1
|
Gold S, Shilatifard A. Epigenetic therapies targeting histone lysine methylation: complex mechanisms and clinical challenges. J Clin Invest 2024; 134:e183391. [PMID: 39403928 PMCID: PMC11473148 DOI: 10.1172/jci183391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
As epigenetic therapies continue to gain ground as potential treatment strategies for cancer and other diseases, compounds that target histone lysine methylation and the enzyme complexes represent a major frontier for therapeutic development. Clinically viable therapies targeting the activities of histone lysine methyltransferases (HKMT) and demethylases (HKDMs) have only recently begun to emerge following FDA approval of the EZH2 inhibitor tazemetostat in 2020 and remain limited to compounds targeting the well-studied SET domain-containing HKMTs and their opposing HKDMs. These include the H3K27 methyltransferases EZH2/EZH1, the singular H3K79 methyltransferase DOT1L, and the H3K4 methyltransferase MLL1/COMPASS as well as H3K9 and H3K36 methyltransferases. They additionally include the H3K4/9-preferential demethylase LSD1 and the H3K4-, H3K27-, and H3K36-preferential KDM5, KDM6, and KDM2 demethylase subfamilies, respectively. This Review discusses the results of recent clinical and preclinical studies relevant to all of these existing and potential therapies. It provides an update on advancements in therapeutic development, as well as more basic molecular understanding, within the past 5 years approximately. It also offers a perspective on histone lysine methylation that departs from the long-predominant "histone code" metaphor, emphasizing complex-disrupting inhibitors and proximity-based approaches rather than catalytic domain inhibitors in the outlook for future therapeutic development.
Collapse
|
2
|
Ran X, Hu A, Kuang Y, Wang C, Liu W, Xiao X, Zacksenhaus E, Yu X, Ben-David Y. UM171 suppresses breast cancer progression by inducing KLF2. Breast Cancer Res Treat 2024; 207:405-415. [PMID: 38874684 PMCID: PMC11297059 DOI: 10.1007/s10549-024-07372-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/09/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE Breast cancer is the most frequent cancer in women with significant death rate. Morbidity is associated with drug resistance and metastasis. Development of novel drugs is unmet need. The aim of this study is to show potent anti-neoplastic activity of the UM171 compound on breast cancer cells and its mechanism of action. METHODS The inhibitory effect of UM171 on several breast cancer (BC) cell lines was examined using MTT and colony-forming assays. Cell cycle and apoptosis assays were utilized to determine the effect of UM171 on BC cell proliferation and survival. Wound healing scratch and transwell migration assays were used to examine the migration of BC cell lines in culture. Xenograft of mouse model with 4T1 cells was used to determine inhibitory effect of UM171 in vivo. Q-RT-PCR and western blotting were used to determine the expression level of genes effected by UM171. Lentivirus-mediated shRNAs were used to knockdown the expression of KLF2 in BC cells. RESULTS UM171 was previously identified as a potent agonist of human hematopoietic stem cell renewal and inhibitor of leukemia. In this study, UM171 was shown to inhibit the growth of multiple breast cancer cell lines in culture. UM171-mediated growth inhibition was associated with the induction of apoptosis, G2/M cell cycle arrest, lower colony-forming capacity, and reduced motility. In a xenotransplantation model of mouse triple-negative breast cancer 4T1 cells injected into syngeneic BALB/c mice, UM171 strongly inhibited tumor growth at a level comparable to control paclitaxel. UM171 increased the expression of the three PIM genes (PIM1-3) in breast cancer cells. Moreover, UM171 strongly induced the expression of the tumor suppressor gene KLF2 and cell cycle inhibitor P21CIP1. Accordingly, knockdown of KLF2 using lentivirus-mediated shRNA significantly attenuated the growth suppressor activity of UM171. As PIM1-3 act as oncogenes and are involved in breast cancer progression, induction of these kinases likely impedes the inhibitory effect of KLF2 induction by UM171. Accordingly, combination of UM171 with a PAN-PIM inhibitor LGH447 significantly reduced tumor growth in culture. CONCLUSION These results suggested that UM171 inhibited breast cancer progression in part through activation of KLF2 and P21. Combination of UM171 with a PAN-PIM inhibitor offer a novel therapy for aggressive forms of breast cancer.
Collapse
Affiliation(s)
- Xiaojuan Ran
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Anling Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, Guizhou, People's Republic of China
- The Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, People's Republic of China
| | - Yi Kuang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, Guizhou, People's Republic of China
- The Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, People's Republic of China
| | - Chunlin Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, Guizhou, People's Republic of China
- The Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, People's Republic of China
| | - Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, Guizhou, People's Republic of China
- The Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, People's Republic of China
| | - Xiao Xiao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, Guizhou, People's Republic of China
- The Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, People's Republic of China
| | - Eldad Zacksenhaus
- Department of Medicine, Laboratory Medicine & Pathobiology and Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L1, Canada
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Xiangdi Yu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China.
- Anesthesiology Department of Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, 545000, Guangxi, China.
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, Guizhou, People's Republic of China.
- The Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, People's Republic of China.
| |
Collapse
|
3
|
Cai W, Xiao C, Fan T, Deng Z, Wang D, Liu Y, Li C, He J. Targeting LSD1 in cancer: Molecular elucidation and recent advances. Cancer Lett 2024; 598:217093. [PMID: 38969160 DOI: 10.1016/j.canlet.2024.217093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Histones are the main components of chromatin, functioning as an instructive scaffold to maintain chromosome structure and regulate gene expression. The dysregulation of histone modification is associated with various pathological processes, especially cancer initiation and development, and histone methylation plays a critical role. However, the specific mechanisms and potential therapeutic targets of histone methylation in cancer are not elucidated. Lys-specific demethylase 1A (LSD1) was the first identified demethylase that specifically removes methyl groups from histone 3 at lysine 4 or lysine 9, acting as a repressor or activator of gene expression. Recent studies have shown that LSD1 promotes cancer progression in multiple epigenetic regulation or non-epigenetic manners. Notably, LSD1 dysfunction is correlated with repressive cancer immunity. Many LSD1 inhibitors have been developed and clinical trials are exploring their efficacy in monotherapy, or combined with other therapies. In this review, we summarize the oncogenic mechanisms of LSD1 and the current applications of LSD1 inhibitors. We highlight that LSD1 is a promising target for cancer treatment. This review will provide the latest theoretical references for further understanding the research progress of oncology and epigenetics, deepening the updated appreciation of epigenetics in cancer.
Collapse
Affiliation(s)
- Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Di Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
4
|
Pallavicini I, Frasconi TM, Catozzi C, Ceccacci E, Tiberti S, Haas D, Samson J, Heuser-Loy C, Nava Lauson CB, Mangione M, Preto E, Bigogno A, Sala E, Iannacone M, Mercurio C, Gattinoni L, Caruana I, Kuka M, Nezi L, Minucci S, Manzo T. LSD1 inhibition improves efficacy of adoptive T cell therapy by enhancing CD8 + T cell responsiveness. Nat Commun 2024; 15:7366. [PMID: 39191730 PMCID: PMC11349769 DOI: 10.1038/s41467-024-51500-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
The lysine-specific histone demethylase 1 A (LSD1) is involved in antitumor immunity; however, its role in shaping CD8 + T cell (CTL) differentiation and function remains largely unexplored. Here, we show that pharmacological inhibition of LSD1 (LSD1i) in CTL in the context of adoptive T cell therapy (ACT) elicits phenotypic and functional alterations, resulting in a robust antitumor immunity in preclinical models in female mice. In addition, the combination of anti-PDL1 treatment with LSD1i-based ACT eradicates the tumor and leads to long-lasting tumor-free survival in a melanoma model, complementing the limited efficacy of the immune or epigenetic therapy alone. Collectively, these results demonstrate that LSD1 modulation improves antitumoral responses generated by ACT and anti-PDL1 therapy, providing the foundation for their clinical evaluation.
Collapse
Affiliation(s)
- Isabella Pallavicini
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Teresa Maria Frasconi
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Carlotta Catozzi
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Elena Ceccacci
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Silvia Tiberti
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Dorothee Haas
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation Unit- University Hospital of Würzburg, Würzburg, Germany
| | - Jule Samson
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation Unit- University Hospital of Würzburg, Würzburg, Germany
| | - Christoph Heuser-Loy
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Carina B Nava Lauson
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Marta Mangione
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Elisa Preto
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Alberto Bigogno
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Eleonora Sala
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Iannacone
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ciro Mercurio
- Experimental Therapeutics Program, the FIRC Institute of Molecular Oncology IFOM, Milan, Italy
| | - Luca Gattinoni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
- University of Regensburg, Regensburg, Germany
| | - Ignazio Caruana
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation Unit- University Hospital of Würzburg, Würzburg, Germany
| | - Mirela Kuka
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Nezi
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Saverio Minucci
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
- University of Milan, Department of Oncology and Hemato-Oncology, Milan, Italy
| | - Teresa Manzo
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy.
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
5
|
Hayatigolkhatmi K, Valzelli R, El Menna O, Minucci S. Epigenetic alterations in AML: Deregulated functions leading to new therapeutic options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:27-75. [PMID: 39179348 DOI: 10.1016/bs.ircmb.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Acute myeloid leukemia (AML) results in disruption of the hematopoietic differentiation process. Crucial progress has been made, and new therapeutic strategies for AML have been developed. Induction chemotherapy, however, remains the main option for the majority of AML patients. Epigenetic dysregulation plays a central role in AML pathogenesis, supporting leukemogenesis and maintenance of leukemic stem cells. Here, we provide an overview of the intricate interplay of altered epigenetic mechanisms, including DNA methylation, histone modifications, and chromatin remodeling, in AML development. We explore the role of epigenetic regulators, such as DNMTs, HMTs, KDMs, and HDACs, in mediating gene expression patterns pushing towards leukemic cell transformation. Additionally, we discuss the impact of cytogenetic lesions on epigenomic remodeling and the potential of targeting epigenetic vulnerabilities as a therapeutic strategy. Understanding the epigenetic landscape of AML offers insights into novel therapeutic avenues, including epigenetic modifiers and particularly their use in combination therapies, to improve treatment outcomes and overcome drug resistance.
Collapse
Affiliation(s)
- Kourosh Hayatigolkhatmi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Riccardo Valzelli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Oualid El Menna
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy; Department of Hemato-Oncology, Università Statale di Milano, Milan, Italy.
| |
Collapse
|
6
|
Fiorentino F, Fabbrizi E, Raucci A, Noce B, Fioravanti R, Valente S, Paolini C, De Maria R, Steinkühler C, Gallinari P, Rotili D, Mai A. Uracil- and Pyridine-Containing HDAC Inhibitors Displayed Cytotoxicity in Colorectal and Glioblastoma Cancer Stem Cells. ChemMedChem 2024; 19:e202300655. [PMID: 38529661 DOI: 10.1002/cmdc.202300655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Cancer stem cells (CSCs) are a niche of highly tumorigenic cells featuring self-renewal, activation of pluripotency genes, multidrug resistance, and ability to cause cancer relapse. Seven HDACi (1-7), showing either hydroxamate or 2'-aminoanilide function, were tested in colorectal cancer (CRC) and glioblastoma multiforme (GBM) CSCs to determine their effects on cell proliferation, H3 acetylation levels and in-cell HDAC activity. Two uracil-based hydroxamates, 5 and 6, which differ in substitution at C5 and C6 positions of the pyrimidine ring, exhibited the greatest cytotoxicity in GBM (5) and CRC (6) CSCs, followed by the pyridine-hydroxamate 2, with 2- to 6-fold higher potency than the positive control SAHA. Finally, increased H3 acetylation as well as HDAC inhibition directly in cells by selected 2'-aminoanilide 4 and hydroxamate 5 confirmed target engagement. Further investigation will be conducted into the broad-spectrum anticancer properties of the most potent derivatives and their effects in combination with approved, conventional anticancer drugs.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Emanuele Fabbrizi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Alessia Raucci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Beatrice Noce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Chantal Paolini
- IRBM S.p.A., Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Christian Steinkühler
- Research and Development, Italfarmaco Group, Via dei Lavoratori 54, 20092, Cinisello Balsamo, Italy
| | - Paola Gallinari
- Exiris S.r.l., Tecnopolo Castel, Romano, Via Castel Romano 100, 00128, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo, Moro n. 5, 00185, Rome, Italy
- Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P. de Aldo Moro n. 5, 00185, Rome, Italy
| |
Collapse
|
7
|
Yang K, Liu H. Mining the Dynamical Properties of Substrate and FAD Binding Pockets of LSD1: Hints for New Inhibitor Design Direction. J Chem Inf Model 2024; 64:4773-4780. [PMID: 38837697 DOI: 10.1021/acs.jcim.4c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Lysine-specific demethylase 1 (LSD1), a highly sophisticated epigenetic regulator, orchestrates a range of critical cellular processes, holding promising therapeutic potential for treating diverse diseases. However, the clinical research progress targeting LSD1 is very slow. After 20 years of research, only one small-molecule drug, BEA-17, targeting the degradation of LSD1 and CoREST has been approved by the U.S. Food and Drug Administration. The primary reason for this may be the lack of abundant structural data regarding its intricate functions. To gain a deeper understanding of its conformational dynamics and guide the drug design process, we conducted molecular dynamics simulations to explore the conformational states of LSD1 in the apo state and under the influence of cofactors of flavin adenine dinucleotide (FAD) and CoREST. Our results showed that, across all states, the substrate binding pocket exhibited high flexibility, whereas the FAD binding pocket remained more stable. These distinct dynamical properties are essential for LSD1's ability to bind various substrates while maintaining efficient demethylation activity. Both pockets can be enlarged by merging with adjacent pockets, although only the substrate binding pocket can shrink into smaller pockets. These new pocket shapes can inform inhibitor design, particularly for selectively FAD-competitive inhibitors of LSD1, given the presence of numerous FAD-dependent enzymes in the human body. More interestingly, in the absence of FAD binding, the united substrate and FAD binding pocket are partitioned by the conserved residue of Tyr761, offering valuable insights for the design of inhibitors that disrupt the crucial steric role of Tyr761 and the redox role of FAD. Additionally, we identified pockets that positively or negatively correlate with the substrate and FAD binding pockets, which can be exploited for the design of allosteric or concurrent inhibitors. Our results reveal the intricate dynamical properties of LSD1 as well as multiple novel conformational states, which deepen our understanding of its sophisticated functions and aid in the rational design of new inhibitors.
Collapse
Affiliation(s)
- Kecheng Yang
- National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hongmin Liu
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
8
|
Venhuizen J, van Bergen MGJM, Bergevoet SM, Gilissen D, Spruijt CG, Wingens L, van den Akker E, Vermeulen M, Jansen JH, Martens JHA, van der Reijden BA. GFI1B and LSD1 repress myeloid traits during megakaryocyte differentiation. Commun Biol 2024; 7:374. [PMID: 38548886 PMCID: PMC10978956 DOI: 10.1038/s42003-024-06090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/21/2024] [Indexed: 04/01/2024] Open
Abstract
The transcription factor Growth Factor Independence 1B (GFI1B) recruits Lysine Specific Demethylase 1 A (LSD1/KDM1A) to stimulate gene programs relevant for megakaryocyte and platelet biology. Inherited pathogenic GFI1B variants result in thrombocytopenia and bleeding propensities with varying intensity. Whether these affect similar gene programs is unknow. Here we studied transcriptomic effects of four patient-derived GFI1B variants (GFI1BT174N,H181Y,R184P,Q287*) in MEG01 megakaryoblasts. Compared to normal GFI1B, each variant affected different gene programs with GFI1BQ287* uniquely failing to repress myeloid traits. In line with this, single cell RNA-sequencing of induced pluripotent stem cell (iPSC)-derived megakaryocytes revealed a 4.5-fold decrease in the megakaryocyte/myeloid cell ratio in GFI1BQ287* versus normal conditions. Inhibiting the GFI1B-LSD1 interaction with small molecule GSK-LSD1 resulted in activation of myeloid genes in normal iPSC-derived megakaryocytes similar to what was observed for GFI1BQ287* iPSC-derived megakaryocytes. Thus, GFI1B and LSD1 facilitate gene programs relevant for megakaryopoiesis while simultaneously repressing programs that induce myeloid differentiation.
Collapse
Affiliation(s)
- Jeron Venhuizen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Maaike G J M van Bergen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Saskia M Bergevoet
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Daan Gilissen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Cornelia G Spruijt
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Laura Wingens
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, Amsterdam, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands
| | - Joop H Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | - Bert A van der Reijden
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands.
| |
Collapse
|
9
|
Shao T, Li J, Su M, Yang C, Ma Y, Lv C, Wang W, Xie Y, Xu G, Shi C, Zhou X, Fan H, Li Y, Xu J. A machine learning model identifies M3-like subtype in AML based on PML/RARα targets. iScience 2024; 27:108947. [PMID: 38322990 PMCID: PMC10844831 DOI: 10.1016/j.isci.2024.108947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/25/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
The typical genomic feature of acute myeloid leukemia (AML) M3 subtype is the fusion event of PML/RARα, and ATRA/ATO-based combination therapy is current standard treatment regimen for M3 subtype. Here, a machine-learning model based on expressions of PML/RARα targets was developed to identify M3 patients by analyzing 1228 AML patients. Our model exhibited high accuracy. To enable more non-M3 AML patients to potentially benefit from ATRA/ATO therapy, M3-like patients were further identified. We found that M3-like patients had strong GMP features, including the expression patterns of M3 subtype marker genes, the proportion of myeloid progenitor cells, and deconvolution of AML constituent cell populations. M3-like patients exhibited distinct genomic features, low immune activity and better clinical survival. The initiative identification of patients similar to M3 subtype may help to identify more patients that would benefit from ATO/ATRA treatment and deepen our understanding of the molecular mechanism of AML pathogenesis.
Collapse
Affiliation(s)
- Tingting Shao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Jianing Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Minghai Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Changbo Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Yingying Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Chongwen Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Wei Wang
- The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Yunjin Xie
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Gang Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Ce Shi
- Key Laboratory of Hepatosplenic Surgery of Ministry of Education, NHC Key Laboratory of Cell Transplantation, the First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Xinying Zhou
- Key Laboratory of Hepatosplenic Surgery of Ministry of Education, NHC Key Laboratory of Cell Transplantation, the First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Huitao Fan
- Key Laboratory of Hepatosplenic Surgery of Ministry of Education, NHC Key Laboratory of Cell Transplantation, the First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Yongsheng Li
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150001, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| |
Collapse
|
10
|
Pallavi R, Gatti E, Durfort T, Stendardo M, Ravasio R, Leonardi T, Falvo P, Duso BA, Punzi S, Xieraili A, Polazzi A, Verrelli D, Trastulli D, Ronzoni S, Frascolla S, Perticari G, Elgendy M, Varasi M, Colombo E, Giorgio M, Lanfrancone L, Minucci S, Mazzarella L, Pelicci PG. Caloric restriction leads to druggable LSD1-dependent cancer stem cells expansion. Nat Commun 2024; 15:828. [PMID: 38280853 PMCID: PMC10821871 DOI: 10.1038/s41467-023-44348-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/10/2023] [Indexed: 01/29/2024] Open
Abstract
Caloric Restriction (CR) has established anti-cancer effects, but its clinical relevance and molecular mechanism remain largely undefined. Here, we investigate CR's impact on several mouse models of Acute Myeloid Leukemias, including Acute Promyelocytic Leukemia, a subtype strongly affected by obesity. After an initial marked anti-tumor effect, lethal disease invariably re-emerges. Initially, CR leads to cell-cycle restriction, apoptosis, and inhibition of TOR and insulin/IGF1 signaling. The relapse, instead, is associated with the non-genetic selection of Leukemia Initiating Cells and the downregulation of double-stranded RNA (dsRNA) sensing and Interferon (IFN) signaling genes. The CR-induced adaptive phenotype is highly sensitive to pharmacological or genetic ablation of LSD1, a lysine demethylase regulating both stem cells and dsRNA/ IFN signaling. CR + LSD1 inhibition leads to the re-activation of dsRNA/IFN signaling, massive RNASEL-dependent apoptosis, and complete leukemia eradication in ~90% of mice. Importantly, CR-LSD1 interaction can be modeled in vivo and in vitro by combining LSD1 ablation with pharmacological inhibitors of insulin/IGF1 or dual PI3K/MEK blockade. Mechanistically, insulin/IGF1 inhibition sensitizes blasts to LSD1-induced death by inhibiting the anti-apoptotic factor CFLAR. CR and LSD1 inhibition also synergize in patient-derived AML and triple-negative breast cancer xenografts. Our data provide a rationale for epi-metabolic pharmacologic combinations across multiple tumors.
Collapse
Affiliation(s)
- Rani Pallavi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Elena Gatti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Tiphanie Durfort
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Massimo Stendardo
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto Ravasio
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Tommaso Leonardi
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | - Paolo Falvo
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Bruno Achutti Duso
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Simona Punzi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Aobuli Xieraili
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Andrea Polazzi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Doriana Verrelli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Deborah Trastulli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Simona Ronzoni
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Simone Frascolla
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Perticari
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Mohamed Elgendy
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Mildred-Scheel Early Career Center, National Center for Tumor Diseases Dresden (NCT/UCC) University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, CZ-14220, Czech Republic
| | - Mario Varasi
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Emanuela Colombo
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Hemato-Oncology, Universita' Statale di Milano, Milan, Italy
| | - Marco Giorgio
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Luisa Lanfrancone
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Hemato-Oncology, Universita' Statale di Milano, Milan, Italy
| | - Luca Mazzarella
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.
- Department of Hemato-Oncology, Universita' Statale di Milano, Milan, Italy.
| |
Collapse
|
11
|
Mazzarella L, Santoro F, Ravasio R, Fumagalli V, Massa PE, Rodighiero S, Gavilán E, Romanenghi M, Duso BA, Bonetti E, Manganaro L, Pallavi R, Trastulli D, Pallavicini I, Gentile C, Monzani S, Leonardi T, Pasqualato S, Buttinelli G, Di Martino A, Fedele G, Schiavoni I, Stefanelli P, Meroni G, de Francesco R, Steinkuhler C, Fossati G, Iannacone M, Minucci S, Pelicci PG. Inhibition of the lysine demethylase LSD1 modulates the balance between inflammatory and antiviral responses against coronaviruses. Sci Signal 2023; 16:eade0326. [PMID: 38113337 DOI: 10.1126/scisignal.ade0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
Innate immune responses to coronavirus infections are highly cell specific. Tissue-resident macrophages, which are infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients but are inconsistently infected in vitro, exert critical but conflicting effects by secreting both antiviral type I interferons (IFNs) and tissue-damaging inflammatory cytokines. Steroids, the only class of host-targeting drugs approved for the treatment of coronavirus disease 2019 (COVID-19), indiscriminately suppress both responses, possibly impairing viral clearance. Here, we established in vitro cell culture systems that enabled us to separately investigate the cell-intrinsic and cell-extrinsic proinflammatory and antiviral activities of mouse macrophages infected with the prototypical murine coronavirus MHV-A59. We showed that the nuclear factor κB-dependent inflammatory response to viral infection was selectively inhibited by loss of the lysine demethylase LSD1, which was previously implicated in innate immune responses to cancer, with negligible effects on the antiviral IFN response. LSD1 ablation also enhanced an IFN-independent antiviral response, blocking viral egress through the lysosomal pathway. The macrophage-intrinsic antiviral and anti-inflammatory activity of Lsd1 inhibition was confirmed in vitro and in a humanized mouse model of SARS-CoV-2 infection. These results suggest that LSD1 controls innate immune responses against coronaviruses at multiple levels and provide a mechanistic rationale for potentially repurposing LSD1 inhibitors for COVID-19 treatment.
Collapse
Affiliation(s)
- Luca Mazzarella
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Fabio Santoro
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto Ravasio
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Paul E Massa
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Simona Rodighiero
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Elena Gavilán
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Mauro Romanenghi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Bruno A Duso
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Emanuele Bonetti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Lara Manganaro
- Virology, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi," 20122 Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Rani Pallavi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Deborah Trastulli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Isabella Pallavicini
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Claudia Gentile
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Silvia Monzani
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Tommaso Leonardi
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Sebastiano Pasqualato
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Gabriele Buttinelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Angela Di Martino
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Giorgio Fedele
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Ilaria Schiavoni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Meroni
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Raffaele de Francesco
- Virology, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi," 20122 Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Christian Steinkuhler
- Preclinical R&D Italfarmaco SpA, Via dei Lavoratori 54, 20092 Cinisello Balsamo (Milan), Italy
| | - Gianluca Fossati
- Preclinical R&D Italfarmaco SpA, Via dei Lavoratori 54, 20092 Cinisello Balsamo (Milan), Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Biosciences, University of Milan, Milan 20123, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milan, Milan 20122, Italy
| |
Collapse
|
12
|
Radzisheuskaya A, Peña‐Rømer I, Lorenzini E, Koche R, Zhan Y, Shliaha PV, Cooper AJ, Fan Z, Shlyueva D, Johansen JV, Hendrickson RC, Helin K. An alternative NURF complex sustains acute myeloid leukemia by regulating the accessibility of insulator regions. EMBO J 2023; 42:e114221. [PMID: 37987160 PMCID: PMC10711654 DOI: 10.15252/embj.2023114221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
Efficient treatment of acute myeloid leukemia (AML) patients remains a challenge despite recent therapeutic advances. Here, using a CRISPRi screen targeting chromatin factors, we identified the nucleosome-remodeling factor (NURF) subunit BPTF as an essential regulator of AML cell survival. We demonstrate that BPTF forms an alternative NURF chromatin remodeling complex with SMARCA5 and BAP18, which regulates the accessibility of a large set of insulator regions in leukemic cells. This ensures efficient CTCF binding and boundary formation between topologically associated domains that is essential for maintaining the leukemic transcriptional programs. We also demonstrate that the well-studied PHD2-BROMO chromatin reader domains of BPTF, while contributing to complex recruitment to chromatin, are dispensable for leukemic cell growth. Taken together, our results uncover how the alternative NURF complex contributes to leukemia and provide a rationale for its targeting in AML.
Collapse
Affiliation(s)
- Aliaksandra Radzisheuskaya
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
- Center for Epigenetics ResearchMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Cell Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Isabel Peña‐Rømer
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
| | - Eugenia Lorenzini
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
| | - Richard Koche
- Center for Epigenetics ResearchMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Yingqian Zhan
- Center for Epigenetics ResearchMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Pavel V Shliaha
- Microchemistry & Proteomics CoreMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | | | - Zheng Fan
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
| | - Daria Shlyueva
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
- Center for Epigenetics ResearchMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Cell Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Jens V Johansen
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
| | - Ronald C Hendrickson
- Microchemistry & Proteomics CoreMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Kristian Helin
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
- Center for Epigenetics ResearchMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Cell Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| |
Collapse
|
13
|
Noberini R, Bonaldi T. Proteomics contributions to epigenetic drug discovery. Proteomics 2023; 23:e2200435. [PMID: 37727062 DOI: 10.1002/pmic.202200435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
The combined activity of epigenetic features, which include histone post-translational modifications, DNA methylation, and nucleosome positioning, regulates gene expression independently from changes in the DNA sequence, defining how the shared genetic information of an organism is used to generate different cell phenotypes. Alterations in epigenetic processes have been linked with a multitude of diseases, including cancer, fueling interest in the discovery of drugs targeting the proteins responsible for writing, erasing, or reading histone and DNA modifications. Mass spectrometry (MS)-based proteomics has emerged as a versatile tool that can assist drug discovery pipelines from target validation, through target deconvolution, to monitoring drug efficacy in vivo. Here, we provide an overview of the contributions of MS-based proteomics to epigenetic drug discovery, describing the main approaches that can be used to support different drug discovery pipelines and highlighting how they contributed to the development and characterization of epigenetic drugs.
Collapse
Affiliation(s)
- Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
14
|
Medda A, Compagnoni M, Spini G, Citro S, Croci O, Campaner S, Tagliabue M, Ansarin M, Chiocca S. c-MYC-dependent transcriptional inhibition of autophagy is implicated in cisplatin sensitivity in HPV-positive head and neck cancer. Cell Death Dis 2023; 14:719. [PMID: 37925449 PMCID: PMC10625625 DOI: 10.1038/s41419-023-06248-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
Autophagy is important for the removal, degradation and recycling of damaged organelles, proteins, and lipids through the degradative action of lysosomes. In addition to its catabolic function, autophagy is important in cancer and viral-mediated tumorigenesis, including Human Papillomavirus (HPV) positive cancers. HPV infection is a major risk factor in a subset of head and neck cancer (HNC), for which no targeted therapies are currently available. Herein, we assessed autophagy function in HPV-positive HNC. We showed that HPV-positive HNC cells presented a transcriptional and functional impairment of the autophagic process compared to HPV-negative cells, which were reactivated by knocking down HPV E6/E7 oncoproteins, the drivers of cellular transformation. We found that the oncoprotein c-MYC was stabilized and triggered in HPV-positive cell lines. This resulted in the reduced binding of the MiT/TFE transcription factors to their autophagy targets due to c-MYC competition. Thus, the knock-down of c-MYC induced the upregulation of autophagic and lysosomal genes in HPV-positive HNC cells, as well as the increase of autophagic markers at the protein level. Moreover, HPV oncoprotein E7 upregulated the expression of the phosphatase inhibitor CIP2A, accounting for c-MYC upregulation and stability in HPV+ HNC cells. CIP2A mRNA expression negatively correlated with autophagy gene expression in tumor tissues from HNC patients, showing, for the first time, its implication in a transcriptional autophagic context. Both CIP2A and c-MYC knock-down, as well as pharmacological downregulation of c-MYC, resulted in increased resistance to cisplatin treatment. Our results not only show a novel way by which HPV oncoproteins manipulate the host machinery but also provide more insights into the role of autophagy in chemoresistance, with possible implications for targeted HPV-positive HNC therapy.
Collapse
Affiliation(s)
- Alessandro Medda
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, IEO Campus, Via Adamello 16, 20139, Milan, Italy
| | - Micaela Compagnoni
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, IEO Campus, Via Adamello 16, 20139, Milan, Italy
| | - Giorgio Spini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, IEO Campus, Via Adamello 16, 20139, Milan, Italy
| | - Simona Citro
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, IEO Campus, Via Adamello 16, 20139, Milan, Italy
| | - Ottavio Croci
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Stefano Campaner
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Marta Tagliabue
- Division of Otolaryngology Head & Neck Surgery, IEO, European Institute of Oncology IRCCS, 20141, Milan, Italy
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Mohssen Ansarin
- Division of Otolaryngology Head & Neck Surgery, IEO, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Susanna Chiocca
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, IEO Campus, Via Adamello 16, 20139, Milan, Italy.
| |
Collapse
|
15
|
Song YQ, Yang GJ, Ma DL, Wang W, Leung CH. The role and prospect of lysine-specific demethylases in cancer chemoresistance. Med Res Rev 2023; 43:1438-1469. [PMID: 37012609 DOI: 10.1002/med.21955] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/08/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
Histone methylation plays a key function in modulating gene expression, and preserving genome integrity and epigenetic inheritance. However, aberrations of histone methylation are commonly observed in human diseases, especially cancer. Lysine methylation mediated by histone methyltransferases can be reversed by lysine demethylases (KDMs), which remove methyl marks from histone lysine residues. Currently, drug resistance is a main impediment for cancer therapy. KDMs have been found to mediate drug tolerance of many cancers via altering the metabolic profile of cancer cells, upregulating the ratio of cancer stem cells and drug-tolerant genes, and promoting the epithelial-mesenchymal transition and metastatic ability. Moreover, different cancers show distinct oncogenic addictions for KDMs. The abnormal activation or overexpression of KDMs can alter gene expression signatures to enhance cell survival and drug resistance in cancer cells. In this review, we describe the structural features and functions of KDMs, the KDMs preferences of different cancers, and the mechanisms of drug resistance resulting from KDMs. We then survey KDM inhibitors that have been used for combating drug resistance in cancer, and discuss the opportunities and challenges of KDMs as therapeutic targets for cancer drug resistance.
Collapse
Affiliation(s)
- Ying-Qi Song
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guan-Jun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao, China
| |
Collapse
|
16
|
Zeng C, Chen J, Cooke EW, Subuddhi A, Roodman ET, Chen FX, Cao K. Demethylase-independent roles of LSD1 in regulating enhancers and cell fate transition. Nat Commun 2023; 14:4944. [PMID: 37607921 PMCID: PMC10444793 DOI: 10.1038/s41467-023-40606-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 08/01/2023] [Indexed: 08/24/2023] Open
Abstract
The major enhancer regulator lysine-specific histone demethylase 1A (LSD1) is required for mammalian embryogenesis and is implicated in human congenital diseases and multiple types of cancer; however, the underlying mechanisms remain enigmatic. Here, we dissect the role of LSD1 and its demethylase activity in gene regulation and cell fate transition. Surprisingly, the catalytic inactivation of LSD1 has a mild impact on gene expression and cellular differentiation whereas the loss of LSD1 protein de-represses enhancers globally and impairs cell fate transition. LSD1 deletion increases H3K27ac levels and P300 occupancy at LSD1-targeted enhancers. The gain of H3K27ac catalyzed by P300/CBP, not the loss of CoREST complex components from chromatin, contributes to the transcription de-repression of LSD1 targets and differentiation defects caused by LSD1 loss. Together, our study demonstrates a demethylase-independent role of LSD1 in regulating enhancers and cell fate transition, providing insight into treating diseases driven by LSD1 mutations and misregulation.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Jiwei Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai, China
| | - Emmalee W Cooke
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Arijita Subuddhi
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Eliana T Roodman
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai, China
| | - Kaixiang Cao
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| |
Collapse
|
17
|
Kumaraswamy A, Duan Z, Flores D, Zhang C, Sehrawat A, Hu YM, Swaim OA, Rodansky E, Storck WK, Kuleape JA, Bedi K, Mannan R, Wang XM, Udager A, Ravikumar V, Bankhead A, Coleman I, Lee JK, Morrissey C, Nelson PS, Chinnaiyan AM, Rao A, Xia Z, Yates JA, Alumkal JJ. LSD1 promotes prostate cancer reprogramming by repressing TP53 signaling independently of its demethylase function. JCI Insight 2023; 8:e167440. [PMID: 37440313 PMCID: PMC10445684 DOI: 10.1172/jci.insight.167440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Lysine-specific demethylase 1 (LSD1) is a histone demethylase that promotes stemness and cell survival in cancers such as prostate cancer. Most prostate malignancies are adenocarcinomas with luminal differentiation. However, some tumors undergo cellular reprogramming to a more lethal subset termed neuroendocrine prostate cancer (NEPC) with neuronal differentiation. The frequency of NEPC is increasing since the widespread use of potent androgen receptor signaling inhibitors. Currently, there are no effective treatments for NEPC. We previously determined that LSD1 promotes survival of prostate adenocarcinoma tumors. However, the role of LSD1 in NEPC is unknown. Here, we determined that LSD1 is highly upregulated in NEPC versus adenocarcinoma patient tumors. LSD1 suppression with RNAi or allosteric LSD1 inhibitors - but not catalytic inhibitors - reduced NEPC cell survival. RNA-Seq analysis revealed that LSD1 represses pathways linked to luminal differentiation, and TP53 was the top reactivated pathway. We confirmed that LSD1 suppressed the TP53 pathway by reducing TP53 occupancy at target genes while LSD1's catalytic function was dispensable for this effect. Mechanistically, LSD1 inhibition disrupted LSD1-HDAC interactions, increasing histone acetylation at TP53 targets. Finally, LSD1 inhibition suppressed NEPC tumor growth in vivo. These findings suggest that blocking LSD1's noncatalytic function may be a promising treatment strategy for NEPC.
Collapse
Affiliation(s)
- Anbarasu Kumaraswamy
- Department of Internal Medicine and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Zhi Duan
- Department of Internal Medicine and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Diana Flores
- Department of Internal Medicine and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Chao Zhang
- Department of Internal Medicine and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Ya-Mei Hu
- Knight Cancer Institute and
- Biomedical Engineering Department, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Olivia A. Swaim
- Department of Internal Medicine and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- College of Literature, Science, and the Arts, and
| | - Eva Rodansky
- Department of Internal Medicine and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - William K. Storck
- Department of Internal Medicine and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Joshua A. Kuleape
- Department of Internal Medicine and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Karan Bedi
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Rahul Mannan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Xiao-Ming Wang
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Michigan Center for Translational Pathology, Ann Arbor, Michigan, USA
| | - Aaron Udager
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Visweswaran Ravikumar
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Armand Bankhead
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ilsa Coleman
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - John K. Lee
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Peter S. Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Arul M. Chinnaiyan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Michigan Center for Translational Pathology, Ann Arbor, Michigan, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Howard Hughes Medical Institute, Ann Arbor, Michigan, USA
| | - Arvind Rao
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Radiation Oncology and
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Zheng Xia
- Knight Cancer Institute and
- Biomedical Engineering Department, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Joel A. Yates
- Department of Internal Medicine and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Joshi J. Alumkal
- Department of Internal Medicine and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Center for Translational Pathology, Ann Arbor, Michigan, USA
| |
Collapse
|
18
|
Mamun MAA, Zhang Y, Zhao JY, Shen DD, Guo T, Zheng YC, Zhao LJ, Liu HM. LSD1: an emerging face in altering the tumor microenvironment and enhancing immune checkpoint therapy. J Biomed Sci 2023; 30:60. [PMID: 37525190 PMCID: PMC10391765 DOI: 10.1186/s12929-023-00952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023] Open
Abstract
Dysregulation of various cells in the tumor microenvironment (TME) causes immunosuppressive functions and aggressive tumor growth. In combination with immune checkpoint blockade (ICB), epigenetic modification-targeted drugs are emerging as attractive cancer treatments. Lysine-specific demethylase 1 (LSD1) is a protein that modifies histone and non-histone proteins and is known to influence a wide variety of physiological processes. The dysfunction of LSD1 contributes to poor prognosis, poor patient survival, drug resistance, immunosuppression, etc., making it a potential epigenetic target for cancer therapy. This review examines how LSD1 modulates different cell behavior in TME and emphasizes the potential use of LSD1 inhibitors in combination with ICB therapy for future cancer research studies.
Collapse
Affiliation(s)
- M A A Mamun
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Yu Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Jin-Yuan Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Dan-Dan Shen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ting Guo
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Li-Juan Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
19
|
Nagai Y, Ambinder AJ. The Promise of Retinoids in the Treatment of Cancer: Neither Burnt Out Nor Fading Away. Cancers (Basel) 2023; 15:3535. [PMID: 37509198 PMCID: PMC10377082 DOI: 10.3390/cancers15143535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Since the introduction of all-trans retinoic acid (ATRA), acute promyelocytic leukemia (APL) has become a highly curable malignancy, especially in combination with arsenic trioxide (ATO). ATRA's success has deepened our understanding of the role of the RARα pathway in normal hematopoiesis and leukemogenesis, and it has influenced a generation of cancer drug development. Retinoids have also demonstrated some efficacy in a handful of other disease entities, including as a maintenance therapy for neuroblastoma and in the treatment of cutaneous T-cell lymphomas; nevertheless, the promise of retinoids as a differentiating therapy in acute myeloid leukemia (AML) more broadly, and as a cancer preventative, have largely gone unfulfilled. Recent research into the mechanisms of ATRA resistance and the biomarkers of RARα pathway dysregulation in AML have reinvigorated efforts to successfully deploy retinoid therapy in a broader subset of myeloid malignancies. Recent studies have demonstrated that the bone marrow environment is highly protected from exogenous ATRA via local homeostasis controlled by stromal cells expressing CYP26, a key enzyme responsible for ATRA inactivation. Synthetic CYP26-resistant retinoids such as tamibarotene bypass this stromal protection and have shown superior anti-leukemic effects. Furthermore, recent super-enhancer (SE) analysis has identified a novel AML subgroup characterized by high expression of RARα through strong SE levels in the gene locus and increased sensitivity to tamibarotene. Combined with a hypomethylating agent, synthetic retinoids have shown synergistic anti-leukemic effects in non-APL AML preclinical models and are now being studied in phase II and III clinical trials.
Collapse
Affiliation(s)
- Yuya Nagai
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe 650-0047, Hyogo, Japan
| | - Alexander J Ambinder
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
20
|
Johnson JD, Alejo S, Jayamohan S, Sareddy GR. Lysine-specific demethylase 1 as a therapeutic cancer target: observations from preclinical study. Expert Opin Ther Targets 2023; 27:1177-1188. [PMID: 37997756 PMCID: PMC10872912 DOI: 10.1080/14728222.2023.2288277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
INTRODUCTION Lysine-specific histone demethylase 1A (KDM1A/LSD1) has emerged as an important therapeutic target in various cancer types. LSD1 regulates a wide range of biological processes that influence cancer development, progression, metastasis, and therapy resistance. However, recent studies have revealed novel aspects of LSD1 biology, shedding light on its involvement in immunogenicity, antitumor immunity, and DNA damage response. These emerging findings have the potential to be leveraged in the design of effective LSD1-targeted therapies. AREAS COVERED This paper discusses the latest developments in the field of LSD1 biology, focusing on its role in regulating immunogenicity, antitumor immunity, and DNA damage response mechanisms. The newfound understanding of these mechanisms has opened possibilities for the development of novel LSD1-targeted therapies for cancer treatment. Additionally, the paper provides an overview of LSD1 inhibitor-based combination therapies for the treatment of cancer. EXPERT OPINION Exploiting LSD1 role in antitumor immunity and DNA damage response provides cues to not only understand the LSD1-resistant mechanisms but also rationally design new combination therapies that are more efficient and less toxic than monotherapy. The exploration of LSD1 biology and the development of LSD1-targeted therapies hold great promise for the future of cancer treatment.
Collapse
Affiliation(s)
- Jessica D. Johnson
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Salvador Alejo
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Sridharan Jayamohan
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Gangadhara R. Sareddy
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
21
|
Mircetic J, Camgöz A, Abohawya M, Ding L, Dietzel J, Tobar SG, Paszkowski-Rogacz M, Seidlitz T, Schmäche T, Mehnert MC, Sidorova O, Weitz J, Buchholz F, Stange DE. CRISPR/Cas9 Screen in Gastric Cancer Patient-Derived Organoids Reveals KDM1A-NDRG1 Axis as a Targetable Vulnerability. SMALL METHODS 2023; 7:e2201605. [PMID: 36908010 DOI: 10.1002/smtd.202201605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/01/2023] [Indexed: 06/09/2023]
Abstract
Viability CRISPR screens have proven indispensable in parsing genome function. However, their application in new, more physiologically relevant culturing systems like patient-derived organoids (PDOs) has been much slower. To probe epigenetic contribution to gastric cancer (GC), the third leading cause of cancer-related deaths worldwide, the first negative selection CRISPR screen in GC PDOs that faithfully preserve primary tumor characteristics is performed. Extensive quality control measurements showing feasibility of CRISPR screens in primary organoid culture are provided. The screen reveals the histone lysine demethylase-1A (KDM1A) to constitute a GC vulnerability. Both genetic and pharmacological inhibition of KDM1A cause organoid growth retardation. Further, it is shown that most of KDM1A cancer-supporting functions center on repression of N-myc downstream regulates gene-1 (NDRG1). De-repression of NDRG1 by KDM1A inhibitors (KDM1Ai) causes inhibition of Wnt signaling and a strong G1 cell cycle arrest. Finally, by profiling 20 GC PDOs, it is shown that NDRG1 upregulation predicts KDM1Ai response with 100% sensitivity and 82% specificity in the tested cohort. Thus, this work pioneers the use of negative selection CRISPR screens in patient-derived organoids, identifies a marker of KDM1Ai response, and accordingly a cohort of patients who may benefit from such therapy.
Collapse
Affiliation(s)
- Jovan Mircetic
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), 01309, Dresden, Germany
- Mildred Scheel Early Career Center (MSNZ) P2, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Aylin Camgöz
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 01307, Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), 01307, Dresden, Germany
| | - Moustafa Abohawya
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), 01309, Dresden, Germany
| | - Li Ding
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Julia Dietzel
- Mildred Scheel Early Career Center (MSNZ) P2, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Sebastián García Tobar
- Mildred Scheel Early Career Center (MSNZ) P2, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Maciej Paszkowski-Rogacz
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Therese Seidlitz
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Tim Schmäche
- National Center for Tumor Diseases (NCT), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 01307, Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), 01307, Dresden, Germany
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Marie-Christin Mehnert
- Mildred Scheel Early Career Center (MSNZ) P2, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Olga Sidorova
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
- Experimental and Clinical Research Center (ECRC) of the Max Delbrück Center (MDC) and Charité Berlin, 10117, Berlin, Germany
| | - Jürgen Weitz
- National Center for Tumor Diseases (NCT), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 01307, Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), 01307, Dresden, Germany
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Frank Buchholz
- National Center for Tumor Diseases (NCT), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 01307, Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), 01307, Dresden, Germany
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Daniel E Stange
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), 01309, Dresden, Germany
- National Center for Tumor Diseases (NCT), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 01307, Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), 01307, Dresden, Germany
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| |
Collapse
|
22
|
Lu Y, Cao Q, Yu Y, Sun Y, Jiang X, Li X. Pan-cancer analysis revealed H3K4me1 at bivalent promoters premarks DNA hypermethylation during tumor development and identified the regulatory role of DNA methylation in relation to histone modifications. BMC Genomics 2023; 24:235. [PMID: 37138231 PMCID: PMC10157937 DOI: 10.1186/s12864-023-09341-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND DNA hypermethylation at promoter CpG islands (CGIs) is a hallmark of cancers and could lead to dysregulation of gene expression in the development of cancers, however, its dynamics and regulatory mechanisms remain elusive. Bivalent genes, that direct development and differentiation of stem cells, are found to be frequent targets of hypermethylation in cancers. RESULTS Here we performed comprehensive analysis across multiple cancer types and identified that the decrease in H3K4me1 levels coincides with DNA hypermethylation at the bivalent promoter CGIs during tumorigenesis. Removal of DNA hypermethylation leads to increment of H3K4me1 at promoter CGIs with preference for bivalent genes. Nevertheless, the alteration of H3K4me1 by overexpressing or knockout LSD1, the demethylase of H3K4, doesn't change the level or pattern of DNA methylation. Moreover, LSD1 was found to regulate the expression of a bivalent gene OVOL2 to promote tumorigenesis. Knockdown of OVOL2 in LSD1 knockout HCT116 cells restored the cancer cell phenotype. CONCLUSION In summary, our work identified a universal indicator that can pre-mark DNA hypermethylation in cancer cells, and dissected the interplay between H3K4me1 and DNA hypermethylation in detail. Current study also reveals a novel mechanism underlying the oncogenic role of LSD1, providing clues for cancer therapies.
Collapse
Affiliation(s)
- Yang Lu
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Qiang Cao
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Yue Yu
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Yazhou Sun
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Xuan Jiang
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China.
| | - Xin Li
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
23
|
Sbirkov Y, Schenk T, Kwok C, Stengel S, Brown R, Brown G, Chesler L, Zelent A, Fuchter MJ, Petrie K. Dual inhibition of EZH2 and G9A/GLP histone methyltransferases by HKMTI-1-005 promotes differentiation of acute myeloid leukemia cells. Front Cell Dev Biol 2023; 11:1076458. [PMID: 37035245 PMCID: PMC10076884 DOI: 10.3389/fcell.2023.1076458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
All-trans-retinoic acid (ATRA)-based differentiation therapy of acute promyelocytic leukemia (APL) represents one of the most clinically effective examples of precision medicine and the first example of targeted oncoprotein degradation. The success of ATRA in APL, however, remains to be translated to non-APL acute myeloid leukemia (AML). We previously showed that aberrant histone modifications, including histone H3 lysine 4 (H3K4) and lysine 27 (H3K27) methylation, were associated with this lack of response and that epigenetic therapy with small molecule inhibitors of the H3K4 demethylase LSD1/KDM1A could reprogram AML cells to respond to ATRA. Serving as the enzymatic component of Polycomb Repressive Complex 2, EZH2/KMT6A methyltransferase plays a critical role in normal hematopoiesis by affecting the balance between self-renewal and differentiation. The canonical function of EZH2 is methylation of H3K27, although important non-canonical roles have recently been described. EZH2 mutation or deregulated expression has been conclusively demonstrated in the pathogenesis of AML and response to treatment, thus making it an attractive therapeutic target. In this study, we therefore investigated whether inhibition of EZH2 might also improve the response of non-APL AML cells to ATRA-based therapy. We focused on GSK-343, a pyridone-containing S-adenosyl-L-methionine cofactor-competitive EZH2 inhibitor that is representative of its class, and HKMTI-1-005, a substrate-competitive dual inhibitor targeting EZH2 and the closely related G9A/GLP H3K9 methyltransferases. We found that treatment with HKMTI-1-005 phenocopied EZH2 knockdown and was more effective in inducing differentiation than GSK-343, despite the efficacy of GSK-343 in terms of abolishing H3K27 trimethylation. Furthermore, transcriptomic analysis revealed that in contrast to treatment with GSK-343, HKMTI-1-005 upregulated the expression of differentiation pathway genes with and without ATRA, while downregulating genes associated with a hematopoietic stem cell phenotype. These results pointed to a non-canonical role for EZH2, which was supported by the finding that EZH2 associates with the master regulator of myeloid differentiation, RARα, in an ATRA-dependent manner that was enhanced by HKMTI-1-005, possibly playing a role in co-regulator complex exchange during transcriptional activation. In summary, our results strongly suggest that addition of HKMTI-1-005 to ATRA is a new therapeutic approach against AML that warrants further investigation.
Collapse
Affiliation(s)
- Y. Sbirkov
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, Plovdiv, Bulgaria
| | - T. Schenk
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Department of Hematology and Medical Oncology, Clinic of Internal Medicine II, Jena University Hospital, Jena, Germany
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany
| | - C. Kwok
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - S. Stengel
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Division of Gastroenterology, Hepatology and Infectious Diseases, Department of Internal Medicine IV, Jena University Hospital, Jena, Germany
| | - R. Brown
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - G. Brown
- Institute of Clinical Sciences, School of Biomedical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - L. Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - A. Zelent
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Magdalenka, Poland
| | - M. J. Fuchter
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, United Kingdom
| | - K. Petrie
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, United Kingdom
| |
Collapse
|
24
|
Hartung EE, Singh K, Berg T. LSD1 inhibition modulates transcription factor networks in myeloid malignancies. Front Oncol 2023; 13:1149754. [PMID: 36969082 PMCID: PMC10036816 DOI: 10.3389/fonc.2023.1149754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Acute Myeloid Leukemia (AML) is a type of cancer of the blood system that is characterized by an accumulation of immature hematopoietic cells in the bone marrow and blood. Its pathogenesis is characterized by an increase in self-renewal and block in differentiation in hematopoietic stem and progenitor cells. Underlying its pathogenesis is the acquisition of mutations in these cells. As there are many different mutations found in AML that can occur in different combinations the disease is very heterogeneous. There has been some progress in the treatment of AML through the introduction of targeted therapies and a broader application of the stem cell transplantation in its treatment. However, many mutations found in AML are still lacking defined interventions. These are in particular mutations and dysregulation in important myeloid transcription factors and epigenetic regulators that also play a crucial role in normal hematopoietic differentiation. While a direct targeting of the partial loss-of-function or change in function observed in these factors is very difficult to imagine, recent data suggests that the inhibition of LSD1, an important epigenetic regulator, can modulate interactions in the network of myeloid transcription factors and restore differentiation in AML. Interestingly, the impact of LSD1 inhibition in this regard is quite different between normal and malignant hematopoiesis. The effect of LSD1 inhibition involves transcription factors that directly interact with LSD1 such as GFI1 and GFI1B, but also transcription factors that bind to enhancers that are modulated by LSD1 such as PU.1 and C/EBPα as well as transcription factors that are regulated downstream of LSD1 such as IRF8. In this review, we are summarizing the current literature on the impact of LSD1 modulation in normal and malignant hematopoietic cells and the current knowledge how the involved transcription factor networks are altered. We are also exploring how these modulation of transcription factors play into the rational selection of combination partners with LSD1 inhibitors, which is an intense area of clinical investigation.
Collapse
Affiliation(s)
- Emily E. Hartung
- Centre for Discovery in Cancer Research, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Kanwaldeep Singh
- Centre for Discovery in Cancer Research, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Oncology, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Tobias Berg
- Centre for Discovery in Cancer Research, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Oncology, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Escarpment Cancer Research Institute, McMaster University, Hamilton Health Sciences, Hamilton, ON, Canada
- *Correspondence: Tobias Berg,
| |
Collapse
|
25
|
Noce B, Di Bello E, Fioravanti R, Mai A. LSD1 inhibitors for cancer treatment: Focus on multi-target agents and compounds in clinical trials. Front Pharmacol 2023; 14:1120911. [PMID: 36817147 PMCID: PMC9932783 DOI: 10.3389/fphar.2023.1120911] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Histone lysine-specific demethylase 1 (LSD1/KDM1A) was first identified in 2004 as an epigenetic enzyme able to demethylate specific lysine residues of histone H3, namely H3K4me1/2 and H3K9me1/2, using FAD as the cofactor. It is ubiquitously overexpressed in many types of cancers (breast, gastric, prostate, hepatocellular, and esophageal cancer, acute myeloid leukemia, and others) leading to block of differentiation and increase of proliferation, migration and invasiveness at cellular level. LSD1 inhibitors can be grouped in covalent and non-covalent agents. Each group includes some hybrid compounds, able to inhibit LSD1 in addition to other target(s) at the same time (dual or multitargeting compounds). To date, 9 LSD1 inhibitors have entered clinical trials, for hematological and/or solid cancers. Seven of them (tranylcypromine, iadademstat (ORY-1001), bomedemstat (IMG-7289), GSK-2879552, INCB059872, JBI-802, and Phenelzine) covalently bind the FAD cofactor, and two are non-covalent LSD1 inhibitors [pulrodemstat (CC-90011) and seclidemstat (SP-2577)]. Another TCP-based LSD1/MAO-B dual inhibitor, vafidemstat (ORY-2001), is in clinical trial for Alzheimer's diseases and personality disorders. The present review summarizes the structure and functions of LSD1, its pathological implications in cancer and non-cancer diseases, and the identification of LSD1 covalent and non-covalent inhibitors with different chemical scaffolds, including those involved in clinical trials, highlighting their potential as potent and selective anticancer agents.
Collapse
Affiliation(s)
- Beatrice Noce
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Di Bello
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Rossella Fioravanti
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy,*Correspondence: Rossella Fioravanti,
| | - Antonello Mai
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy,Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
26
|
Zhang XY, Hao P, Wang JW, Zhao W, Liu HM, He PX. Inhibition of lysine-specific demethylase 1 enhances the sensitivity of the chemotherapeutic drug doxorubicin in gastric cancer cell. Mol Biol Rep 2023; 50:507-516. [PMID: 36352181 DOI: 10.1007/s11033-022-07960-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/17/2022] [Indexed: 11/11/2022]
Abstract
AIM Lysine-Specific Demethylase 1 (LSD1) inhibitors have been developed and reached the clinic, but its effect in combination with cytotoxic chemotherapy is unclear. Here, we investigated the anti-tumor effect of LSD1 inhibitor GSK-LSD1 and its anti-tumor effect with the DNA damage drug doxorubicin (DOX) in gastric cancer (GC) cells. METHODS Cells were treated with different concentrations of GSK-LSD1 to examine the anti-tumor effect versus cell viability by MTT and cell cycle arrest by flow cytometry. To explore whether LSD1 inhibitors can increase the anti-tumor effect of DNA damage drugs, cells were treated with DOX for 48 h after pretreatment with GSK-LSD1 for 48 h. Cell viability was detected by MTT and apoptosis-related proteins were examined by Western blot. Furthermore, anti-tumor efficacy of combination GSK-LSD1 with DOX was also measured in MGC-803 xenografts model in nude mice. RESULTS The results showed that LSD1 was highly expressed in GC cell lines. Inhibition of LSD1 has a weak effect on cell viability and cell cycle. Moreover, LSD1 inhibitors pretreatment could significantly increase the anti-tumor effect of DOX. Further study found that inhibition of LSD1 can significantly enhance DOX-induced the apoptosis, accompanied by down-regulation of antiapoptotic Bcl-2 expression and up-regulation of proapoptotic Bax expression. We also confirmed that inhibition of LSD1 can sensitize the anti-tumor effect of DOX in vivo. CONCLUSION Our findings suggest that the LSD1 inhibitor GSK-LSD1 has a weak inhibitory effect on the viability and cell cycle of GC cells, but can enhance the sensitivity of DOX.
Collapse
Affiliation(s)
- Xu-Yang Zhang
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 450001, Zhengzhou, China
| | - Pan Hao
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 450001, Zhengzhou, China
| | - Jun-Wei Wang
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 450001, Zhengzhou, China
| | - Wen Zhao
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 450001, Zhengzhou, China.
| | - Hong-Min Liu
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 450001, Zhengzhou, China.
| | - Peng-Xing He
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
27
|
Agboyibor C, Dong J, Effah CY, Drokow EK, Ampomah-Wireko M, Pervaiz W, Sangmor A, Ma X, Li J, Liu HM, Zhang P. Epigenetic compounds targeting pharmacological target lysine specific demethylase 1 and its impact on immunotherapy, chemotherapy and radiotherapy for treatment of tumor recurrence and resistance. Biomed Pharmacother 2023; 157:113934. [PMID: 36395607 DOI: 10.1016/j.biopha.2022.113934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2022] Open
Abstract
It has been proven that metastatic recurrence and therapeutic resistance are linked. Due to the variability of individuals and tumors, as well as the tumor's versatility in avoiding therapies, therapy resistance is more difficult to treat. Therapy resistance has significantly restricted the clinical feasibility and efficacy of tumor therapy, despite the discovery of novel compounds and therapy combinations with increasing efficacy. In several tumors, lysine specific demethylase 1 (LSD1) has been associated to metastatic recurrence and therapeutic resistance. For researchers to better comprehend how LSD1-mediated tumor therapy resistance occurs and how to overcome it in various tumors, this study focused on the role of LSD1 in tumor recurrence and therapeutic resistance. The importance of therapeutically targeted LSD1 was also discussed. Most gene pathway signatures are related to LSD1 inhibitor sensitivity. However, some gene pathway signatures, especially in AML, negatively correlate with LSD1 inhibitor sensitivity, but targeting LSD1 makes the therapy-resistant tumor sensitive to physiological doses of conventional therapy. We propose that combining LSD1 inhibitor with traditional tumor therapy can help patients attain a complete response and prevent cancer relapse.
Collapse
Affiliation(s)
- Clement Agboyibor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China; Institute of Drug Discovery and Development; Zhengzhou University, Zhengzhou 450001, PR China
| | - Jianshu Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China
| | - Clement Yaw Effah
- College of Public Health, Zhengzhou University, Zhengzhou 450001, PR China
| | - Emmanuel Kwateng Drokow
- Department of Oncology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital Henan, 450003, Zhengzhou, PR China
| | | | - Waqar Pervaiz
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China; Institute of Drug Discovery and Development; Zhengzhou University, Zhengzhou 450001, PR China
| | - Augustina Sangmor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xinli Ma
- China-US(Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, PR China
| | - Jian Li
- China-US(Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, PR China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China; Institute of Drug Discovery and Development; Zhengzhou University, Zhengzhou 450001, PR China.
| | - Peng Zhang
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, Henan province, PR China 450008.
| |
Collapse
|
28
|
Benyoucef A, Haigh K, Cuddihy A, Haigh JJ. JAK/BCL2 inhibition acts synergistically with LSD1 inhibitors to selectively target ETP-ALL. Leukemia 2022; 36:2802-2816. [PMID: 36229595 PMCID: PMC9712096 DOI: 10.1038/s41375-022-01716-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
ETP-ALL (Early T cell Progenitor Acute Lymphoblastic Leukemia) represents a high-risk subtype of T cell acute lymphocytic leukemia (T-ALL). Therapeutically, ETP-ALL patients frequently relapse after conventional chemotherapy highlighting the need for alternative therapeutic approaches. Using our ZEB2Tg ETP-ALL mouse model we previously documented the potential utility of the catalytic LSD1 inhibitor (GSK2879552) for treating mouse/human ETP-ALL. However, this approach proved to be inefficient, especially in killing human LOUCY cell ETP-ALL xenografts in vivo. Here we have revealed the novel involvement of ZEB2/LSD1 complexes in repressing the intrinsic apoptosis pathway by inhibiting the expression of several pro-apoptotic proteins such as BIM (BCL2L11) as a major driver for ETP-ALL survival. Treatment with LSD1i (particularly with the steric inhibitor SP2509) restored the expression of ZEB2/LSD1 pro-apoptotic BIM (BCL2L11) target. In combination with a JAK/STAT pathway inhibitor (JAKi, Ruxolitinib) or with a direct inhibitor of the anti-apoptotic BCL2 protein (BCL2i, ABT-199) resistance of human and mouse ETP-ALL to LSD1i was reversed. This new combination approach efficiently inhibited the growth of human and mouse ETP-ALL cells in vivo by enhancing their differentiation and triggering an apoptotic response. These results set the stage for novel combination therapies to be used in clinical trials to treat ETP-ALL patients.
Collapse
Affiliation(s)
- Aissa Benyoucef
- Department of Pharmacology and Therapeutics, Rady Faulty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- CancerCare Manitoba Research Institute, Winnipeg, MB, Canada.
| | - Katharina Haigh
- Department of Pharmacology and Therapeutics, Rady Faulty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- CancerCare Manitoba Research Institute, Winnipeg, MB, Canada
| | - Andrew Cuddihy
- CancerCare Manitoba Research Institute, Winnipeg, MB, Canada
| | - Jody J Haigh
- Department of Pharmacology and Therapeutics, Rady Faulty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- CancerCare Manitoba Research Institute, Winnipeg, MB, Canada.
| |
Collapse
|
29
|
Zhai LH, Chen KF, Hao BB, Tan MJ. Proteomic characterization of post-translational modifications in drug discovery. Acta Pharmacol Sin 2022; 43:3112-3129. [PMID: 36372853 PMCID: PMC9712763 DOI: 10.1038/s41401-022-01017-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/07/2022] [Indexed: 11/15/2022] Open
Abstract
Protein post-translational modifications (PTMs), which are usually enzymatically catalyzed, are major regulators of protein activity and involved in almost all celluar processes. Dysregulation of PTMs is associated with various types of diseases. Therefore, PTM regulatory enzymes represent as an attractive and important class of targets in drug research and development. Inhibitors against kinases, methyltransferases, deacetyltransferases, ubiquitin ligases have achieved remarkable success in clinical application. Mass spectrometry-based proteomics technologies serve as a powerful approach for system-wide characterization of PTMs, which facilitates the identification of drug targets, elucidation of the mechanisms of action of drugs, and discovery of biomakers in personalized therapy. In this review, we summarize recent advances of proteomics-based studies on PTM targeting drugs and discuss how proteomics strategies facilicate drug target identification, mechanism elucidation, and new therapy development in precision medicine.
Collapse
Affiliation(s)
- Lin-Hui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, 528400, China
| | - Kai-Feng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing-Bing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Min-Jia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, 528400, China.
| |
Collapse
|
30
|
Ferrarese R, Izzo A, Andrieux G, Lagies S, Bartmuss JP, Masilamani AP, Wasilenko A, Osti D, Faletti S, Schulzki R, Yuan S, Kling E, Ribecco V, Heiland DH, Tholen S, Prinz M, Pelicci G, Kammerer B, Boerries M, Carro MS. ZBTB18 inhibits SREBP-dependent lipid synthesis by halting CTBPs and LSD1 activity in glioblastoma. Life Sci Alliance 2022; 6:6/1/e202201400. [PMID: 36414381 PMCID: PMC9684030 DOI: 10.26508/lsa.202201400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
Enhanced fatty acid synthesis is a hallmark of tumors, including glioblastoma. SREBF1/2 regulate the expression of enzymes involved in fatty acid and cholesterol synthesis. Yet, little is known about the precise mechanism regulating SREBP gene expression in glioblastoma. Here, we show that a novel interaction between the co-activator/co-repressor CTBP and the tumor suppressor ZBTB18 regulates the expression of SREBP genes. In line with our findings, metabolic assays and glucose tracing analysis confirm the reduction in several phospholipid species upon ZBTB18 expression. Our study identifies CTBP1/2 and LSD1 as co-activators of SREBP genes and indicates that the functional activity of the CTBP-LSD1 complex is altered by ZBTB18. ZBTB18 binding to the SREBP gene promoters is associated with reduced LSD1 demethylase activity of H3K4me2 and H3K9me2 marks. Concomitantly, the interaction between LSD1, CTBP, and ZNF217 is increased, suggesting that ZBTB18 promotes LSD1 scaffolding function. Our results outline a new epigenetic mechanism enrolled by ZBTB18 and its co-factors to regulate fatty acid synthesis that could be targeted to treat glioblastoma patients.
Collapse
Affiliation(s)
- Roberto Ferrarese
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Annalisa Izzo
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon Lagies
- Center for Biological Systems Analysis, University of Freiburg, Breisgau, Germany,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Johanna Paulina Bartmuss
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Anie Priscilla Masilamani
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Alix Wasilenko
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Daniela Osti
- Department of Experimental Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Stefania Faletti
- Department of Experimental Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Rana Schulzki
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Shuai Yuan
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Eva Kling
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Valentino Ribecco
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Tholen
- Institute of Clinical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany,Signaling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany,Center for NeuroModulation (NeuroModul), University of Freiburg, Freiburg, Germany
| | - Giuliana Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy,Department of Translational Medicine, Piemonte Orientale University “Amedeo Avo-Gadro,” Novara, Italy
| | - Bernd Kammerer
- Center for Biological Systems Analysis, University of Freiburg, Breisgau, Germany,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany,BIOSS Centre of Biological Signaling Studies, University of Freiburg, Freiburg Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maria Stella Carro
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| |
Collapse
|
31
|
Endocrine resistance and breast cancer plasticity are controlled by CoREST. Nat Struct Mol Biol 2022; 29:1122-1135. [PMID: 36344844 PMCID: PMC9707522 DOI: 10.1038/s41594-022-00856-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Resistance to cancer treatment remains a major clinical hurdle. Here, we demonstrate that the CoREST complex is a key determinant of endocrine resistance and ER+ breast cancer plasticity. In endocrine-sensitive cells, CoREST is recruited to regulatory regions co-bound to ERα and FOXA1 to regulate the estrogen pathway. In contrast, during temporal reprogramming towards a resistant state, CoREST is recruited to AP-1 sites. In reprogrammed cells, CoREST favors chromatin opening, cJUN binding to chromatin, and gene activation by controlling SWI/SNF recruitment independently of the demethylase activity of the CoREST subunit LSD1. Genetic and pharmacological CoREST inhibition reduces tumorigenesis and metastasis of endocrine-sensitive and endocrine-resistant xenograft models. Consistently, CoREST controls a gene signature involved in invasiveness in clinical breast tumors resistant to endocrine therapies. Our studies reveal CoREST functions that are co-opted to drive cellular plasticity and resistance to endocrine therapies and tumorigenesis, thus establishing CoREST as a potential therapeutic target for the treatment of advanced breast cancer.
Collapse
|
32
|
Maiques-Diaz A, Nicosia L, Basma NJ, Romero-Camarero I, Camera F, Spencer GJ, Amaral FMR, Simeoni F, Wingelhofer B, Williamson AJK, Pierce A, Whetton AD, Somervaille TCP. HMG20B stabilizes association of LSD1 with GFI1 on chromatin to confer transcription repression and leukemia cell differentiation block. Oncogene 2022; 41:4841-4854. [PMID: 36171271 PMCID: PMC7613766 DOI: 10.1038/s41388-022-02471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022]
Abstract
Pharmacologic inhibition of LSD1 induces molecular and morphologic differentiation of blast cells in acute myeloid leukemia (AML) patients harboring MLL gene translocations. In addition to its demethylase activity, LSD1 has a critical scaffolding function at genomic sites occupied by the SNAG domain transcription repressor GFI1. Importantly, inhibitors block both enzymatic and scaffolding activities, in the latter case by disrupting the protein:protein interaction of GFI1 with LSD1. To explore the wider consequences of LSD1 inhibition on the LSD1 protein complex we applied mass spectrometry technologies. We discovered that the interaction of the HMG-box protein HMG20B with LSD1 was also disrupted by LSD1 inhibition. Downstream investigations revealed that HMG20B is co-located on chromatin with GFI1 and LSD1 genome-wide; the strongest HMG20B binding co-locates with the strongest GFI1 and LSD1 binding. Functional assays demonstrated that HMG20B depletion induces leukemia cell differentiation and further revealed that HMG20B is required for the transcription repressor activity of GFI1 through stabilizing LSD1 on chromatin at GFI1 binding sites. Interaction of HMG20B with LSD1 is through its coiled-coil domain. Thus, HMG20B is a critical component of the GFI1:LSD1 transcription repressor complex which contributes to leukemia cell differentiation block.
Collapse
Affiliation(s)
- Alba Maiques-Diaz
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Luciano Nicosia
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Naseer J Basma
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Isabel Romero-Camarero
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Francesco Camera
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Gary J Spencer
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Fabio M R Amaral
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Fabrizio Simeoni
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Bettina Wingelhofer
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Andrew J K Williamson
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre, The University of Manchester, Wolfson Molecular Imaging Centre, 27 Palatine Road, Manchester, M20 3LJ, UK
| | - Andrew Pierce
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre, The University of Manchester, Wolfson Molecular Imaging Centre, 27 Palatine Road, Manchester, M20 3LJ, UK
- School of Medical and Health Sciences, College of Human Sciences, Fron Heulog Bangor University, Bangor, LL57 2TH, UK
| | - Anthony D Whetton
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre, The University of Manchester, Wolfson Molecular Imaging Centre, 27 Palatine Road, Manchester, M20 3LJ, UK
- School of Veterinary Medicine and School of Biosciences and Medicine, University of Surrey, VSM Building, University of Surrey, Guildford, GU2 7AL, UK
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK.
| |
Collapse
|
33
|
Yang C, Li D, Zang S, Zhang L, Zhong Z, Zhou Y. Mechanisms of carcinogenic activity triggered by lysine-specific demethylase 1A. Front Pharmacol 2022; 13:955218. [PMID: 36059955 PMCID: PMC9428822 DOI: 10.3389/fphar.2022.955218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/29/2022] [Indexed: 12/23/2022] Open
Abstract
Epigenetics has emerged as a prime focus area in the field of cancer research. Lysine-specific demethylase 1A (LSD1), the first discovered histone demethylase, is mainly responsible for catalysing demethylation of histone 3 lysine 4 (H3K4) and H3K9 to activate or inhibit gene transcription. LSD1 is abnormally expressed in various cancers and participates in cancer proliferation, apoptosis, metastasis, invasion, drug resistance and other processes by interacting with regulatory factors. Therefore, it may serve as a potential therapeutic target for cancer. This review summarises the major oncogenic mechanisms mediated by LSD1 and provides a reference for developing novel and efficient anticancer strategies targeting LSD1.
Collapse
Affiliation(s)
- Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohong Zang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
| | - Lei Zhang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Yingtang Zhou,
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
- *Correspondence: Zhangfeng Zhong, ; Yingtang Zhou,
| |
Collapse
|
34
|
Astro V, Ramirez-Calderon G, Pennucci R, Caroli J, Saera-Vila A, Cardona-Londoño K, Forastieri C, Fiacco E, Maksoud F, Alowaysi M, Sogne E, Andrea Falqui, Gonzàlez F, Montserrat N, Battaglioli E, Andrea Mattevi, Adamo A. Fine-tuned KDM1A alternative splicing regulates human cardiomyogenesis through an enzymatic-independent mechanism. iScience 2022; 25:104665. [PMID: 35856020 PMCID: PMC9287196 DOI: 10.1016/j.isci.2022.104665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/31/2022] [Accepted: 06/17/2022] [Indexed: 12/02/2022] Open
Abstract
The histone demethylase KDM1A is a multi-faceted regulator of vital developmental processes, including mesodermal and cardiac tube formation during gastrulation. However, it is unknown whether the fine-tuning of KDM1A splicing isoforms, already shown to regulate neuronal maturation, is crucial for the specification and maintenance of cell identity during cardiogenesis. Here, we discovered a temporal modulation of ubKDM1A and KDM1A+2a during human and mice fetal cardiac development and evaluated their impact on the regulation of cardiac differentiation. We revealed a severely impaired cardiac differentiation in KDM1A−/− hESCs that can be rescued by re-expressing ubKDM1A or catalytically impaired ubKDM1A-K661A, but not by KDM1A+2a or KDM1A+2a-K661A. Conversely, KDM1A+2a−/− hESCs give rise to functional cardiac cells, displaying increased beating amplitude and frequency and enhanced expression of critical cardiogenic markers. Our findings prove the existence of a divergent scaffolding role of KDM1A splice variants, independent of their enzymatic activity, during hESC differentiation into cardiac cells. ubKDM1A and KDM1A+2a isoforms are fine-tuned during fetal cardiac development Depletion of KDM1A isoforms impairs hESC differentiation into cardiac cells KDM1A+2a ablation enhances the expression of key cardiac markers KDM1A isoforms exhibit enzymatic-independent divergent roles during cardiogenesis
Collapse
|
35
|
Fioravanti R, Rodriguez V, Caroli J, Chianese U, Benedetti R, Di Bello E, Noce B, Zwergel C, Corinti D, Viña D, Altucci L, Mattevi A, Valente S, Mai A. Heterocycle-containing tranylcypromine derivatives endowed with high anti-LSD1 activity. J Enzyme Inhib Med Chem 2022; 37:973-985. [PMID: 35317680 PMCID: PMC8942502 DOI: 10.1080/14756366.2022.2052869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
As regioisomers/bioisosteres of 1a, a 4-phenylbenzamide tranylcypromine (TCP) derivative previously disclosed by us, we report here the synthesis and biological evaluation of some (hetero)arylbenzoylamino TCP derivatives 1b-6, in which the 4-phenyl moiety of 1a was shifted at the benzamide C3 position or replaced by 2- or 3-furyl, 2- or 3-thienyl, or 4-pyridyl group, all at the benzamide C4 or C3 position. In anti-LSD1-CoREST assay, all the meta derivatives were more effective than the para analogues, with the meta thienyl analogs 4b and 5b being the most potent (IC50 values = 0.015 and 0.005 μM) and the most selective over MAO-B (selectivity indexes: 24.4 and 164). When tested in U937 AML and prostate cancer LNCaP cells, selected compounds 1a,b, 2b, 3b, 4b, and 5a,b displayed cell growth arrest mainly in LNCaP cells. Western blot analyses showed increased levels of H3K4me2 and/or H3K9me2 confirming the involvement of LSD1 inhibition in these assays.
Collapse
Affiliation(s)
- Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Veronica Rodriguez
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Jonatan Caroli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Ugo Chianese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Elisabetta Di Bello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Beatrice Noce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Davide Corinti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Dolores Viña
- Center for Research in Molecular Medicine and Chronic Disease (CIMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Biogem Institute of Molecular and Genetic Biology, Ariano Irpino, Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| |
Collapse
|
36
|
He X, Zhang H, Zhang Y, Ye Y, Wang S, Bai R, Xie T, Ye XY. Drug discovery of histone lysine demethylases (KDMs) inhibitors (progress from 2018 to present). Eur J Med Chem 2022; 231:114143. [DOI: 10.1016/j.ejmech.2022.114143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/19/2022]
|
37
|
Nicosia L, Boffo FL, Ceccacci E, Conforti F, Pallavicini I, Bedin F, Ravasio R, Massignani E, Somervaille TCP, Minucci S, Bonaldi T. Pharmacological inhibition of LSD1 triggers myeloid differentiation by targeting GSE1 oncogenic functions in AML. Oncogene 2022; 41:878-894. [PMID: 34862459 PMCID: PMC8830420 DOI: 10.1038/s41388-021-02123-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022]
Abstract
The histone demethylase LSD1 is over-expressed in hematological tumors and has emerged as a promising target for anticancer treatment, so that several LSD1 inhibitors are under development and testing, in preclinical and clinical settings. However, the complete understanding of their complex mechanism of action is still unreached. Here, we unraveled a novel mode of action of the LSD1 inhibitors MC2580 and DDP-38003, showing that they can induce differentiation of AML cells through the downregulation of the chromatin protein GSE1. Analysis of the phenotypic effects of GSE1 depletion in NB4 cells showed a strong decrease of cell viability in vitro and of tumor growth in vivo. Mechanistically, we found that a set of genes associated with immune response and cytokine-signaling pathways are upregulated by LSD1 inhibitors through GSE1-protein reduction and that LSD1 and GSE1 colocalize at promoters of a subset of these genes at the basal state, enforcing their transcriptional silencing. Moreover, we show that LSD1 inhibitors lead to the reduced binding of GSE1 to these promoters, activating transcriptional programs that trigger myeloid differentiation. Our study offers new insights into GSE1 as a novel therapeutic target for AML.
Collapse
Affiliation(s)
- Luciano Nicosia
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Oglesby Cancer Research Centre Building, Manchester, M20 4GJ, UK
| | - Francesca Ludovica Boffo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Elena Ceccacci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Fabio Conforti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Isabella Pallavicini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Fabio Bedin
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Roberto Ravasio
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Enrico Massignani
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Oglesby Cancer Research Centre Building, Manchester, M20 4GJ, UK
| | - Saverio Minucci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
- Department of Biosciences, University of Milan, Milan, 20133, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy.
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, 20133, Italy.
| |
Collapse
|
38
|
Jiang L, Zhang L, Zhang X. Eupalinilide B as a novel anti-cancer agent that inhibits proliferation and epithelial–mesenchymal transition in laryngeal cancer cells. J Int Med Res 2022; 50:3000605211067921. [PMID: 35098772 PMCID: PMC8811433 DOI: 10.1177/03000605211067921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objective To investigate the anti-cancer effects and potential mechanisms of eupalinilide B in laryngeal cancer cells. Methods Laryngeal cancer cell lines were selected to study the anti-tumor effects of eupalinilide B in vitro and in vivo. Lysine-specific demethylase 1 (LSD1) activity was assessed in vitro and dialysis experiments were performed to identify the anti-tumor target of the drug. Results Eupalinilide B concentration-dependently inhibited the proliferation of laryngeal cancer cells, exhibiting potent inhibitory activity against TU686 (IC50 = 6.73 µM), TU212 (IC50 = 1.03 µM), M4e (IC50 = 3.12 µM), AMC-HN-8 (IC50 = 2.13 µM), Hep-2 (IC50 = 9.07 µM), and LCC cells (IC50 = 4.20 µM). Subsequent target verification experiments demonstrated that eupalinilide B selectively and reversibly inhibited LSD1. Furthermore, eupalinilide B, as a natural product, suppressed epithelial–mesenchymal transition in TU212 cells. An in vivo experiment further indicated that eupalinilide B could significantly reduce the growth of tumors in TU212 xenograft mouse models. Conclusions Eupalinilide B might be a novel LSD1 inhibitor for treating laryngeal cancer.
Collapse
Affiliation(s)
- Linlin Jiang
- Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Zhang
- Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinran Zhang
- Otorhinolaryngology Head and Neck Surgery, Dalian Municipal Central Hospital, Da Lian, China
| |
Collapse
|
39
|
Faletti S, Osti D, Ceccacci E, Richichi C, Costanza B, Nicosia L, Noberini R, Marotta G, Furia L, Faretta MR, Brambillasca S, Quarto M, Bertero L, Boldorini R, Pollo B, Gandini S, Cora D, Minucci S, Mercurio C, Varasi M, Bonaldi T, Pelicci G. LSD1-directed therapy affects glioblastoma tumorigenicity by deregulating the protective ATF4-dependent integrated stress response. Sci Transl Med 2021; 13:eabf7036. [PMID: 34878824 DOI: 10.1126/scitranslmed.abf7036] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Stefania Faletti
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Daniela Osti
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Elena Ceccacci
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Cristina Richichi
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Brunella Costanza
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Luciano Nicosia
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Roberta Noberini
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Giulia Marotta
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Laura Furia
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Mario R Faretta
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Silvia Brambillasca
- Experimental Therapeutics Program, FIRC Institute of Molecular Oncology Foundation (IFOM), Milan 20139, Italy
| | - Micaela Quarto
- Experimental Therapeutics Program, FIRC Institute of Molecular Oncology Foundation (IFOM), Milan 20139, Italy
| | - Luca Bertero
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
| | - Renzo Boldorini
- Department of Health Science, University of Piemonte Orientale (UPO), Novara 28100, Italy
| | - Bianca Pollo
- Unit of Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Sara Gandini
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Davide Cora
- Department of Translational Medicine, Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara 28100, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Ciro Mercurio
- Experimental Therapeutics Program, FIRC Institute of Molecular Oncology Foundation (IFOM), Milan 20139, Italy
| | - Mario Varasi
- Experimental Therapeutics Program, FIRC Institute of Molecular Oncology Foundation (IFOM), Milan 20139, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Giuliana Pelicci
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy.,Department of Translational Medicine, University of Piemonte Orientale, Novara 28100, Italy
| |
Collapse
|
40
|
Takahashi S. Kinase Inhibitors and Interferons as Other Myeloid Differentiation Inducers in Leukemia Therapy. Acta Haematol 2021; 145:113-121. [PMID: 34673646 DOI: 10.1159/000519769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022]
Abstract
Differentiation therapy using all-trans retinoic acid (ATRA) is well established for the treatment of acute promyelocytic leukemia (APL). Several attempts have been made to treat non-APL acute myeloid leukemia (AML) patients by employing differentiation inducers, such as hypomethylating agents and low-dose cytarabine, with encouraging results. In the present review, I focus on other possible differentiation inducers: kinase inhibitors and interferons (IFNs). A number of kinase inhibitors have been reported to induce differentiation, including CDK inhibitors, GSK3 inhibitors, Akt inhibitors, p38 MAPK inhibitors, Src family kinase inhibitors, Syk inhibitors, mTOR inhibitors, and HSP90 inhibitors. Other powerful inducers are IFNs, which were reported to enhance differentiation with ATRA. Although clinical trials for these kinase modulators remain scarce, their mechanisms of action have been, at least partly, clarified. The Raf/MEK/ERK MAPK pathway and the RARα downstream are affected by many of the kinase inhibitors and IFNs and seem to play a pivotal role for the induction of myeloid differentiation. Further clarification of the mechanisms, as well as the establishment of efficient combination therapies with the kinase inhibitors or IFNs, may lead to the development of effective therapeutic strategies for AML.
Collapse
Affiliation(s)
- Shinichiro Takahashi
- Division of Laboratory Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
41
|
Sobczak M, Strachowska M, Gronkowska K, Karwaciak I, Pułaski Ł, Robaszkiewicz A. LSD1 Facilitates Pro-Inflammatory Polarization of Macrophages by Repressing Catalase. Cells 2021; 10:cells10092465. [PMID: 34572113 PMCID: PMC8469135 DOI: 10.3390/cells10092465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 02/03/2023] Open
Abstract
The increased level of hydrogen peroxide accompanies some modes of macrophage specification and is linked to ROS-based antimicrobial activity of these phagocytes. In this study, we show that activation of toll-like receptors with bacterial components such as LPS is accompanied by the decline in transcription of hydrogen peroxide decomposing enzyme-catalase, suppression of which facilitates the polarization of human macrophages towards the pro-inflammatory phenotype. The chromatin remodeling at the CAT promoter involves LSD1 and HDAC1, but activity of the first enzyme defines abundance of the two proteins on chromatin, histone acetylation status and the CAT transcription. LSD1 inhibition prior to macrophage activation with LPS prevents CAT repression by enhancing the LSD1 and interfering with the HDAC1 recruitment to the gene promoter. The maintenance of catalase level with LSD1 inhibitors during M1 polarization considerably limits LPS-triggered expression of some pro-inflammatory cytokines and markers such as IL1β, TNFα, COX2, CD14, TLR2, and IFNAR, but the effect of LSD1 inhibitors is lost upon catalase deficiency. Summarizing, activity of LSD1 allows for the CAT repression in LPS stimulated macrophages, which negatively controls expression of some key pro-inflammatory markers. LSD1 inhibitors can be considered as possible immunosuppressive drugs capable of limiting macrophage M1 specialization.
Collapse
Affiliation(s)
- Maciej Sobczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.S.); (M.S.); (K.G.)
| | - Magdalena Strachowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.S.); (M.S.); (K.G.)
| | - Karolina Gronkowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.S.); (M.S.); (K.G.)
| | - Iwona Karwaciak
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodowa 106, 93-232 Lodz, Poland; (I.K.); (Ł.P.)
| | - Łukasz Pułaski
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodowa 106, 93-232 Lodz, Poland; (I.K.); (Ł.P.)
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.S.); (M.S.); (K.G.)
- Correspondence: ; Tel.: +48-42-6354144
| |
Collapse
|
42
|
Fraszczak J, Arman KM, Lacroix M, Vadnais C, Gaboury L, Möröy T. Severe Inflammatory Reactions in Mice Expressing a GFI1 P2A Mutant Defective in Binding to the Histone Demethylase KDM1A (LSD1). THE JOURNAL OF IMMUNOLOGY 2021; 207:1599-1615. [PMID: 34408010 DOI: 10.4049/jimmunol.2001146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/07/2021] [Indexed: 11/19/2022]
Abstract
GFI1 is a DNA-binding transcription factor that regulates hematopoiesis by repressing target genes through its association with complexes containing histone demethylases such as KDM1A (LSD1) and histone deacetylases (HDACs). To study the consequences of the disruption of the complex between GFI1 and histone-modifying enzymes, we have used knock-in mice harboring a P2A mutation in GFI1 coding region that renders it unable to bind LSD1 and associated histone-modifying enzymes such as HDACs. GFI1P2A mice die prematurely and show increased numbers of memory effector and regulatory T cells in the spleen accompanied by a severe systemic inflammation with high serum levels of IL-6, TNF-α, and IL-1β and overexpression of the gene encoding the cytokine oncostatin M (OSM). We identified lung alveolar macrophages, CD8 T cell from the spleen and thymic eosinophils, and monocytes as the sources of these cytokines in GFI1P2A mice. Chromatin immunoprecipitation showed that GFI1/LSD1 complexes occupy sites at the Osm promoter and an intragenic region of the Tnfα gene and that a GFI1P2A mutant still remains bound at these sites even without LSD1. Methylation and acetylation of histone H3 at these sites were enriched in cells from GFI1P2A mice, the H3K27 acetylation being the most significant. These data suggest that the histone modification facilitated by GFI1 is critical to control inflammatory pathways in different cell types, including monocytes and eosinophils, and that a disruption of GFI1-associated complexes can lead to systemic inflammation with fatal consequences.
Collapse
Affiliation(s)
| | - Kaifee Mohammad Arman
- Institut de Recherches Cliniques de Montréal, Montreal, Canada.,Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Marion Lacroix
- Institut de Recherches Cliniques de Montréal, Montreal, Canada.,Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Charles Vadnais
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
| | - Louis Gaboury
- Unité de Recherche en Histologie et Pathologie Moléculaire, Institut de Recherche en Immunologie et en Cancérologie, Montreal, Canada.,Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montreal, Canada; and
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal, Montreal, Canada; .,Division of Experimental Medicine, McGill University, Montreal, Canada.,Département de Microbiologie Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, Canada
| |
Collapse
|
43
|
Xu S, Wang S, Xing S, Yu D, Rong B, Gao H, Sheng M, Tan Y, Sun X, Wang K, Xue K, Shi Z, Lan F. KDM5A suppresses PML-RARα target gene expression and APL differentiation through repressing H3K4me2. Blood Adv 2021; 5:3241-3253. [PMID: 34448811 PMCID: PMC8525237 DOI: 10.1182/bloodadvances.2020002819] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/29/2021] [Indexed: 11/20/2022] Open
Abstract
Epigenetic abnormalities are frequently involved in the initiation and progression of cancers, including acute myeloid leukemia (AML). A subtype of AML, acute promyelocytic leukemia (APL), is mainly driven by a specific oncogenic fusion event of promyelocytic leukemia-RA receptor fusion oncoprotein (PML-RARα). PML-RARα was reported as a transcription repressor through the interaction with nuclear receptor corepressor and histone deacetylase complexes leading to the mis-suppression of its target genes and differentiation blockage. Although previous studies were mainly focused on the connection of histone acetylation, it is still largely unknown whether alternative epigenetics mechanisms are involved in APL progression. KDM5A is a demethylase of histone H3 lysine 4 di- and tri-methylations (H3K4me2/3) and a transcription corepressor. Here, we found that the loss of KDM5A led to APL NB4 cell differentiation and retarded growth. Mechanistically, through epigenomics and transcriptomics analyses, KDM5A binding was detected in 1889 genes, with the majority of the binding events at promoter regions. KDM5A suppressed the expression of 621 genes, including 42 PML-RARα target genes, primarily by controlling the H3K4me2 in the promoters and 5' end intragenic regions. In addition, a recently reported pan-KDM5 inhibitor, CPI-455, on its own could phenocopy the differentiation effects as KDM5A loss in NB4 cells. CPI-455 treatment or KDM5A knockout could greatly sensitize NB4 cells to all-trans retinoic acid-induced differentiation. Our findings indicate that KDM5A contributed to the differentiation blockage in the APL cell line NB4, and inhibition of KDM5A could greatly potentiate NB4 differentiation.
Collapse
Affiliation(s)
- Siyuan Xu
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; and
| | - Siqing Wang
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; and
| | - Shenghui Xing
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; and
| | - Dingdang Yu
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; and
| | - Bowen Rong
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; and
| | - Hai Gao
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; and
| | - Mengyao Sheng
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; and
| | - Yun Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojian Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Xue
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhennan Shi
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; and
| | - Fei Lan
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; and
| |
Collapse
|
44
|
Barabino SML, Citterio E, Ronchi AE. Transcription Factors, R-Loops and Deubiquitinating Enzymes: Emerging Targets in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13153753. [PMID: 34359655 PMCID: PMC8345071 DOI: 10.3390/cancers13153753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The advent of DNA massive sequencing technologies has allowed for the first time an extensive look into the heterogeneous spectrum of genes and mutations underpinning myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). In this review, we wish to explore the most recent advances and the rationale for the potential therapeutic interest of three main actors in myelo-leukemic transformation: transcription factors that govern myeloid differentiation; RNA splicing factors, which ensure proper mRNA maturation and whose mutations increase R-loops formation; and deubiquitinating enzymes, which contribute to genome stability in hematopoietic stem cells (HSCs). Abstract Myeloid neoplasms encompass a very heterogeneous family of diseases characterized by the failure of the molecular mechanisms that ensure a balanced equilibrium between hematopoietic stem cells (HSCs) self-renewal and the proper production of differentiated cells. The origin of the driver mutations leading to preleukemia can be traced back to HSC/progenitor cells. Many properties typical to normal HSCs are exploited by leukemic stem cells (LSCs) to their advantage, leading to the emergence of a clonal population that can eventually progress to leukemia with variable latency and evolution. In fact, different subclones might in turn develop from the original malignant clone through accumulation of additional mutations, increasing their competitive fitness. This process ultimately leads to a complex cancer architecture where a mosaic of cellular clones—each carrying a unique set of mutations—coexists. The repertoire of genes whose mutations contribute to the progression toward leukemogenesis is broad. It encompasses genes involved in different cellular processes, including transcriptional regulation, epigenetics (DNA and histones modifications), DNA damage signaling and repair, chromosome segregation and replication (cohesin complex), RNA splicing, and signal transduction. Among these many players, transcription factors, RNA splicing proteins, and deubiquitinating enzymes are emerging as potential targets for therapeutic intervention.
Collapse
|
45
|
Kim D, Kim KI, Baek SH. Roles of lysine-specific demethylase 1 (LSD1) in homeostasis and diseases. J Biomed Sci 2021; 28:41. [PMID: 34082769 PMCID: PMC8175190 DOI: 10.1186/s12929-021-00737-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Lysine-specific demethylase 1 (LSD1) targets mono- or di-methylated histone H3K4 and H3K9 as well as non-histone substrates and functions in the regulation of gene expression as a transcriptional repressor or activator. This enzyme plays a pivotal role in various physiological processes, including development, differentiation, inflammation, thermogenesis, neuronal and cerebral physiology, and the maintenance of stemness in stem cells. LSD1 also participates in pathological processes, including cancer as the most representative disease. It promotes oncogenesis by facilitating the survival of cancer cells and by generating a pro-cancer microenvironment. In this review, we discuss the role of LSD1 in several aspects of cancer, such as hypoxia, epithelial-to-mesenchymal transition, stemness versus differentiation of cancer stem cells, as well as anti-tumor immunity. Additionally, the current understanding of the involvement of LSD1 in various other pathological processes is discussed.
Collapse
Affiliation(s)
- Dongha Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Keun Il Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
46
|
Falvo P, Orecchioni S, Roma S, Raveane A, Bertolini F. Drug Repurposing in Oncology, an Attractive Opportunity for Novel Combinatorial Regimens. Curr Med Chem 2021; 28:2114-2136. [PMID: 33109033 DOI: 10.2174/0929867327999200817104912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 11/22/2022]
Abstract
The costs of developing, validating and buying new drugs are dramatically increasing. On the other hand, sobering economies have difficulties in sustaining their healthcare systems, particularly in countries with an elderly population requiring increasing welfare. This conundrum requires immediate action, and a possible option is to study the large, already present arsenal of drugs approved and to use them for innovative therapies. This possibility is particularly interesting in oncology, where the complexity of the cancer genome dictates in most patients a multistep therapeutic approach. In this review, we discuss a) Computational approaches; b) preclinical models; c) currently ongoing or already published clinical trials in the drug repurposing field in oncology; and d) drug repurposing to overcome resistance to previous therapies.
Collapse
Affiliation(s)
- Paolo Falvo
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Stefania Orecchioni
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Stefania Roma
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Alessandro Raveane
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| |
Collapse
|
47
|
Retinoids in hematology: a timely revival? Blood 2021; 137:2429-2437. [PMID: 33651885 DOI: 10.1182/blood.2020010100] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/17/2021] [Indexed: 12/27/2022] Open
Abstract
The retinoic acid receptors (RARA, RARB, and RARG) are ligand-regulated nuclear receptors that act as transcriptional switches. These master genes drew significant interest in the 1990s because of their key roles in embryogenesis and involvement in a rare malignancy, acute promyelocytic leukemia (APL), in which the RARA (and very rarely, RARG or RARB) genes are rearranged, underscoring the central role of deregulated retinoid signaling in leukemogenesis. Several recent provocative observations have revived interest in the roles of retinoids in non-APL acute myeloid leukemia (AML), as well as in normal hematopoietic differentiation. We review the role of retinoids in hematopoiesis, as well as in the treatment of non-APL AMLs. From this perspective, broader uses of retinoids in the management of hematopoietic tumors are discussed.
Collapse
|
48
|
Ji X, Guo D, Ma J, Yin M, Yu Y, Liu C, Zhou Y, Sun J, Li Q, Chen N, Fan C, Song H. Epigenetic Remodeling Hydrogel Patches for Multidrug-Resistant Triple-Negative Breast Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100949. [PMID: 33792093 DOI: 10.1002/adma.202100949] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/25/2021] [Indexed: 05/14/2023]
Abstract
The induced expansion of tumor-initiating cells (T-ICs) upon repeated exposure of tumors to chemotherapeutic drugs forms a major cause for chemoresistance and cancer metastasis. Here, a tumor-microenvironment-responsive hydrogel patch is designed to modulate the plasticity of T-ICs in triple-negative breast cancer (TNBC), which is insensitive to hormone- and HER2-targeting. The on-site formation of the hydrogel network patches tumors in a chemoresistant TNBC murine model and senses intratumoral reactive oxygen species for linker cleavage and payload release. Patch-mediated inhibition of the histone demethylase lysine-specific demethylase 1 (LSD1) epigenetically regulates the switch of T-ICs from self-renewal to differentiation, rehabilitating their chemosensitivity. Moreover, the hydrogel patch enhances tumor immunogenicity and increases T-cell infiltration via epigenetic activation of innate immunity. A single-dose of the hydrogel patch harboring LSD1 inhibitor and chemotherapy agent efficiently suppresses tumor growth, postsurgical relapse, and metastasis. The superior efficacy against multidrug resistance further reveals the broad applicability of epigenetic remodeling hydrogel patches.
Collapse
Affiliation(s)
- Xiaoyuan Ji
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Daoxia Guo
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jia Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Min Yin
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Yun Yu
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chang Liu
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yanfeng Zhou
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinli Sun
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nan Chen
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiyun Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
49
|
Fang Y, Yang C, Teng D, Su S, Luo X, Liu Z, Liao G. Discovery of higenamine as a potent, selective and cellular active natural LSD1 inhibitor for MLL-rearranged leukemia therapy. Bioorg Chem 2021; 109:104723. [PMID: 33618250 DOI: 10.1016/j.bioorg.2021.104723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/22/2022]
Abstract
Natural products are a rich source of lead compounds and have shown promise for epigenetic drug discovery. In this work, we discovered higenamine from our natural product library as a potent, selective and cellular active natural LSD1 inhibitor. Higenamine shows acceptable potency against LSD1 and high selectivity towards LSD1 over MAOA/B. Higenamine significantly increases expression of LSD1 substrates H3K4me1 and H3K4me2 in MLL-rearranged leukemia cells MV4-11 and MOLM-13, but nearly had no effect on LSD1 and H3K4Me3. Meanwhile, higenamine dose-dependently suppresses the levels of HOXA9 and MEIS1 that are overexpressed in leukemia cell lines. Notably, higenamine induces cell differentiation of MV4-11 and MOLM-13 cells accompanying by increased expression of CD11b, CD14 and CD86. Higenamine promotes cell apoptosis, inhibits colony formation, but does not inhibit proliferation of leukemia cells significantly. In addition, the expression levels of p53 are dramatically changed by higenamine in an LSD1-dependent manner in MV4-11 cells. Taken together, higenamine could be employed as a starting point for the development of more selective and potent LSD1 inhibitors. Our work firstly reveals the non-classical epigenetic regulation mechanism of higenamine in cancers, and also demonstrates the efficacy of higenamine for MLL-rearranged leukemia therapy.
Collapse
Affiliation(s)
- Yuan Fang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Chao Yang
- National Engineering Research Center For Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Dehong Teng
- National Engineering Research Center For Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Shiwei Su
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Xiang Luo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China.
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
50
|
Tayari MM, Santos HGD, Kwon D, Bradley TJ, Thomassen A, Chen C, Dinh Y, Perez A, Zelent A, Morey L, Cimmino L, Shiekhattar R, Swords RT, Watts JM. Clinical Responsiveness to All-trans Retinoic Acid Is Potentiated by LSD1 Inhibition and Associated with a Quiescent Transcriptome in Myeloid Malignancies. Clin Cancer Res 2021; 27:1893-1903. [PMID: 33495312 DOI: 10.1158/1078-0432.ccr-20-4054] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/07/2020] [Accepted: 01/15/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE In preclinical studies, the lysine-specific histone demethylase 1A (LSD1) inhibitor tranylcypromine (TCP) combined with all-trans retinoic acid (ATRA) induces differentiation and impairs survival of myeloid blasts in non-acute promyelocytic leukemia acute myeloid leukemia (AML). We conducted a phase I clinical trial (NCT02273102) to evaluate the safety and activity of ATRA plus TCP in patients with relapsed/refractory AML and myelodysplasia (MDS). PATIENTS AND METHODS Seventeen patients were treated with ATRA and TCP (three dose levels: 10 mg twice daily, 20 mg twice daily, and 30 mg twice daily). RESULTS ATRA-TCP had an acceptable safety profile. The MTD of TCP was 20 mg twice daily. Best responses included one morphologic leukemia-free state, one marrow complete remission with hematologic improvement, two stable disease with hematologic improvement, and two stable disease. By intention to treat, the overall response rate was 23.5% and clinical benefit rate was 35.3%. Gene expression profiling of patient blasts showed that responding patients had a more quiescent CD34+ cell phenotype at baseline, including decreased MYC and RARA expression, compared with nonresponders that exhibited a more proliferative CD34+ phenotype, with gene expression enrichment for cell growth signaling. Upon ATRA-TCP treatment, we observed significant induction of retinoic acid-target genes in responders but not nonresponders. We corroborated this in AML cell lines, showing that ATRA-TCP synergistically increased differentiation capacity and cell death by regulating the expression of key gene sets that segregate patients by their clinical response. CONCLUSIONS These data indicate that LSD1 inhibition sensitizes AML cells to ATRA and may restore ATRA responsiveness in subsets of patients with MDS and AML.
Collapse
Affiliation(s)
- Mina M Tayari
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Helena G Dos Santos
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Deukwoo Kwon
- Sylvester Comprehensive Cancer Center, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Terrence J Bradley
- Sylvester Comprehensive Cancer Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Amber Thomassen
- Sylvester Comprehensive Cancer Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Charles Chen
- Sylvester Comprehensive Cancer Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Yvonne Dinh
- Department of Immuno-Oncology, Oncology Division, IQVIA Biotech, Miami, Florida
| | - Aymee Perez
- Sylvester Comprehensive Cancer Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Arthur Zelent
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology PAS, Warsaw, Poland
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Luisa Cimmino
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Ramin Shiekhattar
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Ronan T Swords
- Medical Director, AbbVie Pharmaceuticals, Chicago, Illinois
| | - Justin M Watts
- Sylvester Comprehensive Cancer Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|