1
|
Junaid M, Lee EJ, Lim SB. Single-cell and spatial omics: exploring hypothalamic heterogeneity. Neural Regen Res 2025; 20:1525-1540. [PMID: 38993130 PMCID: PMC11688568 DOI: 10.4103/nrr.nrr-d-24-00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/06/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
Elucidating the complex dynamic cellular organization in the hypothalamus is critical for understanding its role in coordinating fundamental body functions. Over the past decade, single-cell and spatial omics technologies have significantly evolved, overcoming initial technical challenges in capturing and analyzing individual cells. These high-throughput omics technologies now offer a remarkable opportunity to comprehend the complex spatiotemporal patterns of transcriptional diversity and cell-type characteristics across the entire hypothalamus. Current single-cell and single-nucleus RNA sequencing methods comprehensively quantify gene expression by exploring distinct phenotypes across various subregions of the hypothalamus. However, single-cell/single-nucleus RNA sequencing requires isolating the cell/nuclei from the tissue, potentially resulting in the loss of spatial information concerning neuronal networks. Spatial transcriptomics methods, by bypassing the cell dissociation, can elucidate the intricate spatial organization of neural networks through their imaging and sequencing technologies. In this review, we highlight the applicative value of single-cell and spatial transcriptomics in exploring the complex molecular-genetic diversity of hypothalamic cell types, driven by recent high-throughput achievements.
Collapse
Affiliation(s)
- Muhammad Junaid
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, South Korea
| | - Eun Jeong Lee
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, South Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
| | - Su Bin Lim
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, South Korea
| |
Collapse
|
2
|
Hanchate NK. Single-cell genomics meets systems neuroscience: Insights from mapping the brain circuitry of stress. J Neuroendocrinol 2025:e70005. [PMID: 39956535 DOI: 10.1111/jne.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 12/26/2024] [Accepted: 02/03/2025] [Indexed: 02/18/2025]
Abstract
Responses to external and internal dangers is essential for survival and homeostatic regulation. Hypothalamic corticotropin-releasing hormone neurons (CRHNs) play a pivotal role in regulating neuroendocrine responses to fear and stress. In recent years, the application of neurogenetic tools, such as fiber photometry, chemogenetics and optogenetics, have provided new insights into the dynamic neuronal responses of CRHNs during stressful events, offering new perspectives into their functional significance in mediating neurobehavioural responses to stress. Transsynaptic viral tracers have facilitated the comprehensive mapping of neuronal inputs to CRHNs. Furthermore, the development and application of innovative single-cell genomic tools combined with viral tracing have begun to pave the way for a deeper understanding of the transcriptional profiles of neural circuit components, enabling molecular-anatomical circuit mapping. Here, I will discuss how these systems neuroscience approaches and novel single-cell genomic methods are advancing the molecular and functional mapping of stress neurocircuits, their associated challenges and future directions.
Collapse
Affiliation(s)
- Naresh K Hanchate
- Genetics & Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
3
|
Smith W, Azevedo EP. Hunger Games: A Modern Battle Between Stress and Appetite. J Neurochem 2025; 169:e70006. [PMID: 39936619 DOI: 10.1111/jnc.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 02/13/2025]
Abstract
Stress, an evolutionarily adaptive mechanism, has become a pervasive challenge in modern life, significantly impacting feeding-relevant circuits that play a role in the development and pathogenesis of eating disorders (EDs). Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, disrupts specific neural circuits, and dysregulates key brain regions, including the hypothalamus, hippocampus, and lateral septum. These particular structures are interconnected and key in integrating stress and feeding signals, modulating hunger, satiety, cognition, and emotional coping behaviors. Here we discuss the interplay between genetic predispositions and environmental factors that may exacerbate ED vulnerability. We also highlight the most commonly used animal models to study the mechanisms driving EDs and recent rodent studies that emphasize the discovery of novel cellular and molecular mechanisms integrating stress and feeding signals within the hippocampus-lateral septum-hypothalamus axis. In this review, we discuss the role of gut microbiome, an emerging area of research in the field of EDs and unanswered questions that persist and hinder the scientific progress, such as why some individuals remain resilient to stress while others become at high risk for the development of EDs. We finally discuss the need for future research delineating the impact of specific stressors on neural circuits, clarifying the relevance and functionality of hippocampal-septal-hypothalamic connectivity, and investigating the role of key neuropeptides such as CRH, oxytocin, and GLP-1 in human ED pathogenesis. Emerging tools like single-cell sequencing and advanced human imaging could uncover cellular and circuit-level changes in brain areas relevant for feeding in ED patients. Ultimately, by integrating basic and clinical research, science offers promising avenues for developing personalized, mechanism-based treatments targeting maladaptive eating behavior for patients suffering from EDs.
Collapse
Affiliation(s)
- Whitnei Smith
- Laboratory of Neurobiology of Behavior, Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Estefania P Azevedo
- Laboratory of Neurobiology of Behavior, Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
4
|
Krolick KN, Cao J, Gulla EM, Bhardwaj M, Marshall SJ, Zhou EY, Kiss AJ, Choueiry F, Zhu J, Shi H. Subregion-specific transcriptomic profiling of rat brain reveals sex-distinct gene expression impacted by adolescent stress. Neuroscience 2024; 553:19-39. [PMID: 38977070 PMCID: PMC11444371 DOI: 10.1016/j.neuroscience.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/14/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Stress during adolescence clearly impacts brain development and function. Sex differences in adolescent stress-induced or exacerbated emotional and metabolic vulnerabilities could be due to sex-distinct gene expression in hypothalamic, limbic, and prefrontal brain regions. However, adolescent stress-induced whole-genome expression changes in key subregions of these brain regions were unclear. In this study, female and male adolescent Sprague Dawley rats received one-hour restraint stress daily from postnatal day (PD) 32 to PD44. Corticosterone levels, body weights, food intake, body composition, and circulating adiposity and sex hormones were measured. On PD44, brain and blood samples were collected. Using RNA-sequencing, sex-specific differences in stress-induced differentially expressed (DE) genes were identified in subregions of the hypothalamus, limbic system, and prefrontal cortex. Canonical pathways reflected well-known sex-distinct maladies and diseases, substantiating the therapeutic potential of the DE genes found in the current study. Thus, we proposed specific sex distinct, adolescent stress-induced transcriptional changes found in the current study as examples of the molecular bases for sex differences witnessed in stress induced or exacerbated emotional and metabolic disorders. Future behavioral studies and single-cell studies are warranted to test the implications of the DE genes identified in this study in sex-distinct stress-induced susceptibilities.
Collapse
Affiliation(s)
| | - Jingyi Cao
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Evelyn M Gulla
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Meeta Bhardwaj
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| | | | - Ethan Y Zhou
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Andor J Kiss
- Center for Bioinformatics & Functional Genomics, Miami University, Oxford, OH 45056, USA.
| | - Fouad Choueiry
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA.
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Haifei Shi
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
5
|
Laule C, Sayar-Atasoy N, Aklan I, Kim H, Ates T, Davis D, Atasoy D. Stress integration by an ascending adrenergic-melanocortin circuit. Neuropsychopharmacology 2024; 49:1361-1372. [PMID: 38326456 PMCID: PMC11251172 DOI: 10.1038/s41386-024-01810-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Stress is thought to be an important contributing factor for eating disorders; however, neural substrates underlying the complex relationship between stress and appetite are not fully understood. Using in vivo recordings from awake behaving mice, we show that various acute stressors activate catecholaminergic nucleus tractus solitarius (NTSTH) projections in the paraventricular hypothalamus (PVH). Remarkably, the resulting adrenergic tone inhibits MC4R-expressing neurons (PVHMC4R), which are known for their role in feeding suppression. We found that PVHMC4R silencing encodes negative valence in sated mice and is required for avoidance induced by visceral malaise. Collectively, these findings establish PVHMC4R neurons as an effector of stress-activated brainstem adrenergic input in addition to the well-established hypothalamic-pituitary-adrenal axis. Convergent modulation of stress and feeding by PVHMC4R neurons implicates NTSTH → PVHMC4R input in stress-associated appetite disorders.
Collapse
Affiliation(s)
- Connor Laule
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nilufer Sayar-Atasoy
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Iltan Aklan
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Hyojin Kim
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Tayfun Ates
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Debbie Davis
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Deniz Atasoy
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
6
|
Budambula V, Ngari M, Budambula NLM, Ahmed AA, Were T. Nutritional status of people who inject drugs in Coastal Kenya: a cross-sectional study. BMC Nutr 2024; 10:55. [PMID: 38576036 PMCID: PMC10996164 DOI: 10.1186/s40795-024-00851-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/19/2024] [Indexed: 04/06/2024] Open
Abstract
INTRODUCTION Despite documentation on injection drug use (IDU) in Kenya, the nutritional status of people who inject drugs (PWIDs) is under-explored. Elsewhere studies report under-nutrition among PWIDs which is attributed to food insecurity; competing priorities between drugs and food supply; chaotic lifestyle; reduced food intake; substance use induced malnutrition due to inflammation and comorbidities. METHODS This was a cross-sectional study that sought to assess the nutritional status of PWIDs in Coastal Kenya. We recruited 752 participants of whom 371(49%) were on IDUs and 75 non-IDUs and 306 non-drug users using respondent driven sampling, traditional snowball, makeshift outreach and purposive sampling methods. RESULTS More than one half of the participants (56%) had BMI classified as normal while 35% had BMI < 18.5. The proportion with BMI < 18.5 was higher among IDUs (46%) compared to the non-IDUs (33%) and non-drug users (23%) at P < 0.001. Using the mid upper arm circumference (MUAC), 17% were classified as underweight and the proportion was lowest (11%) among non- drugs users compared to 22% among IDUs (P < 0.001). However, the IDUs had lower proportion of overweight (8.1%) compared to 55% among the non- drug users. The proportion with low waist-for-hip ratio was highest among the IDUs (74%) while high waist-for-hip ratio was lowest in the same group of IDUs (11%) at P < 0.001. One half (50%), of the participants had no signs of anaemia, (47%) had mild/moderate anaemia while 21 (2.8%) had severe anaemia. However, IDUs were more likely to be overweight based on waist circumference as a parameter. The IDUs had the highest proportion (54%) of mild to moderate anaemia compared to non-IDUs (37%) and 40% non- drug users (P < 0.001). In the multivariable models, IDUs (aRRR 2.83 (95%CI 1.84‒4.35)) and non-IDUs (aRRR 1.42 (95%CI 1.07‒1.88)) compared to non- drug users were positively associated with BMI < 18.5. Being an IDU was positively associated with mild or moderate anaemia (aRRR 1.65 (95%CI 1.13‒2.41)) while non-IDUs were positively associated with severe anaemia (aRRR 1.69 (95%CI 1.16‒2.48)). CONCLUSION A significant proportion of the participants were under-nourished with those injecting drugs bearing the heaviest brunt. Being an IDU was positively associated with the low BMI, MUAC, waist for hip ratio and mild or moderate anaemia but high waist circumference. People who inject drugs have high risk for under-nutrition and should be targeted with appropriate interventions.
Collapse
Affiliation(s)
- Valentine Budambula
- Department of Environment and Health Sciences, Technical University of Mombasa, Mombasa, P. O. Box 90420-80100, Kenya.
| | - Moses Ngari
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Public Health, Pwani University, Kilifi, Kenya
| | | | | | - Tom Were
- Department of Microbiology and Parasitology, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| |
Collapse
|
7
|
Riera CE. Wiring the Brain for Wellness: Sensory Integration in Feeding and Thermogenesis: A Report on Research Supported by Pathway to Stop Diabetes. Diabetes 2024; 73:338-347. [PMID: 38377445 PMCID: PMC10882152 DOI: 10.2337/db23-0706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 02/22/2024]
Abstract
The recognition of sensory signals from within the body (interoceptive) and from the external environment (exteroceptive), along with the integration of these cues by the central nervous system, plays a crucial role in maintaining metabolic balance. This orchestration is vital for regulating processes related to both food intake and energy expenditure. Animal model studies indicate that manipulating specific populations of neurons in the central nervous system which influence these processes can effectively modify energy balance. This body of work presents an opportunity for the development of innovative weight loss therapies for the treatment of obesity and type 2 diabetes. In this overview, we delve into the sensory cues and the neuronal populations responsible for their integration, exploring their potential in the development of weight loss treatments for obesity and type 2 diabetes. This article is the first in a series of Perspectives that report on research funded by the American Diabetes Association Pathway to Stop Diabetes program. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Céline E. Riera
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
8
|
Junaid M, Choe HK, Kondoh K, Lee EJ, Lim SB. Unveiling Hypothalamic Molecular Signatures via Retrograde Viral Tracing and Single-Cell Transcriptomics. Sci Data 2023; 10:861. [PMID: 38049462 PMCID: PMC10696032 DOI: 10.1038/s41597-023-02789-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023] Open
Abstract
Despite the importance of hypothalamic neurocircuits in regulating homeostatic and survival-related behaviors, our understanding of the intrinsic molecular identities of neural components involved in these complex multi-synaptic interactions remains limited. In this study, we constructed a Cre recombinase-dependent pseudorabies virus (PRVs) capable of crossing synapses, coupled with transcriptome analysis of single upstream neurons post-infection. By utilizing this retrograde nuclear Connect-seq (nuConnect-seq) approach, we generated a single nuclei RNA-seq (snRNA-seq) dataset of 1,533 cells derived from the hypothalamus of CRH-IRES-Cre (CRH-Cre) mice. To ensure the technical validity of our nuConnect-seq dataset, we employed a label transfer technique against an integrated reference dataset of postnatal mouse hypothalamus comprising 152,524 QC-passed cells. The uniqueness of our approach lies in the integration of diverse datasets for validation, providing a more nuanced diversity of hypothalamic cell types. The presented validated dataset may deepen our understanding of hypothalamic neurocircuits and underscore the essential role of comprehensive integrated transcriptomic data for technical validity.
Collapse
Affiliation(s)
- Muhammad Junaid
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Han Kyoung Choe
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Kunio Kondoh
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Eun Jeong Lee
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Korea.
| | - Su Bin Lim
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea.
| |
Collapse
|
9
|
Cho D, O'Berry K, Possa-Paranhos IC, Butts J, Palanikumar N, Sweeney P. Paraventricular Thalamic MC3R Circuits Link Energy Homeostasis with Anxiety-Related Behavior. J Neurosci 2023; 43:6280-6296. [PMID: 37591737 PMCID: PMC10490510 DOI: 10.1523/jneurosci.0704-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023] Open
Abstract
The hypothalamic melanocortin system is critically involved in sensing stored energy and communicating this information throughout the brain, including to brain regions controlling motivation and emotion. This system consists of first-order agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) neurons located in the hypothalamic arcuate nucleus and downstream neurons containing the melanocortin-3 (MC3R) and melanocortin-4 receptor (MC4R). Although extensive work has characterized the function of downstream MC4R neurons, the identity and function of MC3R-containing neurons are poorly understood. Here, we used neuroanatomical and circuit manipulation approaches in mice to identify a novel pathway linking hypothalamic melanocortin neurons to melanocortin-3 receptor neurons located in the paraventricular thalamus (PVT) in male and female mice. MC3R neurons in PVT are innervated by hypothalamic AgRP and POMC neurons and are activated by anorexigenic and aversive stimuli. Consistently, chemogenetic activation of PVT MC3R neurons increases anxiety-related behavior and reduces feeding in hungry mice, whereas inhibition of PVT MC3R neurons reduces anxiety-related behavior. These studies position PVT MC3R neurons as important cellular substrates linking energy status with neural circuitry regulating anxiety-related behavior and represent a promising potential target for diseases at the intersection of metabolism and anxiety-related behavior such as anorexia nervosa.SIGNIFICANCE STATEMENT Animals must constantly adapt their behavior to changing internal and external challenges, and impairments in appropriately responding to these challenges are a hallmark of many neuropsychiatric disorders. Here, we demonstrate that paraventricular thalamic neurons containing the melanocortin-3 receptor respond to energy-state-related information and external challenges to regulate anxiety-related behavior in mice. Thus, these neurons represent a potential target for understanding the neurobiology of disorders at the intersection of metabolism and psychiatry such as anorexia nervosa.
Collapse
Affiliation(s)
- Dajin Cho
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Kyle O'Berry
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Ingrid Camila Possa-Paranhos
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Jared Butts
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Naraen Palanikumar
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Patrick Sweeney
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
10
|
Jovanovic P, Pool AH, Morones N, Wang Y, Novinbakht E, Keshishian N, Jang K, Oka Y, Riera CE. A sex-specific thermogenic neurocircuit induced by predator smell recruiting cholecystokinin neurons in the dorsomedial hypothalamus. Nat Commun 2023; 14:4937. [PMID: 37582805 PMCID: PMC10427624 DOI: 10.1038/s41467-023-40484-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
Olfactory cues are vital for prey animals like rodents to perceive and evade predators. Stress-induced hyperthermia, via brown adipose tissue (BAT) thermogenesis, boosts physical performance and facilitates escape. However, many aspects of this response, including thermogenic control and sex-specific effects, remain enigmatic. Our study unveils that the predator odor trimethylthiazoline (TMT) elicits BAT thermogenesis, suppresses feeding, and drives glucocorticoid release in female mice. Chemogenetic stimulation of olfactory bulb (OB) mitral cells recapitulates the thermogenic output of this response and associated stress hormone corticosterone release in female mice. Neuronal projections from OB to medial amygdala (MeA) and dorsomedial hypothalamus (DMH) exhibit female-specific cFos activity toward odors. Cell sorting and single-cell RNA-sequencing of DMH identify cholecystokinin (CCK)-expressing neurons as recipients of predator odor cues. Chemogenetic manipulation and neuronal silencing of DMHCCK neurons further implicate these neurons in the propagation of predator odor-associated thermogenesis and food intake suppression, highlighting their role in female stress-induced hyperthermia.
Collapse
Affiliation(s)
- Predrag Jovanovic
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
| | - Allan-Hermann Pool
- Department of Neuroscience, Department of Anesthesiology and Pain Management, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nancy Morones
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
| | - Yidan Wang
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
| | - Edward Novinbakht
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
| | - Nareg Keshishian
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
| | - Kaitlyn Jang
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Celine E Riera
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA.
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA.
- Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA.
| |
Collapse
|
11
|
Shin MG, Bae Y, Afzal R, Kondoh K, Lee EJ. Olfactory modulation of stress-response neural circuits. Exp Mol Med 2023; 55:1659-1671. [PMID: 37524867 PMCID: PMC10474124 DOI: 10.1038/s12276-023-01048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 08/02/2023] Open
Abstract
Stress responses, which are crucial for survival, are evolutionally conserved throughout the animal kingdom. The most common endocrine axis among stress responses is that triggered by corticotropin-releasing hormone neurons (CRHNs) in the hypothalamus. Signals of various stressors are detected by different sensory systems and relayed through individual neural circuits that converge on hypothalamic CRHNs to initiate common stress hormone responses. To investigate the neurocircuitry mechanisms underlying stress hormone responses induced by a variety of stressors, researchers have recently developed new approaches employing retrograde transsynaptic viral tracers, providing a wealth of information about various types of neural circuits that control the activity of CRHNs in response to stress stimuli. Here, we review earlier and more recent findings on the stress neurocircuits that converge on CRHNs, focusing particularly on olfactory systems that excite or suppress the activities of CRHNs and lead to the initiation of stress responses. Because smells are arguably the most important signals that enable animals to properly cope with environmental changes and survive, unveiling the regulatory mechanisms by which smells control stress responses would provide broad insight into how stress-related environmental cues are perceived in the animal brain.
Collapse
Affiliation(s)
- Min-Gi Shin
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Korea
- AI-Superconvergence KIURI Translational Research Center, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Yiseul Bae
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Ramsha Afzal
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Kunio Kondoh
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan.
- Japan Science and Technology Agency, PRESTO, Okazaki, Aichi, 444-8585, Japan.
| | - Eun Jeong Lee
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Korea.
| |
Collapse
|
12
|
Kuang D, Hanchate NK, Lee CY, Heck A, Ye X, Erdenebileg M, Buck LB. Olfactory and neuropeptide inputs to appetite neurons in the arcuate nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530282. [PMID: 36909633 PMCID: PMC10002664 DOI: 10.1101/2023.02.28.530282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The sense of smell has potent effects on appetite, but the underlying neural mechanisms are largely a mystery. The hypothalamic arcuate nucleus contains two subsets of neurons linked to appetite: AgRP (agouti-related peptide) neurons, which enhance appetite, and POMC (pro-opiomelanocortin) neurons, which suppress appetite. Here, we find that AgRP and POMC neurons receive indirect inputs from partially overlapping areas of the olfactory cortex, thus identifying their sources of odor signals. We also find neurons directly upstream of AgRP or POMC neurons in numerous other areas, identifying potential relays between the olfactory cortex and AgRP or POMC neurons. Transcriptome profiling of individual AgRP neurons reveals differential expression of receptors for multiple neuromodulators. Notably, known ligands of the receptors define subsets of neurons directly upstream of AgRP neurons in specific brain areas. Together, these findings indicate that higher olfactory areas can differentially influence AgRP and POMC appetite neurons, that subsets of AgRP neurons can be regulated by different neuromodulators, and that subsets of neurons upstream of AgRP neurons in specific brain areas use different neuromodulators, together or in distinct combinations to modulate AgRP neurons and thus appetite.
Collapse
|
13
|
Lee EJ, Saraiva LR, Hanchate NK, Ye X, Asher G, Ho J, Buck LB. Odor blocking of stress hormone responses. Sci Rep 2022; 12:8773. [PMID: 35610316 PMCID: PMC9130126 DOI: 10.1038/s41598-022-12663-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
Scents have been employed for millennia to allay stress, but whether or how they might do so is largely unknown. Fear and stress induce increases in blood stress hormones controlled by hypothalamic corticotropin releasing hormone neurons (CRHNs). Here, we report that two common odorants block mouse stress hormone responses to three potent stressors: physical restraint, predator odor, and male-male social confrontation. One odorant inhibits restraint and predator odor activation of excitatory neurons upstream of CRHNs in the bed nucleus of the stria terminalis (BNSTa). In addition, both activate inhibitory neurons upstream of CRHNs in the hypothalamic ventromedial nucleus (VMH) and silencing of VMH inhibitory neurons hinders odor blocking of stress. Together, these findings indicate that odor blocking can occur via two mechanisms: (1) Inhibition of excitatory neurons that transmit stress signals to CRHNs and (2) activation of inhibitory neurons that act directly or indirectly to inhibit stressor activation of CRHNs.
Collapse
Affiliation(s)
- Eun Jeong Lee
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A3-020, Seattle, WA, 98109, USA
- Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Luis R Saraiva
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A3-020, Seattle, WA, 98109, USA
- Sidra Medicine, Research Branch, Out Patient Clinic, Doha, Qatar
| | - Naresh K Hanchate
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A3-020, Seattle, WA, 98109, USA
- University College London, London, UK
| | - Xiaolan Ye
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A3-020, Seattle, WA, 98109, USA
| | - Gregory Asher
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A3-020, Seattle, WA, 98109, USA
| | - Jonathan Ho
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A3-020, Seattle, WA, 98109, USA
- School of Medicine, University of Pittsburgh, S530 Alan Magee Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Linda B Buck
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A3-020, Seattle, WA, 98109, USA.
| |
Collapse
|
14
|
Díaz-Hung ML, Hetz C. Proteostasis and resilience: on the interphase between individual's and intracellular stress. Trends Endocrinol Metab 2022; 33:305-317. [PMID: 35337729 DOI: 10.1016/j.tem.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 10/18/2022]
Abstract
A long proportion of the population is resilient to the negative consequences of stress. Glucocorticoids resulting from endocrine responses to stress are essential adaptive mediators, but also drive alterations to brain function, negatively impacting neuronal connectivity, synaptic plasticity, and memory-related processes. Recent evidence has indicated that organelle function and cellular stress responses are relevant determinant of vulnerability and resistance to environmental stress. At the molecular level, a fundamental mechanism of cellular stress adaptation is the maintenance of proteostasis, which also have key roles in sustaining basal neuronal function. Here, we discuss recent evidence suggesting that proteostasis unbalance at the level of the endoplasmic reticulum, the main site for protein folding in the cell, represents a possible mechanistic link between individuals and cellular stress.
Collapse
Affiliation(s)
- Mei-Li Díaz-Hung
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
15
|
Jovanovic P, Riera CE. Olfactory system and energy metabolism: a two-way street. Trends Endocrinol Metab 2022; 33:281-291. [PMID: 35177346 DOI: 10.1016/j.tem.2022.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/11/2022] [Accepted: 01/16/2022] [Indexed: 12/31/2022]
Abstract
Olfactory perception guides daily decisions regarding food consumption, social interactions, and predator avoidance in all mammalian species. Volatile inputs, comprising odorants and pheromones, are relayed to the olfactory bulb (OB) from nasal sensory neurons cells and transferred to secondary processing regions within the brain. Olfaction has recently been shown to shape homeostatic and maladaptive processes of energy intake and expenditure through neuronal circuits involving the medial basal hypothalamus. Reciprocally, gastrointestinal hormones, such as ghrelin and leptin, the secretion of which depends on satiety and adiposity levels, might also influence olfactory sensitivity to alter food-seeking behaviors. Here, in addition to reviewing recent updates on identifying these neuronal networks, we also discuss how bidirectional neurocircuits existing between olfactory and energy processing centers can become dysregulated during obesity.
Collapse
Affiliation(s)
- Predrag Jovanovic
- Center for Neural Science and Medicine, Biomedical Sciences Department and Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Celine E Riera
- Center for Neural Science and Medicine, Biomedical Sciences Department and Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA 90048, USA; Department of Neurology, Cedars-Sinai Medical Center, Movement Disorder Program, 127 South San Vicente Boulevard, Los Angeles, CA 90048, USA; David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
16
|
Leyrer-Jackson JM, Hood LE, Olive MF. Sex differences and the lack of effects of chemogenetic manipulation of pro-opiomelanocortin (POMC) neurons on alcohol consumption in male and female mice. Brain Res 2022; 1786:147901. [PMID: 35367433 DOI: 10.1016/j.brainres.2022.147901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/02/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022]
Abstract
The endogenous opioid system has been implicated in the rewarding and reinforcing effects of alcohol. Pro-opiomelanocortin (POMC) neurons located within the arcuate nucleus of the hypothalamus (ArcN) secrete multiple peptides associated with alcohol consumption, including β-endorphin (β-END), α-melanocyte stimulating hormone (α-MSH), and adrenocorticotropic hormone (ACTH). In this study, we utilized chemogenetics to bidirectionally modulate ArcN POMC neurons to determine their role in alcohol and saccharin consumption and regional levels of POMC-derived peptides. Male and female POMC-cre mice were infused with viral vectors designed for cre-dependent expression of either excitatory and inhibitory DREADDs or a control vector into the ArcN. Following recovery, animals were allowed to consume alcohol or saccharin using the drinking-in-the-dark (DID) paradigm of binge-like intake for 4 consecutive days. Prior to the final test session, animals were injected with clozapine-N-oxide (2.5 mg/kg, i.p.) for DREADD activation. Following the last DID session, animals were euthanized and the ArcN, VTA, amygdala and NAc were dissected and assessed for POMC peptide expression utilizing western blotting. We found that female mice consumed more alcohol than males during DID sessions 2-4, and that chemogenetic activation had no effect on alcohol or saccharin consumption in either sex. We found that β-END expression within the ArcN positively correlated with alcohol consumption. Given the molecular and functional heterogeneity of ArcN POMC neurons, future studies are needed to assess the effects of modulation of specific subpopulations of these neurons within the ArcN on consumption of rewarding substances such as alcohol and saccharin.
Collapse
Affiliation(s)
| | - Lauren E Hood
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
17
|
Ramírez S, Haddad-Tóvolli R, Radosevic M, Toledo M, Pané A, Alcolea D, Ribas V, Milà-Guasch M, Pozo M, Obri A, Eyre E, Gómez-Valadés AG, Chivite I, Van Eeckhout T, Zalachoras I, Altirriba J, Bauder C, Imbernón M, Garrabou G, Garcia-Ruiz C, Nogueiras R, Soto D, Gasull X, Sandi C, Brüning JC, Fortea J, Jiménez A, Fernández-Checa JC, Claret M. Hypothalamic pregnenolone mediates recognition memory in the context of metabolic disorders. Cell Metab 2022; 34:269-284.e9. [PMID: 35108514 PMCID: PMC8815774 DOI: 10.1016/j.cmet.2021.12.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 10/29/2021] [Accepted: 12/27/2021] [Indexed: 12/30/2022]
Abstract
Obesity and type 2 diabetes are associated with cognitive dysfunction. Because the hypothalamus is implicated in energy balance control and memory disorders, we hypothesized that specific neurons in this brain region are at the interface of metabolism and cognition. Acute obesogenic diet administration in mice impaired recognition memory due to defective production of the neurosteroid precursor pregnenolone in the hypothalamus. Genetic interference with pregnenolone synthesis by Star deletion in hypothalamic POMC, but not AgRP neurons, deteriorated recognition memory independently of metabolic disturbances. Our data suggest that pregnenolone's effects on cognitive function were mediated via an autocrine mechanism on POMC neurons, influencing hippocampal long-term potentiation. The relevance of central pregnenolone on cognition was also confirmed in metabolically unhealthy patients with obesity. Our data reveal an unsuspected role for POMC neuron-derived neurosteroids in cognition. These results provide the basis for a framework to investigate new facets of POMC neuron biology with implications for cognitive disorders.
Collapse
Affiliation(s)
- Sara Ramírez
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Roberta Haddad-Tóvolli
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marija Radosevic
- Neuroimmunology Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Miriam Toledo
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Adriana Pané
- Obesity Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Daniel Alcolea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Vicent Ribas
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Maria Milà-Guasch
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Macarena Pozo
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Arnaud Obri
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elena Eyre
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alicia G Gómez-Valadés
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Iñigo Chivite
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Tomas Van Eeckhout
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ioannis Zalachoras
- Laboratory of Behavioral Genetics, Brain Mind Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Jordi Altirriba
- Laboratory of Metabolism, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Corinna Bauder
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Mónica Imbernón
- Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Gloria Garrabou
- Muscle Research and Mitochondrial Function Laboratory, CELLEX-IDIBAPS, Internal Medicine Department, Faculty of Medicine, University of Barcelona, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rubén Nogueiras
- Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain
| | - David Soto
- Neurophysiology Laboratory, Department of Biomedicine, Faculty of Medicine, Neuroscience Institute, University of Barcelona, Barcelona, Spain
| | - Xavier Gasull
- Neurophysiology Laboratory, Department of Biomedicine, Faculty of Medicine, Neuroscience Institute, University of Barcelona, Barcelona, Spain
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany; National Center for Diabetes Research (DZD), Neuherberg, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEPD), University Hospital of Cologne, Cologne, Germany
| | - Juan Fortea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain; Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Amanda Jiménez
- Obesity Unit, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain; Translational Research in Diabetes, Lipids and Obesity, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - José C Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain; Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|