1
|
Śliwa M, Zhang H, Gao J, Stephens BO, Patera AJ, Raciti D, Hanrahan PD, Warecki ZA, Foley DL, Livi KJ, Brintlinger TH, Taheri ML, Hall AS, Kempa TJ. Selective CO 2 Reduction Electrocatalysis Using AgCu Nanoalloys Prepared by a "Host-Guest" Method. NANO LETTERS 2024; 24:13911-13918. [PMID: 39441978 DOI: 10.1021/acs.nanolett.4c02638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Multimetallic nanoalloy catalysts have attracted considerable interest for enhancing the efficiency and selectivity of many electrochemically driven chemical processes. However, the preparation of homogeneous bimetallic alloy nanoparticles remains a challenge. Here, we present a room-temperature and scalable, host-guest approach for synthesis of dilute Cu in Ag alloy nanoparticles. In this approach, an ionic silver bromide precursor harboring exogenous Cu cations is reduced to yield ∼20 nm diameter AgCu alloy nanoparticles wherein the % Cu loading can be tuned precisely. AgCu nanoparticles with a 5% nominal loading of Cu exhibit peak activity (-0.23 mA/cm2 normalized partial current density) and selectivity (83.2% faradaic efficiency) for CO product formation from electrocatalytic reduction of CO2 at mild overpotentials. These AgCu nanoalloys exhibit a higher mass activity compared to Ag- and Cu-containing nanomaterials used for similar electrocatalytic transformations. Our host-guest synthesis platform holds promise for production of other nanoalloys with relevance in electrocatalysis and optics.
Collapse
Affiliation(s)
- Marta Śliwa
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States of America
| | - Hao Zhang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States of America
| | - Jiaxin Gao
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States of America
| | - Benjamin O Stephens
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States of America
| | - Andrew J Patera
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States of America
| | - David Raciti
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States of America
| | - Paul D Hanrahan
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States of America
| | - Zoey A Warecki
- Materials Science and Technology Division, U.S. Naval Research Laboratory, Washington D.C. 20375, United States of America
| | - Daniel L Foley
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States of America
| | - Kenneth Jt Livi
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States of America
| | - Todd H Brintlinger
- Materials Science and Technology Division, U.S. Naval Research Laboratory, Washington D.C. 20375, United States of America
| | - Mitra L Taheri
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States of America
| | - Anthony Shoji Hall
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States of America
| | - Thomas J Kempa
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States of America
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States of America
| |
Collapse
|
2
|
Feng Z, He Y, Cui Y, Qu Y, Ding G, Chen X, Sui C, Wei Q, Wang Z, Jiang Q. Efficient Tandem Electrocatalytic Nitrate Reduction to Ammonia on Bimodal Nanoporous Ag/Ag-Co across Broad Nitrate Concentrations. NANO LETTERS 2024; 24:11929-11936. [PMID: 39264715 DOI: 10.1021/acs.nanolett.4c03218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Electrocatalytic nitrate (NO3-) reduction reaction (NO3-RR) represents a promising strategy for both wastewater treatment and ammonia (NH3) synthesis. However, it is difficult to achieve efficient NO3-RR on a single-component catalyst due to NO3-RR involving multiple reaction steps that rely on distinct catalyst properties. Here we report a facile alloying/dealloying-driven phase-separation strategy to construct a bimodal nanoporous Ag/Ag-Co tandem catalyst that exhibits a remarkable NO3-RR performance in a broad NO3- concentration range from 5 to 500 mM. In 10 and 50 mM NO3- electrolytes, the NH3 yield rates reach 3.4 and 25.1 mg h-1 mgcat.-1 with corresponding NH3 Faradaic efficiencies of 94.0% and 97.1%, respectively, outperforming most of the reported catalysts under the same NO3- concentration. The experimental results and density functional theory calculations demonstrate that Ag ligaments preferentially reduce NO3- to NO2-, while bimetallic Ag-Co ligaments catalyze the reduction of NO2- to NH3.
Collapse
Affiliation(s)
- Zixuan Feng
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Yuexuan He
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Yuhuan Cui
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yanbin Qu
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Guopeng Ding
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Xue Chen
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Chunyu Sui
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Qianling Wei
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Zhili Wang
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
3
|
Wu H, Yu H, Chow YL, Webley PA, Zhang J. Toward Durable CO 2 Electroreduction with Cu-Based Catalysts via Understanding Their Deactivation Modes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403217. [PMID: 38845132 DOI: 10.1002/adma.202403217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/23/2024] [Indexed: 06/18/2024]
Abstract
The technology of CO2 electrochemical reduction (CO2ER) provides a means to convert CO2, a waste greenhouse gas, into value-added chemicals. Copper is the most studied element that is capable of catalyzing CO2ER to obtain multicarbon products, such as ethylene, ethanol, acetate, etc., at an appreciable rate. Under the operating condition of CO2ER, the catalytic performance of Cu decays because of several factors that alters the surface properties of Cu. In this review, these factors that cause the degradation of Cu-based CO2ER catalysts are categorized into generalized deactivation modes, that are applicable to all electrocatalytic systems. The fundamental principles of each deactivation mode and the associated effects of each on Cu-based catalysts are discussed in detail. Structure- and composition-activity relationship developed from recent in situ/operando characterization studies are presented as evidence of related deactivation modes in operation. With the aim to address these deactivation modes, catalyst design and reaction environment engineering rationales are suggested. Finally, perspectives and remarks built upon the recent advances in CO2ER are provided in attempts to improve the durability of CO2ER catalysts.
Collapse
Affiliation(s)
- Hsiwen Wu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Haoming Yu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, 330031, China
| | - Yuen-Leong Chow
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Paul A Webley
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Carbon Utilisation and Recycling, Monash University, Clayton, VIC, 3800, Australia
| | - Jie Zhang
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Carbon Utilisation and Recycling, Monash University, Clayton, VIC, 3800, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
4
|
Zhou C, Liccardo G, Hoffman AS, Oh J, Holmes SE, Vailionis A, Bare SR, Cargnello M. Understanding and Harnessing Nanoscale Immiscibility in Ru-In Alloys for Selective CO 2 Hydrogenation. J Am Chem Soc 2024; 146:19986-19997. [PMID: 38985019 DOI: 10.1021/jacs.4c03652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Bimetallic alloys made from immiscible elements are characterized by their tendency to segregate on the macroscopic scale, but their behavior is known to change at the nanoscale. Here, we demonstrate that in the Ru-In system, In atoms preferentially decorate the surface of 6 nm Ru nanoparticles, forming Ru-In superficial immiscible alloys. This surface decoration dramatically affects the catalytic performance of the system, even at small atomic fractions of In added to Ru. The interfaces between Ru and In enabled unexplored methanol productivity from CO2 hydrogenation, which outperformed not only the individual constituents but also ordered RuIn3 intermetallic alloys. Our work highlights that the formation of superficial immiscible alloys could offer new insights into the understanding and design of heterogeneous catalysts.
Collapse
Affiliation(s)
- Chengshuang Zhou
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, California 94305, United States
| | - Gennaro Liccardo
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, California 94305, United States
| | - Adam S Hoffman
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jinwon Oh
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Sarah E Holmes
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Arturas Vailionis
- Stanford Nano Shared Facilities, Stanford University, Stanford, California 94305, United States
- Department of Physics, Kaunas University of Technology, LT-51368 Kaunas, Lithuania
| | - Simon R Bare
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Matteo Cargnello
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
5
|
Ding X, He Z, Li J, Xu X, Li Z. Carbon carrier-based rapid Joule heating technology: a review on the preparation and applications of functional nanomaterials. NANOSCALE 2024; 16:12309-12328. [PMID: 38874095 DOI: 10.1039/d4nr01510j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Compared to conventional heating techniques, the carbon carrier-based rapid Joule heating (CJH) method is a new class of technologies that offer significantly higher heating rates and ultra-high temperatures. Over the past few decades, CJH technology has spawned several techniques with similar principles for different application scenarios, including ultra-fast high temperature sintering (UHS), carbon thermal shock (CTS), and flash Joule heating (FJH), which have been widely used in material preparation research studies. Functional nanomaterials are a popular direction of research today, mainly including nanometallic materials, nanosilica materials, nanoceramic materials and nanocarbon materials. These materials exhibit unique physical, chemical, and biological properties, including a high specific surface area, strength, thermal stability, and biocompatibility, making them ideal for diverse applications across various fields. The CJH method is a remarkable approach to producing functional nanomaterials that has attracted attention for its significant advantages. This paper aims to delve into the fundamental principles of CJH and elucidate the efficient preparation of functional nanomaterials with superior properties using this technique. The paper is organized into three sections, each dedicated to introducing the process and characteristics of CJH technology for the preparation of three distinct material types: carbon-based nanomaterials, inorganic non-metallic materials, and metallic materials. We discuss the distinctions and merits of the CJH method compared to alternative techniques in the preparation of these materials, along with a thorough examination of their properties. Furthermore, the potential applications of these materials are highlighted. In conclusion, this paper concludes with a discussion on the future research trends and development prospects of CJH technology.
Collapse
Affiliation(s)
- Xinrui Ding
- National & Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, China.
| | - Zihan He
- National & Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, China.
| | - Jiasheng Li
- National & Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, China.
- Guangdong Provincial Key Laboratory of Semiconductor Micro Display, Foshan Nationstar Optoelectronics Company Ltd, Foshan 528000, China
| | - Xiaolin Xu
- National & Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, China.
| | - Zongtao Li
- National & Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, China.
- Guangdong Provincial Key Laboratory of Semiconductor Micro Display, Foshan Nationstar Optoelectronics Company Ltd, Foshan 528000, China
| |
Collapse
|
6
|
Tu Y, Huang L, Cheng X, Tian B, Zhang D, Hu J, Ding H, Xu Q, Ye Y, Zhu J. Modulating Nanoparticle Structure by Metal-Metal Oxide Interfacial Interaction in a CeO 2-Supported Bimetallic System: The Ni-Cu Case. J Phys Chem Lett 2024; 15:4096-4104. [PMID: 38587484 DOI: 10.1021/acs.jpclett.4c00810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Structure-optimized bimetallic and multicomponent catalysts often outperform single-component catalysts, inspiring a detailed investigation of metal-metal and metal-support interactions in the system. We investigated the geometric and electronic structures of ceria-supported Ni-Cu particles prepared using different metal deposition sequences employing a combination of X-ray photoelectron spectroscopy, resonant photoemission spectroscopy, and infrared reflection absorption spectroscopy. The bimetallic model catalyst structure was altered by a distinct surface evolution process determined by the metal deposition sequence. The postdeposited Cu stays on the surface of Ni predeposited CeO2 and forms only a limited Ni-Cu alloy in the Cu-contacted Ni region. However, when Ni is deposited on the Cu predeposited CeO2 surface, Ni can migrate through the Cu layer to the Cu-ceria interface and form an extended Ni-Cu alloy to the whole deposited metal layer on the ceria surface. The dynamic metal diffusion in the CeO2-supported Ni-Cu system indicates that metal-support interactions can be used to achieve the rational design of a bimetallic composition distribution during catalyst preparation.
Collapse
Affiliation(s)
- Yi Tu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Luchao Huang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Xingwang Cheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Bingchu Tian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Dongling Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Jun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Honghe Ding
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Qian Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Yifan Ye
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
- Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
7
|
Cui X, Liu Y, Chen Y. Ultrafast micro/nano-manufacturing of metastable materials for energy. Natl Sci Rev 2024; 11:nwae033. [PMID: 38469545 PMCID: PMC10926976 DOI: 10.1093/nsr/nwae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 03/13/2024] Open
Abstract
The structural engineering of metastable nanomaterials with abundant defects has attracted much attention in energy-related fields. The high-temperature shock (HTS) technique, as a rapidly developing and advanced synthesis strategy, offers significant potential for the rational design and fabrication of high-quality nanocatalysts in an ultrafast, scalable, controllable and eco-friendly way. In this review, we provide an overview of various metastable micro- and nanomaterials synthesized via HTS, including single metallic and bimetallic nanostructures, high entropy alloys, metal compounds (e.g. metal oxides) and carbon nanomaterials. Note that HTS provides a new research dimension for nanostructures, i.e. kinetic modulation. Furthermore, we summarize the application of HTS-as supporting films for transmission electron microscopy grids-in the structural engineering of 2D materials, which is vital for the direct imaging of metastable materials. Finally, we discuss the potential future applications of high-throughput and liquid-phase HTS strategies for non-equilibrium micro/nano-manufacturing beyond energy-related fields. It is believed that this emerging research field will bring new opportunities to the development of nanoscience and nanotechnology in both fundamental and practical aspects.
Collapse
Affiliation(s)
- Xiaoya Cui
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanchang Liu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| | - Yanan Chen
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| |
Collapse
|
8
|
Liu S, Dun C, Jiang Q, Xuan Z, Yang F, Guo J, Urban JJ, Swihart MT. Challenging thermodynamics: combining immiscible elements in a single-phase nano-ceramic. Nat Commun 2024; 15:1167. [PMID: 38326434 PMCID: PMC10850329 DOI: 10.1038/s41467-024-45413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
The Hume-Rothery rules governing solid-state miscibility limit the compositional space for new inorganic material discovery. Here, we report a non-equilibrium, one-step, and scalable flame synthesis method to overcome thermodynamic limits and incorporate immiscible elements into single phase ceramic nanoshells. Starting from prototype examples including (NiMg)O, (NiAl)Ox, and (NiZr)Ox, we then extend this method to a broad range of Ni-containing ceramic solid solutions, and finally to general binary combinations of elements. Furthermore, we report an "encapsulated exsolution" phenomenon observed upon reducing the metastable porous (Ni0.07Al0.93)Ox to create ultra-stable Ni nanoparticles embedded within the walls of porous Al2O3 nanoshells. This nanoconfined structure demonstrated high sintering resistance during 640 h of catalysis of CO2 reforming of methane, maintaining constant 96% CH4 and CO2 conversion at 800 °C and dramatically outperforming conventional catalysts. Our findings could greatly expand opportunities to develop novel inorganic energy, structural, and functional materials.
Collapse
Affiliation(s)
- Shuo Liu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Chaochao Dun
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Qike Jiang
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Zhengxi Xuan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
- RENEW Institute, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Feipeng Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jeffrey J Urban
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
- RENEW Institute, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
9
|
Xia D, Mannering J, Huang P, Xu Y, Li Q, Li H, Qin Y, Kulak AN, Menzel R. Electrothermal Transformations within Graphene-Based Aerogels through High-Temperature Flash Joule Heating. J Am Chem Soc 2024; 146:159-169. [PMID: 38159061 PMCID: PMC10786031 DOI: 10.1021/jacs.3c06349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Flash Joule heating of highly porous graphene oxide (GO) aerogel monoliths to ultrahigh temperatures is exploited as a low carbon footprint technology to engineer functional aerogel materials. Aerogel Joule heating to up to 3000 K is demonstrated for the first time, with fast heating kinetics (∼300 K·min-1), enabling rapid and energy-efficient flash heating treatments. The wide applicability of ultrahigh-temperature flash Joule heating is exploited in a range of material fabrication challenges. Ultrahigh-temperature Joule heating is used for rapid graphitic annealing of hydrothermal GO aerogels at fast time scales (30-300 s) and substantially reduced energy costs. Flash aerogel heating to ultrahigh temperatures is exploited for the in situ synthesis of ultrafine nanoparticles (Pt, Cu, and MoO2) embedded within the hybrid aerogel structure. The shockwave heating approach enables high through-volume uniformity of the formed nanoparticles, while nanoparticle size can be readily tuned through controlling Joule-heating durations between 1 and 10 s. As such, the ultrahigh-temperature Joule-heating approach introduced here has important implications for a wide variety of applications for graphene-based aerogels, including 3D thermoelectric materials, extreme temperature sensors, and aerogel catalysts in flow (electro)chemistry.
Collapse
Affiliation(s)
- Dong Xia
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - Jamie Mannering
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - Peng Huang
- Department
of Materials, University of Manchester, Manchester M13 9PL, U.K.
| | - Yifei Xu
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qun Li
- School
of Chemistry and Chemical Engineering, Chongqing
University, Chongqing 400044, China
| | - Heng Li
- Key
Laboratory of Estuarine Ecological Security and Environmental Health,
Tan Kah Kee College, Xiamen University, Zhangzhou 363105, China
| | - Yi Qin
- Department
of Engineering Science, University of Oxford, Oxford OX1 3PJ, U.K.
| | | | - Robert Menzel
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
10
|
Qiao M, Wei Y, Dong YJ, Wang JX, Chen JF. A Universal Approach for Controllable Synthesis of Homogeneously Alloyed PtM Nanoflowers toward Enhanced Methanol Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307283. [PMID: 38109154 DOI: 10.1002/smll.202307283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/03/2023] [Indexed: 12/19/2023]
Abstract
Platinum (Pt)-based alloys have received considerable attention due to their compositional variability and unique electrochemical properties. However, homogeneous element distribution at the nanoscale, which is beneficial to various electrocatalytic reactions, is still a great challenge. Herein, a universal approach is proposed to synthesize homogeneously alloyed and size-tunable Pt-based nanoflowers utilizing high gravity technology. Owing to the significant intensification of micro-mixing and mass transfer in unique high gravity shearing surroundings, five typical binary/ternary Pt-based nanoflowers are instantaneously achieved at room temperature. As a proof-of-concept, as-synthesized Platinum-Silver nanoflowers (PtAg NFs) demonstrate excellent catalytic performance and anti-CO poisoning ability for anodic methanol oxidation reaction with high mass activity of 1830 mA mgPt -1 , 3.5 and 3.2 times higher than those of conventional beaker products and commercial Pt/C, respectively. The experiment in combination with theory calculations suggest that the enhanced performance is due to additional electronic transmission and optimized d-band center of Pt caused by high alloying degree.
Collapse
Affiliation(s)
- Meng Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity, Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity, Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan-Jun Dong
- Research Center of the Ministry of Education for High Gravity, Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity, Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jian-Feng Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity, Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
11
|
Thijs LC, Kritikos EM, Giusti A, van Ende MA, van Duin ACT, Mi X. Effect of Fe-O ReaxFF on Liquid Iron Oxide Properties Derived from Reactive Molecular Dynamics. J Phys Chem A 2023; 127:10339-10355. [PMID: 37984360 DOI: 10.1021/acs.jpca.3c06646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
As iron powder nowadays attracts research attention as a carbon-free, circular energy carrier, molecular dynamics (MD) simulations can be used to better understand the mechanisms of liquid iron oxidation at elevated temperatures. However, prudence must be practiced in the selection of a reactive force field. This work investigates the influence of currently available reactive force fields (ReaxFFs) on a number of properties of the liquid iron-oxygen (Fe-O) system derived (or resulting) from MD simulations. Liquid Fe-O systems are considered over a range of oxidation degrees ZO, which represents the molar ratio of O/(O + Fe), with 0 < ZO < 0.6 and at a constant temperature of 2000 K, which is representative of the combustion temperature of micrometric iron particles burning in air. The investigated properties include the minimum energy path, system structure, (im)miscibility, transport properties, and the mass and thermal accommodation coefficients. The properties are compared to experimental values and thermodynamic calculation results if available. Results show that there are significant differences in the properties obtained with MD using the various ReaxFF parameter sets. Based on the available experimental data and equilibrium calculation results, an improved ReaxFF is required to better capture the properties of a liquid Fe-O system.
Collapse
Affiliation(s)
- Leon C Thijs
- Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, Netherlands
| | | | - Andrea Giusti
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Marie-Aline van Ende
- Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, Netherlands
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, South Korea
| | - Adri C T van Duin
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - XiaoCheng Mi
- Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, Netherlands
- Eindhoven Institute of Renewable Energy Systems, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| |
Collapse
|
12
|
Meng Z, Xu Z, Du Z, Deng T, Wang D, Zeng Y, Yu S, Hu X, Tian H. Prediction of future breakthroughs in materials synthesis and manufacturing techniques: a new perspective of synthesis dynamics theory. MATERIALS HORIZONS 2023; 10:5343-5353. [PMID: 37768106 DOI: 10.1039/d3mh01302b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The continuous development of different kinds of materials plays a significant role in social productivity. However, the lack of a complete synthesis kinetic theory has resulted in the absence of scientific guidance for the emergence of advanced manufacturing technologies, limiting the research and production of new types of materials. The present work aims at obtaining the basic form of the diffusion flux-driving force equation through the concept of ion diffusion so as to establish a synthesis kinetic theory. Using this theory, the scientific principles of existing synthesis technologies are summarized, and the key directions that future manufacturing technologies need to break through are proposed as well. Based on a comprehensive analysis of this theory, the feasible directions are discussed, providing strong support for the early realization of targeted design and manufacturing of new materials with specific functions.
Collapse
Affiliation(s)
- Zeshuo Meng
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Zijin Xu
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Zhengyan Du
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Ting Deng
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Dong Wang
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Yi Zeng
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Shansheng Yu
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Xiaoying Hu
- College of Science and Laboratory of Materials Design and Quantum Simulation, Changchun University, Changchun 130022, China.
| | - Hongwei Tian
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China.
| |
Collapse
|
13
|
Liu J, Zhang L. Coalescing Dynamics between Ag 55 and Cu 55 Clusters as Well as Thermodynamics during Cooling the Coalesced Clusters from Atomic Simulations. J Phys Chem A 2023; 127:6881-6891. [PMID: 37555550 DOI: 10.1021/acs.jpca.3c02419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Molecular dynamics simulations are performed to investigate the coalescing processes between a Cu55 cluster with a liquid, FCC, or Ih structure and a Ag55 cluster in liquid, as well as the structural changes of the coalesced clusters during the cooling process. The simulation results show that the initial structure of the Ag and Cu clusters significantly affects the coalescence stages and the structures after coalescence. There are apparent rotations of the Ag cluster with the liquid structure relative to the Cu cluster with the liquid structure when they are approaching. Before the formation of a neck, the Cu cluster with the Ih structure is more stable and less likely to lose its structure compared to the Cu cluster with the FCC structure. During the cooling process, the coalesced clusters will form different packing structures, including Ih and metastable core/shell structures. The Lode-Nadai values reveal the loading states on the atoms when the two clusters collide. The thermodynamic behaviors during the cooling process were investigated to better understand the order degree of the packing structures and the structural transition processes.
Collapse
Affiliation(s)
- Jinhan Liu
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Lin Zhang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
14
|
Yang M, Li B, Li S, Dong Q, Huang Z, Zheng S, Fang Y, Zhou G, Chen X, Zhu X, Li T, Chi M, Wang G, Hu L, Ren ZJ. Highly Selective Electrochemical Nitrate to Ammonia Conversion by Dispersed Ru in a Multielement Alloy Catalyst. NANO LETTERS 2023; 23:7733-7742. [PMID: 37379097 DOI: 10.1021/acs.nanolett.3c01978] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Electrochemical reduction of nitrate to ammonia (NH3) converts an environmental pollutant to a critical nutrient. However, current electrochemical nitrate reduction operations based on monometallic and bimetallic catalysts are limited in NH3 selectivity and catalyst stability, especially in acidic environments. Meanwhile, catalysts with dispersed active sites generally exhibit a higher atomic utilization and distinct activity. Herein, we report a multielement alloy nanoparticle catalyst with dispersed Ru (Ru-MEA) with other synergistic components (Cu, Pd, Pt). Density functional theory elucidated the synergy effect of Ru-MEA than Ru, where a better reactivity (NH3 partial current density of -50.8 mA cm-2) and high NH3 faradaic efficiency (93.5%) is achieved in industrially relevant acidic wastewater. In addition, the Ru-MEA catalyst showed good stability (e.g., 19.0% decay in FENH3 in three hours). This work provides a potential systematic and efficient catalyst discovery process that integrates a data-guided catalyst design and novel catalyst synthesis for a range of applications.
Collapse
Affiliation(s)
- Meiqi Yang
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Boyang Li
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Shuke Li
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Qi Dong
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Zhennan Huang
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Sunxiang Zheng
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Ying Fang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Guangye Zhou
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Xi Chen
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Xiaobo Zhu
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Tangyuan Li
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37932, United States
| | - Guofeng Wang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
15
|
Liu C, Yan W, Wen Y, Huang Z, Chen B, Li Y, Huang X. Metal-Organic Framework Derived Cu-Ag Interface for Selective Carbon Monoxide Electroreduction to Acetate. Chemistry 2023; 29:e202301456. [PMID: 37314829 DOI: 10.1002/chem.202301456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
Electrochemical carbon monoxide reduction reaction (CORR) is a potential way to obtain high-value multi-carbon (C2+ ) products. However, achieving high selectivity to acetate is still a challenge. Herein, we develop a two-dimensional Ag-modified Cu metal-organic framework (Ag0.10 @CuMOF-74) that demonstrates Faradaic efficiency (FE) for C2+ products up to 90.4 % at 200 mA cm-2 and an acetate FE of 61.1 % with a partial current density of 122.2 mA cm-2 . Detailed investigations show that the introduction of Ag on CuMOF-74 favors the generation of abundant Cu-Ag interface sites. In situ attenuated total reflection surface enhanced infrared absorption spectroscopy confirms that these Cu-Ag interface sites improve the coverage of *CO and *CHO and the coupling between each other and stabilize key intermediates *OCCHO and *OCCH2 , thus significantly promoting to the acetate selectivity on Ag0.10 @CuMOF-74. This work provides a high-efficiency pathway for CORR to C2+ products.
Collapse
Affiliation(s)
- Chang Liu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361000, Fujian, P. R. China
| | - Wei Yan
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361000, Fujian, P. R. China
| | - Yan Wen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361000, Fujian, P. R. China
| | - Zhongliang Huang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361000, Fujian, P. R. China
| | - Bo Chen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361000, Fujian, P. R. China
| | - Yunhua Li
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361000, Fujian, P. R. China
| | - Xiaoqing Huang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361000, Fujian, P. R. China
| |
Collapse
|
16
|
Fu S, Chen GX, Guo H, Liu S, Yan M, Lou Y, Ying H, Yao Z, Ren Y, Jiang W, Zhu H, Hahn H, Feng T, Lan S. Synthesis of Free-Standing Pd-Ni-P Metallic Glass Nanoparticles with Durable Medium-Range Ordered Structure for Enhanced Electrocatalytic Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300721. [PMID: 37081277 DOI: 10.1002/smll.202300721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Topologically disordered metallic glass nanoparticles (MGNPs) with highly active and tailorable surface chemistries have immense potential for functional uses. The synthesis of free-standing MGNPs is crucial and intensively pursued because their activity strongly depends on their exposed surfaces. Herein, a novel laser-evaporated inert-gas condensation method is designed and successfully developed for synthesizing free-standing MGNPs without substrates or capping agents, which is implemented via pulse laser-induced atomic vapor deposition under an inert helium atmosphere. In this way, the metallic atoms vaporized from the targets collide with helium atoms and then condense into short-range-order (SRO) clusters, which mutually assemble to form the MGNPs. Using this method, free-standing Pd40 Ni40 P20 MGNPs with a spherical morphology are synthesized, which demonstrates satisfactory electrocatalytic activity and durability in oxygen reduction reactions. Moreover, local structure investigations using synchrotron pair distribution function techniques reveal the transformation of SRO cluster connection motifs of the MGNPs from face-sharing to edge-sharing modes during cyclic voltammetry cycles, which enhances the electrochemical stability by blocking crystallization. This approach provides a general strategy for preparing free-standing MGNPs with high surface activities, which may have widespread functional applications.
Collapse
Affiliation(s)
- Shu Fu
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guo-Xing Chen
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Suzhou Nuclear Power Research Institute Co., Ltd, Suzhou, 215004, China
| | - Hu Guo
- National Special Superfine Powder Engineering Research Center, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Sinan Liu
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Mengyang Yan
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yu Lou
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Huiqiang Ying
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhongzheng Yao
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yang Ren
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Wei Jiang
- National Special Superfine Powder Engineering Research Center, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - He Zhu
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Horst Hahn
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tao Feng
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Si Lan
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Center of Neutron Scattering, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
17
|
Crandall BS, Overa S, Shin H, Jiao F. Turning Carbon Dioxide into Sustainable Food and Chemicals: How Electrosynthesized Acetate Is Paving the Way for Fermentation Innovation. Acc Chem Res 2023. [PMID: 37205870 DOI: 10.1021/acs.accounts.3c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
ConspectusThe agricultural and chemical industries are major contributors to climate change. To address this issue, hybrid electrocatalytic-biocatalytic systems have emerged as a promising solution for reducing the environmental impact of these key sectors while providing economic onboarding for carbon capture technology. Recent advancements in the production of acetate via CO2/CO electrolysis as well as advances in precision fermentation technology have prompted electrochemical acetate to be explored as an alternative carbon source for synthetic biology. Tandem CO2 electrolysis coupled with improved reactor design has accelerated the commercial viability of electrosynthesized acetate in recent years. Simultaneously, innovations in metabolic engineering have helped leverage pathways that facilitate acetate upgrading to higher carbons for sustainable food and chemical production via precision fermentation. Current precision fermentation technology has received much criticism for reliance upon food crop-derived sugars and starches as feedstock which compete with the human food chain. A shift toward electrosynthesized acetate feedstocks could help preserve arable land for a rapidly growing population.Technoeconomic analysis shows that using electrochemical acetate instead of glucose as a fermentation feedstock reduces the production costs of food and chemicals by 16% and offers improved market price stability. Moreover, given the rapid decline in utility-scale renewable electricity prices, electro-synthesized acetate may become more affordable than conventional production methods at scale. This work provides an outlook on strategies to further advance and scale-up electrochemical acetate production. Additional perspective is offered to help ensure the successful integration of electrosynthesized acetate and precision fermentation technologies. In the electrocatalytic step, it is critical that relatively high purity acetate can be produced in low-concentration electrolyte to help ensure that minimal treatment of the electrosynthesized acetate stream is needed prior to fermentation. In the biocatalytic step, it is critical that microbes with increased tolerances to elevated acetate concentrations are engineered to help promote acetate uptake and accelerate product formation. Additionally, tighter regulation of acetate metabolism via strain engineering is essential to improving cellular efficiency. The implementation of these strategies would allow the coupling of electrosynthesized acetate with precision fermentation to offer a promising approach to sustainably produce chemicals and food. Reducing the environmental impact of the chemical and agricultural sectors is necessary to avoid climate catastrophe and preserve the habitability of the planet for future generations.
Collapse
Affiliation(s)
- Bradie S Crandall
- Center for Catalytic Science & Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Sean Overa
- Center for Catalytic Science & Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Haeun Shin
- Center for Catalytic Science & Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Feng Jiao
- Center for Catalytic Science & Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
18
|
Chen PC, Chen C, Yang Y, Maulana AL, Jin J, Feijoo J, Yang P. Chemical and Structural Evolution of AgCu Catalysts in Electrochemical CO 2 Reduction. J Am Chem Soc 2023; 145:10116-10125. [PMID: 37115017 DOI: 10.1021/jacs.3c00467] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Silver-copper (AgCu) bimetallic catalysts hold great potential for electrochemical carbon dioxide reduction reaction (CO2RR), which is a promising way to realize the goal of carbon neutrality. Although a wide variety of AgCu catalysts have been developed so far, it is relatively less explored how these AgCu catalysts evolve during CO2RR. The absence of insights into their stability makes the dynamic catalytic sites elusive and hampers the design of AgCu catalysts in a rational manner. Here, we synthesized intermixed and phase-separated AgCu nanoparticles on carbon paper electrodes and investigated their evolution behavior in CO2RR. Our time-sequential electron microscopy and elemental mapping studies show that Cu possesses high mobility in AgCu under CO2RR conditions, which can leach out from the catalysts by migrating to the bimetallic catalyst surface, detaching from the catalysts, and agglomerating as new particles. Besides, Ag and Cu manifest a trend to phase-separate into Cu-rich and Ag-rich grains, regardless of the starting catalyst structure. The composition of the Cu-rich and Ag-rich grains diverges during the reaction and eventually approaches thermodynamic values, i.e., Ag0.88Cu0.12 and Ag0.05Cu0.95. The separation between Ag and Cu has been observed in the bulk and on the surface of the catalysts, highlighting the importance of AgCu phase boundaries for CO2RR. In addition, an operando high-energy-resolution X-ray absorption spectroscopy study confirms the metallic state of Cu in AgCu as the catalytically active sites during CO2RR. Taken together, this work provides a comprehensive understanding of the chemical and structural evolution behavior of AgCu catalysts in CO2RR.
Collapse
Affiliation(s)
- Peng-Cheng Chen
- Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Chubai Chen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yao Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Miller Institute, University of California, Berkeley, California 94720, United States
| | - Arifin Luthfi Maulana
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Jianbo Jin
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Julian Feijoo
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Peidong Yang
- Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
19
|
Liu L, Corma A. Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chem Rev 2023; 123:4855-4933. [PMID: 36971499 PMCID: PMC10141355 DOI: 10.1021/acs.chemrev.2c00733] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 03/29/2023]
Abstract
Heterogeneous bimetallic catalysts have broad applications in industrial processes, but achieving a fundamental understanding on the nature of the active sites in bimetallic catalysts at the atomic and molecular level is very challenging due to the structural complexity of the bimetallic catalysts. Comparing the structural features and the catalytic performances of different bimetallic entities will favor the formation of a unified understanding of the structure-reactivity relationships in heterogeneous bimetallic catalysts and thereby facilitate the upgrading of the current bimetallic catalysts. In this review, we will discuss the geometric and electronic structures of three representative types of bimetallic catalysts (bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles) and then summarize the synthesis methodologies and characterization techniques for different bimetallic entities, with emphasis on the recent progress made in the past decade. The catalytic applications of supported bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles for a series of important reactions are discussed. Finally, we will discuss the future research directions of catalysis based on supported bimetallic catalysts and, more generally, the prospective developments of heterogeneous catalysis in both fundamental research and practical applications.
Collapse
Affiliation(s)
- Lichen Liu
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Avelino Corma
- Instituto
de Tecnología Química, Universitat
Politècnica de València−Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avenida de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
20
|
Li M, Zhang JN. Rational design of bimetallic catalysts for electrochemical CO2 reduction reaction: A review. Sci China Chem 2023. [DOI: 10.1007/s11426-023-1565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
21
|
Alkaline hydrogen oxidation reaction on Ni-based electrocatalysts: From mechanistic study to material development. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Xiong H, Sun Q, Chen K, Xu Y, Chang X, Lu Q, Xu B. Correlating the Experimentally Determined CO Adsorption Enthalpy with the Electrochemical CO Reduction Performance on Cu Surfaces. Angew Chem Int Ed Engl 2023; 62:e202218447. [PMID: 36655721 DOI: 10.1002/anie.202218447] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
CO binding energy has been widely employed as a descriptor for effective catalysts in the electrochemical CO2 and CO reduction reactions (CO(2) RR), however, it has yet to be determined experimentally at electrochemical interfaces due to the lack of suitable techniques. In this work, we developed a method to determine the standard adsorption enthalpy of CO on Cu surfaces with quantitative surface enhanced infrared absorption spectroscopy. On dendritic Cu at -0.75 V vs. SHE, the standard adsorption enthalpy, entropy and Gibbs free energy were determined to 1.5±0.5 kJ mol-1 , ≈37.9±13.4 J/(mol K), and ≈-9.8±4.0 kJ mol-1 , respectively. Comparison of the standard adsorption enthalpy of oxide-derived Cu and dendritic Cu, as well as their CORR activities, suggests the presence of stronger binding sites on OD Cu, which could favor multicarbon products. The method developed in this work will help establish the correlation between the CO binding energy and the CO(2) RR activity.
Collapse
Affiliation(s)
- Haocheng Xiong
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Qiwen Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Kedang Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yifei Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
23
|
Li J, Xiong H, Liu X, Wu D, Su D, Xu B, Lu Q. Weak CO binding sites induced by Cu-Ag interfaces promote CO electroreduction to multi-carbon liquid products. Nat Commun 2023; 14:698. [PMID: 36755022 PMCID: PMC9908878 DOI: 10.1038/s41467-023-36411-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Electrochemical reduction of carbon monoxide to high-value multi-carbon (C2+) products offers an appealing route to store sustainable energy and make use of the chief greenhouse gas leading to climate change, i.e., CO2. Among potential products, C2+ liquid products such as ethanol are of particular interest owing to their high energy density and industrial relevance. In this work, we demonstrate that Ag-modified oxide-derive Cu catalysts prepared via high-energy ball milling exhibit near 80% Faradaic efficiencies for C2+ liquid products at commercially relevant current densities (>100 mA cm-2) in the CO electroreduction in a microfluidic flow cell. Such performance is retained in an over 100-hour electrolysis in a 100 cm2 membrane electrode assembly (MEA) electrolyzer. A method based on surface-enhanced infrared absorption spectroscopy is developed to characterize the CO binding strength on the catalyst surface. The lower C and O affinities of the Cu-Ag interfacial sites in the prepared catalysts are proposed to be responsible for the enhanced selectivity for C2+ oxygenates, which is the experimental verification of recent computational predictions.
Collapse
Affiliation(s)
- Jing Li
- grid.12527.330000 0001 0662 3178State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Haocheng Xiong
- grid.12527.330000 0001 0662 3178State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China ,grid.11135.370000 0001 2256 9319College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| | - Xiaozhi Liu
- grid.9227.e0000000119573309Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
| | - Donghuan Wu
- grid.12527.330000 0001 0662 3178State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Dong Su
- grid.9227.e0000000119573309Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
| | - Bingjun Xu
- grid.11135.370000 0001 2256 9319College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
24
|
Zhang C, Xue C. Ligand-assisted morphology regulation of AuNi bimetallic nanocrystals for efficient hydrogen evolution. RSC Adv 2023; 13:1229-1235. [PMID: 36686932 PMCID: PMC9812016 DOI: 10.1039/d2ra06325e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
We report the controllable synthesis of AuNi core-shell (c-AuNi) and Janus (j-AuNi) nanocrystals (NCs) with uniform shape, tunable size and compositions in the presence of trioctylphosphine (TOP) or triphenylphosphine (TPP). The morphology of the AuNi bimetallic NCs could be regulated by varying the structure and concentration of phosphine ligands. The ligand-directed structural evolution mechanism of AuNi bimetallic NCs was investigated and discussed in detail. When loaded on graphitic carbon nitride (GCN) for photocatalytic hydrogen generation, the obtained j-AuNi NCs showed much higher activity for hydrogen evolution than the monometallic (Au and Ni) counterparts, owing to the synergistic effect of plasmon enhanced light absorption from the Au portion and additional electron sink effect from the Ni portion. This work provides a promising route for preparing low-cost Au-based bimetallic catalysts with controllable morphologies and high activities for hydrogen production.
Collapse
Affiliation(s)
- Chu Zhang
- School of Materials Science and Engineering, Nanyang Technological University50 Nanyang Avenue639798 Singapore
| | - Can Xue
- School of Materials Science and Engineering, Nanyang Technological University50 Nanyang Avenue639798 Singapore
| |
Collapse
|
25
|
Kim C, Song JY, Choi C, Ha JP, Lee W, Nam YT, Lee DM, Kim G, Gereige I, Jung WB, Lee H, Jung Y, Jeong H, Jung HT. Atomic-Scale Homogeneous RuCu Alloy Nanoparticles for Highly Efficient Electrocatalytic Nitrogen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205270. [PMID: 35901115 DOI: 10.1002/adma.202205270] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Ruthenium (Ru) is the most widely used metal as an electrocatalyst for nitrogen (N2 ) reduction reaction (NRR) because of the relatively high N2 adsorption strength for successive reaction. Recently, it has been well reported that the homogeneous Ru-based metal alloys such as RuRh, RuPt, and RuCo significantly enhance the selectivity and formation rate of ammonia (NH3 ). However, the metal combinations for NRR have been limited to several miscible combinations of metals with Ru, although various immiscible combinations have immense potential to show high NRR performance. In this study, an immiscible combination of Ru and copper (Cu) is first utilized, and homogeneous alloy nanoparticles (RuCu NPs) are fabricated by the carbothermal shock method. The RuCu homogeneous NP alloys on cellulose/carbon nanotube sponge exhibit the highest selectivity and NH3 formation rate of ≈31% and -73 μmol h-1 cm-2 , respectively. These are the highest values of the selectivity and NH3 formation rates among existing Ru-based alloy metal combinations.
Collapse
Affiliation(s)
- Chansol Kim
- KAIST-UCB-VNU Global Climate Change Research Center, Department of Chemical & Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Ji-Yoon Song
- KAIST-UCB-VNU Global Climate Change Research Center, Department of Chemical & Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, 55324, Republic of Korea
| | - Changhyeok Choi
- Advanced Materials Simulations Group, Department of Chemical & Biomolecular Engineering (BK-21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jin Pil Ha
- KAIST-UCB-VNU Global Climate Change Research Center, Department of Chemical & Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Wonmoo Lee
- KAIST-UCB-VNU Global Climate Change Research Center, Department of Chemical & Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Yoon Tae Nam
- KAIST-UCB-VNU Global Climate Change Research Center, Department of Chemical & Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Dong-Myeong Lee
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, 55324, Republic of Korea
| | - Gunjoo Kim
- Catalytic Materials and Process Lab, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Issam Gereige
- Saudi Aramco, Research and Development Center, Dhahran, 31311, Saudi Arabia
| | - Woo-Bin Jung
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Hyunjoo Lee
- Catalytic Materials and Process Lab, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Yousung Jung
- Advanced Materials Simulations Group, Department of Chemical & Biomolecular Engineering (BK-21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentury, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyeonsu Jeong
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, 55324, Republic of Korea
| | - Hee-Tae Jung
- KAIST-UCB-VNU Global Climate Change Research Center, Department of Chemical & Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
- KAIST Institute for Nanocentury, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
26
|
Akiyoshi K, Watanabe Y, Kameyama T, Kawawaki T, Negishi Y, Kuwabata S, Torimoto T. Composition control of alloy nanoparticles consisting of bulk-immiscible Au and Rh metals via an ionic liquid/metal sputtering technique for improving their electrocatalytic activity. Phys Chem Chem Phys 2022; 24:24335-24344. [PMID: 36177988 DOI: 10.1039/d2cp01461k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AuRh bimetallic alloy nanoparticles (NPs) were successfully prepared by simultaneous sputtering of Au and Rh in a room-temperature ionic liquid (RTIL) of N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate (DEME-BF4). Bimetallic AuRh alloy NPs of 1-2 nm in size were formed in the RTIL. The alloy composition was controllable by changing the surface areas of Au and Rh plates used as sputtering targets. Loading thus-obtained AuRh NPs on carbon black (CB) powders increased the size of AuRh NPs to ca. 2-8 nm, depending on the Au/Rh ratio. The electrocatalytic activity for oxygen reduction reaction (ORR) of AuRh NP-loaded CB catalysts showed a volcano-type dependence on their composition, in which AuRh NPs with Au surface coverage of 62% exhibited the optimal ORR activity, the specific activity being ca. 5 times higher than that of pure Rh NPs.
Collapse
Affiliation(s)
- Kazutaka Akiyoshi
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | - Yumezo Watanabe
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | - Tatsuya Kameyama
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.,Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.,Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Susumu Kuwabata
- Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Tsukasa Torimoto
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| |
Collapse
|
27
|
Castilla-Amorós L, Schouwink P, Oveisi E, Okatenko V, Buonsanti R. Tailoring Morphology and Elemental Distribution of Cu-In Nanocrystals via Galvanic Replacement. J Am Chem Soc 2022; 144:18286-18295. [PMID: 36173602 DOI: 10.1021/jacs.2c05792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The compositional and structural diversity of bimetallic nanocrystals (NCs) provides a superior tunability of their physico-chemical properties, making them attractive for a variety of applications, including sensing and catalysis. Nevertheless, the manipulation of the properties-determining features of bimetallic NCs still remains a challenge, especially when moving away from noble metals. In this work, we explore the galvanic replacement reaction (GRR) of In NCs and a copper molecular precursor to obtain Cu-In bimetallic NCs with an unprecedented variety of morphologies and distribution of the two metals. We obtain spherical Cu11In9 intermetallic and patchy phase-segregated Cu-In NCs, as well as dimer-like Cu-Cu11In9 and Cu-In NCs. In particular, we find that segregation of the two metals occurs as the GRR progresses with time or with a higher copper precursor concentration. We discover size-dependent reaction kinetics, with the smaller In NCs undergoing a slower transition across the different Cu-In configurations. We compare the obtained results with the bulk Cu-In phase diagram and, interestingly, find that the bigger In NCs stabilize the bulk-like Cu-Cu11In9 configuration before their complete segregation into Cu-In NCs. Finally, we also prove the utility of the new family of Cu-In NCs as model catalysts to elucidate the impact of the metal elemental distribution on the selectivity of these bimetallics toward the electrochemical CO2 reduction reaction. Generally, we demonstrate that the GRR is a powerful synthetic approach beyond noble metal-containing bimetallic structures, yet that the current knowledge on this reaction is challenged when oxophilic and poorly miscible metal pairs are used.
Collapse
Affiliation(s)
- Laia Castilla-Amorós
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Pascal Schouwink
- Institute of Chemical Science and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Emad Oveisi
- Interdisciplinary Center for Electron Microscopy (CIME), École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Valery Okatenko
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| |
Collapse
|
28
|
Yu Y, Wang D, Hong Y, Zhang T, Liu C, Chen J, Qin G, Li S. Bulk-immiscible CuAg alloy nanorods prepared by phase transition from oxides for electrochemical CO 2 reduction. Chem Commun (Camb) 2022; 58:11163-11166. [PMID: 36111512 DOI: 10.1039/d2cc04789f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combining Cu and Ag in an alloy state holds promise to serve as a tandem catalyst for electrocatalytic CO2 reduction, but is restricted by immiscibility in the bulk. Here, a far-from-equilibrium method is developed to synthesize CuAg alloy by electroreduction of Cu2Ag2O3 under a large cathodic overpotential. The alloy state of CuAg is conducive to the formation of C2+ molecules. A high formation rate of C2H4 of 159.8 μmol cm-2 h-1 is reached on the CuAg alloy nanorods, 2.3 times higher than that on pure Cu.
Collapse
Affiliation(s)
- Yihong Yu
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Di Wang
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Yimeng Hong
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Teng Zhang
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Chuangwei Liu
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Jing Chen
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Gaowu Qin
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Song Li
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China. .,Institute for Frontier Technologies of Low-Carbon Steelmaking, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
29
|
Meischein M, Garzón-Manjón A, Hammerschmidt T, Xiao B, Zhang S, Abdellaoui L, Scheu C, Ludwig A. Elemental (im-)miscibility determines phase formation of multinary nanoparticles co-sputtered in ionic liquids. NANOSCALE ADVANCES 2022; 4:3855-3869. [PMID: 36133350 PMCID: PMC9470033 DOI: 10.1039/d2na00363e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Non-equilibrium synthesis methods allow the alloying of bulk-immiscible elements into multinary nanoparticles, which broadens the design space for new materials. Whereas sputtering onto solid substrates can combine immiscible elements into thin film solid solutions, this is not clear for sputtering of nanoparticles in ionic liquids. Thus, the suitability of sputtering in ionic liquids for producing nanoparticles of immiscible elements is investigated by co-sputtering the systems Au-Cu (miscible), Au-Ru and Cu-Ru (both immiscible), and Au-Cu-Ru on the surface of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [Bmim][(Tf)2N]. The sputtered nanoparticles were analyzed to obtain (i) knowledge concerning the general formation process of nanoparticles when sputtering onto ionic liquid surfaces and (ii) information, if alloy nanoparticles of immiscible elements can be synthesized as well as (iii) evidence if the Hume-Rothery rules for solid solubility are valid for sputtered nanoparticles. Nanoparticle characteristics were found to depend on elemental miscibility: (1) nanoparticles from immiscible elemental combinations showed bigger mean diameters ranging from (3.3 ± 1.4) nm to (5.0 ± 1.7) nm in contrast to mean diameters of nanoparticles from elemental combinations with at least one miscible element pair ((1.7 ± 0.7) nm to (1.8 ± 0.6) nm). (2) Nanoparticles from immiscible combinations showed compositions with one element strongly dominating the ratio and very narrow differences between the highest and lowest fraction of the dominating element (Cu94Ru6 to Cu100Ru0; Au96Ru4 to Au99Ru1) in contrast to the other compositions (Au64Cu36 to Au81Cu19; Au83Cu13Ru4/Au75Cu22Ru3 to Au87Cu11Ru2). Accompanying atomistic simulations using density-functional theory for clusters of different size and ordering confirm that the miscibility of Au-Cu and the immiscibility of Au-Ru and Cu-Ru govern the thermodynamic stability of the nanoparticles. Based on the matching experimental and theoretical results for the NP/IL-systems concerning NP stability, a formation model of multinary NPs in ILs was developed.
Collapse
Affiliation(s)
- Michael Meischein
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum Universitätsstr. 150 D-44780 Bochum Germany
| | - Alba Garzón-Manjón
- Max-Planck-Institut für Eisenforschung GmbH Max-Planck-Straße 1 D-0237 Düsseldorf Germany
| | - Thomas Hammerschmidt
- Chair of Atomistic Modelling and Simulation, Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr University Bochum Universitätsstr. 150 D-44780 Bochum Germany
| | - Bin Xiao
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum Universitätsstr. 150 D-44780 Bochum Germany
| | - Siyuan Zhang
- Max-Planck-Institut für Eisenforschung GmbH Max-Planck-Straße 1 D-0237 Düsseldorf Germany
| | - Lamya Abdellaoui
- Max-Planck-Institut für Eisenforschung GmbH Max-Planck-Straße 1 D-0237 Düsseldorf Germany
| | - Christina Scheu
- Max-Planck-Institut für Eisenforschung GmbH Max-Planck-Straße 1 D-0237 Düsseldorf Germany
| | - Alfred Ludwig
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum Universitätsstr. 150 D-44780 Bochum Germany
| |
Collapse
|
30
|
Jeon YE, Ko YN, Kim J, Choi H, Lee W, Kim YE, Lee D, Kim HY, Park KT. Selective production of ethylene from CO2 over CuAg tandem electrocatalysts. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
31
|
Zhu X, Wang C, Wang T, Lan H, Ding Y, Shi H, Liu L, Shi H, Wang L, Wang H, Ding Y, Fu Y, Zeng M, Fu L. Dual Self-Built Gating Boosts the Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202479. [PMID: 35471773 DOI: 10.1002/adma.202202479] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Optimizing the intrinsic activity of active sites is an appealing strategy for accelerating the kinetics of the catalytic process. Here, a design principle, namely "dual self-built gating", is proposed to tailor the electronic structures of catalysts. Catalytic improvement is confirmed in a model catalyst with a ReS2 -WS2 /WS2 hybridized heterostructure. As demonstrated in experimental and theoretical results, the dual gating can bidirectionally guide electron transfer and redistribute at the interface, endowing the model catalyst with an electron-rich region. The tailored electronic structures balance the adsorption of intermediates and the desorption of hydrogen synergistically to enhance the reaction kinetics for the hydrogen evolution reaction. Interestingly, the effect of dual gating can be easily amplified by the electric field. The overpotential and Tafel slope (49 mV, 35 mV dec-1 ) obtained under the electric field for ReS2 -WS2 /WS2 catalyst with the dual self-built gating effect are far below than those (210 mV, 116 mV dec-1 ) of the pure WS2 catalyst, which exhibits nearly four times improvement. The concept of dual gating can be applied to more systems, offering a new guideline for designing advanced electrocatalysts.
Collapse
Affiliation(s)
- Xiaohui Zhu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Chenyang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Tingli Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Haihui Lan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Ding
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hu Shi
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lisi Liu
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Haiwen Shi
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Luyang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Huiliu Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yiran Ding
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Yingshuang Fu
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lei Fu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
32
|
Kim K, Seo B, Park S, Shin D, Kim S, Choi W. Electrothermally Driven Nucleation Energy Control of Defective Carbon and Nickel-Cobalt Oxide-Based Electrodes. ACS NANO 2022; 16:9772-9784. [PMID: 35616588 DOI: 10.1021/acsnano.2c03500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multielement metal/metal oxides/carbon-based support hybrids are promising candidates for high-performance electrodes. However, conventional solid-state synthesis utilizing slow heating-cooling rates is limited by discrepancies in their phase transition temperatures. Herein, we report a rational strategy to control the nucleation energy of defective carbon fibers (DCFs) and Ni-Co-oxide-based electrodes capable of electrochemical activation using electrothermal waves (ETWs). The ETWs, triggered by Joule heating passing through CFs and Ni-Co precursors, induce programmable high-temperature processes via adjustable input powers and durations. The first ETW (∼1500 °C) fabricates the presculpted DCFs, while the second ETW (∼600 °C) directly synthesizes NiCo2O4 spinel nanoparticles on the DCFs. Predesigning DCFs through the Gibbs free energy theory enables tunable control of nucleation energy and solution compatibility with Ni-Co precursors, allowing the morphological and compositional design of the optimal NiCo2O4@DCFs hybrids. Furthermore, they are electrochemically activated to change the morphologies and oxidation states of Ni-Co to more stable wrinkled structures strongly anchored to carbon supports and Ni-Co cations with low oxidation numbers. The activated NiCo2O4@DCFs electrodes exhibit outstanding specific capacitance and long-term cyclic stability (∼1925 F g-1 and ∼115-123% for 20 000 cycles). The ETWs offer a facile yet precise method to predesign carbon supports and subsequently synthesize hybrid electrodes.
Collapse
Affiliation(s)
- Kyungmin Kim
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Byungseok Seo
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seonghyun Park
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Dongjoon Shin
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sungsoo Kim
- Manufacturing and Technology Division, Bertis Inc., Gyeonggi-do 16954, Republic of Korea
| | - Wonjoon Choi
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
33
|
Ren C, Lu S, Wu Y, Ouyang Y, Zhang Y, Li Q, Ling C, Wang J. A Universal Descriptor for Complicated Interfacial Effects on Electrochemical Reduction Reactions. J Am Chem Soc 2022; 144:12874-12883. [PMID: 35700099 DOI: 10.1021/jacs.2c04540] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Supported catalysts have exhibited excellent performance in various reactions. However, the rational design of supported catalysts with high activity and certain selectivity remains a great challenge because of the complicated interfacial effects. Using recently emerged two-dimensional materials supported dual-atom catalysts (DACs@2D) as a prototype, we propose a simple and universal descriptor based on inherent atomic properties (electronegativity, electron type, and number), which can well evaluate the complicated interfacial effects on the electrochemical reduction reactions (i.e., CO2, O2, and N2 reduction reactions). Based on this descriptor, activity and selectivity trends in CO2 reduction reaction are successfully elucidated, in good agreement with available experimental data. Moreover, several potential catalysts with superior activity and selectivity for target products are predicted, such as CuCr/g-C3N4 for CH4 and CuSn/N-BN for HCOOH. More importantly, this descriptor can also be extended to evaluate the activity of DACs@2D for O2 and N2 reduction reactions, with very small errors between the prediction and reported experimental/computational results. This work provides feasible principles for the rational design of advanced electrocatalysts and the construction of universal descriptors based on inherent atomic properties.
Collapse
Affiliation(s)
- Chunjin Ren
- School of Physics, Southeast University, Nanjing 211189, China
| | - Shuaihua Lu
- School of Physics, Southeast University, Nanjing 211189, China
| | - Yilei Wu
- School of Physics, Southeast University, Nanjing 211189, China
| | - Yixin Ouyang
- School of Physics, Southeast University, Nanjing 211189, China
| | - Yehui Zhang
- School of Physics, Southeast University, Nanjing 211189, China
| | - Qiang Li
- School of Physics, Southeast University, Nanjing 211189, China
| | - Chongyi Ling
- School of Physics, Southeast University, Nanjing 211189, China
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing 211189, China
| |
Collapse
|
34
|
Kim M, Ha MY, Jung WB, Yoon J, Shin E, Kim ID, Lee WB, Kim Y, Jung HT. Searching for an Optimal Multi-Metallic Alloy Catalyst by Active Learning Combined with Experiments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108900. [PMID: 35229377 DOI: 10.1002/adma.202108900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Searching for an optimal component and composition of multi-metallic alloy catalysts, comprising two or more elements, is one of the key issues in catalysis research. Due to the exhaustive data requirement of conventional machine-learning (ML) models and the high cost of experimental trials, current approaches rely mainly on the combination of density functional theory and ML techniques. In this study, a significant step is taken toward overcoming limitations by the interplay of experiment and active learning to effectively search for an optimal component and composition of multi-metallic alloy catalysts. The active-learning model is iteratively updated using by examining electrocatalytic performance of fabricated solid-solution nanoparticles for the hydrogen evolution reaction (HER). An optimal metal precursor composition of Pt0.65 Ru0.30 Ni0.05 exhibits an HER overpotential of 54.2 mV, which is superior to that of the pure Pt catalyst. This result indicates the successful construction of the model by only utilizing the precursor mixture composition as input data, thereby improving the overpotential by searching for an optimal catalyst. This method appears to be widely applicable since it is able to determine an optimal component and composition of electrocatalyst without obvious restriction to the types of catalysts to which it can be applied.
Collapse
Affiliation(s)
- Minki Kim
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
- Korea Advanced Institute of Science and Technology (KAIST) Institute for Nanocentury, Yuseong-gu, Daejeon, 34141, Korea
| | - Min Young Ha
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Korea
| | - Woo-Bin Jung
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Jeesoo Yoon
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
- Korea Advanced Institute of Science and Technology (KAIST) Institute for Nanocentury, Yuseong-gu, Daejeon, 34141, Korea
| | - Euichul Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Korea
| | - YongJoo Kim
- School of Advanced Materials Engineering, Kookmin University, Seoul, 02707, Korea
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
- Korea Advanced Institute of Science and Technology (KAIST) Institute for Nanocentury, Yuseong-gu, Daejeon, 34141, Korea
| |
Collapse
|
35
|
Foucher AC, Yang S, Rosen DJ, Lee JD, Huang R, Jiang Z, Barrera FG, Chen K, Hollyer GG, Friend CM, Gorte RJ, Murray CB, Stach EA. Synthesis and Characterization of Core-Shell Cu-Ru, Cu-Rh, and Cu-Ir Nanoparticles. J Am Chem Soc 2022; 144:7919-7928. [PMID: 35471010 DOI: 10.1021/jacs.2c02538] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Optimizing the use of expensive precious metals is critical to developing sustainable and low-cost processes for heterogeneous catalysis or electrochemistry. Here, we report a synthesis method that yields core-shell Cu-Ru, Cu-Rh, and Cu-Ir nanoparticles with the platinum-group metals segregated on the surface. The synthesis of Cu-Ru, Cu-Rh, and Cu-Ir particles allows maximization of the surface area of these metals and improves catalytic performance. Furthermore, the Cu core can be selectively etched to obtain nanoshells of the platinum-group metal components, leading to a further increase in the active surface area. Characterization of the samples was performed with X-ray absorption spectroscopy, X-ray powder diffraction, and ex situ and in situ transmission electron microscopy. CO oxidation was used as a reference reaction: the three core-shell particles and derivatives exhibited promising catalyst performance and stability after redox cycling. These results suggest that this synthesis approach may optimize the use of platinum-group metals in catalytic applications.
Collapse
Affiliation(s)
- Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Shengsong Yang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daniel J Rosen
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jennifer D Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Renjing Huang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zhiqiao Jiang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Francisco G Barrera
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kelly Chen
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - George G Hollyer
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Cynthia M Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Raymond J Gorte
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Christopher B Murray
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
36
|
Yao Y, Dong Q, Brozena A, Luo J, Miao J, Chi M, Wang C, Kevrekidis IG, Ren ZJ, Greeley J, Wang G, Anapolsky A, Hu L. High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery. Science 2022; 376:eabn3103. [PMID: 35389801 DOI: 10.1126/science.abn3103] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High-entropy nanoparticles have become a rapidly growing area of research in recent years. Because of their multielemental compositions and unique high-entropy mixing states (i.e., solid-solution) that can lead to tunable activity and enhanced stability, these nanoparticles have received notable attention for catalyst design and exploration. However, this strong potential is also accompanied by grand challenges originating from their vast compositional space and complex atomic structure, which hinder comprehensive exploration and fundamental understanding. Through a multidisciplinary view of synthesis, characterization, catalytic applications, high-throughput screening, and data-driven materials discovery, this review is dedicated to discussing the important progress of high-entropy nanoparticles and unveiling the critical needs for their future development for catalysis, energy, and sustainability applications.
Collapse
Affiliation(s)
- Yonggang Yao
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Qi Dong
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Alexandra Brozena
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Jian Luo
- Department of NanoEngineering, Program of Materials Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jianwei Miao
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37932, USA
| | - Chao Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ioannis G Kevrekidis
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA
| | - Jeffrey Greeley
- School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Guofeng Wang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA.,Center for Materials Innovation, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
37
|
Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu–Pd sites. Nat Catal 2022. [DOI: 10.1038/s41929-022-00757-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
38
|
Overa S, Ko BH, Zhao Y, Jiao F. Electrochemical Approaches for CO 2 Conversion to Chemicals: A Journey toward Practical Applications. Acc Chem Res 2022; 55:638-648. [PMID: 35041403 DOI: 10.1021/acs.accounts.1c00674] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Carbon capture, utilization, and sequestration play an essential role to address CO2 emissions. Among all carbon utilization technologies, CO2 electroreduction has gained immense interest due to its potential for directly converting CO2 to a variety of valuable commodity chemicals using clean, renewable electricity as the sole energy source. The research community has witnessed rapid advances in CO2 electrolysis technology in recent years, including highly selective catalysts, larger-scale reactors, specific process modeling, as well as a mechanistic understanding of the CO2 reduction reaction. The rapid advances in the field brings promise to the commercial application of the technology and the rapid rollout of the CO2 electroreduction for chemical manufacturing.This Account focuses on our contributions in both fundamental and applied research in the field of electrocatalytic CO2 and CO reduction reactions. We first discuss (1) the development of novel electrocatalysts for CO2/CO electroreduction to enhance the product selectivity and lower the energy consumption. Specifically, we synthesized nanoporous Ag and homogeneously mixed Cu-based bimetallic catalysts for the enhanced production of CO from CO2 and multicarbon products from CO, respectively. Then, we review our efforts in (2) the field of reactor engineering, including a dissolved CO2 H-type cell, vapor-fed CO2 three-compartment flow cell, and vapor-fed CO2 membrane electrode assembly, for enhancing reaction rates and scalability. Next, we describe (3) the investigation of reaction mechanisms using in situ and operando techniques, such as surface-enhanced vibrational spectroscopies and electrochemical mass spectroscopy. We revealed the participation of bicarbonate in CO2 electroreduction on Au using attenuated total-reflectance surface-enhanced infrared absorption spectroscopy, the presence of an "oxygenated" surface of Cu under CO electroreduction conditions using surface-enhanced Raman spectroscopy, and the origin of oxygen in acetaldehyde and other CO electroreduction products on Cu using flow electrolyzer mass spectrometry. Lastly, we examine (4) the commercial potential of the CO2 electrolysis technology, such as understanding pollutant effects in CO2 electroreduction and developing techno-economic analysis. Specifically, we discuss the effects of SO2 and NOx in CO2 electroreduction using Cu, Ag, and Sn catalysts. We also identify technical barriers that need to be overcome and offer our perspective on accelerating the commercial deployment of the CO2 electrolysis technology.
Collapse
Affiliation(s)
- Sean Overa
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Byung Hee Ko
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Yaran Zhao
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Feng Jiao
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
39
|
Dong Q, Hong M, Gao J, Li T, Cui M, Li S, Qiao H, Brozena AH, Yao Y, Wang X, Chen G, Luo J, Hu L. Rapid Synthesis of High-Entropy Oxide Microparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104761. [PMID: 35049145 DOI: 10.1002/smll.202104761] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/15/2021] [Indexed: 06/14/2023]
Abstract
High-entropy nanoparticles have received notable attention due to their tunable properties and broad material space. However, these nanoparticles are not suitable for certain applications (e.g., battery electrodes), where their microparticle (submicron to micron) counterparts are more preferred. Conventional methods used for synthesizing high-entropy nanoparticles often involve various ultrafast shock processes. To increase the size thereby achieving high-entropy microparticles, longer reaction time (e.g., heating duration) is usually used, which may also lead to undesired particle overgrowth or even densified microstructures. In this work, an approach based on Joule heating for synthesizing high-entropy oxide (HEO) microparticles with uniform elemental distribution is reported. In particular, two key synthesis conditions are identified to achieve high-quality HEO microparticles: 1) the precursors need to be loosely packed to avoid densification; 2) the heating time needs to be accurately controlled to tens of seconds instead of using milliseconds (thermal shock) that leads to nanoparticles or longer heating duration that forms bulk structures. The utility of the synthesized HEO microparticles for a range of applications, including high-performance Li-ion battery anode and water oxidation catalyst. This study opens up a new door toward synthesizing high-entropy microparticles with high quality and broad material space.
Collapse
Affiliation(s)
- Qi Dong
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Min Hong
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Jinlong Gao
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Tangyuan Li
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Mingjin Cui
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Shuke Li
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Haiyu Qiao
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Alexandra H Brozena
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Yonggang Yao
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Xizheng Wang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Gang Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Jian Luo
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
- Center for Materials Innovation, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
40
|
Li L, Li X, Sun Y, Xie Y. Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network. Chem Soc Rev 2022; 51:1234-1252. [PMID: 35103737 DOI: 10.1039/d1cs00893e] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Electrocatalytic CO2 reduction has attracted much attention for its potential application in CO2 mitigation and fuel production. During the past two decades, the electrocatalytic reduction of CO2 has made considerable progress, and it has become a promising tool to answer environmental problems. However, most research into electrocatalytic CO2 reduction focuses on catalysts at the material level instead of evaluating the performance of the entire system for practical applications, which is insufficient to promote the sound development. This review emphasizes on how to rationally design an electrocatalytic CO2 reduction system. We initially demonstrate the necessity of electrocatalytic CO2 reduction and establish its economic analysis, and at the same time provide an overview of representative breakthroughs in this field. Then, we combine with advanced characterization technologies to deeply understand the reaction pathways of electrocatalytic CO2 reduction at the molecular level. Furthermore, we point out how theoretical guidelines enable the rational design of high-throughput catalysts and the synergistic promotion of electrocatalytic CO2 reduction performance by optimizing the electrocatalytic interface and the reactor. Finally, we customize impartial recommendations and criteria for electrocatalytic CO2 reduction to promote its healthy development. We hope to stimulate high-quality research and may see the future application of electrocatalytic CO2 reduction to solve sustainable energy and environmental problems.
Collapse
Affiliation(s)
- Li Li
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Xiaodong Li
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Yongfu Sun
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China.
| |
Collapse
|
41
|
Wei P, Zheng J, Li Q, Qin Y, Guan H, Tan D, Song L. The modulation mechanism of geometric and electronic structures of bimetallic catalysts: Pd 13−mAg m ( m=0–13) clusters for acetylene semi-hydrogenation. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01222g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The modulation mechanism of the second metal in bimetallic catalysts is examined by taking acetylene semi-hydrogenation over Pd13−mAgm clusters, in which a metastable Pd6Ag7 structure exhibits excellent activity/selectivity to ethylene.
Collapse
Affiliation(s)
- Panpeng Wei
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, Shandong 266580, China
| | - Jian Zheng
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, Shandong 266580, China
| | - Qiang Li
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Province, Liaoning Petrochemical University, Fushun, Liaoning 113001, China
| | - Yucai Qin
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Province, Liaoning Petrochemical University, Fushun, Liaoning 113001, China
| | - Huimin Guan
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Province, Liaoning Petrochemical University, Fushun, Liaoning 113001, China
| | - Duping Tan
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, Petrochina, Lanzhou 730060, China
| | - Lijuan Song
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, Shandong 266580, China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Province, Liaoning Petrochemical University, Fushun, Liaoning 113001, China
| |
Collapse
|
42
|
Settem M, Srivastav AK, Kanjarla AK. Understanding the strain-dependent structure of Cu nanocrystals in Ag-Cu nanoalloys. Phys Chem Chem Phys 2021; 23:26165-26177. [PMID: 34797355 DOI: 10.1039/d1cp04145b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The structure of octahedral Ag-Cu nanoalloys is investigated by means of basin hopping Monte Carlo (BHMC) searches involving the optimization of shape and chemical ordering. Due to the significant size mismatch between Ag and Cu, the misfit strain plays a key role in determining the structure of Ag-Cu nanoalloys. At all the compositions, segregated chemical ordering is observed. However, the shape of the Cu nanocrystal and the associated defects are significantly different. At lower amounts of Cu (as little as 2 atom %), defects close to the surface are observed leading to a highly non-compact shape of the Cu nanocrystal which is non-trivial. The number of Cu-Cu bonds is relatively lower in the non-compact shape which is contrary to the preference of bulk Ag-Cu alloys to maximize the homo-atomic bonds. Due to the non-compact shape, {100} Ag-Cu interfaces are observed which are not expected. As the amount of Cu increases, the Cu nanocrystal undergoes a shape transition from non-compact to a compact octahedron. The associated defect structure is also modified. The structural changes due to the strain effects have been explained by calculating the atomic pressure maps and the bond length distributions. The trends relating to the structure have also been verified at larger sizes.
Collapse
Affiliation(s)
- Manoj Settem
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Ajeet K Srivastav
- Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
| | - Anand K Kanjarla
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, 600036, India. .,Ceramic Technologies Group - Center of Excellence in Materials and Manufacturing for Futuristic Mobility, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
43
|
Song JY, Kim C, Kim M, Cho KM, Gereige I, Jung WB, Jeong H, Jung HT. Generation of high-density nanoparticles in the carbothermal shock method. SCIENCE ADVANCES 2021; 7:eabk2984. [PMID: 34818029 PMCID: PMC8612527 DOI: 10.1126/sciadv.abk2984] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The carbothermal shock (CTS) method has attracted considerable attention in recent years because it enables the generation of finely controlled polyelemental alloy nanoparticles (NPs). However, fabricating high surface coverage of NPs with minimized exposure of the carbon substrate is essential for various electrochemical applications and has been a critical limitation in CTS method. Here, we developed a methodology for creating NPs with high surface coverage on a carbon substrate by maximizing defect sites of cellulose during CTS. Cu NPs with high surface coverage of ~85%, various single NPs and polyelemental alloy NPs were densely fabricated with high uniformity and dispersity. The synthesized Cu NPs on cellulose/carbon paper substrate were used in electrocatalytic CO2 reduction reaction showing selectivity to ethylene of ~49% and high stability for over 30 hours of reaction. Our cellulose-derived CTS method enables the greater availability of polyelemental NPs for a wide range of catalytic and electrochemical applications.
Collapse
Affiliation(s)
- Ji-Yoon Song
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun 55324, Republic of Korea
| | - Chansol Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Nanocentury, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Minki Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Nanocentury, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyeong Min Cho
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Nanocentury, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- CBR Defense Technology Directorate, Agency for Defense Development (ADD), Daejeon 34186, Republic of Korea
| | - Issam Gereige
- Research and Development Center, Saudi Aramco, Dhahran 31311, Saudi Arabia
| | - Woo-Bin Jung
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Corresponding author. (W.-B.J.); (H.J.); (H.-T.J.)
| | - Hyeonsu Jeong
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun 55324, Republic of Korea
- Corresponding author. (W.-B.J.); (H.J.); (H.-T.J.)
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Nanocentury, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Corresponding author. (W.-B.J.); (H.J.); (H.-T.J.)
| |
Collapse
|
44
|
Song H, Tan YC, Kim B, Ringe S, Oh J. Tunable Product Selectivity in Electrochemical CO 2 Reduction on Well-Mixed Ni-Cu Alloys. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55272-55280. [PMID: 34767344 DOI: 10.1021/acsami.1c19224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Electrochemical reduction of CO2 on copper-based catalysts has become a promising strategy to mitigate greenhouse gas emissions and gain valuable chemicals and fuels. Unfortunately, however, the generally low product selectivity of the process decreases the industrial competitiveness compared to the established large-scale chemical processes. Here, we present random solid solution Cu1-xNix alloy catalysts that, due to their full miscibility, enable a systematic modulation of adsorption energies. In particular, we find that these catalysts lead to an increase of hydrogen evolution with the Ni content, which correlates with a significant increase of the selectivity for methane formation relative to C2 products such as ethylene and ethanol. From experimental and theoretical insights, we find the increased hydrogen atom coverage to facilitate Langmuir-Hinshelwood-like hydrogenation of surface intermediates, giving an impressive almost 2 orders of magnitude increase in the CH4 to C2H4 + C2H5OH selectivity on Cu0.87Ni0.13 at -300 mA cm-2. This study provides important insights and design concepts for the tunability of product selectivity for electrochemical CO2 reduction that will help to pave the way toward industrially competitive electrocatalyst materials.
Collapse
Affiliation(s)
- Hakhyeon Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ying Chuan Tan
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, 138634, Singapore
| | - Beomil Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Stefan Ringe
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jihun Oh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
45
|
Hudry D, De Backer A, Popescu R, Busko D, Howard IA, Bals S, Zhang Y, Pedrazo-Tardajos A, Van Aert S, Gerthsen D, Altantzis T, Richards BS. Interface Pattern Engineering in Core-Shell Upconverting Nanocrystals: Shedding Light on Critical Parameters and Consequences for the Photoluminescence Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104441. [PMID: 34697908 DOI: 10.1002/smll.202104441] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Advances in controlling energy migration pathways in core-shell lanthanide (Ln)-based hetero-nanocrystals (HNCs) have relied heavily on assumptions about how optically active centers are distributed within individual HNCs. In this article, it is demonstrated that different types of interface patterns can be formed depending on shell growth conditions. Such interface patterns are not only identified but also characterized with spatial resolution ranging from the nanometer- to the atomic-scale. In the most favorable cases, atomic-scale resolved maps of individual particles are obtained. It is also demonstrated that, for the same type of core-shell architecture, the interface pattern can be engineered with thicknesses of just 1 nm up to several tens of nanometers. Total alloying between the core and shell domains is also possible when using ultra-small particles as seeds. Finally, with different types of interface patterns (same architecture and chemical composition of the core and shell domains) it is possible to modify the output color (yellow, red, and green-yellow) or change (improvement or degradation) the absolute upconversion quantum yield. The results presented in this article introduce an important paradigm shift and pave the way toward the emergence of a new generation of core-shell Ln-based HNCs with better control over their atomic-scale organization.
Collapse
Affiliation(s)
- Damien Hudry
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Annick De Backer
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Radian Popescu
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, Engesserstrasse 7, 76131, Karlsruhe, Germany
| | - Dmitry Busko
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ian A Howard
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Yang Zhang
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Adrian Pedrazo-Tardajos
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Sandra Van Aert
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Dagmar Gerthsen
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, Engesserstrasse 7, 76131, Karlsruhe, Germany
| | - Thomas Altantzis
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Bryce S Richards
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
| |
Collapse
|
46
|
Choukroun D, Pacquets L, Li C, Hoekx S, Arnouts S, Baert K, Hauffman T, Bals S, Breugelmans T. Mapping Composition-Selectivity Relationships of Supported Sub-10 nm Cu-Ag Nanocrystals for High-Rate CO 2 Electroreduction. ACS NANO 2021; 15:14858-14872. [PMID: 34428372 DOI: 10.1021/acsnano.1c04943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colloidal Cu-Ag nanocrystals measuring less than 10 nm across are promising candidates for integration in hybrid CO2 reduction reaction (CO2RR) interfaces, especially in the context of tandem catalysis and selective multicarbon (C2-C3) product formation. In this work, we vary the synthetic-ligand/copper molar ratio from 0.1 to 1.0 and the silver/copper atomic ratio from 0 to 0.7 and study the variations in the nanocrystals' size distribution, morphology and reactivity at rates of ≥100 mA cm-2 in a gas-fed recycle electrolyzer operating under neutral to mildly basic conditions (0.1-1.0 M KHCO3). High-resolution electron microscopy and spectroscopy are used in order to characterize the morphology of sub-10 nm Cu-Ag nanodimers and core-shells and to elucidate trends in Ag coverage and surface composition. It is shown that Cu-Ag nanocrystals can be densely dispersed onto a carbon black support without the need for immediate ligand removal or binder addition, which considerably facilitates their application. Although CO2RR product distribution remains an intricate function of time, (kinetic) overpotential and processing conditions, we nevertheless conclude that the ratio of oxygenates to hydrocarbons (which depends primarily on the initial dispersion of the nanocrystals and their composition) rises 3-fold at moderate Ag atom % relative to Cu NCs-based electrodes. Finally, the merits of this particular Cu-Ag/C system and the recycling reactor employed are utilized to obtain maximum C2-C3 partial current densities of 92-140 mA cm-2 at -1.15 VRHE and liquid product concentrations in excess of 0.05 wt % in 1 M KHCO3 after short electrolysis periods.
Collapse
Affiliation(s)
- Daniel Choukroun
- Applied Electrochemistry and Catalysis (ELCAT), University of Antwerp, 2610 Wilrijk, Belgium
| | - Lien Pacquets
- Applied Electrochemistry and Catalysis (ELCAT), University of Antwerp, 2610 Wilrijk, Belgium
- Electron Microscopy for Materials Research (EMAT), University of Antwerp, 2020 Antwerp, Belgium
| | - Chen Li
- Electron Microscopy for Materials Research (EMAT), University of Antwerp, 2020 Antwerp, Belgium
| | - Saskia Hoekx
- Applied Electrochemistry and Catalysis (ELCAT), University of Antwerp, 2610 Wilrijk, Belgium
- Electron Microscopy for Materials Research (EMAT), University of Antwerp, 2020 Antwerp, Belgium
| | - Sven Arnouts
- Applied Electrochemistry and Catalysis (ELCAT), University of Antwerp, 2610 Wilrijk, Belgium
- Electron Microscopy for Materials Research (EMAT), University of Antwerp, 2020 Antwerp, Belgium
| | - Kitty Baert
- Electrochemical and Surface Engineering (SURF), Materials and Chemistry (MACH), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Tom Hauffman
- Electrochemical and Surface Engineering (SURF), Materials and Chemistry (MACH), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Sara Bals
- Electron Microscopy for Materials Research (EMAT), University of Antwerp, 2020 Antwerp, Belgium
| | - Tom Breugelmans
- Applied Electrochemistry and Catalysis (ELCAT), University of Antwerp, 2610 Wilrijk, Belgium
- Separation & Conversion Technologies, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| |
Collapse
|
47
|
Ishijima M, Cuya Huaman JL, Wakizaka H, Suzuki K, Miyamura H, Balachandran J. Strategy to Design-Synthesize Bimetallic Nanostructures Using the Alcohol Reduction Method. Inorg Chem 2021; 60:14436-14445. [PMID: 34455795 DOI: 10.1021/acs.inorgchem.1c02233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bimetallic nanomaterials have attracted much attention from various fields such as catalysis, optics, magnetism, and so forth. The functionality of such particles is influenced very much by the intermetallic interactions than their individual contribution. However, compared with the synthesis of monometallic nanoparticles, the reaction parameters that need to be controlled for tuning the size, shape, composition, and crystal structure of bimetallic nanoparticles becomes challenging. This study focuses on synthesizing of bimetallic nanostructures using the alcohol reduction method, where the control over the reducing power is conceivable by varying the combination of the alcohol type, complexing agent, and metal salts. Consequently, various Cu-Co nanostructures such as Cu-Co core-shell (size ranged between 40 and 15 nm) and hollow alloy nanoparticles and nanotubes were successfully synthesized by incorporating diffusion and etching phenomena during the reduction reaction. Moreover, time-resolved sampling revealed that the formation of a Cu-Co alloy hollow nanostructure has been realized by the diffusion of the Cu core into the Co shell by controlling the reduction time gap between Cu and Co and the crystal structure besides the reduction sequences. It should be noted that the synthesis of a high-temperature (∼1300 °C) Cu-Co alloy phase was carried out at 170 °C. Among the Cu-Co alloy nanostructures, Cu-Co hollow alloy nanoparticles exhibited enhanced catalytic activity compared to metallic Cu and other Cu-Co nanostructures from the degradation reaction of methylene blue. The enhanced catalytic performance was considered to be mainly due to the alloy structure.
Collapse
Affiliation(s)
- Masanao Ishijima
- Department of Materials Science, The University of Shiga Prefecture, Hikone, Shiga 522-8533, Japan
| | - Jhon L Cuya Huaman
- Department of Materials Science, The University of Shiga Prefecture, Hikone, Shiga 522-8533, Japan
| | - Hiroyuki Wakizaka
- North Eastern Industrial Research Center of Shiga Prefecture, Nagahama, Shiga 526-0024, Japan
| | - Kazumasa Suzuki
- Department of Materials Science, The University of Shiga Prefecture, Hikone, Shiga 522-8533, Japan
| | - Hiroshi Miyamura
- Department of Materials Science, The University of Shiga Prefecture, Hikone, Shiga 522-8533, Japan
| | - Jeyadevan Balachandran
- Department of Materials Science, The University of Shiga Prefecture, Hikone, Shiga 522-8533, Japan
| |
Collapse
|
48
|
Nie N, Zhang D, Wang Z, Qin Y, Zhai X, Yang B, Lai J, Wang L. Superfast Synthesis of Densely Packed and Ultrafine Pt-Lanthanide@KB via Solvent-Free Microwave as Efficient Hydrogen Evolution Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102879. [PMID: 34337859 DOI: 10.1002/smll.202102879] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/07/2021] [Indexed: 06/13/2023]
Abstract
At present, it is still a great challenge to synthesize refractory Pt-based electrocatalysts with excellent active specific surface area, specific activity, and stability by a simple method. Here, a superfast and solvent-free microwave strategy is reported to synthesize refractory ultrafine (≈3 nm) Pt-lanthanide@Ketjen Black (PtM@KB, M = La, Gd, Tb, Er, Tm, and Yb) alloy with densely packed as efficient hydrogen evolution electrocatalysts in a domestic microwave oven for the first time. The optimized Pt61 La39 @KB delivers excellent hydrogen evolution reaction (HER) activity with a low overpotential of 38 mV (10 mA cm-2 ) and a high TOF value of 44.13 s-1 (100 mV) in 0.5 m H2 SO4 , and performs well in 1.0 m KOH. This method can also be used to grow catalysts on carbon cloth (CC) directly. PtLa@CC shows an overpotential of 99 mV (1000 mA cm-2 ) in 0.5 m H2 SO4 and can maintain activity after 500 h. Theoretical calculations reveal the enhanced stability and activity owing to the higher vacancy formation energy of Pt atoms and the optimized value of ΔGH* . Solvent-free microwave strategy constitutes a significant insight into the development of refractory electrocatalyst with ultrafine size and highly dense, which can also work well at high current densities.
Collapse
Affiliation(s)
- Nanzhu Nie
- Key Laboratory of Ecochemical Engineering, Ministry of Education, Taishan Scholar Advantage and Characteristic Discipline Team of Ecochemical Process and Technology, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Dan Zhang
- Key Laboratory of Ecochemical Engineering, Ministry of Education, Taishan Scholar Advantage and Characteristic Discipline Team of Ecochemical Process and Technology, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zuochao Wang
- Key Laboratory of Ecochemical Engineering, Ministry of Education, Taishan Scholar Advantage and Characteristic Discipline Team of Ecochemical Process and Technology, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yingnan Qin
- Key Laboratory of Ecochemical Engineering, Ministry of Education, Taishan Scholar Advantage and Characteristic Discipline Team of Ecochemical Process and Technology, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xuejun Zhai
- Key Laboratory of Ecochemical Engineering, Ministry of Education, Taishan Scholar Advantage and Characteristic Discipline Team of Ecochemical Process and Technology, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Bo Yang
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jianping Lai
- Key Laboratory of Ecochemical Engineering, Ministry of Education, Taishan Scholar Advantage and Characteristic Discipline Team of Ecochemical Process and Technology, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Ecochemical Engineering, Ministry of Education, Taishan Scholar Advantage and Characteristic Discipline Team of Ecochemical Process and Technology, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
49
|
Sanghez de Luna G, Ho PH, Sacco A, Hernández S, Velasco-Vélez JJ, Ospitali F, Paglianti A, Albonetti S, Fornasari G, Benito P. AgCu Bimetallic Electrocatalysts for the Reduction of Biomass-Derived Compounds. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23675-23688. [PMID: 33974392 PMCID: PMC8289175 DOI: 10.1021/acsami.1c02896] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The electrochemical transformation of biomass-derived compounds (e.g., aldehyde electroreduction to alcohols) is gaining increasing interest due to the sustainability of this process that can be exploited to produce value-added products from biowastes and renewable electricity. In this framework, the electrochemical conversion of 5-hydroxymethylfurfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF) is studied. Nanostructured Ag deposited on Cu is an active and selective electrocatalyst for the formation of BHMF in basic media. However, this catalyst deserves further research to elucidate the role of the morphology and size of the coated particles in its performance as well as the actual catalyst surface composition and its stability. Herein, Ag is coated on Cu open-cell foams by electrodeposition and galvanic displacement to generate different catalyst morphologies, deepening on the particle growth mechanism, and the samples are compared with bare Ag and Cu foams. The chemical-physical and electrochemical properties of the as-prepared and spent catalysts are correlated to the electroactivity in the HMF conversion and its selectivity toward the formation of BHMF during electroreduction. AgCu bimetallic nanoparticles or dendrites are formed on electrodeposited and displaced catalysts, respectively, whose surface is Cu-enriched along with electrochemical tests. Both types of bimetallic AgCu particles evidence a superior electroactive surface area as well as an enhanced charge and mass transfer in comparison with the bare Ag and Cu foams. These features together with a synergistic role between Ag and Cu superficial active sites could be related to the twofold enhanced selectivity of the Ag/Cu catalysts for the selective conversion of HMF to BHMF, that is, >80% selectivity and ∼ 100% conversion, and BHMF productivity values (0.206 and 0.280 mmol cm-2 h-1) ca. 1.5-3 times higher than those previously reported.
Collapse
Affiliation(s)
- Giancosimo Sanghez de Luna
- Department
of Industrial Chemistry “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Phuoc H. Ho
- Department
of Industrial Chemistry “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Adriano Sacco
- Center
for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
| | - Simelys Hernández
- Center
for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Juan-Jesús Velasco-Vélez
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Department
of Heterogeneous Reactions, Max Planck Institute
for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
| | - Francesca Ospitali
- Department
of Industrial Chemistry “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Alessandro Paglianti
- Department
of Civil, Chemical, Environmental and Materials Engineering, Università di Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Stefania Albonetti
- Department
of Industrial Chemistry “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Giuseppe Fornasari
- Department
of Industrial Chemistry “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Patricia Benito
- Department
of Industrial Chemistry “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
50
|
Sun Y, Dai S. High-entropy materials for catalysis: A new frontier. SCIENCE ADVANCES 2021; 7:eabg1600. [PMID: 33980494 PMCID: PMC8115918 DOI: 10.1126/sciadv.abg1600] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/25/2021] [Indexed: 05/19/2023]
Abstract
Entropy plays a pivotal role in catalysis, and extensive research efforts have been directed to understanding the enthalpy-entropy relationship that defines the reaction pathways of molecular species. On the other side, surface of the catalysts, entropic effects have been rarely investigated because of the difficulty in deciphering the increased complexities in multicomponent systems. Recent advances in high-entropy materials (HEMs) have triggered broad interests in exploring entropy-stabilized systems for catalysis, where the enhanced configurational entropy affords a virtually unlimited scope for tailoring the structures and properties of HEMs. In this review, we summarize recent progress in the discovery and design of HEMs for catalysis. The correlation between compositional and structural engineering and optimization of the catalytic behaviors is highlighted for high-entropy alloys, oxides, and beyond. Tuning composition and configuration of HEMs introduces untapped opportunities for accessing better catalysts and resolving issues that are considered challenging in conventional, simple systems.
Collapse
Affiliation(s)
- Yifan Sun
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
- Department of Chemistry, The University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|