1
|
Fritsch B, Lee S, Körner A, Schneider NM, Ross FM, Hutzler A. The Influence of Ionizing Radiation on Quantification for In Situ and Operando Liquid-Phase Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415728. [PMID: 39981755 DOI: 10.1002/adma.202415728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/27/2025] [Indexed: 02/22/2025]
Abstract
The ionizing radiation harnessed in electron microscopes or synchrotrons enables unique insights into nanoscale dynamics. In liquid-phase transmission electron microscopy (LP-TEM), irradiating a liquid sample with electrons offers access to real space information at an unmatched combination of temporal and spatial resolution. However, employing ionizing radiation for imaging can alter the Gibbs free energy landscape during the experiment. This is mainly due to radiolysis and the corresponding shift in chemical potential; however, experiments can also be affected by irradiation-induced charging and heating. In this review, the state of the art in describing beam effects is summarized, theoretical and experimental assessment guidelines are provided, and strategies to obtain quantitative information under such conditions are discussed. While this review showcases these effects on LP-TEM, the concepts that are discussed here can also be applied to other types of ionizing radiation used to probe liquid samples, such as synchrotron X-rays.
Collapse
Affiliation(s)
- Birk Fritsch
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058, Erlangen, Germany
| | - Serin Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Andreas Körner
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058, Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Immerwahrstraße 2a, 91054, Erlangen, Germany
| | | | - Frances M Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Andreas Hutzler
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058, Erlangen, Germany
| |
Collapse
|
2
|
Ibrahim E, Lysogorskiy Y, Drautz R. Efficient Parametrization of Transferable Atomic Cluster Expansion for Water. J Chem Theory Comput 2024; 20:11049-11057. [PMID: 39431422 DOI: 10.1021/acs.jctc.4c00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
We present a highly accurate and transferable parametrization of water using the atomic cluster expansion (ACE). To efficiently sample liquid water, we propose a novel approach that involves sampling static calculations of various ice phases and utilizing the active learning (AL) feature of the ACE-based D-optimality algorithm to select relevant liquid water configurations, bypassing computationally intensive ab initio molecular dynamics simulations. Our results demonstrate that the ACE descriptors enable a potential initially fitted solely on ice structures, which is later upfitted with few configurations of liquid, identified with AL to provide an excellent description of liquid water. The developed potential exhibits remarkable agreement with first-principles reference, accurately capturing various properties of liquid water, including structural characteristics such as pair correlation functions, covalent bonding profiles, and hydrogen bonding profiles, as well as dynamic properties like the vibrational density of states, diffusion coefficient, and thermodynamic properties such as the melting point of the ice Ih. Our research introduces a new and efficient sampling technique for machine learning potentials in water simulations while also presenting a transferable interatomic potential for water that reveals the accuracy of first-principles reference. This advancement not only enhances our understanding of the relationship between ice and liquid water at the atomic level but also opens up new avenues for studying complex aqueous systems.
Collapse
Affiliation(s)
- Eslam Ibrahim
- ICAMS, Ruhr Universität Bochum, 44780 Bochum, Germany
| | | | - Ralf Drautz
- ICAMS, Ruhr Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
3
|
Nandi A, Ghosh R, Mora AK, Nath S. In situ generation and reaction of a sub-picosecond electron pulse: ultrafast broadband spectroscopy. Phys Chem Chem Phys 2024; 26:28378-28385. [PMID: 39501791 DOI: 10.1039/d4cp03489a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
A sub-picosecond resolved broadband transient absorption spectrometer for in situ generation and study of ultrafast reaction of short pulse electrons in water has been reported. A femtosecond near infrared (NIR) laser driven multiphoton ionization of water was used for the in situ generation of an ultra-short electron pulse in aqueous media. The dynamics of such electrons have been investigated using a broadband pump-probe spectrometer with a temporal resolution of sub-picosecond. The formation of the pre-hydrated electron having absorption in the NIR region and its subsequent solvation process leading to the formation of the hydrated electron has been monitored in real time using pump-probe spectroscopy. As a proof of concept, a reaction of pre-hydrated electrons and hydrated electrons with a highly oxidizing agent, methyl viologen, has been carried out. The competition of the reaction with methyl viologen and solvent relaxation of the pre-hydrated electron has been demonstrated by broadband ultrafast spectroscopy. Our results show that the reactivity of pre-hydrated electrons with methyl viologen is almost two orders of magnitude higher as compared to the hydrated electrons. Unlike complicated laser driven accelerators, the present table-top setup for the generation of an in situ ultrashort electron pulse and its reaction with different classes of molecules, especially biomolecules, will help us understand the early events of radiation-induced processes under reductive stress.
Collapse
Affiliation(s)
- Amitabha Nandi
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| | - Rajib Ghosh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Aruna K Mora
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Sukhendu Nath
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
4
|
Sunnerberg JP, Tavakkoli AD, Petusseau AF, Daniel NJ, Sloop AM, Schreiber WA, Gui J, Zhang R, Swartz HM, Hoopes PJ, Gladstone DJ, Vinogradov SA, Pogue BW. Oxygen Consumption In Vivo by Ultra-High Dose Rate Electron Irradiation Depends Upon Baseline Tissue Oxygenation. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)03510-7. [PMID: 39461597 DOI: 10.1016/j.ijrobp.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/23/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
PURPOSE This study aimed to assess the impact of tissue oxygen levels on transient oxygen consumption induced by ultra-high dose rate (UHDR) electron radiation in murine flank and to examine the effect of dose rate variations on this relationship. METHODS AND MATERIALS Real-time oximetry using the phosphorescence quenching method and Oxyphor PdG4 molecular probe was employed. Continuous measurements were taken during radiation delivery on a UHDR-capable Mobetron linear accelerator. Oxyphor PdG4 was administered into the subcutaneous tissue of the flank skin 1 hour before irradiation. Skin oxygen tension (pO2) was manipulated by adjusting oxygen content in the inhaled gas mixture and/or by vasculature compression. A skin surface radiation dose of 19.8 ± 0.3 Gy was verified using a calibrated semiconductor diode dosimeter. Dose rate was varied across the UHDR range by changing linear accelerator cone length and pulse repetition frequency. RESULTS The decrease in pO2 per unit dose during radiation delivery, termed oxygen consumption g-value (gO2, mmHg/Gy), was significantly influenced by tissue oxygen levels in the range 0 to 65 mmHg under UHDR conditions. Within the 0 to 20 mmHg range, gO2 exhibited a sharp increase with rising baseline pO2, plateauing at 0.26 mmHg/Gy. Dose rate variations (mean values, 25-1170 Gy/s; per pulse doses of 2.5-9.8 Gy) were explored by varying both cone length and pulse repetition frequency (10-120 Hz) with no significant changes in gO2. Conventional dose rate irradiation resulted in no discernible changes in pO2. CONCLUSIONS The results show significant differences in the radiation-chemical effects of UHDR radiation between hypoxic and well-oxygenated tissues. Similar trends between earlier published in vitro and in vivo experiments presented herein suggest the chemical mechanisms driving the dependencies of gO2 on pO2 are similar, potentially underpinning the FLASH effect. Importantly, significant variations in baseline pO2 were observed in animals kept under identical conditions, underscoring the necessity to control and monitor tissue oxygen levels for preclinical investigations and future clinical applications of FLASH radiation therapy.
Collapse
Affiliation(s)
| | - Armin D Tavakkoli
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | | | - Noah J Daniel
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Austin M Sloop
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | | | - Jiang Gui
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Rongxiao Zhang
- Department of Radiation Oncology, University of Missouri, Columbia, Missouri
| | - Harold M Swartz
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire; Dartmouth Cancer Center, Dartmouth Health, Lebanon, New Hampshire
| | - P Jack Hoopes
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire; Dartmouth Cancer Center, Dartmouth Health, Lebanon, New Hampshire
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire; Dartmouth Cancer Center, Dartmouth Health, Lebanon, New Hampshire
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
5
|
Bérerd N, Moncoffre N, Martinet P, Marcelin S, Baux D, Normand B. Influence of Water Radiolysis on the Passive Properties of 316L-Stainless Steel. Chemphyschem 2024; 25:e202300785. [PMID: 38837507 DOI: 10.1002/cphc.202300785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
This work aims to study the effect of radiolytic species induced by water radiolysis on the passive behavior of 316L stainless steel. For this purpose, the stainless steel/neutral and aerated 0.02 M Na2SO4, electrolyte solution interface was irradiated with proton beams. A wide range of energies between 2 and 16 MeV was selected, varying the maximum of the energy deposition between 0.5 and 122 μm in water from the interface. The irradiation experiments were performed at the CEMHTI cyclotron in Orléans and the 4 MV Van de Graaff accelerator at IP2I in Lyon (France). A dedicated irradiation device implemented with a 3-electrode cell dedicated to perform electrochemical measurements allows to measure the surface reactivity of the stainless steel as a function of the irradiation conditions. Results show that whatever the beam energy, the corrosion potential remains unchanged. It indicates that the very short-lived, highly reactive radiolytic species drive the corrosion potential and not only the recombination products such H2O2 or H2. The stainless steel remains in the passive state whatever the irradiation conditions. However, it is shown that, during irradiation, the passive film is less protective. This evolution is attributed to radiolysis of bound water molecules in the passive film.
Collapse
Affiliation(s)
- Nicolas Bérerd
- Institut de Physique des 2 Infinis de Lyon (UMR5822), MATiCE, CNRS/Université Lyon 1 et IUT Lyon 1, 4, rue Enrico Fermi, F-69622, Villeurbanne Cedex, France
| | - Nathalie Moncoffre
- Institut de Physique des 2 Infinis de Lyon (UMR5822), MATiCE, CNRS/Université Lyon 1 et IUT Lyon 1, 4, rue Enrico Fermi, F-69622, Villeurbanne Cedex, France
| | - Philippe Martinet
- Institut de Physique des 2 Infinis de Lyon (UMR5822), MATiCE, CNRS/Université Lyon 1 et IUT Lyon 1, 4, rue Enrico Fermi, F-69622, Villeurbanne Cedex, France
- Matériaux: Ingénierie et Science (UMR5510), INSA >Lyon, Campus LyonTech La Doua, 20 avenue Albert Einstein, F-69621, Villeurbanne cedex, France
| | - Sabrina Marcelin
- Matériaux: Ingénierie et Science (UMR5510), INSA >Lyon, Campus LyonTech La Doua, 20 avenue Albert Einstein, F-69621, Villeurbanne cedex, France
| | - Dominique Baux
- CEMHTI (UPR3079), CNRS, Site Cyclotron, CS 30058, 3 A rue de la Férollerie, F-45071, Orléans Cedex, France
| | - Bernard Normand
- Matériaux: Ingénierie et Science (UMR5510), INSA >Lyon, Campus LyonTech La Doua, 20 avenue Albert Einstein, F-69621, Villeurbanne cedex, France
| |
Collapse
|
6
|
Tsuchida H, Tezuka T, Kai T, Matsuya Y, Majima T, Saito M. Liquid water radiolysis induced by secondary electrons generated from MeV-energy carbon ions. J Chem Phys 2024; 161:104503. [PMID: 39254164 DOI: 10.1063/5.0227465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
Fast ion beams induce damage to deoxyribonucleic acid (DNA) by chemical products, including secondary electrons, produced from interaction with liquid water in living cells. However, the production process of these chemical products in the Bragg peak region used in particle therapy is not fully understood. To investigate this process, we conducted experiments to evaluate the radiolytic yields produced when a liquid water jet in vacuum is irradiated with MeV-energy carbon beams. We used secondary ion mass spectrometry to measure the products, such as hydronium cations (H3O+) and hydroxyl anions (OH-), produced along with ·OH radicals, which are significant inducers of DNA damage formation. In addition, we simulated the ionization process in liquid water by incident ions and secondary electrons using a Monte Carlo code for radiation transport. Our results showed that secondary electrons, rather than incident ions, are the primary cause of ionization in water. We found that the production yield of H3O+ or OH- was linked to the frequency of ionization by secondary electrons in water, with these electrons having energies between 10.9 and 550 eV. These electrons are responsible for ionizing the outer-shell electrons of water molecules. Finally, we present that the elementary processes contribute to advancing radiation biophysics and biochemistry, which study the formation mechanism of DNA damage.
Collapse
Affiliation(s)
- Hidetsugu Tsuchida
- Department of Nuclear Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan
- Quantum Science and Engineering Center, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Tomoya Tezuka
- Department of Nuclear Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Takeshi Kai
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Naka-gun, Ibaraki 319-1195, Japan
| | - Yusuke Matsuya
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Naka-gun, Ibaraki 319-1195, Japan
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Takuya Majima
- Department of Nuclear Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Manabu Saito
- Department of Nuclear Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan
- Quantum Science and Engineering Center, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
7
|
Gao R, Li Y, Car R. Enhanced deep potential model for fast and accurate molecular dynamics: application to the hydrated electron. Phys Chem Chem Phys 2024; 26:23080-23088. [PMID: 39177036 DOI: 10.1039/d4cp01483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
In molecular simulations, neural network force fields aim at achieving ab initio accuracy with reduced computational cost. This work introduces enhancements to the Deep Potential network architecture, integrating a message-passing framework and a new lightweight implementation with various improvements. Our model achieves accuracy on par with leading machine learning force fields and offers significant speed advantages, making it well-suited for large-scale, accuracy-sensitive systems. We also introduce a new iterative model for Wannier center prediction, allowing us to keep track of electron positions in simulations of general insulating systems. We apply our model to study the solvated electron in bulk water, an ostensibly simple system that is actually quite challenging to represent with neural networks. Our trained model is not only accurate, but can also transfer to larger systems. Our simulation confirms the cavity model, where the electron's localized state is observed to be stable. Through an extensive run, we accurately determine various structural and dynamical properties of the solvated electron.
Collapse
Affiliation(s)
- Ruiqi Gao
- Department of Electrical and Computer Engineering, Princeton University, Princeton, USA
| | - Yifan Li
- Department of Chemistry, Princeton University, Princeton, USA.
| | - Roberto Car
- Department of Chemistry, Princeton University, Princeton, USA.
| |
Collapse
|
8
|
Villa M, Fermi A, Calogero F, Wu X, Gualandi A, Cozzi PG, Troisi A, Ventura B, Ceroni P. Organic super-reducing photocatalysts generate solvated electrons via two consecutive photon induced processes. Chem Sci 2024:d4sc04518a. [PMID: 39176242 PMCID: PMC11337074 DOI: 10.1039/d4sc04518a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Photocatalysts with extremely strong reducing potential are often thought to operate through a consecutive photoinduced electron transfer (ConPeT) mechanism, where a first photon generates the radical anion of the photocatalyst via electron transfer and a second photon excites the radical anion into a super-reducing agent. Among them, 4CzIPN, (2,4,5,6-tetrakis(9H-carbazol-9-yl) isophthalonitrile) and the analogous 4DPAIPN (2,4,5,6-tetrakis(diphenylamino)isophthalonitrile) are supposed to operate following this principle, but the knowledge of the photophysical properties of the photogenerated radical anions is still very limited. An in-depth spectroscopic and computational study of their radical anions demonstrates that the excited states of 4CzIPN˙- and 4DPAIPN˙- are not behaving as super-reducing agents: they are very short lived (ca. 20 ps), not emissive and not quenched by common organic substrates. Most importantly, longer lived solvated electrons are generated upon excitation of these radical anions in acetonitrile and we propose that it is the solvated electron the species responsible for the exceptional reducing capability of this photocatalytic system.
Collapse
Affiliation(s)
- Marco Villa
- Department of Chemistry Ciamician Via Selmi 2 40126 Bologna Italy
| | - Andrea Fermi
- Department of Chemistry Ciamician Via Selmi 2 40126 Bologna Italy
| | | | - Xia Wu
- Department of Chemistry and Materials Innovation Factory, University of Liverpool Liverpool L69 7ZD UK
| | - Andrea Gualandi
- Department of Chemistry Ciamician Via Selmi 2 40126 Bologna Italy
| | | | - Alessandro Troisi
- Department of Chemistry and Materials Innovation Factory, University of Liverpool Liverpool L69 7ZD UK
| | - Barbara Ventura
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR) Via P. Gobetti 101 40129 Bologna Italy
| | - Paola Ceroni
- Department of Chemistry Ciamician Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
9
|
Borrelli W, Guardado Sandoval JL, Mei KJ, Schwartz BJ. Roles of H-Bonding and Hydride Solvation in the Reaction of Hydrated (Di)electrons with Water to Create H 2 and OH . J Chem Theory Comput 2024; 20. [PMID: 39110603 PMCID: PMC11360129 DOI: 10.1021/acs.jctc.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024]
Abstract
Even though single hydrated electrons (ehyd-'s) are stable in liquid water, two hydrated electrons can bimolecularly react with water to create H2 and hydroxide: ehyd- + ehyd- + 2H2O → H2 + 2OH-. The rate of this reaction has an unusual temperature and isotope dependence as well as no dependence on ionic strength, which suggests that cosolvation of two electrons as a single hydrated dielectron (e2,hyd2-) might be an important intermediate in the mechanism of this reaction. Here, we present an ab initio density functional theory study of this reaction to better understand the potential properties, reactivity, and experimental accessibility of hydrated dielectrons. Our simulations create hydrated dielectrons by first simulating single ehyd-'s and then injecting a second electron, providing a well-defined time zero for e2,hyd2- formation and offering insight into a potential experimental route to creating dielectrons and optically inducing the reaction. We find that e2,hyd2- immediately forms in every member of our ensemble of trajectories, allowing us to study the molecular mechanism of H2 and OH- formation. The subsequent reaction involves separate proton transfer steps with a generally well-defined hydride subintermediate. The time scales for both proton transfer steps are quite broad, with the first proton transfer step spanning times over a few ps, while the second proton transfer step varies over ∼150 fs. We find that the first proton transfer rate is dictated by whether or not the reacting water is part of an H-bond chain that allows the newly created OH- to rapidly move by Grotthuss-type proton hopping to minimize electrostatic repulsion with H-. The second proton transfer step depends significantly on the degree of solvation of H-, leading to a wide range of reactive geometries where the two waters involved can lie either across the dielectron cavity or more adjacent to each other. This also allows the two proton transfer events to take place either effectively concertedly or sequentially, explaining differing views that have been presented in the literature.
Collapse
Affiliation(s)
- William
R. Borrelli
- Department of Chemistry & Biochemistry, University of California, Los Angeles Los Angeles, California 90095-1569, United
States
| | - José L. Guardado Sandoval
- Department of Chemistry & Biochemistry, University of California, Los Angeles Los Angeles, California 90095-1569, United
States
| | - Kenneth J. Mei
- Department of Chemistry & Biochemistry, University of California, Los Angeles Los Angeles, California 90095-1569, United
States
| | - Benjamin J. Schwartz
- Department of Chemistry & Biochemistry, University of California, Los Angeles Los Angeles, California 90095-1569, United
States
| |
Collapse
|
10
|
Wu J, Zhu X, Li Q, Fu Q, Wang B, Li B, Wang S, Chang Q, Xiang H, Ye C, Li Q, Huang L, Liang Y, Wang D, Zhao Y, Li Y. Enhancing radiation-resistance and peroxidase-like activity of single-atom copper nanozyme via local coordination manipulation. Nat Commun 2024; 15:6174. [PMID: 39039047 PMCID: PMC11263674 DOI: 10.1038/s41467-024-50416-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
The inactivation of natural enzymes by radiation poses a great challenge to their applications for radiotherapy. Single-atom nanozymes (SAzymes) with high structural stability under such extreme conditions become a promising candidate for replacing natural enzymes to shrink tumors. Here, we report a CuN3-centered SAzyme (CuN3-SAzyme) that exhibits higher peroxidase-like catalytic activity than a CuN4-centered counterpart, by locally regulating the coordination environment of single copper sites. Density functional theory calculations reveal that the CuN3 active moiety confers optimal H2O2 adsorption and dissociation properties, thus contributing to high enzymatic activity of CuN3-SAzyme. The introduction of X-ray can improve the kinetics of the decomposition of H2O2 by CuN3-SAzyme. Moreover, CuN3-SAzyme is very stable after a total radiation dose of 500 Gy, without significant changes in its geometrical structure or coordination environment, and simultaneously still retains comparable peroxidase-like activity relative to natural enzymes. Finally, this developed CuN3-SAzyme with remarkable radioresistance can be used as an external field-improved therapeutics for enhancing radio-enzymatic therapy in vitro and in vivo. Overall, this study provides a paradigm for developing SAzymes with improved enzymatic activity through local coordination manipulation and high radioresistance over natural enzymes, for example, as sensitizers for cancer therapy.
Collapse
Affiliation(s)
- Jiabin Wu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xianyu Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Qun Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiang Fu
- School of Future Technology, University of Science and Technology of China, Hefei, 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China.
| | - Bingxue Wang
- School of Future Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Beibei Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shanshan Wang
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingchao Chang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Huandong Xiang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, China
| | - Chengliang Ye
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qiqiang Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Liang Huang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yan Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
11
|
Solov’yov AV, Verkhovtsev AV, Mason NJ, Amos RA, Bald I, Baldacchino G, Dromey B, Falk M, Fedor J, Gerhards L, Hausmann M, Hildenbrand G, Hrabovský M, Kadlec S, Kočišek J, Lépine F, Ming S, Nisbet A, Ricketts K, Sala L, Schlathölter T, Wheatley AEH, Solov’yov IA. Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment. Chem Rev 2024; 124:8014-8129. [PMID: 38842266 PMCID: PMC11240271 DOI: 10.1021/acs.chemrev.3c00902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
This roadmap reviews the new, highly interdisciplinary research field studying the behavior of condensed matter systems exposed to radiation. The Review highlights several recent advances in the field and provides a roadmap for the development of the field over the next decade. Condensed matter systems exposed to radiation can be inorganic, organic, or biological, finite or infinite, composed of different molecular species or materials, exist in different phases, and operate under different thermodynamic conditions. Many of the key phenomena related to the behavior of irradiated systems are very similar and can be understood based on the same fundamental theoretical principles and computational approaches. The multiscale nature of such phenomena requires the quantitative description of the radiation-induced effects occurring at different spatial and temporal scales, ranging from the atomic to the macroscopic, and the interlinks between such descriptions. The multiscale nature of the effects and the similarity of their manifestation in systems of different origins necessarily bring together different disciplines, such as physics, chemistry, biology, materials science, nanoscience, and biomedical research, demonstrating the numerous interlinks and commonalities between them. This research field is highly relevant to many novel and emerging technologies and medical applications.
Collapse
Affiliation(s)
| | | | - Nigel J. Mason
- School
of Physics and Astronomy, University of
Kent, Canterbury CT2 7NH, United
Kingdom
| | - Richard A. Amos
- Department
of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, U.K.
| | - Ilko Bald
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Gérard Baldacchino
- Université
Paris-Saclay, CEA, LIDYL, 91191 Gif-sur-Yvette, France
- CY Cergy Paris Université,
CEA, LIDYL, 91191 Gif-sur-Yvette, France
| | - Brendan Dromey
- Centre
for Light Matter Interactions, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| | - Martin Falk
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
- Kirchhoff-Institute
for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Juraj Fedor
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Luca Gerhards
- Institute
of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Michael Hausmann
- Kirchhoff-Institute
for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Georg Hildenbrand
- Kirchhoff-Institute
for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
- Faculty
of Engineering, University of Applied Sciences
Aschaffenburg, Würzburger
Str. 45, 63743 Aschaffenburg, Germany
| | | | - Stanislav Kadlec
- Eaton European
Innovation Center, Bořivojova
2380, 25263 Roztoky, Czech Republic
| | - Jaroslav Kočišek
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Franck Lépine
- Université
Claude Bernard Lyon 1, CNRS, Institut Lumière
Matière, F-69622, Villeurbanne, France
| | - Siyi Ming
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Andrew Nisbet
- Department
of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, U.K.
| | - Kate Ricketts
- Department
of Targeted Intervention, University College
London, Gower Street, London WC1E 6BT, United Kingdom
| | - Leo Sala
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Thomas Schlathölter
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
- University
College Groningen, University of Groningen, Hoendiepskade 23/24, 9718 BG Groningen, The Netherlands
| | - Andrew E. H. Wheatley
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Ilia A. Solov’yov
- Institute
of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
12
|
Chen Z, Li Z, Xie J, Zhang P, Tong T, Wang Y, Hu J, Wörner HJ, Tian SX. Direct Observation of Anionic Yields from the Liquid-Vapor Interface by Electron Irradiation. J Phys Chem Lett 2024; 15:5607-5611. [PMID: 38758196 DOI: 10.1021/acs.jpclett.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Dissociative electron attachment (DEA) is widely believed to play a high-profile role in ionizing radiation damages of bioorganic molecules, and its fundamentals are mainly learned from the gas-phase studies. However, the DEA process in aqueous solution is still in debate. Here we provide experimental evidence about the DEA processes of liquid methanol by using electron-impact-time-delayed mass spectrometry. In contrast to the gas- and solid-phase DEAs, methoxide ion CH3O- is the predominant product from the liquid interface. Furthermore, this anion can be produced with both the primary low-energy electrons and the inelastically scattered and secondary low-energy electrons. On the contrary, the primary low-energy electrons in the liquid bulk are more likely to be solvated, rather than directly participating in the DEA process. Our study provides new insights into radiation chemistry, particularly of bioorganic relevance.
Collapse
Affiliation(s)
- Ziwei Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ziyuan Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jingchen Xie
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Pengju Zhang
- Laboratory for Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Tiantian Tong
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yue Wang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jie Hu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Hans Jakob Wörner
- Laboratory for Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Shan Xi Tian
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
13
|
Rodrigues-Machado FC, Janitz E, Bernard S, Bekerat H, McEwen M, Renaud J, Enger SA, Childress L, Sankey JC. Radiation hardness of open Fabry-Pérot microcavities. OPTICS EXPRESS 2024; 32:17189-17196. [PMID: 38858908 DOI: 10.1364/oe.522332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/07/2024] [Indexed: 06/12/2024]
Abstract
High-finesse microcavities offer a platform for compact, high-precision sensing by employing high-reflectivity, low-loss mirrors to create effective optical path lengths that are orders of magnitude larger than the device geometry. Here, we investigate the radiation hardness of Fabry-Pérot microcavities formed from dielectric mirrors deposited on the tips of optical fibers. The microcavities are irradiated under both conventional (∼ 0.1 Gy/s) and ultrahigh (FLASH, ∼ 20 Gy/s) radiotherapy dose rates. Within our measurement sensitivity of ∼ 40 ppm loss, we observe no degradation in the mirror absorption after irradiation with over 300 Gy accumulated dose. This result highlights the excellent radiation hardness of the dielectric mirrors forming the cavities, enabling new optics-based, real-time, in-vivo, tissue-equivalent radiation dosimeters with ∼ 10 micron spatial resolution (our motivation), as well as other applications in high-radiation environments.
Collapse
|
14
|
Johny M, Schouder CA, Al-Refaie A, He L, Wiese J, Stapelfeldt H, Trippel S, Küpper J. Water is a radiation protection agent for ionised pyrrole. Phys Chem Chem Phys 2024; 26:13118-13130. [PMID: 38629233 DOI: 10.1039/d3cp03471b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Radiation-induced damage of biological matter is an ubiquitous problem in nature. The influence of the hydration environment is widely discussed, but its exact role remains elusive. Utilising well defined solvated-molecule aggregates, we experimentally observed a hydrogen-bonded water molecule acting as a radiation protection agent for ionised pyrrole, a prototypical aromatic biomolecule. Pure samples of pyrrole and pyrrole(H2O) were outer-valence ionised and the subsequent damage and relaxation processes were studied. Bare pyrrole ions fragmented through the breaking of C-C or N-C covalent bonds. However, for pyrrole(H2O)+, we observed a strong protection of the pyrrole ring through the dissociative release of neutral water or by transferring an electron or proton across the hydrogen bond. Overall, a single water molecule strongly reduces the fragmentation probability and thus the persistent radiation damage of singly-ionised pyrrole.
Collapse
Affiliation(s)
- Melby Johny
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Constant A Schouder
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- LIDYL, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Ahmed Al-Refaie
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
| | - Lanhai He
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
| | - Joss Wiese
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Henrik Stapelfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Sebastian Trippel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
15
|
Sedmidubská B, Kočišek J. Interaction of low-energy electrons with radiosensitizers. Phys Chem Chem Phys 2024; 26:9112-9136. [PMID: 38376461 DOI: 10.1039/d3cp06003a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
We provide an experimentalist's perspective on the present state-of-the-art in the studies of low-energy electron interactions with common radiosensitizers, including compounds used in combined chemo-radiation therapy and their model systems. Low-energy electrons are important secondary species formed during the interaction of ionizing radiation with matter. Their role in the radiation chemistry of living organisms has become an important topic for more than 20 years. With the increasing number of works and reviews in the field, we would like to focus here on a very narrow area of compounds that have been shown to have radio-sensitizing properties on the one hand, and high reactivity towards low-energy electrons on the other hand. Gas phase experiments studying electron attachment to isolated molecules and environmental effects on reaction dynamics are reviewed for modified DNA components, nitroimidazoles, and organometallics. In the end, we provide a perspective on the future directions that may be important for transferring the fundamental knowledge about the processes induced by low-energy electrons into practice in the field of rational design of agents for concomitant chemo-radiation therapy.
Collapse
Affiliation(s)
- Barbora Sedmidubská
- J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, 182223 Prague, Czech Republic.
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 11519 Prague, Czech Republic
- Institut de Chimie Physique, UMR 8000 CNRS and Faculté des sciences d'Orsay, Université Paris Saclay, F-91405 Orsay Cedex, France
| | - Jaroslav Kočišek
- J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, 182223 Prague, Czech Republic.
| |
Collapse
|
16
|
Li S, Lu L, Bhattacharyya S, Pearce C, Li K, Nienhuis ET, Doumy G, Schaller RD, Moeller S, Lin MF, Dakovski G, Hoffman DJ, Garratt D, Larsen KA, Koralek JD, Hampton CY, Cesar D, Duris J, Zhang Z, Sudar N, Cryan JP, Marinelli A, Li X, Inhester L, Santra R, Young L. Attosecond-pump attosecond-probe x-ray spectroscopy of liquid water. Science 2024; 383:1118-1122. [PMID: 38359104 DOI: 10.1126/science.adn6059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Attosecond-pump/attosecond-probe experiments have long been sought as the most straightforward method for observing electron dynamics in real time. Although there has been much success with overlapped near-infrared femtosecond and extreme ultraviolet attosecond pulses combined with theory, true attosecond-pump/attosecond-probe experiments have been limited. We used a synchronized attosecond x-ray pulse pair from an x-ray free-electron laser to study the electronic response to valence ionization in liquid water through all x-ray attosecond transient absorption spectroscopy (AX-ATAS). Our analysis showed that the AX-ATAS response is confined to the subfemtosecond timescale, eliminating any hydrogen atom motion and demonstrating experimentally that the 1b1 splitting in the x-ray emission spectrum is related to dynamics and is not evidence of two structural motifs in ambient liquid water.
Collapse
Affiliation(s)
- Shuai Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - Lixin Lu
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Swarnendu Bhattacharyya
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Carolyn Pearce
- Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Kai Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
- Department of Physics and James Franck Institute, The University of Chicago, Chicago, IL, USA
| | | | - Gilles Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - R D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
| | - S Moeller
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - M-F Lin
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - G Dakovski
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - D J Hoffman
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - D Garratt
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Kirk A Larsen
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - J D Koralek
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - C Y Hampton
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - D Cesar
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Joseph Duris
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Z Zhang
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Nicholas Sudar
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - James P Cryan
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - A Marinelli
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Ludger Inhester
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - Robin Santra
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
| | - Linda Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
- Department of Physics and James Franck Institute, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Sopena Moros A, Li S, Li K, Doumy G, Southworth SH, Otolski C, Schaller RD, Kumagai Y, Rubensson JE, Simon M, Dakovski G, Kunnus K, Robinson JS, Hampton CY, Hoffman DJ, Koralek J, Loh ZH, Santra R, Inhester L, Young L. Tracking Cavity Formation in Electron Solvation: Insights from X-ray Spectroscopy and Theory. J Am Chem Soc 2024; 146:3262-3269. [PMID: 38270463 PMCID: PMC10859959 DOI: 10.1021/jacs.3c11857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
We present time-resolved X-ray absorption spectra of ionized liquid water and demonstrate that OH radicals, H3O+ ions, and solvated electrons all leave distinct X-ray-spectroscopic signatures. Particularly, this allows us to characterize the electron solvation process through a tool that focuses on the electronic response of oxygen atoms in the immediate vicinity of a solvated electron. Our experimental results, supported by ab initio calculations, confirm the formation of a cavity in which the solvated electron is trapped. We show that the solvation dynamics are governed by the magnitude of the random structural fluctuations present in water. As a consequence, the solvation time is highly sensitive to temperature and to the specific way the electron is injected into water.
Collapse
Affiliation(s)
- Arturo Sopena Moros
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg 22607, Germany
| | - Shuai Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Kai Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Physics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gilles Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Stephen H Southworth
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Christopher Otolski
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinous 60439, United States
- Department of Chemistry, Northwestern University, 2145 N. Sheridan Rd., Evanston, Illinois 60208, United States
| | - Yoshiaki Kumagai
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Jan-Erik Rubensson
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-75120, Sweden
| | - Marc Simon
- Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, Sorbonne Université, CNRS, Paris F-75005, France
| | | | | | | | | | | | - Jake Koralek
- LCLS, SLAC, Menlo Park, California 94025, United States
| | - Zhi-Heng Loh
- School of Chemistry, Chemical Engineering and Biotechnology, and School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Robin Santra
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg 22607, Germany
- Department of Physics, Universität Hamburg, Notkestraße 9, Hamburg 22607, Germany
| | - Ludger Inhester
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg 22607, Germany
| | - Linda Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Physics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
18
|
Fiechter MR, Svoboda V, Wörner HJ. Theoretical study of time-resolved photoelectron circular dichroism in the photodissociation of a chiral molecule. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:064103. [PMID: 38107245 PMCID: PMC10725305 DOI: 10.1063/4.0000213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Photoelectron circular dichroism (PECD), the forward-backward asymmetry of the photoelectron angular distribution when ionizing randomly oriented chiral molecules with circularly polarized light, is an established method to investigate chiral properties of molecules in their electronic ground state. Here, we develop a computational strategy for predicting time-resolved PECD (TRPECD) of chemical reactions and demonstrate the method on the photodissociation of 1-iodo-2-methylbutane. Our approach combines multi-configurational quantum-chemical calculations of the relevant potential-energy surfaces of the neutral and singly ionized molecule with ab initio molecular-dynamics (AIMD) calculations. The PECD parameters along the AIMD trajectories are calculated with the aid of electron-molecule scattering calculations based on the Schwinger variational principle implemented in ePolyScat. Our calculations have been performed for two probe wavelengths (133 and 160 nm) accessible through low-order harmonic generation in gases. Our results show that the TRPECD is a highly sensitive probe of photochemical reaction dynamics. Most interestingly, the TRPECD is found to change sign multiple times along the photodissociation coordinate, in agreement with recent experiments on CHBrFI [Svoboda et al., "Femtosecond photoelectron circular dichroism of chemical reactions," Sci. Adv. 8, eabq2811 (2022)]. The computational protocol introduced in the present work is general and readily applicable to other chiral photochemical processes.
Collapse
Affiliation(s)
- Marit R. Fiechter
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zurich, Switzerland
| | - Vít Svoboda
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zurich, Switzerland
| | - Hans Jakob Wörner
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zurich, Switzerland
| |
Collapse
|
19
|
Iguchi A, Singh A, Bergmeister S, Azhagesan AA, Mizuse K, Fujii A, Tanuma H, Azuma T, Scheier P, Kuma S, Vilesov AF. Isolation and Infrared Spectroscopic Characterization of Hemibonded Water Dimer Cation in Superfluid Helium Nanodroplets. J Phys Chem Lett 2023; 14:8199-8204. [PMID: 37672355 PMCID: PMC10510431 DOI: 10.1021/acs.jpclett.3c02150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
The structure of the minimum unit of the radical cationic water clusters, the (H2O)2+ dimer, has attracted much attention because of its importance for the radiation chemistry of water. Previous spectroscopic studies indicated that the dimers have a proton-transferred structure (H3O+·OH), though the alternate metastable hemibonded structure (H2O·OH2)+ was also predicted based on theoretical calculations. Here, we produce (H2O)2+ dimers in superfluid helium nanodroplets and study their infrared spectra in the range of OH stretching vibrations. The observed spectra indicate the coexistence of the two structures in the droplets, supported by density functional theory calculations. This is the first spectroscopic identification of the hemibonded isomer of water radical cation dimers. The observation of the higher-energy isomer reveals efficient kinetic trapping for metastable ionic clusters due to the rapid cooling in helium droplets.
Collapse
Affiliation(s)
- Arisa Iguchi
- Department
of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- Atomic,
Molecular, and Optical Physics Laboratory, RIKEN, Saitama 351-0198, Japan
| | - Amandeep Singh
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Stefan Bergmeister
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
| | - Andrew A. Azhagesan
- Department
of Computer Science, University of Southern
California, Los Angeles, California 90089, United States
| | - Kenta Mizuse
- Department
of Chemistry, School of Science, Kitasato
University, Sagamihara, Kanagawa 252-0373, Japan
| | - Asuka Fujii
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Hajime Tanuma
- Department
of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Toshiyuki Azuma
- Atomic,
Molecular, and Optical Physics Laboratory, RIKEN, Saitama 351-0198, Japan
| | - Paul Scheier
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
| | - Susumu Kuma
- Atomic,
Molecular, and Optical Physics Laboratory, RIKEN, Saitama 351-0198, Japan
| | - Andrey F. Vilesov
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
20
|
Schnorr K, Belina M, Augustin S, Lindenblatt H, Liu Y, Meister S, Pfeifer T, Schmid G, Treusch R, Trost F, Slavíˇek P, Moshammer R. Direct tracking of ultrafast proton transfer in water dimers. SCIENCE ADVANCES 2023; 9:eadg7864. [PMID: 37436977 PMCID: PMC10337913 DOI: 10.1126/sciadv.adg7864] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Upon ionization, water forms a highly acidic radical cation H2O+· that undergoes ultrafast proton transfer (PT)-a pivotal step in water radiation chemistry, initiating the production of reactive H3O+, OH[Formula: see text] radicals, and a (hydrated) electron. Until recently, the time scales, mechanisms, and state-dependent reactivity of ultrafast PT could not be directly traced. Here, we investigate PT in water dimers using time-resolved ion coincidence spectroscopy applying a free-electron laser. An extreme ultraviolet (XUV) pump photon initiates PT, and only dimers that have undergone PT at the instance of the ionizing XUV probe photon result in distinct H3O+ + OH+ pairs. By tracking the delay-dependent yield and kinetic energy release of these ion pairs, we measure a PT time of (55 ± 20) femtoseconds and image the geometrical rearrangement of the dimer cations during and after PT. Our direct measurement shows good agreement with nonadiabatic dynamics simulations for the initial PT and allows us to benchmark nonadiabatic theory.
Collapse
Affiliation(s)
- Kirsten Schnorr
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Michal Belina
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Sven Augustin
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Hannes Lindenblatt
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Yifan Liu
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Severin Meister
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Thomas Pfeifer
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Georg Schmid
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Rolf Treusch
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Florian Trost
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Petr Slavíˇek
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Robert Moshammer
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
21
|
Timmermann S, Anthuparambil ND, Girelli A, Begam N, Kowalski M, Retzbach S, Senft MD, Akhundzadeh MS, Poggemann HF, Moron M, Hiremath A, Gutmüller D, Dargasz M, Öztürk Ö, Paulus M, Westermeier F, Sprung M, Ragulskaya A, Zhang F, Schreiber F, Gutt C. X-ray driven and intrinsic dynamics in protein gels. Sci Rep 2023; 13:11048. [PMID: 37422480 PMCID: PMC10329714 DOI: 10.1038/s41598-023-38059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023] Open
Abstract
We use X-ray photon correlation spectroscopy to investigate how structure and dynamics of egg white protein gels are affected by X-ray dose and dose rate. We find that both, changes in structure and beam-induced dynamics, depend on the viscoelastic properties of the gels with soft gels prepared at low temperatures being more sensitive to beam-induced effects. Soft gels can be fluidized by X-ray doses of a few kGy with a crossover from stress relaxation dynamics (Kohlrausch-Williams-Watts exponents [Formula: see text] to 2) to typical dynamical heterogeneous behavior ([Formula: see text]1) while the high temperature egg white gels are radiation-stable up to doses of 15 kGy with [Formula: see text]. For all gel samples we observe a crossover from equilibrium dynamics to beam induced motion upon increasing X-ray fluence and determine the resulting fluence threshold values [Formula: see text]. Surprisingly small threshold values of [Formula: see text] s[Formula: see text] nm[Formula: see text] can drive the dynamics in the soft gels while for stronger gels this threshold is increased to [Formula: see text] s[Formula: see text] nm[Formula: see text]. We explain our observations with the viscoelastic properties of the materials and can connect the threshold dose for structural beam damage with the dynamic properties of beam-induced motion. Our results suggest that soft viscoelastic materials can display pronounced X-ray driven motion even for low X-ray fluences. This induced motion is not detectable by static scattering as it appears at dose values well below the static damage threshold. We show that intrinsic sample dynamics can be separated from X-ray driven motion by measuring the fluence dependence of the dynamical properties.
Collapse
Affiliation(s)
- Sonja Timmermann
- Department Physik, Universität Siegen, Walter-Flex-Str. 3, 57072, Siegen, Germany.
| | - Nimmi Das Anthuparambil
- Department Physik, Universität Siegen, Walter-Flex-Str. 3, 57072, Siegen, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Anita Girelli
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Nafisa Begam
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Marvin Kowalski
- Department Physik, Universität Siegen, Walter-Flex-Str. 3, 57072, Siegen, Germany
| | - Sebastian Retzbach
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Maximilian Darius Senft
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | | | | | - Marc Moron
- Fakultät Physik/DELTA, TU Dortmund, Maria-Goeppert-Mayer-Str. 2, 44227, Dortmund, Germany
| | - Anusha Hiremath
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Dennis Gutmüller
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Michelle Dargasz
- Department Physik, Universität Siegen, Walter-Flex-Str. 3, 57072, Siegen, Germany
| | - Özgül Öztürk
- Department Physik, Universität Siegen, Walter-Flex-Str. 3, 57072, Siegen, Germany
| | - Michael Paulus
- Fakultät Physik/DELTA, TU Dortmund, Maria-Goeppert-Mayer-Str. 2, 44227, Dortmund, Germany
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Anastasia Ragulskaya
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Christian Gutt
- Department Physik, Universität Siegen, Walter-Flex-Str. 3, 57072, Siegen, Germany.
| |
Collapse
|
22
|
Yin Z, Chang YP, Balčiūnas T, Shakya Y, Djorović A, Gaulier G, Fazio G, Santra R, Inhester L, Wolf JP, Wörner HJ. Femtosecond proton transfer in urea solutions probed by X-ray spectroscopy. Nature 2023; 619:749-754. [PMID: 37380782 PMCID: PMC10371863 DOI: 10.1038/s41586-023-06182-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/09/2023] [Indexed: 06/30/2023]
Abstract
Proton transfer is one of the most fundamental events in aqueous-phase chemistry and an emblematic case of coupled ultrafast electronic and structural dynamics1,2. Disentangling electronic and nuclear dynamics on the femtosecond timescales remains a formidable challenge, especially in the liquid phase, the natural environment of biochemical processes. Here we exploit the unique features of table-top water-window X-ray absorption spectroscopy3-6 to reveal femtosecond proton-transfer dynamics in ionized urea dimers in aqueous solution. Harnessing the element specificity and the site selectivity of X-ray absorption spectroscopy with the aid of ab initio quantum-mechanical and molecular-mechanics calculations, we show how, in addition to the proton transfer, the subsequent rearrangement of the urea dimer and the associated change of the electronic structure can be identified with site selectivity. These results establish the considerable potential of flat-jet, table-top X-ray absorption spectroscopy7,8 in elucidating solution-phase ultrafast dynamics in biomolecular systems.
Collapse
Affiliation(s)
- Zhong Yin
- Laboratory of Physical Chemistry, ETH Zürich, Zurich, Switzerland.
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, Miyagi, Sendai, Japan.
| | - Yi-Ping Chang
- GAP-Biophotonics, Université de Genève, Geneva, Switzerland
- European XFEL, Schenefeld, Germany
| | - Tadas Balčiūnas
- Laboratory of Physical Chemistry, ETH Zürich, Zurich, Switzerland
- GAP-Biophotonics, Université de Genève, Geneva, Switzerland
| | - Yashoj Shakya
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
| | | | | | - Giuseppe Fazio
- Laboratory of Physical Chemistry, ETH Zürich, Zurich, Switzerland
| | - Robin Santra
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany
| | - Ludger Inhester
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany.
| | | | | |
Collapse
|
23
|
Lamas I, González J, Longarte A, Montero R. Influence of H-bonds on the photoionization of aromatic chromophores in water: The aniline molecule. J Chem Phys 2023; 158:2890456. [PMID: 37184001 DOI: 10.1063/5.0147503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/01/2023] [Indexed: 05/16/2023] Open
Abstract
We have conducted time-resolved experiments (pump-probe and pump-repump-probe) on a model aromatic chromophore, aniline, after excitation in water at 267 nm. In the initial spectra recorded, in addition to the absorption corresponding to the bright ππ* excitation, the fingerprint of a transient state with the electron located on the solvent molecule is identified. We postulate that the latter corresponds to the πσ* state along the N-H bond, whose complete relaxation with a ∼500 ps lifetime results in the formation of the fully solvated electron and cation. This ionization process occurs in parallel with the ππ* photophysical channel that yields the characteristic ∼1 ns fluorescence lifetime. The observed branched pathway is rationalized in terms of the different H-bonds that the water establishes with the amino group. The proposed mechanism could be common for aromatics in water containing N-H or O-H bonds and would allow the formation of separated charges after excitation at the threshold of their electronic absorptions.
Collapse
Affiliation(s)
- Iker Lamas
- Facultad de Ciencia y Tecnología, Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apart. 644, 48080 Bilbao, Spain
| | - Jorge González
- Facultad de Ciencia y Tecnología, Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apart. 644, 48080 Bilbao, Spain
| | - Asier Longarte
- Facultad de Ciencia y Tecnología, Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apart. 644, 48080 Bilbao, Spain
| | - Raúl Montero
- Facultad de Ciencia y Tecnología, SGIKER Laser Facility, UPV/EHU, Sarriena, S/N, 48940 Leioa, Spain
| |
Collapse
|
24
|
Li K, Chen Z, Jin X, Tian H, Song Z, Zhang Q, Xu D, Hong R. Theoretical investigation of Aryl/Alkyl halide reduction with hydrated electrons from energy and AIMD aspects. J Mol Model 2023; 29:142. [PMID: 37061582 DOI: 10.1007/s00894-023-05553-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
CONTEXT In this study, the reactions of hydrated electron (e-(aq)) with alkyl and aryl halides were simulated with an ab initial molecular dynamics (AIMD) method to reveal the underlying mechanism. An original protocol was developed for preparing the proper initial wavefunction guess of AIMD, in which a single electron was curled in a tetrahedral cavity of four water molecules. Our results show that the stability of e-(aq) increases with the hydrogen bond grid integrity. The organic halides prefer to react with e-(aq) in neutral or alkaline environment, while they are more likely to react with hydrogen radical (the product of e-(aq) and proton) under acidic conditions. The reaction between fluorobenzene/fluoromethane and hydrogen radical is considered as the least favorable reaction due to the highest reaction barriers. The bond dissociation energy (BDE) suggested that the cleavage of the carbon-halogen bond of their anion radical might be a thermodynamically favorable reaction. AIMD results indicated that the LUMO or higher orbitals were the e-(aq) migration destination. The transplanted electron enhanced carbon-halogen bond vibration intensively, leading to bond cleavage. The solvation process of the departing halogen anions was observed in both fluorobenzene and fluoromethane AIMD simulation, indicating that it might have a significant effect on enthalpy. Side reactions and byproducts obtained during the AIMD simulation suggested the complexity of the e-(aq) reactions and further investigation was needed to fully understand the reaction mechanisms. This study provided theoretical insight into the pollutant environmental fate and constructed a methodological foundation for AIMD simulation of analogous free radical reactions. METHODS The theoretical calculation was conducted on the combination of Gaussian16 and ORCA5.0.3 software packages. The initial geometries, as well as the wavefunction initial guesses, were obtained at PBE0/ma-def2-TZVP/IEFPCM-water level in Gaussian16 unless otherwise stated. AIMD simulations were performed at the same level in ORCA. Wavefunction analysis was carried out with Multiwfn. The details methods were described in the section "Computational details" section.
Collapse
Affiliation(s)
- Kaixin Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui Province, People's Republic of China
| | - Zhanghao Chen
- School of the Environment, Nanjing University, Nanjing, 210093, People's Republic of China
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Xin Jin
- School of the Environment, Nanjing University, Nanjing, 210093, People's Republic of China
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Haoting Tian
- School of Environmental science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zhenxia Song
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui Province, People's Republic of China
| | - Qingyun Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui Province, People's Republic of China
| | - Dayong Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui Province, People's Republic of China
| | - Ran Hong
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui Province, People's Republic of China.
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210093, People's Republic of China.
| |
Collapse
|
25
|
Yamamoto YI, Suzuki T. Distortion Correction of Low-Energy Photoelectron Spectra of Liquids Using Spectroscopic Data for Solvated Electrons. J Phys Chem A 2023; 127:2440-2452. [PMID: 36917090 DOI: 10.1021/acs.jpca.2c08046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Time-resolved photoelectron spectroscopy (TRPES) enables real-time observation of ultrafast electronic dynamics in solutions. When extreme ultraviolet (EUV) probe pulses are employed, they can ionize solutes from all electronic states involved in the dynamics. However, EUV pulses also produce a strong ionization signal from a solvent that is typically 6 orders of magnitude greater than the pump-probe photoelectron signal of solutes. Alternatively, UV probe pulses enable highly sensitive and selective observation of photoexcited solutes because typical solvents such as water are transparent to UV radiation. An obstacle in such UV-TRPES measurements is spectral distortion caused by electron scattering and a yet to be identified mechanism in liquids. We have previously proposed the spectral retrieval (SR) method as an a posteriori approach to removing the distortion and overcoming this difficulty in UV-TRPES; however, its accuracy has not yet been verified by comparison with EUV-TRPES results. In the present study, we perform EUV-TRPES for charge transfer reactions in water, methanol, and ethanol, and verify SR analysis of UV-TRPES. We also estimate a previously undetermined energy-dependent intensity factor and expand the basis sets for SR analysis. The refined SR method is employed for reanalyzing the UV-TRPES data for the formation and relaxation dynamics of solvated electrons in various systems. The electron binding energy distributions for solvated electrons in liquid water, methanol, and ethanol are confirmed to be Gaussian centered at 3.78, 3.39, and 3.25 eV, respectively, in agreement with Nishitani et al. [ Sci. Adv. 2019, 5(8), eaaw6896]. An effective energy gap between the conduction band and the vacuum level at the gas-liquid interface is estimated to be 0.2 eV for liquid water and 0.1 eV for methanol and ethanol.
Collapse
Affiliation(s)
- Yo-Ichi Yamamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| |
Collapse
|
26
|
Low PJ, Chu W, Nie Z, Bin Mohd Yusof MS, Prezhdo OV, Loh ZH. Observation of a transient intermediate in the ultrafast relaxation dynamics of the excess electron in strong-field-ionized liquid water. Nat Commun 2022; 13:7300. [DOI: 10.1038/s41467-022-34981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/11/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractA unified picture of the electronic relaxation dynamics of ionized liquid water has remained elusive despite decades of study. Here, we employ sub-two-cycle visible to short-wave infrared pump-probe spectroscopy and ab initio nonadiabatic molecular dynamics simulations to reveal that the excess electron injected into the conduction band (CB) of ionized liquid water undergoes sequential relaxation to the hydrated electron s ground state via an intermediate state, identified as the elusive p excited state. The measured CB and p-electron lifetimes are 0.26 ± 0.02 ps and 62 ± 10 fs, respectively. Ab initio quantum dynamics yield similar lifetimes and furthermore reveal vibrational modes that participate in the different stages of electronic relaxation, with initial relaxation within the dense CB manifold coupled to hindered translational motions whereas subsequent p-to-s relaxation facilitated by librational and even intramolecular bending modes of water. Finally, energetic considerations suggest that a hitherto unobserved trap state resides ~0.3-eV below the CB edge of liquid water. Our results provide a detailed atomistic picture of the electronic relaxation dynamics of ionized liquid water with unprecedented time resolution.
Collapse
|
27
|
Li X, Jia X, Paz ASP, Cao Y, Glover WJ. Evidence for Water Antibonding Orbital Mixing in the Hydrated Electron from Its Oxygen 1s X-ray Absorption Spectrum. J Am Chem Soc 2022; 144:19668-19672. [PMID: 36251402 DOI: 10.1021/jacs.2c07572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The X-ray absorption spectrum (XAS) of the hydrated electron (e(aq)-) has been simulated using time-dependent density functional theory with a quantum mechanics/molecular mechanics description. A unique XAS peak at 533 eV is observed with an energy and intensity in quantitative agreement with recent time-resolved experiments, allowing its assignment as arising from water O1s transitions to the singly occupied molecular orbital (SOMO) in which the excess electron resides. The transitions acquire oscillator strength due to the SOMO comprising an admixture of a cavity-localized orbital and water 4a1 and 2b2 antibonding orbitals. The mixing of antibonding orbitals has implications for the strength of couplings between e(aq)- and intramolecular modes of water.
Collapse
Affiliation(s)
- Xingpin Li
- NYU Shanghai, 1555 Century Avenue, Shanghai, 200122, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshang Road, Shanghai, 200062, China.,Department of Chemistry, New York University, New York, New York10003, United States
| | - Xiangyu Jia
- NYU Shanghai, 1555 Century Avenue, Shanghai, 200122, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshang Road, Shanghai, 200062, China
| | - Amiel S P Paz
- NYU Shanghai, 1555 Century Avenue, Shanghai, 200122, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshang Road, Shanghai, 200062, China.,Department of Chemistry, New York University, New York, New York10003, United States
| | - Yuquan Cao
- NYU Shanghai, 1555 Century Avenue, Shanghai, 200122, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshang Road, Shanghai, 200062, China.,Department of Chemistry, New York University, New York, New York10003, United States
| | - William J Glover
- NYU Shanghai, 1555 Century Avenue, Shanghai, 200122, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshang Road, Shanghai, 200062, China.,Department of Chemistry, New York University, New York, New York10003, United States
| |
Collapse
|
28
|
Liu X, Zhang X, Khakhulin D, Su P, Wulff M, Baudelet F, Weng TC, Kong Q, Sun Y. Deciphering Photochemical Reaction Pathways of Aqueous Tetrachloroauric Acid by X-ray Transient Absorption Spectroscopy. J Phys Chem Lett 2022; 13:8921-8927. [PMID: 36130195 DOI: 10.1021/acs.jpclett.2c02335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photolysis reaction pathways of [Au(III)Cl4]- in aqueous solution have been investigated by time-resolved X-ray absorption spectroscopy. Ultraviolet excitation directly breaks the Au-Cl bond in [Au(III)Cl4]- to form [Au(II)Cl3]- that becomes highly reactive within 79 ps. Disproportionation of [Au(II)Cl3]- generates [Au(I)Cl2]-, which is stable for ≤10 μs. In contrast, intense near-infrared lasers photolyze water to generate hydrated electrons, which then reduce [Au(III)Cl4]- to [Au(II)Cl3]- at 5 ns. Hydrated electrons further induce a chain reaction from [Au(II)Cl3]- to [Au(0)Cl]- by successively removing one Cl-. The zero-valency Au anions quickly polymerize and condense to form Au nanoparticles, which become the dominating product after 400 s. Our results reveal that the condensation of zero-valency Au starts with dimerization of gold clusters coordinated with chloride ions rather than direct condensation of pristine Au atoms.
Collapse
Affiliation(s)
- Xuan Liu
- Synchrotron Soleil, L'Orme des Merisiers, 91190 Saint-Aubin, France
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60349, United States
| | | | - Peiyuan Su
- Synchrotron Soleil, L'Orme des Merisiers, 91190 Saint-Aubin, France
| | - Michael Wulff
- European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
| | | | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qingyu Kong
- Synchrotron Soleil, L'Orme des Merisiers, 91190 Saint-Aubin, France
| | - Yugang Sun
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
29
|
Waters MDJ, Wörner HJ. The ultrafast vibronic dynamics of ammonia's D̃ state. Phys Chem Chem Phys 2022; 24:23340-23349. [PMID: 36129030 DOI: 10.1039/d2cp03117e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using vacuum-ultraviolet time-resolved velocity map imaging of photoelectrons, we study ultrafast coupled electronic and nuclear dynamics in low-lying Rydberg states of ammonia. Vibrationally-resolved internal vibrational relaxation (IVR) is observed in a progression of the e' bending modes. This vibrational progression is only observed in the D̃ state, and is lost upon ultrafast internal conversion to the C̃ and B̃ electronic states. Due to the ultrashort time scale of the internal conversion (ca. 64 fs), and the vibronic resolution, the non-adiabatic coupling vectors are identified and verified with ab initio calculations. The time-scale of this IVR process is highly surprising and significant because IVR is usually treated as an incoherent process that proceeds statistically, according to a "Fermi's Golden Rule"-like model, where the process scales with the available degrees of freedom. Here, we show that it can be highly non-statistical, restricted to only a very small subset of vibrational motions.
Collapse
Affiliation(s)
- Max D J Waters
- Laboratory for Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland.
| | - Hans Jakob Wörner
- Laboratory for Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland.
| |
Collapse
|
30
|
Vacher M, Boyer A, Loriot V, Lépine F, Nandi S. Few-Femtosecond Isotope Effect in Polyatomic Molecules Ionized by Extreme Ultraviolet Attosecond Pulse Trains. J Phys Chem A 2022; 126:5692-5701. [PMID: 35994358 DOI: 10.1021/acs.jpca.2c03487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Following ionization by an extreme ultraviolet (XUV) attosecond pulse train, a polyatomic molecule can be promoted to more-than-one excited states of the residual ion. The ensuing relaxation dynamics is often facilitated by several reaction coordinates, making them difficult to disentangle by the usual spectroscopic means. Here, we show that in atto-chemistry isotope labeling can be an efficient tool for unraveling the relaxation pathways in highly excited photoionized molecules. Employing an XUV pump pulse and a near-infrared probe pulse, we found the nuclear as well as coupled electron-nuclear dynamics in ethylene to be almost 40% faster compared to that of its deuterated counterpart. The findings, which are supported by advanced nonadiabatic dynamics calculations, led to the identification of the relevant nuclear coordinates controlling the relaxation. Our experiment highlights the relevance of ultrashort XUV pulses to capture the isotopic effect in few-femtosecond molecular photodynamics.
Collapse
Affiliation(s)
- Morgane Vacher
- Nantes Université, CNRS, CEISAM UMR 6230, F-44300 Nantes, France
| | - Alexie Boyer
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Vincent Loriot
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Franck Lépine
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Saikat Nandi
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| |
Collapse
|
31
|
Attosecond spectroscopy of size-resolved water clusters. Nature 2022; 609:507-511. [PMID: 35820616 DOI: 10.1038/s41586-022-05039-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/28/2022] [Indexed: 11/08/2022]
Abstract
Electron dynamics in water are of fundamental importance for a broad range of phenomena1-3, but their real-time study faces numerous conceptual and methodological challenges4-6. Here, we introduce attosecond size-resolved cluster spectroscopy and build up a molecular-level understanding of the attosecond electron dynamics in water. We measure the effect that the addition of single water molecules has on the photoionization time delays7-9 of water clusters. We find a continuous increase of the delay for clusters containing up to 4-5 molecules and little change towards larger clusters. We show that these delays are proportional to the spatial extension of the created electron hole, which first increases with cluster size and then partially localizes through the onset of structural disorder that is characteristic of large clusters and bulk liquid water. These results suggest a previously unknown sensitivity of photoionization delays to electron-hole delocalization and indicate a direct link between electronic structure and attosecond photoionization dynamics. Our results offer novel perspectives for studying electron/hole delocalization and its attosecond dynamics.
Collapse
|
32
|
Signorell R, Winter B. Photoionization of the aqueous phase: clusters, droplets and liquid jets. Phys Chem Chem Phys 2022; 24:13438-13460. [PMID: 35510623 PMCID: PMC9176186 DOI: 10.1039/d2cp00164k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022]
Abstract
This perspective article reviews specific challenges associated with photoemission spectroscopy of bulk liquid water, aqueous solutions, water droplets and water clusters. The main focus lies on retrieving accurate energetics and photoelectron angular information from measured photoemission spectra, and on the question how these quantities differ in different aqueous environments. Measured photoelectron band shapes, vertical binding energies (ionization energies), and photoelectron angular distributions are influenced by various phenomena. We discuss the influences of multiple energy-dependent electron scattering in aqueous environments, and we discuss different energy referencing methods, including the application of a bias voltage to access absolute energetics of solvent and solute. Recommendations how to account for or minimize the influence of electron scattering are provided. The example of the hydrated electron in different aqueous environments illustrates how one can account for electron scattering, while reliable methods addressing parasitic potentials and proper energy referencing are demonstrated for ionization from the outermost valence orbital of neat liquid water.
Collapse
Affiliation(s)
- Ruth Signorell
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
| | - Bernd Winter
- Molecular Physics Department, Fritz-Haber-Institute der Max-Planck-Gesellschaft, Faradayweg 4-6, 14196 Berlin, Germany.
| |
Collapse
|
33
|
Suchan J, Kolafa J, Slavíček P. Electron-induced fragmentation of water droplets: Simulation study. J Chem Phys 2022; 156:144303. [DOI: 10.1063/5.0088591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The transport of free electrons in a water environment is still poorly understood. We show that additional insight can be brought about by investigating fragmentation patterns of finite-size particles upon electron impact ionization. We have developed a composite protocol aiming to simulate fragmentation of water clusters by electrons with kinetic energies in the range of up to 100 eV. The ionization events for atomistically described molecular clusters are identified by a kinetic Monte Carlo procedure. We subsequently model the fragmentation with classical molecular dynamics simulations, calibrated by non-adiabatic quantum mechanics/molecular mechanics simulations of the ionization process. We consider one-electron ionizations, energy transfer via electronic excitation events, elastic scattering, and also the autoionization events through intermolecular Coulombic decay. The simulations reveal that larger water clusters are often ionized repeatedly, which is the cause of substantial fragmentation. After losing most of its energy, low-energy electrons further contribute to fragmentation by electronic excitations. The simultaneous measurement of cluster size distribution before and after the ionization represents a sensitive measure of the energy transferred into the system by an incident electron.
Collapse
Affiliation(s)
- Jiří Suchan
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic
| | - Jiří Kolafa
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic
| |
Collapse
|
34
|
Gadeyne T, Zhang P, Schild A, Wörner HJ. Low-energy electron distributions from the photoionization of liquid water: a sensitive test of electron mean free paths. Chem Sci 2022; 13:1675-1692. [PMID: 35282614 PMCID: PMC8826766 DOI: 10.1039/d1sc06741a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/06/2022] [Indexed: 11/21/2022] Open
Abstract
The availability of accurate mean free paths for slow electrons (<50 eV) in water is central to the understanding of many electron-driven processes in aqueous solutions, but their determination poses major challenges to experiment and theory alike. Here, we describe a joint experimental and theoretical study demonstrating a novel approach for testing, and, in the future, refining such mean free paths. We report the development of Monte-Carlo electron-trajectory simulations including elastic and inelastic electron scattering, as well as energy loss and secondary-electron production to predict complete photoelectron spectra of liquid water. These simulations are compared to a new set of photoelectron spectra of a liquid-water microjet recorded over a broad range of photon energies in the extreme ultraviolet (20-57 eV). Several previously published sets of scattering parameters are investigated, providing direct and intuitive insights on how they influence the shape of the low-energy electron spectra. A pronounced sensitivity to the escape barrier is also demonstrated. These simulations considerably advance our understanding of the origin of the prominent low-energy electron distributions in photoelectron spectra of liquid water and clarify the influence of scattering parameters and the escape barrier on their shape. They moreover describe the reshaping and displacement of low-energy photoelectron bands caused by vibrationally inelastic scattering. Our work provides a quantitative basis for the interpretation of the complete photoelectron spectra of liquids and opens the path to fully predictive simulations of low-energy scattering in liquid water.
Collapse
Affiliation(s)
- Titouan Gadeyne
- Laboratory for Physical Chemistry, ETH Zürich Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
- Département de Chimie, École Normale Supérieure, PSL University 75005 Paris France
| | - Pengju Zhang
- Laboratory for Physical Chemistry, ETH Zürich Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| | - Axel Schild
- Laboratory for Physical Chemistry, ETH Zürich Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| | - Hans Jakob Wörner
- Laboratory for Physical Chemistry, ETH Zürich Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| |
Collapse
|
35
|
Ding Z, Goldsmith ZK, Selloni A. Pathways for Electron Transfer at MgO–Water Interfaces from Ab Initio Molecular Dynamics. J Am Chem Soc 2022; 144:2002-2009. [DOI: 10.1021/jacs.1c13250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhutian Ding
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Zachary K. Goldsmith
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Annabella Selloni
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
36
|
Nikitenko SI, Chave T, Virot M, Pflieger R. Simultaneous H/D and 13C/ 12C Anomalous Kinetic Isotope Effects during the Sonolysis of Water in the Presence of Carbon Monoxide. J Phys Chem Lett 2022; 13:42-48. [PMID: 34958222 DOI: 10.1021/acs.jpclett.1c03744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Splitting of water molecules driven by ultrasound plays a central role in sonochemistry. While studies of sonoluminescence revealed the formation of a plasma inside the cavitation bubble, much less is known about the contribution of plasma chemical processes to the sonochemical mechanisms. Herein, we report for the first time sonochemical processes in water saturated with pure CO. The presence of CO causes a large increase in the H/D kinetic isotope effect (KIE) to αH = 14.6 ± 1.8 in a 10% H2O/D2O mixture under 20 kHz ultrasound. The anomalous H/D KIE is attributed to electron quantum tunneling in the plasma produced by cavitation. In addition, CO2 formed simultaneously with hydrogen during the sonochemical process is enriched with the 13C isotope, which indicates a V-V pumping mechanism typical for non-equilibrium plasma. Both observed KIEs unambiguously point to the contribution of quantum effects in sonochemical mechanisms.
Collapse
Affiliation(s)
- Sergey I Nikitenko
- ICSM, Univ Montpellier, UMR 5257, CEA, CNRS, ENSCM, Marcoule, F-30207 Bagnols sur Cèze Cedex, France
| | - Tony Chave
- ICSM, Univ Montpellier, UMR 5257, CEA, CNRS, ENSCM, Marcoule, F-30207 Bagnols sur Cèze Cedex, France
| | - Matthieu Virot
- ICSM, Univ Montpellier, UMR 5257, CEA, CNRS, ENSCM, Marcoule, F-30207 Bagnols sur Cèze Cedex, France
| | - Rachel Pflieger
- ICSM, Univ Montpellier, UMR 5257, CEA, CNRS, ENSCM, Marcoule, F-30207 Bagnols sur Cèze Cedex, France
| |
Collapse
|
37
|
Prasselsperger A, Coughlan M, Breslin N, Yeung M, Arthur C, Donnelly H, White S, Afshari M, Speicher M, Yang R, Villagomez-Bernabe B, Currell FJ, Schreiber J, Dromey B. Real-Time Electron Solvation Induced by Bursts of Laser-Accelerated Protons in Liquid Water. PHYSICAL REVIEW LETTERS 2021; 127:186001. [PMID: 34767414 DOI: 10.1103/physrevlett.127.186001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Understanding the mechanisms of proton energy deposition in matter and subsequent damage formation is fundamental to radiation science. Here we exploit the picosecond (10^{-12} s) resolution of laser-driven accelerators to track ultrafast solvation dynamics for electrons due to proton radiolysis in liquid water (H_{2}O). Comparing these results with modeling that assumes initial conditions similar to those found in photolysis reveals that solvation time due to protons is extended by >20 ps. Supported by magnetohydrodynamic theory this indicates a highly dynamic phase in the immediate aftermath of the proton interaction that is not accounted for in current models.
Collapse
Affiliation(s)
- A Prasselsperger
- Fakultät für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
- Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
| | - M Coughlan
- Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
| | - N Breslin
- Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
| | - M Yeung
- Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
| | - C Arthur
- Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
| | - H Donnelly
- Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
| | - S White
- Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
| | - M Afshari
- Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
| | - M Speicher
- Fakultät für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - R Yang
- Fakultät für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - B Villagomez-Bernabe
- The Dalton Cumbria Facility and the School of Chemistry, The University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
| | - F J Currell
- The Dalton Cumbria Facility and the School of Chemistry, The University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
| | - J Schreiber
- Fakultät für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - B Dromey
- Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom
| |
Collapse
|
38
|
Lin MF, Singh N, Liang S, Mo M, Nunes JPF, Ledbetter K, Yang J, Kozina M, Weathersby S, Shen X, Cordones AA, Wolf TJA, Pemmaraju CD, Ihme M, Wang XJ. Imaging the short-lived hydroxyl-hydronium pair in ionized liquid water. Science 2021; 374:92-95. [PMID: 34591617 DOI: 10.1126/science.abg3091] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- M-F Lin
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - N Singh
- Department of Mechanical Engineering, Stanford University , Stanford, CA 94305, USA
| | - S Liang
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - M Mo
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - J P F Nunes
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - K Ledbetter
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.,Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - J Yang
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.,Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - M Kozina
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - S Weathersby
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - X Shen
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - A A Cordones
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - T J A Wolf
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.,Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - C D Pemmaraju
- SIMES, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - M Ihme
- Department of Mechanical Engineering, Stanford University , Stanford, CA 94305, USA
| | - X J Wang
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
39
|
Abstract
![]()
Cluster-size-resolved
ultrafast dynamics of the solvated electron
in neutral water clusters with n = 3 to ∼200
molecules are studied with pump–probe time-of-flight mass spectrometry
after below band gap excitation. For the smallest clusters, no longer-lived
(>100–200 fs) hydrated electrons were detected, indicating
a minimum size of n ∼ 14 for being able to
sustain hydrated electrons. Larger clusters show a systematic increase
of the number of hydrated electrons per molecule on the femtosecond
to picosecond time scale. We propose that with increasing cluster
size the underlying dynamics is governed by more effective electron
formation processes combined with less effective electron loss processes,
such as ultrafast hydrogen ejection and recombination. It appears
unlikely that any size dependence of the solvent relaxation dynamics
would be reflected in the observed time-resolved ion yields.
Collapse
Affiliation(s)
- Loren Ban
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Bruce L Yoder
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Ruth Signorell
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| |
Collapse
|
40
|
|
41
|
Bahry T, Denisov SA, Moisy P, Ma J, Mostafavi M. Real-Time Observation of Solvation Dynamics of Electron in Actinide Extraction Binary Solutions of Water and n-Tributyl Phosphate. J Phys Chem B 2021; 125:3843-3849. [PMID: 33650867 DOI: 10.1021/acs.jpcb.0c10831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The excess electron in solution is a highly reactive radical involved in various radiation-induced reactions. Its solvation state critically determines the subsequent pathway and rate of transfer. For instance, water plays a dominating role in the electron-induced dealkylation of n-tributyl phosphate in actinide extraction processing. However, the underlying electron solvation processes in such systems are lacking. Herein, we directly observed the solvation dynamics of electrons in H-bonded water and n-tributyl phosphate (TBP) binary solutions with a mole fraction of water (Xw) varying from 0.05 to 0.51 under ambient conditions. Following the evolution of the absorption spectrum of trapped electrons (not fully solvated) with picosecond resolution, we show that electrons statistically distributed would undergo preferential solvation within water molecules extracted in TBP. We determine the time scale of excess electron full solvation from the deconvoluted transient absorption-kinetical data. The process of solvent reorganization accelerates by increasing the water molar fraction, and the rate of this process is 2 orders of magnitude slower compared to bulk water. We assigned the solvation process to hydrogen network reorientation induced by a negative charge of the excess electron that strongly depends on the local water environment. Our findings suggest that water significantly stabilizes the electron in a deeper potential than the pure TBP case. In its new state, the electron is likely to inhibit the dealkylation of extractants in actinide separation.
Collapse
Affiliation(s)
- Teseer Bahry
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China.,Institut de Chimie Physique, UMR 8000 CNRS, Bât. 349, Université Paris-Saclay 91405, Orsay, Cedex France
| | - Sergey A Denisov
- Institut de Chimie Physique, UMR 8000 CNRS, Bât. 349, Université Paris-Saclay 91405, Orsay, Cedex France
| | - Philippe Moisy
- CEA, DES/ISEC/DMRC, Univ. Montpellier, 34090 Marcoule, France
| | - Jun Ma
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China
| | - Mehran Mostafavi
- Institut de Chimie Physique, UMR 8000 CNRS, Bât. 349, Université Paris-Saclay 91405, Orsay, Cedex France
| |
Collapse
|
42
|
Perry C, Jordan I, Zhang P, von Conta A, Nunes FB, Wörner HJ. Photoelectron Spectroscopy of Liquid Water with Tunable Extreme-Ultraviolet Radiation: Effects of Electron Scattering. J Phys Chem Lett 2021; 12:2990-2996. [PMID: 33733779 PMCID: PMC8006141 DOI: 10.1021/acs.jpclett.0c03424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We report the first systematic photoelectron measurements of the three outer-valence bands of liquid water as a function of the ionizing photon energy in the near-threshold region. We use extreme-ultraviolet (XUV) radiation tunable between ∼17.1 and 35.6 eV, obtained through monochromatization of a high-harmonic source. We show that the absolute values of the apparent vertical ionization energies and their respective peak widths show a decreasing trend of their magnitudes with increasing photon energy close to the ionization threshold. We find that the observed effects do not only depend on the electron kinetic energy but are also different for the various outer-valence bands. These observations are consistent with, but not fully explained by, the effects of inelastic electron scattering.
Collapse
|
43
|
Lan J, Kapil V, Gasparotto P, Ceriotti M, Iannuzzi M, Rybkin VV. Simulating the ghost: quantum dynamics of the solvated electron. Nat Commun 2021; 12:766. [PMID: 33536410 PMCID: PMC7859219 DOI: 10.1038/s41467-021-20914-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/04/2021] [Indexed: 01/13/2023] Open
Abstract
The nature of the bulk hydrated electron has been a challenge for both experiment and theory due to its short lifetime and high reactivity, and the need for a high-level of electronic structure theory to achieve predictive accuracy. The lack of a classical atomistic structural formula makes it exceedingly difficult to model the solvated electron using conventional empirical force fields, which describe the system in terms of interactions between point particles associated with atomic nuclei. Here we overcome this problem using a machine-learning model, that is sufficiently flexible to describe the effect of the excess electron on the structure of the surrounding water, without including the electron in the model explicitly. The resulting potential is not only able to reproduce the stable cavity structure but also recovers the correct localization dynamics that follow the injection of an electron in neat water. The machine learning model achieves the accuracy of the state-of-the-art correlated wave function method it is trained on. It is sufficiently inexpensive to afford a full quantum statistical and dynamical description and allows us to achieve accurate determination of the structure, diffusion mechanisms, and vibrational spectroscopy of the solvated electron.
Collapse
Affiliation(s)
- Jinggang Lan
- Department of Chemistry, University of Zurich, Zürich, Switzerland.
| | - Venkat Kapil
- Laboratory of Computational Science and Modelling, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Piero Gasparotto
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Michele Ceriotti
- Laboratory of Computational Science and Modelling, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
44
|
Ban L, West CW, Chasovskikh E, Gartmann TE, Yoder BL, Signorell R. Below Band Gap Formation of Solvated Electrons in Neutral Water Clusters? J Phys Chem A 2020; 124:7959-7965. [PMID: 32878434 PMCID: PMC7536715 DOI: 10.1021/acs.jpca.0c06935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/01/2020] [Indexed: 01/25/2023]
Abstract
Below band gap formation of solvated electrons in neutral water clusters using pump-probe photoelectron imaging is compared with recent data for liquid water and with above band gap excitation studies in liquid and clusters. Similar relaxation times on the order of 200 fs and 1-2 ps are retrieved for below and above band gap excitation, in both clusters and liquid. The independence of the relaxation times from the generation process indicates that these times are dominated by the solvent response, which is significantly slower than the various solvated electron formation processes. The analysis of the temporal evolution of the vertical electron binding energy and the electron binding energy at half-maximum suggests a dependence of the solvation time on the binding energy.
Collapse
Affiliation(s)
- Loren Ban
- ETH Zurich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Christopher W. West
- ETH Zurich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Egor Chasovskikh
- ETH Zurich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Thomas E. Gartmann
- ETH Zurich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Bruce L. Yoder
- ETH Zurich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Ruth Signorell
- ETH Zurich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| |
Collapse
|
45
|
Yamamoto YI, Suzuki T. Ultrafast Dynamics of Water Radiolysis: Hydrated Electron Formation, Solvation, Recombination, and Scavenging. J Phys Chem Lett 2020; 11:5510-5516. [PMID: 32551690 DOI: 10.1021/acs.jpclett.0c01468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The ultrafast formation, solvation, and geminate recombination of hydrated electrons upon vacuum ultraviolet photoexcitation of liquid water and the static and dynamic scavenging by NO3- are investigated using femtosecond time-resolved photoelectron spectroscopy. The solvation time constant for excess electrons is typical of that for liquid water but increases slightly with increasing excitation energy. The electron survival probability for geminate recombination is found to be much lower than the literature values owing to previously unobserved ultrafast geminate recombination in a period of 5 ps. NO3- induces the ultrafast (static) scavenging of photoexcited electronic states of liquid water and the dynamic scavenging of detached electrons with a reaction rate that is dependent on the excitation energy. The formation of hydrated electrons at 7.7 eV is ascribed to a H-atom-transfer process, but it is plausible that additional formation channels open at higher energies.
Collapse
Affiliation(s)
- Yo-Ichi Yamamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
46
|
Signorell R. Can Current Experimental Data Exclude Non-Gaussian Genuine Band Shapes in Ultraviolet Photoelectron Spectra of the Hydrated Electron? J Phys Chem Lett 2020; 11:1516-1519. [PMID: 32075380 PMCID: PMC7037147 DOI: 10.1021/acs.jpclett.0c00238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Two recent articles present results that allegedly exclude a possible multimodal distribution of the hydrated electron in ultraviolet photoelectron spectra. The first article bases its conclusion on the assumption that the non-Gaussian genuine band shape previously retrieved for the solvated electron in liquid water is an artifact arising from insufficient electron scattering cross sections used in the retrieval. The second article excludes a multimodal band shape based on a photoelectron spectrum of the solvated electron in water clusters recorded at a single ultraviolet photon energy, and it further assumes that cluster results are transferable to the liquid without further justification. Here, we show that based on current data multimodal distributions cannot be unambiguously excluded. Furthermore, the transferability of cluster results to the liquid can be neither justified nor refuted on the basis of currently available experimental ultraviolet photoelectron spectra.
Collapse
|