100) substrates with high structural perfection was developed using liquid-delivery spin metal-organic vapor phase epitaxy (MOVPE). Exploiting the advantage of adjusting the partial pressures of the individual constituents independently, we tuned the Sr/Ti ratio of the gas phase for realizing, stoichiometric, as well as Sr deficient layers. Quantitative energy dispersive X-ray spectroscopy in a scanning transmission electron microscope confirm Sr deficiency of up to 20% in nominally off-stoichiometrically grown films. Our MOVPE process allows to grow such layers in phase pure state and without extended defect formation. Indications for oxygen deficiency could not be identified. Sr deficient layers exhibit an increased permittivity of ɛr = 202 and a larger vertical lattice parameter. Current-voltage characteristics (IVCs) of metal-oxide-semiconductor (Pt/SrTiO3/SrTiO3:Nb) structures reveal that Sr deficient SrTiO3 films show an intrinsic resistive switching with on-off ratios of three orders of magnitude at RT and seven orders of magnitude at 10 K. There is strong evidence that a large deviation from stoichiometry pronounces the resistive switching behavior. IVCs conducted at 10 K indicate a defect-based mechanism instead of mass transport by ion diffusion. This is supported by in-situ STEM investigations that show filaments to form at significant higher voltages than those were resistive switching is observed in our samples.
Collapse
Affiliation(s)
- Aykut Baki
- Leibniz-Institut Für Kristallzüchtung, Max-Born-Straße 2, 12489, Berlin, Germany.
| | - Julian Stöver
- Leibniz-Institut Für Kristallzüchtung, Max-Born-Straße 2, 12489, Berlin, Germany
| | - Tobias Schulz
- Leibniz-Institut Für Kristallzüchtung, Max-Born-Straße 2, 12489, Berlin, Germany
| | - Toni Markurt
- Leibniz-Institut Für Kristallzüchtung, Max-Born-Straße 2, 12489, Berlin, Germany
| | - Houari Amari
- Leibniz-Institut Für Kristallzüchtung, Max-Born-Straße 2, 12489, Berlin, Germany
| | - Carsten Richter
- Leibniz-Institut Für Kristallzüchtung, Max-Born-Straße 2, 12489, Berlin, Germany
| | - Jens Martin
- Leibniz-Institut Für Kristallzüchtung, Max-Born-Straße 2, 12489, Berlin, Germany
| | - Klaus Irmscher
- Leibniz-Institut Für Kristallzüchtung, Max-Born-Straße 2, 12489, Berlin, Germany
| | - Martin Albrecht
- Leibniz-Institut Für Kristallzüchtung, Max-Born-Straße 2, 12489, Berlin, Germany
| | - Jutta Schwarzkopf
- Leibniz-Institut Für Kristallzüchtung, Max-Born-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
24
|
Lu W, Zhai H, Li Q, Chen C. Pronounced Enhancement of Superconductivity in ZrN via Strain Engineering. J Phys Chem Lett 2021; 12:1985-1990. [PMID: 33596080 DOI: 10.1021/acs.jpclett.1c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Zirconium nitride (ZrN) exhibits excellent mechanical and electronic properties and hosts a superconducting transition temperature (Tc) of 10.0 K that is on the high end among transition-metal nitrides. Here, we report on a first-principles study of tuning superconductivity of ZrN via strain engineering under extensive tensile and shear deformation modes. Our results reveal strikingly effective strain-induced enhancement of Tc up to 17.1 K, which is achieved under tensile strains along the high-symmetry crystallographic [001] deformation path. A systematic analysis of the calculated results indicates that such pronounced strain modulation of superconductivity stems from simultaneous increase of electronic density of states and softening of lattice vibration in the strain-deformed ZrN crystal. The present findings show that strain engineering offers an effective tool for optimizing superconductivity in transition-metal compounds, opening a fresh avenue for improving a major functionality of this class of materials that may find applications in advanced devices.
Collapse
Affiliation(s)
- Weixue Lu
- International Center for Computational Method and Software, State Key Laboratory of Superhard Materials, Key Laboratory of Automobile Materials of MOE, and Department of Materials Science, Jilin University, Changchun 130012, China
| | - Hang Zhai
- International Center for Computational Method and Software, State Key Laboratory of Superhard Materials, Key Laboratory of Automobile Materials of MOE, and Department of Materials Science, Jilin University, Changchun 130012, China
| | - Quan Li
- International Center for Computational Method and Software, State Key Laboratory of Superhard Materials, Key Laboratory of Automobile Materials of MOE, and Department of Materials Science, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Changfeng Chen
- Department of Physics and Astronomy, University of Nevada, Las Vegas, Nevada 89154, United States
| |
Collapse
|
25
|
Chen Z, Liu Z, Sun Y, Chen X, Liu Y, Zhang H, Li H, Zhang M, Hong S, Ren T, Zhang C, Tian H, Zhou Y, Sun J, Xie Y. Two-Dimensional Superconductivity at the LaAlO_{3}/KTaO_{3}(110) Heterointerface. PHYSICAL REVIEW LETTERS 2021; 126:026802. [PMID: 33512194 DOI: 10.1103/physrevlett.126.026802] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/15/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
We report on the observation of a T_{c}∼0.9 K superconductivity at the interface between LaAlO_{3} film and the 5d transition metal oxide KTaO_{3}(110) single crystal. The interface shows a large anisotropy of the upper critical field, and its superconducting transition is consistent with a Berezinskii-Kosterlitz-Thouless transition. Both facts suggest that the superconductivity is two-dimensional (2D) in nature. The carrier density measured at 5 K is ∼7×10^{13} cm^{-2}. The superconducting layer thickness and coherence length are estimated to be ∼8 and ∼30 nm, respectively. Our result provides a new platform for the study of 2D superconductivity at oxide interfaces.
Collapse
Affiliation(s)
- Zheng Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Zhongran Liu
- Center of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yanqiu Sun
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Xiaoxin Chen
- Center of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuan Liu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Hui Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hekang Li
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Meng Zhang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Siyuan Hong
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Tianshuang Ren
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Chao Zhang
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou 310024, China
| | - He Tian
- Center of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yi Zhou
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Kavli Institute for Theoretical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jirong Sun
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Spintronics Institute, University of Jinan, Jinan, Shandong 250022, China
| | - Yanwu Xie
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
26
|
The Synthesis and Characterization of Sol-Gel-Derived SrTiO3-BiMnO3 Solid Solutions. CRYSTALS 2020. [DOI: 10.3390/cryst10121125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the aqueous sol-gel method was employed for the synthesis of (1−x)SrTiO3-xBiMnO3 solid solutions. Powder X-ray diffraction analysis confirmed the formation of single-phase perovskites with a cubic structure up to x = 0.3. A further increase of the BiMnO3 content led to the formation of a negligible amount of neighboring Mn3O4 impurity, along with the major perovskite phase. Infrared (FT-IR) analysis of the synthesized specimens showed gradual spectral change associated with the superposition effect of Mn-O and Ti-O bond lengths. By introducing BiMnO3 into the SrTiO3 crystal structure, the size of the grains increased drastically, which was confirmed by means of scanning electron microscopy. Magnetization studies revealed that all solid solutions containing the BiMnO3 component can be characterized as paramagnetic materials. It was observed that magnetization values clearly correlate with the chemical composition of powders, and the gradual increase of the BiMnO3 content resulted in noticeably higher magnetization values.
Collapse
|
27
|
Peng B, Hu Y, Murakami S, Zhang T, Monserrat B. Topological phonons in oxide perovskites controlled by light. SCIENCE ADVANCES 2020; 6:6/46/eabd1618. [PMID: 33177093 PMCID: PMC7673742 DOI: 10.1126/sciadv.abd1618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Perovskite oxides exhibit a rich variety of structural phases hosting different physical phenomena that generate multiple technological applications. We find that topological phonons-nodal rings, nodal lines, and Weyl points-are ubiquitous in oxide perovskites in terms of structures (tetragonal, orthorhombic, and rhombohedral), compounds (BaTiO3, PbTiO3, and SrTiO3), and external conditions (photoexcitation, strain, and temperature). In particular, in the tetragonal phase of these compounds, all types of topological phonons can simultaneously emerge when stabilized by photoexcitation, whereas the tetragonal phase stabilized by thermal fluctuations only hosts a more limited set of topological phonon states. In addition, we find that the photoexcited carrier concentration can be used to tune the topological phonon states and induce topological transitions even without associated structural phase changes. Overall, we propose oxide perovskites as a versatile platform in which to study topological phonons and their manipulation with light.
Collapse
Affiliation(s)
- Bo Peng
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Yuchen Hu
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Shuichi Murakami
- Department of Physics, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551, Japan
- Tokodai Institute for Element Strategy, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Tiantian Zhang
- Department of Physics, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
- Tokodai Institute for Element Strategy, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Bartomeu Monserrat
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| |
Collapse
|
28
|
Uchida M, Nomoto T, Musashi M, Arita R, Kawasaki M. Superconductivity in Uniquely Strained RuO_{2} Films. PHYSICAL REVIEW LETTERS 2020; 125:147001. [PMID: 33064501 DOI: 10.1103/physrevlett.125.147001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
We report on strain engineering of superconductivity in RuO_{2} single-crystal films, which are epitaxially grown on rutile TiO_{2} and MgF_{2} substrates with various crystal orientations. Systematic mappings between the superconducting transition temperature and the lattice parameters reveal that shortening of specific ruthenium-oxygen bonds is a common feature among the superconducting RuO_{2} films. Ab initio calculations of electronic and phononic structures for the strained RuO_{2} films suggest the importance of soft phonon modes for emergence of the superconductivity. The findings indicate that simple transition metal oxides such as those with a rutile structure may be suitable for further exploring superconductivity by controlling phonon modes through the epitaxial strain.
Collapse
Affiliation(s)
- Masaki Uchida
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
- Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656, Japan
- PRESTO, Japan Science and Technology Agency (JST), Tokyo 102-0076, Japan
| | - Takuya Nomoto
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
| | - Maki Musashi
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
- Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656, Japan
| | - Ryotaro Arita
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - Masashi Kawasaki
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
- Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| |
Collapse
|
29
|
Superconductivity mediated by polar modes in ferroelectric metals. Nat Commun 2020; 11:4852. [PMID: 32978389 PMCID: PMC7519043 DOI: 10.1038/s41467-020-18438-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Abstract
The occurrence of superconductivity in doped SrTiO3 at low carrier densities points to the presence of an unusually strong pairing interaction that has eluded understanding for several decades. We report experimental results showing the pressure dependence of the superconducting transition temperature, Tc, near to optimal doping that sheds light on the nature of this interaction. We find that Tc increases dramatically when the energy gap of the ferroelectric critical modes is suppressed, i.e., as the ferroelectric quantum critical point is approached in a way reminiscent to behaviour observed in magnetic counterparts. However, in contrast to the latter, the coupling of the carriers to the critical modes in ferroelectrics is predicted to be small. We present a quantitative model involving the dynamical screening of the Coulomb interaction and show that an enhancement of Tc near to a ferroelectric quantum critical point can arise due to the virtual exchange of longitudinal hybrid-polar-modes, even in the absence of a strong coupling to the transverse critical modes. Superconductivity in doped SrTiO3 near to a ferroelectric quantum critical point emerges due to a strong interaction driving the formation of Cooper pairs, the nature of which has remained elusive for several decades. Here, the authors reveal that pairing is due to the exchange of longitudinal hybrid polar modes rather than transverse critical modes.
Collapse
|
30
|
Enriquez E, Li Q, Bowlan P, Lu P, Zhang B, Li L, Wang H, Taylor AJ, Yarotski D, Prasankumar RP, Kalinin SV, Jia Q, Chen A. Induced ferroelectric phases in SrTiO 3 by a nanocomposite approach. NANOSCALE 2020; 12:18193-18199. [PMID: 32856672 DOI: 10.1039/d0nr03460f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inducing new phases in thick films via vertical lattice strain is one of the critical advantages of vertically aligned nanocomposites (VANs). In SrTiO3 (STO), the ground state is ferroelastic, and the ferroelectricity in STO is suppressed by the orthorhombic transition. Here, we explore whether vertical lattice strain in three-dimensional VANs can be used to induce new ferroelectric phases in SrTiO3:MgO (STO:MgO) VAN thin films. The STO:MgO system incorporates ordered, vertically aligned MgO nanopillars into a STO film matrix. Strong lattice coupling between STO and MgO imposes a large lattice strain in the STO film. We have investigated ferroelectricity in the STO phase, existing up to room temperature, using piezoresponse force microscopy, phase field simulation and second harmonic generation. We also serendipitously discovered the formation of metastable TiO nanocores in MgO nanopillars embedded in the STO film matrix. Our results emphasize the design of new phases via vertical epitaxial strain in VAN thin films.
Collapse
Affiliation(s)
- Erik Enriquez
- Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Salmani-Rezaie S, Ahadi K, Stemmer S. Polar Nanodomains in a Ferroelectric Superconductor. NANO LETTERS 2020; 20:6542-6547. [PMID: 32786945 DOI: 10.1021/acs.nanolett.0c02285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The mechanisms by which itinerant carriers compete with polar crystal distortions are a key unresolved issue for polar superconductors, which offer new routes to unconventional Cooper pairing. Strained, doped SrTiO3 films undergo successive ferroelectric and superconducting transitions, making them ideal candidates to elucidate the nature of this competition. Here, we reveal these interactions using scanning transmission electron microscopy studies of the evolution of polar nanodomains as a function of doping. These nanodomains are a precursor to the ferroelectric phase and a measure of long-range Coulomb interactions. With increasing doping, the magnitude of the polar displacements, the nanodomain size, and the Curie temperature are systematically suppressed. In addition, we show that disorder caused by the dopant atoms themselves presents a second contribution to the destabilization of the ferroelectric state. The results provide evidence for two distinct mechanisms that suppress the polar transition with doping in a ferroelectric superconductor.
Collapse
Affiliation(s)
- Salva Salmani-Rezaie
- Materials Department, University of California, Santa Barbara, California 93106-5050, United States
| | - Kaveh Ahadi
- Materials Department, University of California, Santa Barbara, California 93106-5050, United States
| | - Susanne Stemmer
- Materials Department, University of California, Santa Barbara, California 93106-5050, United States
| |
Collapse
|
32
|
Salmani-Rezaie S, Ahadi K, Strickland WM, Stemmer S. Order-Disorder Ferroelectric Transition of Strained SrTiO_{3}. PHYSICAL REVIEW LETTERS 2020; 125:087601. [PMID: 32909797 DOI: 10.1103/physrevlett.125.087601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
SrTiO_{3} is an incipient ferroelectric that is believed to exhibit a prototype displacive, soft mode ferroelectric transition when subjected to mechanical stress or alloying. We use high-angle annular dark-field imaging in scanning transmission electron microscopy to reveal local polar regions in the room-temperature, paraelectric phase of strained SrTiO_{3} films, which undergo a ferroelectric transition at low temperatures. These films contain nanometer-sized domains in which the Ti columns are displaced. In contrast, these nanodomains are absent in unstrained films, which do not become ferroelectric. The results show that the ferroelectric transition of strained SrTiO_{3} is an order-disorder transition. We discuss the impact of the results on the nature of the ferroelectric transition of SrTiO_{3}.
Collapse
Affiliation(s)
- Salva Salmani-Rezaie
- Materials Department, University of California, Santa Barbara, California 93106-5050, USA
| | - Kaveh Ahadi
- Materials Department, University of California, Santa Barbara, California 93106-5050, USA
| | - William M Strickland
- Materials Department, University of California, Santa Barbara, California 93106-5050, USA
| | - Susanne Stemmer
- Materials Department, University of California, Santa Barbara, California 93106-5050, USA
| |
Collapse
|
33
|
Zhao C, Hu M, Qin J, Xia B, Liu C, Wang S, Guan D, Li Y, Zheng H, Liu J, Jia J. Strain Tunable Semimetal-Topological-Insulator Transition in Monolayer 1T^{'}-WTe_{2}. PHYSICAL REVIEW LETTERS 2020; 125:046801. [PMID: 32794806 DOI: 10.1103/physrevlett.125.046801] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
A quantum spin hall insulator is manifested by its conducting edge channels that originate from the nontrivial topology of the insulating bulk states. Monolayer 1T^{'}-WTe_{2} exhibits this quantized edge conductance in transport measurements, but because of its semimetallic nature, the coherence length is restricted to around 100 nm. To overcome this restriction, we propose a strain engineering technique to tune the electronic structure, where either a compressive strain along the a axis or a tensile strain along the b axis can drive 1T^{'}-WTe_{2} into an full gap insulating phase. A combined study of molecular beam epitaxy and in situ scanning tunneling microscopy or spectroscopy then confirmed such a phase transition. Meanwhile, the topological edge states were found to be very robust in the presence of strain.
Collapse
Affiliation(s)
- Chenxiao Zhao
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengli Hu
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Jin Qin
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bing Xia
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Canhua Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Shiyong Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - DanDan Guan
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaoyi Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Zheng
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Junwei Liu
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Jinfeng Jia
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
34
|
Tuvia G, Frenkel Y, Rout PK, Silber I, Kalisky B, Dagan Y. Ferroelectric Exchange Bias Affects Interfacial Electronic States. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000216. [PMID: 32510654 DOI: 10.1002/adma.202000216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/20/2020] [Indexed: 06/11/2023]
Abstract
In polar oxide interfaces phenomena such as superconductivity, magnetism, 1D conductivity, and quantum Hall states can emerge at the polar discontinuity. Combining controllable ferroelectricity at such interfaces can affect the superconducting properties and sheds light on the mutual effects between the polar oxide and the ferroelectric oxide. Here, the interface between the polar oxide LaAlO3 and the ferroelectric Ca-doped SrTiO3 is studied by means of electrical transport combined with local imaging of the current flow with the use of scanning a superconducting quantum interference device (SQUID). Anomalous behavior of the interface resistivity is observed at low temperatures. The scanning SQUID maps of the current flow suggest that this behavior originates from an intrinsic bias induced by the polar LaAlO3 layer. Such intrinsic bias combined with ferroelectricity can constrain the possible structural domain tiling near the interface. The use of this intrinsic bias is recommended as a method of controlling and tuning the initial state of ferroelectric materials by the design of the polar structure. The hysteretic dependence of the normal and the superconducting state properties on gate voltage can be utilized in multifaceted controllable memory devices.
Collapse
Affiliation(s)
- Gal Tuvia
- Raymond and Beverly Sackler School of Physics, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yiftach Frenkel
- Department of Physics and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Prasanna K Rout
- Raymond and Beverly Sackler School of Physics, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Itai Silber
- Raymond and Beverly Sackler School of Physics, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Beena Kalisky
- Department of Physics and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Yoram Dagan
- Raymond and Beverly Sackler School of Physics, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
35
|
Ayino Y, Yue J, Wang T, Jalan B, Pribiag VS. Effects of paramagnetic pair-breaking and spin-orbital coupling on multi-band superconductivity. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:38LT02. [PMID: 32422615 DOI: 10.1088/1361-648x/ab940c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
The BCS picture of superconductivity describes pairing between electrons originating from a single band. A generalization of this picture occurs in multi-band superconductors, where electrons from two or more bands contribute to superconductivity. The contributions of the different bands can result in an overall enhancement of the critical field and can lead to qualitative changes in the temperature dependence of the upper critical field when compared to the single-band case. While the role of orbital pair-breaking on the critical field of multi-band superconductors has been explored extensively, paramagnetic and spin-orbital scattering effects have received comparatively little attention. Here we investigate this problem using thin films of Nd-doped SrTiO3. We furthermore propose a model for analyzing the temperature-dependence of the critical field in the presence of orbital, paramagnetic and spin-orbital effects, and find a very good agreement with our data. Interestingly, we also observe a dramatic enhancement in the out-of-plane critical field to values well in excess of the Chandrasekhar-Clogston (Pauli) paramagnetic limit, which can be understood as a consequence of multi-band effects in the presence of spin-orbital scattering.
Collapse
Affiliation(s)
- Yilikal Ayino
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jin Yue
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tianqi Wang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bharat Jalan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Vlad S Pribiag
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
36
|
Liu C, Song X, Li Q, Ma Y, Chen C. Superconductivity in Compression-Shear Deformed Diamond. PHYSICAL REVIEW LETTERS 2020; 124:147001. [PMID: 32338977 DOI: 10.1103/physrevlett.124.147001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/23/2020] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
Diamond is a prototypical ultrawide band gap semiconductor, but turns into a superconductor with a critical temperature T_{c}≈4 K near 3% boron doping [E. A. Ekimov et al., Nature (London) 428, 542 (2004)NATUAS0028-083610.1038/nature02449]. Here we unveil a surprising new route to superconductivity in undoped diamond by compression-shear deformation that induces increasing metallization and lattice softening with rising strain, producing phonon mediated T_{c} up to 2.4-12.4 K for a wide range of Coulomb pseudopotential μ^{*}=0.15-0.05. This finding raises intriguing prospects of generating robust superconductivity in strained diamond crystal, showcasing a distinct and hitherto little explored approach to driving materials into superconducting states via strain engineering. These results hold promise for discovering superconductivity in normally nonsuperconductive materials, thereby expanding the landscape of viable nontraditional superconductors and offering actionable insights for experimental exploration.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Superhard Materials, Key Laboratory of Automobile Materials of MOE, Department of Materials Science, and Innovation Center for Computational Physics Method and Software, Jilin University, Changchun 130012, China
| | - Xianqi Song
- State Key Laboratory of Superhard Materials, Key Laboratory of Automobile Materials of MOE, Department of Materials Science, and Innovation Center for Computational Physics Method and Software, Jilin University, Changchun 130012, China
| | - Quan Li
- State Key Laboratory of Superhard Materials, Key Laboratory of Automobile Materials of MOE, Department of Materials Science, and Innovation Center for Computational Physics Method and Software, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Yanming Ma
- State Key Laboratory of Superhard Materials, Key Laboratory of Automobile Materials of MOE, Department of Materials Science, and Innovation Center for Computational Physics Method and Software, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Changfeng Chen
- Department of Physics and Astronomy, University of Nevada, Las Vegas, Nevada 89154, USA
| |
Collapse
|
37
|
He X, Bansal D, Winn B, Chi S, Boatner L, Delaire O. Anharmonic Eigenvectors and Acoustic Phonon Disappearance in Quantum Paraelectric SrTiO_{3}. PHYSICAL REVIEW LETTERS 2020; 124:145901. [PMID: 32338961 DOI: 10.1103/physrevlett.124.145901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/19/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Pronounced anomalies in the SrTiO_{3} dynamical structure factor, S(Q,E), including the disappearance of acoustic phonon branches at low temperatures, were uncovered with inelastic neutron scattering (INS) and simulations. The striking effect reflects anharmonic couplings between acoustic and optic phonons and the incipient ferroelectric instability near the quantum critical point. It is rationalized using a first-principles renormalized anharmonic phonon approach, pointing to nonlinear Ti-O hybridization causing unusual changes in real-space phonon eigenvectors, frequencies, group velocities, and scattering phase space. Our method is general and establishes how T dependences beyond the harmonic regime, assessed by INS mapping of large reciprocal-space volumes, provide real-space insights into anharmonic atomic dynamics near phase transitions.
Collapse
Affiliation(s)
- Xing He
- Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - Dipanshu Bansal
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Barry Winn
- Neutron Scattering Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Songxue Chi
- Neutron Scattering Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Lynn Boatner
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Olivier Delaire
- Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
38
|
Itahashi YM, Ideue T, Saito Y, Shimizu S, Ouchi T, Nojima T, Iwasa Y. Nonreciprocal transport in gate-induced polar superconductor SrTiO 3. SCIENCE ADVANCES 2020; 6:eaay9120. [PMID: 32258403 PMCID: PMC7101218 DOI: 10.1126/sciadv.aay9120] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/03/2020] [Indexed: 05/05/2023]
Abstract
Polar conductors/superconductors with Rashba-type spin-orbit interaction are potential material platforms for quantum transport and spintronic functionalities. One of their inherent properties is the nonreciprocal transport, where the rightward and leftward currents become inequivalent, reflecting spatial inversion/time-reversal symmetry breaking. Such a rectification effect originating from the polar symmetry has been recently observed at interfaces or bulk Rashba semiconductors, while its mechanism in a polar superconductor remains elusive. Here, we report the nonreciprocal transport in gate-induced two-dimensional superconductor SrTiO3, which is a Rashba superconductor candidate. In addition to the gigantic enhancement of nonreciprocal signals in the superconducting fluctuation region, we found kink and sharp peak structures around critical temperatures, which reflect the crossover behavior from the paraconductivity origin to the vortex origin, based on a microscopic theory. The present result proves that the nonreciprocal transport is a powerful tool for investigating the interfacial/polar superconductors without inversion symmetry, where rich exotic features are theoretically prognosticated.
Collapse
Affiliation(s)
- Yuki M. Itahashi
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Toshiya Ideue
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
- Corresponding author. (T.I.); (Y.I.)
| | - Yu Saito
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
- California NanoSystems Institute, University of California at Santa Barbara, Santa Barbara CA 93106, USA
| | - Sunao Shimizu
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
- Central Research Institute of Electric Power Industry (CRIEPI), Kanagawa 240-0196, Japan
| | - Takumi Ouchi
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Tsutomu Nojima
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Yoshihiro Iwasa
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
- Corresponding author. (T.I.); (Y.I.)
| |
Collapse
|
39
|
Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 2020; 578:75-81. [PMID: 32025010 DOI: 10.1038/s41586-020-1939-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/04/2019] [Indexed: 01/27/2023]
Abstract
Complex-oxide materials exhibit a vast range of functional properties desirable for next-generation electronic, spintronic, magnetoelectric, neuromorphic, and energy conversion storage devices1-4. Their physical functionalities can be coupled by stacking layers of such materials to create heterostructures and can be further boosted by applying strain5-7. The predominant method for heterogeneous integration and application of strain has been through heteroepitaxy, which drastically limits the possible material combinations and the ability to integrate complex oxides with mature semiconductor technologies. Moreover, key physical properties of complex-oxide thin films, such as piezoelectricity and magnetostriction, are severely reduced by the substrate clamping effect. Here we demonstrate a universal mechanical exfoliation method of producing freestanding single-crystalline membranes made from a wide range of complex-oxide materials including perovskite, spinel and garnet crystal structures with varying crystallographic orientations. In addition, we create artificial heterostructures and hybridize their physical properties by directly stacking such freestanding membranes with different crystal structures and orientations, which is not possible using conventional methods. Our results establish a platform for stacking and coupling three-dimensional structures, akin to two-dimensional material-based heterostructures, for enhancing device functionalities8,9.
Collapse
|