1
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
2
|
Ji Z, Pandey T, de Belly H, Wang B, Weiner OD, Tang Y, Guang S, Goddard TD, Ma DK. ER-GUARD: an evolutionarily conserved antioxidant defense system at ER membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599784. [PMID: 38948723 PMCID: PMC11212984 DOI: 10.1101/2024.06.19.599784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Oxidative protein folding in the endoplasmic reticulum (ER) is essential for all eukaryotic cells yet generates hydrogen peroxide (H2O2), a reactive oxygen species (ROS). The ER-transmembrane protein that provides reducing equivalents to ER and guards the cytosol for antioxidant defense remains unidentified. Here we combine AlphaFold2-based and functional reporter screens in C. elegans to identify a previously uncharacterized and evolutionarily conserved protein ERGU-1 that fulfills these roles. Deleting C. elegans ERGU-1 causes excessive H2O2 and transcriptional gene up-regulation through SKN-1, homolog of mammalian antioxidant master regulator NRF2. ERGU-1 deficiency also impairs organismal reproduction and behaviors. Both C. elegans and human ERGU-1 proteins localize to ER membranes and form network reticulum structures. We name this system ER-GUARD, Endoplasmic Reticulum Guardian Aegis of Redox Defense. Human and Drosophila homologs of ERGU-1 can rescue C. elegans mutant phenotypes, demonstrating evolutionarily ancient and conserved functions. Together, our results reveal an ER-membrane-specific protein machinery and defense-net system ER-GUARD for peroxide detoxification and suggest a previously unknown but conserved pathway for antioxidant defense in animal cells.
Collapse
Affiliation(s)
- Zhijian Ji
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Taruna Pandey
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Henry de Belly
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Bingying Wang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Orion D. Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Yao Tang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shouhong Guang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Thomas D. Goddard
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Dengke K. Ma
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
- Department of Physiology, University of California, San Francisco, San Francisco, California, USA
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| |
Collapse
|
3
|
Li J, Fang Z, Dal E, Zhang H, Yu K, Ma M, Wang M, Sun R, Lu M, Wang H, Li Y. Transmembrane protein 176B regulates amino acid metabolism through the PI3K-Akt-mTOR signaling pathway and promotes gastric cancer progression. Cancer Cell Int 2024; 24:95. [PMID: 38438907 PMCID: PMC10913232 DOI: 10.1186/s12935-024-03279-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The present study aimed to investigate the expression level, biological function, and underlying mechanism of transmembrane protein 176B (TMEM176B) in gastric cancer (GC). METHODS TMEM176B expression was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting (WB). The function of TMEM176B was determined by various in vitro assays including colony formation, 5-ethynyl-2'-deoxyuridine (EdU), Transwell, and flow cytometry. Bioinformatics techniques were then used to elucidate the signaling pathways associated with TMEM176B activity. Tumor formation experiments were conducted on nude mice for in vivo validation of the preceding findings. TMEM176B expression was cross-referenced to clinicopathological parameters and survival outcomes. RESULTS It was observed that TMEM176B was overexpressed in GC cells and tissues. Targeted TMEM176B abrogation inhibited colony formation, proliferation, migration, and invasion but promoted apoptosis in GC cell lines while TMEM176B overexpression had the opposite effects. Subsequent experimental validation disclosed an association between TMEM176B and the phosphatidylinositol 3-carboxykinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling axis. Moreover, TMEM176B affects GC cancer progression by regulating asparagine synthetase (ASNS). The in vivo assays confirmed that TMEM176B is oncogenic and the clinical data revealed a connection between TMEM176B expression and the clinicopathological determinants of GC. CONCLUSION The foregoing results suggest that TMEM176B significantly promotes the development of gastric cancer and is an independent prognostic factor of it.
Collapse
Affiliation(s)
- Jing Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - ZiQing Fang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Emre Dal
- University of Utah, Salt Lake City, UT, 84102, USA
| | - Hao Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - KeXun Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - MengDi Ma
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - MingLiang Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ruochuan Sun
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - MingDian Lu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - HuiZhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - YongXiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
4
|
Pandey T, Kalluraya CA, Wang B, Xu T, Huang X, Guang S, Daugherty MD, Ma DK. Acquired stress resilience through bacteria-to-nematode interdomain horizontal gene transfer. EMBO J 2023; 42:e114835. [PMID: 37953666 PMCID: PMC10711659 DOI: 10.15252/embj.2023114835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 11/14/2023] Open
Abstract
Natural selection drives the acquisition of organismal resilience traits to protect against adverse environments. Horizontal gene transfer (HGT) is an important evolutionary mechanism for the acquisition of novel traits, including metazoan acquisitions in immunity, metabolic, and reproduction function via interdomain HGT (iHGT) from bacteria. Here, we report that the nematode gene rml-3 has been acquired by iHGT from bacteria and that it enables exoskeleton resilience and protection against environmental toxins in Caenorhabditis elegans. Phylogenetic analysis reveals that diverse nematode RML-3 proteins form a single monophyletic clade most similar to bacterial enzymes that biosynthesize L-rhamnose, a cell-wall polysaccharide component. C. elegans rml-3 is highly expressed during larval development and upregulated in developing seam cells upon heat stress and during the stress-resistant dauer stage. rml-3 deficiency impairs cuticle integrity, barrier functions, and nematode stress resilience, phenotypes that can be rescued by exogenous L-rhamnose. We propose that interdomain HGT of an ancient bacterial rml-3 homolog has enabled L-rhamnose biosynthesis in nematodes, facilitating cuticle integrity and organismal resilience to environmental stressors during evolution. These findings highlight a remarkable contribution of iHGT on metazoan evolution conferred by the domestication of a bacterial gene.
Collapse
Affiliation(s)
- Taruna Pandey
- Cardiovascular Research Institute and Department of PhysiologyUniversity of California San FranciscoSan FranciscoCAUSA
| | | | - Bingying Wang
- Cardiovascular Research Institute and Department of PhysiologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Ting Xu
- Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Xinya Huang
- Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Shouhong Guang
- Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | | | - Dengke K Ma
- Cardiovascular Research Institute and Department of PhysiologyUniversity of California San FranciscoSan FranciscoCAUSA
- Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCAUSA
| |
Collapse
|
5
|
Li T, Zhou Z, Xie Z, Fan X, Zhang Y, Zhang Y, Song X, Ruan Y. Identification and validation of cancer-associated fibroblast-related subtypes and the prognosis model of biochemical recurrence in prostate cancer based on single-cell and bulk RNA sequencing. J Cancer Res Clin Oncol 2023; 149:11379-11395. [PMID: 37369799 DOI: 10.1007/s00432-023-05011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are an essential component of the tumor immune microenvironment that are involved in extracellular matrix (ECM) remodeling. We aim to investigate the characteristics of CAFs in prostate cancer and develop a biochemical recurrence (BCR)-related CAF signature for predicting the prognosis of PCa patients. METHODS The bulk RNA-seq and relevant clinical information were obtained from the TCGA and GEO databases, respectively. The infiltration scores of CAFs in prostate cancer patients were calculated using the MCP counter and EPIC algorithms. The single-cell RNA sequencing (scRNA-seq) was downloaded from the GEO database. Subsequently, univariate Cox regression analysis was employed to identify prognostic genes associated with CAFs. We identified two subtypes (C1 and C2) of prostate cancer that were associated with CAFs via non-negative matrix factorization (NMF) clustering. In addition, the BCR-related CAF signatures were constructed using Lasso regression analysis. Finally, a nomogram model was established based on the risk score and clinical characteristics of the patients. RESULTS Initially, we found that patients with high CAF infiltration scores had shorter biochemical recurrence-free survival (BCRFS) times. Subsequently, CAFs in four pairs of tumors and paracancerous tissues were identified. We discovered 253 significantly differentially expressed genes, of which 13 had prognostic significance. Using NMF clustering, we divided PCa patients into C1 and C2 subgroups, with the C1 subgroup having a worse prognosis and substantially enriched cell cycle, homologous recombination, and mismatch repair pathways. Furthermore, a BCR-related CAFs signature was established. Multivariate COX regression analysis confirmed that the BCR-related CAFs signature was an independent prognostic factor for BCR in PCa. In addition, the nomogram was based on the clinical characteristics and risk scores of the patient and demonstrated high accuracy and reliability for predicting BCR. Lastly, our findings indicate that the risk score may be a useful tool for predicting PCa patients' sensitivity to immunotherapy and drug treatment. CONCLUSION NMF clustering based on CAF-related genes revealed distinct TME immune characteristics between groups. The BCR-related CAF signature accurately predicted prognosis and immunotherapy response in prostate cancer patients, offering a promising new approach to cancer treatment.
Collapse
Affiliation(s)
- Tiewen Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Zeng Zhou
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Zhiwen Xie
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Xuhui Fan
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Yichen Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Yu Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Xiaodong Song
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Yuan Ruan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China.
| |
Collapse
|
6
|
Birnbaum SK, Cohen JD, Belfi A, Murray JI, Adams JRG, Chisholm AD, Sundaram MV. The proprotein convertase BLI-4 promotes collagen secretion prior to assembly of the Caenorhabditis elegans cuticle. PLoS Genet 2023; 19:e1010944. [PMID: 37721936 PMCID: PMC10538796 DOI: 10.1371/journal.pgen.1010944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/28/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023] Open
Abstract
Some types of collagens, including transmembrane MACIT collagens and C. elegans cuticle collagens, are N-terminally cleaved at a dibasic site that resembles the consensus for furin or other proprotein convertases of the subtilisin/kexin (PCSK) family. Such cleavage may release transmembrane collagens from the plasma membrane and affect extracellular matrix assembly or structure. However, the functional consequences of such cleavage are unclear and evidence for the role of specific PCSKs is lacking. Here, we used endogenous collagen fusions to fluorescent proteins to visualize the secretion and assembly of the first collagen-based cuticle in C. elegans and then tested the role of the PCSK BLI-4 in these processes. Unexpectedly, we found that cuticle collagens SQT-3 and DPY-17 are secreted into the extraembryonic space several hours before cuticle matrix assembly. Furthermore, this early secretion depends on BLI-4/PCSK; in bli-4 and cleavage-site mutants, SQT-3 and DPY-17 are not efficiently secreted and instead form large intracellular puncta. Their later assembly into cuticle matrix is reduced but not entirely blocked. These data reveal a role for collagen N-terminal processing in intracellular trafficking and the control of matrix assembly in vivo. Our observations also prompt a revision of the classic model for C. elegans cuticle matrix assembly and the pre-cuticle-to-cuticle transition, suggesting that cuticle layer assembly proceeds via a series of regulated steps and not simply by sequential secretion and deposition.
Collapse
Affiliation(s)
- Susanna K. Birnbaum
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jennifer D. Cohen
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Alexandra Belfi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - John I. Murray
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jennifer R. G. Adams
- Departments of Neurobiology and Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Andrew D. Chisholm
- Departments of Neurobiology and Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
7
|
Pandey T, Kalluraya C, Wang B, Xu T, Huang X, Guang S, Daugherty MD, Ma DK. Acquired stress resilience through bacteria-to-nematode horizontal gene transfer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.554039. [PMID: 37662235 PMCID: PMC10473587 DOI: 10.1101/2023.08.20.554039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Natural selection drives acquisition of organismal resilience traits to protect against adverse environments. Horizontal gene transfer (HGT) is an important evolutionary mechanism for the acquisition of novel traits, including metazoan acquisition of functions in immunity, metabolism, and reproduction via interdomain HGT (iHGT) from bacteria. We report that the nematode gene rml-3, which was acquired by iHGT from bacteria, enables exoskeleton resilience and protection against environmental toxins in C. elegans. Phylogenetic analysis reveals that diverse nematode RML-3 proteins form a single monophyletic clade most highly similar to bacterial enzymes that biosynthesize L-rhamnose to build cell wall polysaccharides. C. elegans rml-3 is regulated in developing seam cells by heat stress and stress-resistant dauer stage. Importantly, rml-3 deficiency impairs cuticle integrity, barrier functions and organismal stress resilience, phenotypes that are rescued by exogenous L-rhamnose. We propose that iHGT of an ancient bacterial rml-3 homolog enables L-rhamnose biosynthesis in nematodes that facilitates cuticle integrity and organismal resilience in adaptation to environmental stresses during evolution. These findings highlight the remarkable contribution of iHGT on metazoan evolution that is conferred by the domestication of bacterial genes.
Collapse
Affiliation(s)
- Taruna Pandey
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
| | - Chinmay Kalluraya
- Department of Molecular Biology, University of California, San Diego, San Diego, USA
| | - Bingying Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
| | - Ting Xu
- The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinya Huang
- The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Shouhong Guang
- The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Matthew D. Daugherty
- Department of Molecular Biology, University of California, San Diego, San Diego, USA
| | - Dengke K. Ma
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
- Innovative Genomics Institute, University of California, Berkeley, USA
| |
Collapse
|
8
|
Dawson T, Rentia U, Sanford J, Cruchaga C, Kauwe JSK, Crandall KA. Locus specific endogenous retroviral expression associated with Alzheimer's disease. Front Aging Neurosci 2023; 15:1186470. [PMID: 37484691 PMCID: PMC10359044 DOI: 10.3389/fnagi.2023.1186470] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Human endogenous retroviruses (HERVs) are transcriptionally-active remnants of ancient retroviral infections that may play a role in Alzheimer's disease. Methods We combined two, publicly available RNA-Seq datasets with a third, novel dataset for a total cohort of 103 patients with Alzheimer's disease and 45 healthy controls. We use telescope to perform HERV quantification for these samples and simultaneously perform gene expression analysis. Results We identify differentially expressed genes and differentially expressed HERVs in Alzheimer's disease patients. Differentially expressed HERVs are scattered throughout the genome; many of them are members of the HERV-K superfamily. A number of HERVs are correlated with the expression of dysregulated genes in Alzheimer's and are physically proximal to genes which drive disease pathways. Discussion Dysregulated expression of ancient retroviral insertions in the human genome are present in Alzheimer's disease and show localization patterns that may explain how these elements drive pathogenic gene expression.
Collapse
Affiliation(s)
- Tyson Dawson
- Computational Biology Institute, The George Washington University, Washington, DC, United States
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Uzma Rentia
- Computational Biology Institute, The George Washington University, Washington, DC, United States
| | - Jessie Sanford
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - John S. K. Kauwe
- Department of Biology, Brigham Young University, Provo, UT, United States
| | - Keith A. Crandall
- Computational Biology Institute, The George Washington University, Washington, DC, United States
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| |
Collapse
|
9
|
Birnbaum SK, Cohen JD, Belfi A, Murray JI, Adams JRG, Chisholm AD, Sundaram MV. The proprotein convertase BLI-4 promotes collagen secretion during assembly of the Caenorhabditis elegans cuticle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.542650. [PMID: 37333289 PMCID: PMC10274747 DOI: 10.1101/2023.06.06.542650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Some types of collagens, including transmembrane MACIT collagens and C. elegans cuticle collagens, are N-terminally cleaved at a dibasic site that resembles the consensus for furin or other proprotein convertases of the subtilisin/kexin (PCSK) family. Such cleavage may release transmembrane collagens from the plasma membrane and affect extracellular matrix assembly or structure. However, the functional consequences of such cleavage are unclear and evidence for the role of specific PCSKs is lacking. Here, we used endogenous collagen fusions to fluorescent proteins to visualize the secretion and assembly of the first collagen-based cuticle in C. elegans and then tested the role of the PCSK BLI-4 in these processes. Unexpectedly, we found that cuticle collagens SQT-3 and DPY-17 are secreted into the extraembryonic space several hours before cuticle matrix assembly. Furthermore, this early secretion depends on BLI-4/PCSK; in bli-4 and cleavage-site mutants, SQT-3 and DPY-17 are not efficiently secreted and instead form large intracellular aggregates. Their later assembly into cuticle matrix is reduced but not entirely blocked. These data reveal a role for collagen N-terminal processing in intracellular trafficking and in the spatial and temporal restriction of matrix assembly in vivo . Our observations also prompt a revision of the classic model for C. elegans cuticle matrix assembly and the pre-cuticle-to-cuticle transition, suggesting that cuticle layer assembly proceeds via a series of regulated steps and not simply by sequential secretion and deposition.
Collapse
Affiliation(s)
- Susanna K Birnbaum
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia PA
| | - Jennifer D Cohen
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia PA
| | - Alexandra Belfi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia PA
| | - John I Murray
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia PA
| | - Jennifer R G Adams
- Departments of Neurobiology and Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego CA
| | - Andrew D Chisholm
- Departments of Neurobiology and Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego CA
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia PA
| |
Collapse
|
10
|
Betschart B, Bisoffi M, Alaeddine F. Identification and characterization of epicuticular proteins of nematodes sharing motifs with cuticular proteins of arthropods. PLoS One 2022; 17:e0274751. [PMID: 36301857 PMCID: PMC9612446 DOI: 10.1371/journal.pone.0274751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Specific collagens and insoluble proteins called cuticlins are major constituents of the nematode cuticles. The epicuticle, which forms the outermost electron-dense layer of the cuticle, is composed of another category of insoluble proteins called epicuticlins. It is distinct from the insoluble cuticlins localized in the cortical layer and the fibrous ribbon underneath lateral alae. Our objective was to identify and characterize genes and their encoded proteins forming the epicuticle. The combination between previously obtained laboratory results and recently made available data through the whole-genome shotgun contigs (WGS) and the transcriptome Shotgun Assembly (TSA) sequencing projects of Ascaris suum allowed us to identify the first epicuticlin gene, Asu-epic-1, on the chromosome VI. This gene is formed of exon1 (55 bp) and exon2 (1067 bp), separated by an intron of 1593 bp. Exon 2 is formed of tandem repeats (TR) whose number varies in different cDNA and genomic clones of Asu-epic-1. These variations could be due to slippage of the polymerases during DNA replication and RNA transcription leading to insertions and deletions (Indels). The deduced protein, Asu-EPIC-1, consists of a signal peptide of 20 amino acids followed by 353 amino acids composed of seven TR of 49 or 51 amino acids each. Three highly conserved tyrosine motifs characterize each repeat. The GYR motif is the Pfam motif PF02756 present in several cuticular proteins of arthropods. Asu-EPIC-1 is an intrinsically disordered protein (IDP) containing seven predicted molecular recognition features (MoRFs). This type of protein undergoes a disorder-to-order transition upon binding protein partners. Three epicuticular sequences have been identified in A. suum, Ascaris lumbricoides, and Toxocara canis. Homologous epicuticular proteins were identified in over 50 other nematode species. The potential of this new category of proteins in forming the nematode cuticle through covalent interactions with other cuticular components, particularly with collagens, is discussed. Their localization in the outermost layer of the nematode body and their unique structure render them crucial candidates for biochemical and molecular interaction studies and targets for new biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Bruno Betschart
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Marco Bisoffi
- Chemistry and Biochemistry, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Ferial Alaeddine
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
11
|
Hebbar S, Panzade G, Vashisht AA, Wohlschlegel JA, Veksler-Lublinsky I, Zinovyeva AY. Functional identification of microRNA-centered complexes in C. elegans. Sci Rep 2022; 12:7133. [PMID: 35504914 PMCID: PMC9065084 DOI: 10.1038/s41598-022-10771-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/08/2022] [Indexed: 02/02/2023] Open
Abstract
microRNAs (miRNAs) are crucial for normal development and physiology. To identify factors that might coordinate with miRNAs to regulate gene expression, we used 2'O-methylated oligonucleotides to precipitate Caenorhabditis elegans let-7, miR-58, and miR-2 miRNAs and the associated proteins. A total of 211 proteins were identified through mass-spectrometry analysis of miRNA co-precipitates, which included previously identified interactors of key miRNA pathway components. Gene ontology analysis of the identified interactors revealed an enrichment for RNA binding proteins, suggesting that we captured proteins that may be involved in mRNA lifecycle. To determine which miRNA interactors are important for miRNA activity, we used RNAi to deplete putative miRNA co-factors in animals with compromised miRNA activity and looked for alterations of the miRNA mutant phenotypes. Depletion of 25 of 39 tested genes modified the miRNA mutant phenotypes in three sensitized backgrounds. Modulators of miRNA phenotypes ranged from RNA binding proteins RBD-1 and CEY-1 to metabolic factors such as DLST-1 and ECH-5, among others. The observed functional interactions suggest widespread coordination of these proteins with miRNAs to ultimately regulate gene expression. This study provides a foundation for future investigations aimed at deciphering the molecular mechanisms of miRNA-mediated gene regulation.
Collapse
Affiliation(s)
- Shilpa Hebbar
- Division of Biology, Kansas State University, Manhattan, 66506, USA
| | - Ganesh Panzade
- Division of Biology, Kansas State University, Manhattan, 66506, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095, USA
- Genomics Institute of the Novartis Research Foundation, San Diego, 92121, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095, USA
| | - Isana Veksler-Lublinsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Anna Y Zinovyeva
- Division of Biology, Kansas State University, Manhattan, 66506, USA.
| |
Collapse
|
12
|
Kulicke CA, De Zan E, Hein Z, Gonzalez-Lopez C, Ghanwat S, Veerapen N, Besra GS, Klenerman P, Christianson JC, Springer S, Nijman SM, Cerundolo V, Salio M. The P5-type ATPase ATP13A1 modulates major histocompatibility complex I-related protein 1 (MR1)-mediated antigen presentation. J Biol Chem 2022; 298:101542. [PMID: 34968463 PMCID: PMC8808182 DOI: 10.1016/j.jbc.2021.101542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022] Open
Abstract
The monomorphic antigen-presenting molecule major histocompatibility complex-I-related protein 1 (MR1) presents small-molecule metabolites to mucosal-associated invariant T (MAIT) cells. The MR1-MAIT cell axis has been implicated in a variety of infectious and noncommunicable diseases, and recent studies have begun to develop an understanding of the molecular mechanisms underlying this specialized antigen presentation pathway. However, proteins regulating MR1 folding, loading, stability, and surface expression remain to be identified. Here, we performed a gene trap screen to discover novel modulators of MR1 surface expression through insertional mutagenesis of an MR1-overexpressing clone derived from the near-haploid human cell line HAP1 (HAP1.MR1). The most significant positive regulators identified included β2-microglobulin, a known regulator of MR1 surface expression, and ATP13A1, a P5-type ATPase in the endoplasmic reticulum (ER) not previously known to be associated with MR1-mediated antigen presentation. CRISPR/Cas9-mediated knockout of ATP13A1 in both HAP1.MR1 and THP-1 cell lines revealed a profound reduction in MR1 protein levels and a concomitant functional defect specific to MR1-mediated antigen presentation. Collectively, these data are consistent with the ER-resident ATP13A1 being a key posttranscriptional determinant of MR1 surface expression.
Collapse
Affiliation(s)
- Corinna A Kulicke
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| | - Erica De Zan
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research Ltd and Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Zeynep Hein
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Claudia Gonzalez-Lopez
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Swapnil Ghanwat
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Natacha Veerapen
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John C Christianson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Sebastian M Nijman
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research Ltd and Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Mariolina Salio
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
13
|
A tango for coats and membranes: New insights into ER-to-Golgi traffic. Cell Rep 2022; 38:110258. [DOI: 10.1016/j.celrep.2021.110258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 12/30/2022] Open
|
14
|
Lu CL, Ortmeier S, Brudvig J, Moretti T, Cain J, Boyadjiev SA, Weimer JM, Kim J. Collagen has a unique SEC24 preference for efficient export from the endoplasmic reticulum. Traffic 2022; 23:81-93. [PMID: 34761479 PMCID: PMC8692420 DOI: 10.1111/tra.12826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/03/2023]
Abstract
SEC24 is mainly involved in cargo sorting during COPII vesicle assembly. There are four SEC24 paralogs (A-D) in vertebrates, which are classified into two subgroups (SEC24A/B and SEC24C/D). Pathological mutations in SEC24D cause osteogenesis imperfecta with craniofacial dysplasia in humans. sec24d mutant fish also recapitulate the phenotypes. Consistent with the skeletal phenotypes, the secretion of collagen was severely defective in mutant fish, emphasizing the importance of SEC24D in collagen secretion. However, SEC24D patient-derived fibroblasts show only a mild secretion phenotype, suggesting tissue-specificity in the secretion process. Using Sec24d KO mice and cultured cells, we show that SEC24A and SEC24B also contribute to endoplasmic reticulum (ER) export of procollagen. In contrast, fibronectin 1 requires either SEC24C or SEC24D for ER export. On the basis of our results, we propose that procollagen interacts with multiple SEC24 paralogs for efficient export from the ER, and that this is the basis for tissue-specific phenotypes resulting from SEC24 paralog deficiency.
Collapse
Affiliation(s)
- Chung-Ling Lu
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Steven Ortmeier
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, 57104, USA
| | - Jon Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, 57104, USA
| | - Tamara Moretti
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Jacob Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, 57104, USA
| | - Simeon A. Boyadjiev
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, 57104, USA
| | - Jinoh Kim
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA,To who correspondence should be addressed: Jinoh Kim, 2086 Vet Med, 1800 Christensen Drive, Iowa State University, Ames, IA 50011, , Tel: 515-294-3401
| |
Collapse
|
15
|
Zhang Y, Zhao C, Zhang H, Liu R, Wang S, Pu Y, Yin L. Integrating transcriptomics and behavior tests reveals how the C. elegans responds to copper induced aging. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112494. [PMID: 34265532 DOI: 10.1016/j.ecoenv.2021.112494] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Copper (Cu) pollution in water and agricultural soil has always been a worldwide concern. This research aims to investigate the health effects of copper exposure on Caenorhabditis elegans (C. elegans) under the existing environmental quality standards (1 mg/L and 2 mg/L) via lifespan, reproduction, biological markers and transcriptome analysis. The results showed that copper of these two environmental standards shorten the lifespan of nematodes, reduced the brood size, reduced the frequency of pharyngeal pumps and prolonged defecation time as aging-related behaviors, and increased the levels of aging-related markers ROS, MDA and H2O2. There was a certain effect trend for the two exposure concentrations. Further, the possible molecular mechanism of copper-induced aging and reproductive effects on C. elegans was explored. Differential gene expression analysis was performed, and 2332 genes (567 up- and 1765 down-regulated genes) in the 1 mg/L group, 2449 DEGs (724 up- and 1725 down-regulated genes) in the 2 mg/L group in response to copper treatment. The top 20 regulated genes were vit (vit-1, vit-3, vit-4) genes, col genes (col-35, col-72, col-114, col-123, col-164, col-183, col-185), eea-1, him-18 and grl-20, which suggested that cuticle collagen synthesis and yolk expression were disrupted by copper. Analysis of KEGG pathway showed copper exposure widely affects longevity regulation pathways, thereby promoting aging. In summary, the sequencing results extensively and deeply reveal the health hazards of environmentally relevant doses of copper exposure to C. elegans, and behavioral testing verified that copper promoted aging of C. elegans.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Chao Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
16
|
Upadhyay M, Kunz E, Sandoval-Castellanos E, Hauser A, Krebs S, Graf A, Blum H, Dotsev A, Okhlopkov I, Shakhin A, Bagirov V, Brem G, Fries R, Zinovieva N, Medugorac I. Whole genome sequencing reveals a complex introgression history and the basis of adaptation to subarctic climate in wild sheep. Mol Ecol 2021; 30:6701-6717. [PMID: 34534381 DOI: 10.1111/mec.16184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022]
Abstract
To predict species responses to anthropogenic disturbances and climate change, it is reasonable to use species with high sensitivity to such factors. Snow sheep (Ovis nivicola) could represent a good candidate for this; as the only large herbivore species adapted to the cold and alpine habitats of northeastern Siberia, it plays a crucial role in its ecosystem. Despite having an extensive geographical distribution among all ovine species, it is one of the least studied. In this study, we sequenced and analysed six genomes of snow sheep in combination with all other wild sheep species to infer key aspects of their evolutionary history and unveil the genetic basis of their adaptation to subarctic environments. Despite their large census population size, snow sheep genomes showed remarkably low heterozygosity, which could reflect the effect of isolation and historical bottlenecks that we inferred using the pairwise sequential Markovian coalescent and runs of homozygosity. F4 -statistics indicated instances of introgression involving snow sheep with argali (Ovis ammon) and Dall (Ovis dalli) sheep, suggesting that these species might have been more widespread during the Pleistocene. Furthermore, the introgressed segments, which were identified using mainly minimum relative node depth, covered genes associated with immunity, adipogenesis and morphology-related traits, representing potential targets of adaptive introgression. Genes related to mitochondrial functions and thermogenesis associated with adipose tissue were identified to be under selection. Overall, our data suggest introgression as a mechanism facilitating adaptation in wild sheep species and provide insights into the genetic mechanisms underlying cold adaptation in snow sheep.
Collapse
Affiliation(s)
- Maulik Upadhyay
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Elisabeth Kunz
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | | | - Andreas Hauser
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | - Arsen Dotsev
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia
| | | | - Alexey Shakhin
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia
| | - Vugar Bagirov
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, VMU, Vienna, Austria
| | - Ruedi Fries
- Lehrstuhl für Tierzucht, Technische Universität München, Freising, Germany
| | - Natalia Zinovieva
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| |
Collapse
|
17
|
Yan SM, Sherman RM, Taylor DJ, Nair DR, Bortvin AN, Schatz MC, McCoy RC. Local adaptation and archaic introgression shape global diversity at human structural variant loci. eLife 2021; 10:e67615. [PMID: 34528508 PMCID: PMC8492059 DOI: 10.7554/elife.67615] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Large genomic insertions and deletions are a potent source of functional variation, but are challenging to resolve with short-read sequencing, limiting knowledge of the role of such structural variants (SVs) in human evolution. Here, we used a graph-based method to genotype long-read-discovered SVs in short-read data from diverse human genomes. We then applied an admixture-aware method to identify 220 SVs exhibiting extreme patterns of frequency differentiation - a signature of local adaptation. The top two variants traced to the immunoglobulin heavy chain locus, tagging a haplotype that swept to near fixation in certain southeast Asian populations, but is rare in other global populations. Further investigation revealed evidence that the haplotype traces to gene flow from Neanderthals, corroborating the role of immune-related genes as prominent targets of adaptive introgression. Our study demonstrates how recent technical advances can help resolve signatures of key evolutionary events that remained obscured within technically challenging regions of the genome.
Collapse
Affiliation(s)
- Stephanie M Yan
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
| | - Rachel M Sherman
- Department of Computer Science, Johns Hopkins UniversityBaltimoreUnited States
| | - Dylan J Taylor
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
| | - Divya R Nair
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
| | - Andrew N Bortvin
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
| | - Michael C Schatz
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
- Department of Computer Science, Johns Hopkins UniversityBaltimoreUnited States
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
| |
Collapse
|
18
|
McCaughey J, Stevenson NL, Mantell JM, Neal CR, Paterson A, Heesom K, Stephens DJ. A general role for TANGO1, encoded by MIA3, in secretory pathway organization and function. J Cell Sci 2021; 134:jcs259075. [PMID: 34350936 PMCID: PMC8524724 DOI: 10.1242/jcs.259075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 11/25/2022] Open
Abstract
Complex machinery is required to drive secretory cargo export from the endoplasmic reticulum (ER), which is an essential process in eukaryotic cells. In vertebrates, the MIA3 gene encodes two major forms of transport and Golgi organization protein 1 (TANGO1S and TANGO1L), which have previously been implicated in selective trafficking of procollagen. Using genome engineering of human cells, light microscopy, secretion assays, genomics and proteomics, we show that disruption of the longer form, TANGO1L, results in relatively minor defects in secretory pathway organization and function, including having limited impacts on procollagen secretion. In contrast, loss of both long and short forms results in major defects in cell organization and secretion. These include a failure to maintain the localization of ERGIC53 (also known as LMAN1) and SURF4 to the ER-Golgi intermediate compartment and dramatic changes to the ultrastructure of the ER-Golgi interface. Disruption of TANGO1 causes significant changes in early secretory pathway gene and protein expression, and impairs secretion not only of large proteins, but of all types of secretory cargo, including small soluble proteins. Our data support a general role for MIA3/TANGO1 in maintaining secretory pathway structure and function in vertebrate cells.
Collapse
Affiliation(s)
- Janine McCaughey
- Cell Biology Laboratories,
School of Biochemistry, Faculty of Life Sciences, University Walk,
University of Bristol, Bristol, BS8 1TD,
UK
| | - Nicola L. Stevenson
- Cell Biology Laboratories,
School of Biochemistry, Faculty of Life Sciences, University Walk,
University of Bristol, Bristol, BS8 1TD,
UK
| | - Judith M. Mantell
- Wolfson Bioimaging Facility, Faculty of Life
Sciences, University Walk, University of
Bristol, Bristol, BS8 1TD,
UK
| | - Chris R. Neal
- Wolfson Bioimaging Facility, Faculty of Life
Sciences, University Walk, University of
Bristol, Bristol, BS8 1TD,
UK
| | | | - Kate Heesom
- Proteomics Facility, Faculty of Life
Sciences, University Walk, University of
Bristol, Bristol, BS8 1TD,
UK
| | - David J. Stephens
- Cell Biology Laboratories,
School of Biochemistry, Faculty of Life Sciences, University Walk,
University of Bristol, Bristol, BS8 1TD,
UK
| |
Collapse
|
19
|
Mostovenko E, Saunders S, Muldoon PP, Bishop L, Campen MJ, Erdely A, Ottens AK. Carbon Nanotube Exposure Triggers a Cerebral Peptidomic Response: Barrier Compromise, Neuroinflammation, and a Hyperexcited State. Toxicol Sci 2021; 182:107-119. [PMID: 33892499 DOI: 10.1093/toxsci/kfab042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The unique physicochemical properties of carbon nanomaterials and their ever-growing utilization generate a serious concern for occupational risk. Pulmonary exposure to these nanoparticles induces local and systemic inflammation, cardiovascular dysfunction, and even cognitive deficits. Although multiple routes of extrapulmonary toxicity have been proposed, the mechanism for and manner of neurologic effects remain minimally understood. Here, we examine the cerebral spinal fluid (CSF)-derived peptidomic fraction as a reflection of neuropathological alterations induced by pulmonary carbon nanomaterial exposure. Male C57BL/6 mice were exposed to 10 or 40 µg of multiwalled carbon nanotubes (MWCNT) by oropharyngeal aspiration. Serum and CSFs were collected 4 h post exposure. An enriched peptide fraction of both biofluids was analyzed using ion mobility-enabled data-independent mass spectrometry for label-free quantification. MWCNT exposure induced a prominent peptidomic response in the blood and CSF; however, correlation between fluids was limited. Instead, we determined that a MWCNT-induced peptidomic shift occurred specific to the CSF with 292 significant responses found that were not in serum. Identified MWCNT-responsive peptides depicted a mechanism involving aberrant fibrinolysis (fibrinopeptide A), blood-brain barrier permeation (homeobox protein A4), neuroinflammation (transmembrane protein 131L) with reactivity by astrocytes and microglia, and a pro-degradative (signal transducing adapter molecule, phosphoglycerate kinase), antiplastic (AF4/FMR2 family member 1, vacuolar protein sorting-associated protein 18) state with the excitation-inhibition balance shifted to a hyperexcited (microtubule-associated protein 1B) phenotype. Overall, the significant pathologic changes observed were consistent with early neurodegenerative disease and were diagnostically reflected in the CSF peptidome.
Collapse
Affiliation(s)
- Ekaterina Mostovenko
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Samantha Saunders
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Pretal P Muldoon
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Lindsey Bishop
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Aaron Erdely
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| |
Collapse
|
20
|
Piran M, Sepahi N, Moattari A, Rahimi A, Ghanbariasad A. Systems Biomedicine of Primary and Metastatic Colorectal Cancer Reveals Potential Therapeutic Targets. Front Oncol 2021; 11:597536. [PMID: 34249670 PMCID: PMC8263939 DOI: 10.3389/fonc.2021.597536] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/31/2021] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is one of the major causes of cancer deaths across the world. Patients' survival at time of diagnosis depends mainly on stage of the tumor. Therefore, understanding the molecular mechanisms from low-grade to high-grade stages of cancer that lead to cellular migration from one tissue/organ to another tissue/organ is essential for implementing therapeutic approaches. To this end, we performed a unique meta-analysis flowchart by identifying differentially expressed genes (DEGs) between normal, primary (primary sites), and metastatic samples (Colorectal metastatic lesions in liver and lung) in some Test datasets. DEGs were employed to construct a protein-protein interaction (PPI) network. A smaller network containing 39 DEGs was then extracted from the PPI network whose nodes expression induction or suppression alone or in combination with each other would inhibit tumor progression or metastasis. These DEGs were then verified by gene expression profiling, survival analysis, and multiple Validation datasets. We suggested for the first time that downregulation of mitochondrial genes, including ETHE1, SQOR, TST, and GPX3, would help colorectal cancer cells to produce more energy under hypoxic conditions through mechanisms that are different from "Warburg Effect". Augmentation of given antioxidants and repression of P4HA1 and COL1A2 genes could be a choice of CRC treatment. Moreover, promoting active GSK-3β together with expression control of EIF2B would prevent EMT. We also proposed that OAS1 expression enhancement can induce the anti-cancer effects of interferon-gamma, while suppression of CTSH hinders formation of focal adhesions. ATF5 expression suppression sensitizes cancer cells to anchorage-dependent death signals, while LGALS4 induction recovers cell-cell junctions. These inhibitions and inductions would be another combinatory mechanism that inhibits EMT and cell migration. Furthermore, expression inhibition of TMPO, TOP2A, RFC3, GINS1, and CKS2 genes could prevent tumor growth. Besides, TRIB3 suppression would be a promising target for anti-angiogenic therapy. SORD is a poorly studied enzyme in cancer, found to be upregulated in CRC. Finally, TMEM131 and DARS genes were identified in this study whose roles have never been interrogated in any kind of cancer, neither as a biomarker nor curative target. All the mentioned mechanisms must be further validated by experimental wet-lab techniques.
Collapse
Affiliation(s)
- Mehran Piran
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
- Department of Bacteriology and Virology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Sepahi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Afagh Moattari
- Department of Bacteriology and Virology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Rahimi
- Bioinformatics and Computational Biology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Ghanbariasad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
21
|
Joiner AMN, Phillips BP, Yugandhar K, Sanford EJ, Smolka MB, Yu H, Miller EA, Fromme JC. Structural basis of TRAPPIII-mediated Rab1 activation. EMBO J 2021; 40:e107607. [PMID: 34018207 PMCID: PMC8204860 DOI: 10.15252/embj.2020107607] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/17/2022] Open
Abstract
The GTPase Rab1 is a master regulator of the early secretory pathway and is critical for autophagy. Rab1 activation is controlled by its guanine nucleotide exchange factor, the multisubunit TRAPPIII complex. Here, we report the 3.7 Å cryo-EM structure of the Saccharomyces cerevisiae TRAPPIII complex bound to its substrate Rab1/Ypt1. The structure reveals the binding site for the Rab1/Ypt1 hypervariable domain, leading to a model for how the complex interacts with membranes during the activation reaction. We determined that stable membrane binding by the TRAPPIII complex is required for robust activation of Rab1/Ypt1 in vitro and in vivo, and is mediated by a conserved amphipathic α-helix within the regulatory Trs85 subunit. Our results show that the Trs85 subunit serves as a membrane anchor, via its amphipathic helix, for the entire TRAPPIII complex. These findings provide a structural understanding of Rab activation on organelle and vesicle membranes.
Collapse
Affiliation(s)
- Aaron MN Joiner
- Department of Molecular Biology and Genetics/Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | | | - Kumar Yugandhar
- Department of Computational Biology/Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Ethan J Sanford
- Department of Molecular Biology and Genetics/Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics/Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Haiyuan Yu
- Department of Computational Biology/Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | | | - J Christopher Fromme
- Department of Molecular Biology and Genetics/Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| |
Collapse
|
22
|
The conserved autoimmune-disease risk gene TMEM39A regulates lysosome dynamics. Proc Natl Acad Sci U S A 2021; 118:2011379118. [PMID: 33531362 DOI: 10.1073/pnas.2011379118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
TMEM39A encodes an evolutionarily conserved transmembrane protein and carries single-nucleotide polymorphisms associated with increased risk of major human autoimmune diseases, including multiple sclerosis. The exact cellular function of TMEM39A remains not well understood. Here, we report that TMEM-39, the sole Caenorhabditis elegans (C. elegans) ortholog of TMEM39A, regulates lysosome distribution and accumulation. Elimination of tmem-39 leads to lysosome tubularization and reduced lysosome mobility, as well as accumulation of the lysosome-associated membrane protein LMP-1. In mammalian cells, loss of TMEM39A leads to redistribution of lysosomes from the perinuclear region to cell periphery. Mechanistically, TMEM39A interacts with the dynein intermediate light chain DYNC1I2 to maintain proper lysosome distribution. Deficiency of tmem-39 or the DYNC1I2 homolog in C. elegans impairs mTOR signaling and activates the downstream TFEB-like transcription factor HLH-30. We propose evolutionarily conserved roles of TMEM39 family proteins in regulating lysosome distribution and lysosome-associated signaling, dysfunction of which in humans may underlie aspects of autoimmune diseases.
Collapse
|
23
|
Zhang Z, Luo S, Barbosa GO, Bai M, Kornberg TB, Ma DK. The conserved transmembrane protein TMEM-39 coordinates with COPII to promote collagen secretion and regulate ER stress response. PLoS Genet 2021; 17:e1009317. [PMID: 33524011 PMCID: PMC7901769 DOI: 10.1371/journal.pgen.1009317] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/23/2021] [Accepted: 12/22/2020] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of collagen production and secretion contributes to aging and tissue fibrosis of major organs. How procollagen proteins in the endoplasmic reticulum (ER) route as specialized cargos for secretion remains to be fully elucidated. Here, we report that TMEM39, an ER-localized transmembrane protein, regulates production and secretory cargo trafficking of procollagen. We identify the C. elegans ortholog TMEM-39 from an unbiased RNAi screen and show that deficiency of tmem-39 leads to striking defects in cuticle collagen production and constitutively high ER stress response. RNAi knockdown of the tmem-39 ortholog in Drosophila causes similar defects in collagen secretion from fat body cells. The cytosolic domain of human TMEM39A binds to Sec23A, a vesicle coat protein that drives collagen secretion and vesicular trafficking. TMEM-39 regulation of collagen secretion is independent of ER stress response and autophagy. We propose that the roles of TMEM-39 in collagen secretion and ER homeostasis are likely evolutionarily conserved. As the most abundant protein in animals, collagen plays diverse roles and its dysregulation impacts aging and many fibrotic disorders. It is important to understand how premature collagen proteins in the ER are processed and secreted, as many other aspects of collagen regulation have been elucidated in mechanistic detail. In this paper, we have characterized a novel conserved family of TMEM39 proteins, including human TMEM39A and C. elegans tmem-39 that regulates ER stress response and collagen secretion. Human TMEM39A directly interacts with SEC23A, a core component of the COPII vesicle coating complex responsible for vesicular cargo secretion to the Golgi apparatus. The function of TMEM-39 proteins in collagen secretion appears highly conserved and independent to the ER stress response and the autophagy pathway. Our results provide insights into functions and mechanisms of TMEM39 proteins in collagen secretion and suggest it as a plausible target for tissue fibrotic diseases.
Collapse
Affiliation(s)
- Zhe Zhang
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (ZZ); (DKM)
| | - Shuo Luo
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Guilherme Oliveira Barbosa
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Meirong Bai
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Thomas B. Kornberg
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Dengke K. Ma
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
- * E-mail: (ZZ); (DKM)
| |
Collapse
|
24
|
Abstract
The functions of coat protein complex II (COPII) coats in cargo packaging and the creation of vesicles at the endoplasmic reticulum are conserved in eukaryotic protein secretion. Standard COPII vesicles, however, cannot handle the secretion of metazoan-specific cargoes such as procollagens, apolipoproteins, and mucins. Metazoans have thus evolved modules centered on proteins like TANGO1 (transport and Golgi organization 1) to engage COPII coats and early secretory pathway membranes to engineer a novel mode of cargo export at the endoplasmic reticulum.
Collapse
Affiliation(s)
- I Raote
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain; ,
| | - V Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain; , .,Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
25
|
Feng Z, Yang K, Pastor-Pareja JC. Tales of the ER-Golgi Frontier: Drosophila-Centric Considerations on Tango1 Function. Front Cell Dev Biol 2021; 8:619022. [PMID: 33505971 PMCID: PMC7829582 DOI: 10.3389/fcell.2020.619022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
In the secretory pathway, the transfer of cargo from the ER to the Golgi involves dozens of proteins that localize at specific regions of the ER called ER exit sites (ERES), where cargos are concentrated preceding vesicular transport to the Golgi. Despite many years of research, we are missing crucial details of how this highly dynamic ER-Golgi interface is defined, maintained and functions. Mechanisms allowing secretion of large cargos such as the very abundant collagens are also poorly understood. In this context, Tango1, discovered in the fruit fly Drosophila and widely conserved in animal evolution, has received a lot of attention in recent years. Tango1, an ERES-localized transmembrane protein, is the single fly member of the MIA/cTAGE family, consisting in humans of TANGO1 and at least 14 different related proteins. After its discovery in flies, a specific role of human TANGO1 in mediating secretion of collagens was reported. However, multiple studies in Drosophila have demonstrated that Tango1 is required for secretion of all cargos. At all ERES, through self-interaction and interactions with other proteins, Tango1 aids ERES maintenance and tethering of post-ER membranes. In this review, we discuss discoveries on Drosophila Tango1 and put them in relation with research on human MIA/cTAGE proteins. In doing so, we aim to offer an integrated view of Tango1 function and the nature of ER-Golgi transport from an evolutionary perspective.
Collapse
Affiliation(s)
- Zhi Feng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ke Yang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - José C Pastor-Pareja
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
26
|
Li Zheng S, Adams JG, Chisholm AD. Form and function of the apical extracellular matrix: new insights from Caenorhabditis elegans, Drosophila melanogaster, and the vertebrate inner ear. Fac Rev 2020; 9:27. [PMID: 33659959 PMCID: PMC7886070 DOI: 10.12703/r/9-27] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apical extracellular matrices (aECMs) are the extracellular layers on the apical sides of epithelia. aECMs form the outer layer of the skin in most animals and line the luminal surface of internal tubular epithelia. Compared to the more conserved basal ECMs (basement membranes), aECMs are highly diverse between tissues and between organisms and have been more challenging to understand at mechanistic levels. Studies in several genetic model organisms are revealing new insights into aECM composition, biogenesis, and function and have begun to illuminate common principles and themes of aECM organization. There is emerging evidence that, in addition to mechanical or structural roles, aECMs can participate in reciprocal signaling with associated epithelia and other cell types. Studies are also revealing mechanisms underlying the intricate nanopatterns exhibited by many aECMs. In this review, we highlight recent findings from well-studied model systems, including the external cuticle and ductal aECMs of Caenorhabditis elegans, Drosophila melanogaster, and other insects and the internal aECMs of the vertebrate inner ear.
Collapse
Affiliation(s)
- Sherry Li Zheng
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jennifer Gotenstein Adams
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew D Chisholm
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
27
|
Letko A, Minor KM, Jagannathan V, Seefried FR, Mickelson JR, Oliehoek P, Drögemüller C. Genomic diversity and population structure of the Leonberger dog breed. Genet Sel Evol 2020; 52:61. [PMID: 33054768 PMCID: PMC7557023 DOI: 10.1186/s12711-020-00581-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Leonberger is a giant dog breed formed in the 1850s in Germany. Its post-World War II popularity has resulted in a current global population of ~ 30,000 dogs. The breed has predispositions to neurodegenerative disorders and cancer, which is likely due in large part to limited genetic diversity. However, to date there is no scientific literature on the overall demography and genomic architecture of this breed. RESULTS We assessed extensive pedigree records, SNP array genotype data, and whole-genome sequences (WGS) on 142,072, 1203 and 39 Leonberger dogs, respectively. Pedigree analyses identified 22 founder animals and revealed an apparent popular sire effect. The average pedigree-based inbreeding coefficient of 0.29 and average kinship of 0.31 show a dramatic loss of genetic diversity. The observed average life span decreased over time from 9.4 years in 1989 to 7.7 years in 2004. A global health survey confirmed a high prevalence of cancer and neurological disorders. Analysis of SNP-based runs of homozygosity (ROH) identified 125,653 ROH with an average length of 5.88 Mb, and confirmed an average inbreeding coefficient of 0.28. Genome-wide filtering of the WGS data revealed 28 non-protein-changing variants that were present in all Leonberger individuals and a list of 22 potentially pathogenic variants for neurological disorders of which 50% occurred only in Leonbergers and 50% occurred rarely in other breeds. Furthermore, one of the two mtDNA haplogroups detected was present in one dog only. CONCLUSIONS The increasing size of the Leonberger population has been accompanied by a considerable loss of genetic diversity after the bottleneck that occurred in the 1940s due to the intensive use of popular sires resulting in high levels of inbreeding. This might explain the high prevalence of certain disorders; however, genomic data provide no evidence for fixed coding variants that explain these predispositions. The list of candidate causative variants for polyneuropathy needs to be further evaluated. Preserving the current genetic diversity is possible by increasing the number of individuals for breeding while restricting the number of litters per sire/dam. In addition, outcrossing would help optimize long-term genetic diversity and contribute to the sustainability and health of the population.
Collapse
Affiliation(s)
- Anna Letko
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Katie M. Minor
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108 USA
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | | | - James R. Mickelson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108 USA
| | | | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
28
|
Cohen JD, Sundaram MV. C. elegans Apical Extracellular Matrices Shape Epithelia. J Dev Biol 2020; 8:E23. [PMID: 33036165 PMCID: PMC7712855 DOI: 10.3390/jdb8040023] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Apical extracellular matrices (aECMs) coat exposed surfaces of epithelia to shape developing tissues and protect them from environmental insults. Despite their widespread importance for human health, aECMs are poorly understood compared to basal and stromal ECMs. The nematode Caenorhabditis elegans contains a variety of distinct aECMs, some of which share many of the same types of components (lipids, lipoproteins, collagens, zona pellucida domain proteins, chondroitin glycosaminoglycans and proteoglycans) with mammalian aECMs. These aECMs include the eggshell, a glycocalyx-like pre-cuticle, both collagenous and chitin-based cuticles, and other understudied aECMs of internal epithelia. C. elegans allows rapid genetic manipulations and live imaging of fluorescently-tagged aECM components, and is therefore providing new insights into aECM structure, trafficking, assembly, and functions in tissue shaping.
Collapse
Affiliation(s)
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine 415 Curie Blvd, Philadelphia, PA 19104-6145, USA;
| |
Collapse
|
29
|
Hu Q, Wang G, Chen X, Zhang L, Zhao W, Jiang Y, Zhang C, Sun J, Xu H, Li H, Kong Q, Zhao J, Li X, Zhang X, Lv W, Liu Y, Yang G, Mu L, Wang J. Neural-specific distribution of transmembrane protein TMEM240 and formation of TMEM240-Body. Int J Biol Macromol 2020; 161:692-703. [PMID: 32535204 DOI: 10.1016/j.ijbiomac.2020.06.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/18/2020] [Accepted: 06/09/2020] [Indexed: 10/24/2022]
Abstract
Mutation in TMEM240 is suggested to cause SCA21, but the specific mechanism has not been clarified. The subcellular localization, specific biological function, and corresponding mechanism of action of TMEM240 have also not been delineated. In this study, the mRNA and protein expression of TMEM240 were assessed using qPCR and western blotting, respectively. Live cell imaging was used to establish the sub-cellular location of TMEM240, and electron microscopy was used to determine the morphology and distribution of TMEM240 in the cell. TMEM240 was specifically expressed in the neurons. Exogenous TMEM240 formed a multilayered cell structure, which we refer to as TMEM240-Body (T240-Body). T240-Body was separated and purified by centrifugation and filtration. An anchor protein His-tagged-GFP-BP on Ni-NTA agarose was used to pull down T240-GFP binding proteins. Both the N-terminal and the C-terminal of TMEM240 were confirmed to be inside the T240-Body. Co-localization experiments suggested that peroxisomes might contribute to T240-Body formation, and the two transmembrane regions of TMEM240 appear to be essential for formation of the T240-Body. Emerin protein contributed to formation of T240-Body when combined with TMEM240. Overall, this study provides new insights into TMEM240, which inform future research to further our understanding of its biological function.
Collapse
Affiliation(s)
- Qiongqiong Hu
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China; Department of Neurology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, China
| | - Guangyou Wang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xin Chen
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Liulei Zhang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Wei Zhao
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Yan Jiang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Chong Zhang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jin Sun
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Hao Xu
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Hulun Li
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Qingfei Kong
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jiarui Zhao
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xinrong Li
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xiaoyu Zhang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Weiqi Lv
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Yumei Liu
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Gaiqing Yang
- Department of Neurology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, China
| | - Lili Mu
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China.
| | - Jinghua Wang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China; Ministry of Education Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
30
|
Raote I, Ernst AM, Campelo F, Rothman JE, Pincet F, Malhotra V. TANGO1 membrane helices create a lipid diffusion barrier at curved membranes. eLife 2020; 9:57822. [PMID: 32452385 PMCID: PMC7266638 DOI: 10.7554/elife.57822] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/21/2020] [Indexed: 12/22/2022] Open
Abstract
We have previously shown TANGO1 organises membranes at the interface of the endoplasmic reticulum (ER) and ERGIC/Golgi (Raote et al., 2018). TANGO1 corrals retrograde membranes at ER exit sites to create an export conduit. Here the retrograde membrane is, in itself, an anterograde carrier. This mode of forward transport necessitates a mechanism to prevent membrane mixing between ER and the retrograde membrane. TANGO1 has an unusual membrane helix organisation, composed of one membrane-spanning helix (TM) and another that penetrates the inner leaflet (IM). We have reconstituted these membrane helices in model membranes and shown that TM and IM together reduce the flow of lipids at a region of defined shape. We have also shown that the helices align TANGO1 around an ER exit site. We suggest this is a mechanism to prevent membrane mixing during TANGO1-mediated transfer of bulky secretory cargos from the ER to the ERGIC/Golgi via a tunnel.
Collapse
Affiliation(s)
- Ishier Raote
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Andreas M Ernst
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - James E Rothman
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Frederic Pincet
- Department of Cell Biology, Yale School of Medicine, New Haven, United States.,Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - Vivek Malhotra
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|