1
|
Wang R, Li J, Bi Q, Yang B, He T, Lin K, Zhu X, Zhang K, Jin R, Huang C, Nie Y, Zhang X. Crystallographic plane-induced selective mineralization of nanohydroxyapatite on fibrous-grained titanium promotes osteointegration and biocorrosion resistance. Biomaterials 2025; 313:122800. [PMID: 39241551 DOI: 10.1016/j.biomaterials.2024.122800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
The (002) crystallographic plane-oriented hydroxyapatite (HA) and anatase TiO2 enable favorable hydrophilicity, osteogenesis, and biocorrosion resistance. Thus, the crystallographic plane control in HA coating and crystalline phase control in TiO2 is vital to affect the surface and interface bioactivity and biocorrosion resistance of titanium (Ti) implants. However, a corresponding facile and efficient fabrication method is absent to realize the HA(002) mineralization and anatase TiO2 formation on Ti. Herein, we utilized the predominant Ti(0002) plane of the fibrous-grained titanium (FG Ti) to naturally form anatase TiO2 and further achieve a (002) basal plane oriented nanoHA (nHA) film through an in situ mild hydrothermal growth strategy. The formed FG Ti-nHA(002) remarkably improved hydrophilicity, mineralization, and biocorrosion resistance. Moreover, the nHA(002) film reserved the microgroove-like topological structure on FG Ti. It could enhance osteogenic differentiation through promoted contact guidance, showing one order of magnitude higher expression of osteogenic-related genes. On the other hand, the nHA(002) film restrained the osteoclast activity by blocking actin ring formation. Based on these capacities, FG Ti-nHA(002) improved new bone growth and binding strength in rabbit femur implantation, achieving satisfactory osseointegration within 2 weeks.
Collapse
Affiliation(s)
- Ruohan Wang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Juan Li
- Department of Orthodontics, West China School of Stomatology, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qunjie Bi
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Binbin Yang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China; The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Ting He
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Kaifeng Lin
- Department of Orthodontics, West China School of Stomatology, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiangdong Zhu
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Kai Zhang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Rongrong Jin
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Chongxiang Huang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China; School of Aeronautics and Astronautics, Sichuan University, Chengdu, 610065, China
| | - Yu Nie
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xingdong Zhang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
2
|
Wang D, Feng S, Yang M. Multi-Gradient Bone-Like Nanocomposites Induced by Strain Distribution. ACS NANO 2024; 18:29636-29647. [PMID: 39425938 DOI: 10.1021/acsnano.4c08442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The heterogeneity of bones is elegantly adapted to the local strain environment, which is critical for maintaining mechanical functions. Such an adaptation enables the strong correlation between strain distributions and multiple gradients, underlying a promising pathway for creating complex gradient structures. However, this potential remains largely unexplored for the synthesis of functional gradient materials. In this work, heterogeneous bone-like nanocomposites with complex structural and compositional gradients comparable to bones are synthesized by inducing strain distributions within the polymer matrix containing amorphous calcium phosphate (ACP). Uniaxial stretching of composite films exerts the highest strain in the center, which ceases gradually toward the sides, resulting in the gradual decrease of polymer alignment and crystallinity. Simultaneously, the center with high orientation traps most ACP during stretching due to the nanoconfinement effect, which in turn promotes the formation of aligned nanofibrous structures. The sides experiencing the least strain have the smallest amounts of ACP, characteristic of porous architectures. Further crystallization of ACP produces oriented apatite nanorods in the center with a larger crystalline/amorphous ratio than the sides because of template-induced crystallization. The combination of structural and compositional gradients leads to gradient mechanical properties, and the gradient span and magnitude correlate nicely with strain distributions. Accompanying bone-like mechanical gradients, the center is less adhesive and self-healable than the sides, which allows a better recovery after a complete cutting. Our work may represent a general strategy for the synthesis of biomimetic materials with complex gradients thanks to the ubiquitous presence of strain distributions in load-bearing structures.
Collapse
Affiliation(s)
- Di Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Ming Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
3
|
Tian J, Lin D, Li X, Wang K, Yu B, Li M, Hou S, Li Z, Chen Q. The Growth and Shape Evolution of Indium Nanoplates Studied by In Situ Liquid Cell TEM. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2400680. [PMID: 39126237 DOI: 10.1002/smll.202400680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Understanding the growth mechanisms of nanomaterials is crucial for effectively controlling their morphology which may affect their properties. Here, the growth process of indium nanoplates is studied using in situ liquid cell transmission electron microscopy. Quantitative analysis shows that the growth of indium nanoplate is limited by surface reaction. Besides, the growth process has two stages, which is different from that of other metal nanoplates reported previously. At the first stage, indium particles transform gradually from face-centered cubic to body-centered tetragonal (bct) structure as the seeds grow. At the second stage, the seeds grow faster than at the first stage and form indium triangular nanoplates. Indium triangular nanoplates have a bct structure with {011}-twin, which is found to form through kinetic reactions. In addition, the shape evolution of truncated triangle nanoplate with multiple twin planes is studied. The growth rate of truncated edge changes with the varied number of re-entrant grooves. The present work provides valuable insights into the growth mechanism of metal nanoplates with low-symmetric structure and the role of twin planes in the shape evolution of plate-like metal nanomaterials.
Collapse
Affiliation(s)
- Jiamin Tian
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing, 100871, China
| | - Dongying Lin
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing, 100871, China
| | - Xuan Li
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Kewei Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Bocheng Yu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, 100871, China
| | - Menglan Li
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shimin Hou
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing, 100871, China
| | - Zhihong Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, 100871, China
| | - Qing Chen
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing, 100871, China
| |
Collapse
|
4
|
Zhang J, Zhu Z, Niu M, Yu M, Dong X, Yang H. In Situ Evolution of Ionic Sites at Clay Mineral Interfaces Facilitates Fluoride and Phosphorus Mineralization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39058062 DOI: 10.1021/acs.est.4c05988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Soil minerals influence the biogeochemical cycles of fluoride (F) and phosphorus (P), impacting soil quality and bioavailability to plants. However, the cooperative mechanisms of soil minerals in governing F and P in the soil environment remain a grand challenge. Here, we reveal the essential role of a typical soil mineral, montmorillonite (Mt), in the cycling and fate of F and P. The results show that the enrichment of metal sites on the Mt surface promotes the mineralization of F to the fluorapatite (FAP) phase, thereby remaining stable in the environment, simultaneously promoting P release. This differential behavior leads to a reduction in the level of F pollution and an enhancement of P availability. Moreover, solid-state NMR and HRTEM observations confirm the existence of metastable F-Ca-F intermediates, emphasizing the pivotal role of Mt surface sites in regulating crystallization pathways and crystal growth of FAP. Furthermore, the in situ atomic force microscopy and theoretical calculations reveal molecular fractionation mechanisms and adsorption processes. It is observed that a competitive relationship exists between F and P at the Mt interface, highlighting the thermodynamically advantageous pathway of forming metastable intermediates, thereby governing the activity of F and P in the soil environment at a molecular level. This work paves the way to reveal the important role of clay minerals as a mineralization matrix for soil quality management and offers new strategies for modulating F and P dynamics in soil ecosystems.
Collapse
Affiliation(s)
- Jun Zhang
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Ziqi Zhu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Mengyuan Niu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Menghan Yu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiongbo Dong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
5
|
Nowotarski MS, Potnuru LR, Straub JS, Chaklashiya R, Shimasaki T, Pahari B, Coffaro H, Jain S, Han S. Dynamic Nuclear Polarization Enhanced Multiple-Quantum Spin Counting of Molecular Assemblies in Vitrified Solutions. J Phys Chem Lett 2024; 15:7084-7094. [PMID: 38953521 DOI: 10.1021/acs.jpclett.4c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Crystallization pathways are essential to various industrial, geological, and biological processes. In nonclassical nucleation theory, prenucleation clusters (PNCs) form, aggregate, and crystallize to produce higher order assemblies. Microscopy and X-ray techniques have limited utility for PNC analysis due to the small size (0.5-3 nm) and time stability constraints. We present a new approach for analyzing PNC formation based on 31P nuclear magnetic resonance (NMR) spin counting of vitrified molecular assemblies. The use of glassing agents ensures that vitrification generates amorphous aqueous samples and offers conditions for performing dynamic nuclear polarization (DNP)-amplified NMR spectroscopy. We demonstrate that molecular adenosine triphosphate along with crystalline, amorphous, and clustered calcium phosphate materials formed via a nonclassical growth pathway can be differentiated from one another by the number of dipolar coupled 31P spins. We also present an innovative approach for examining spin counting data, demonstrating that a knowledge-based fitting of integer multiples of cosine wave functions, instead of the traditional Fourier transform, provides a more physically meaningful retrieval of the existing frequencies. This is the first report of multiquantum spin counting of assemblies formed in solution as captured under vitrified DNP conditions, which can be useful for future analysis of PNCs and other aqueous molecular clusters.
Collapse
Affiliation(s)
- Mesopotamia S Nowotarski
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Lokeswara Rao Potnuru
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Joshua S Straub
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Raj Chaklashiya
- Department of Materials, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Toshihiko Shimasaki
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Bholanath Pahari
- School of Physical and Applied Sciences, Goa University, Taleigao, Goa 403206, India
| | - Hunter Coffaro
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Sheetal Jain
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
DiCecco LA, Zhang J, Casagrande T, Grandfield K. New Avenues for Capturing Mineralization Events at Biomaterial Interfaces with Liquid-Transmission Electron Microscopy. NANO LETTERS 2024; 24:7821-7824. [PMID: 38913950 DOI: 10.1021/acs.nanolett.4c01525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Liquid-transmission electron microscopy (liquid-TEM) provides exciting potential for capturing mineralization events at biomaterial interfaces, though it is largely unexplored. To address this, we established a unique approach to visualize calcium phosphate (CaP)-titanium (Ti) interfacial mineralization events by combining the nanofabrication of Ti lamellae by focused ion beam with in situ liquid-TEM. Multiphasic CaP particles were observed to nucleate, adhere, and form different assemblies onto and adjacent to Ti lamellae. Here, we discuss new approaches for exploring the interaction between biomaterials and liquids at the nanoscale. Driving this technology is crucial for understanding and controlling biomineralization to improve implant osseointegration and direct new pathways for mineralized tissue disease treatment in the future.
Collapse
Affiliation(s)
- Liza-Anastasia DiCecco
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jing Zhang
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Travis Casagrande
- Canadian Centre for Electron Microscopy, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada
| |
Collapse
|
7
|
Chen J, Zhao Q, Tang J, Lei X, Zhang J, Li Y, Li J, Li Y, Zuo Y. Enzyme-Activated Biomimetic Vesicles Confining Mineralization for Bone Maturation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33005-33020. [PMID: 38900067 DOI: 10.1021/acsami.4c03978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Inspired by the crucial role of matrix vesicles (MVs), a series of biomimetic vesicles (BVs) fabricated by calcium glycerophosphate (CaGP) modified polyurethane were designed to mediate the mineralization through in situ enzyme activation for bone therapy. In this study, alkaline phosphatase (ALP) was harbored in the porous BVs by adsorption (Ad-BVs) or entrapment (En-BVs). High encapsulation of ALP on En-BVs was effectively self-activating by calcium ions of CaGP-modified PU that specifically hydrolyzed the organophosphorus (CaGP) to inorganic phosphate, thus promoting the formation of the highly oriented bone-like apatite in vitro. Enzyme-catalyzed kinetics confirms the regulation of apatite crystallization by the synergistic action of self-activated ALP and the confined microcompartments of BVs. This leads to a supersaturated microenvironment, with the En-BVs group exhibiting inorganic phosphate (Pi) levels 4.19 times higher and Ca2+ levels 3.67 times higher than those of simulated body fluid (SBF). Of note, the En-BVs group exhibited excellent osteo-inducing differentiation of BMSCs in vitro and the highest maturity with reduced bone loss in rat femoral defect in vivo. This innovative strategy of biomimetic vesicles is expected to provide valuable insights into the enzyme-activated field of bone therapy.
Collapse
Affiliation(s)
- Jieqiong Chen
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Qing Zhao
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Jiajing Tang
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Xiaoyu Lei
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Jinzheng Zhang
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Yuping Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| |
Collapse
|
8
|
Yang M, Cai X, Wang C, Wang Z, Xue F, Chu C, Bai J, Liu Q, Ni X. Highly Stable Amorphous (Pyro)phosphate Aggregates: Pyrophosphate as a Carrier for Bioactive Ions and Drugs in Bone Repair Applications. ACS OMEGA 2024; 9:23724-23740. [PMID: 38854518 PMCID: PMC11154929 DOI: 10.1021/acsomega.4c01660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
Pyrophosphate is widely used as an iron supplement because of its excellent complexation and hydrolysis ability; however, there are few reports on the use of pyrophosphate in active ionophores for bone repair. In this research, we proposed a simple and efficient ultrasonic method to prepare magnesium-calcium (pyro)phosphate aggregates (AMCPs). Due to strong hydration, AMCPs maintain a stable amorphous form even at high temperatures (400 °C). By changing the molar ratio of calcium and magnesium ions, the content of calcium and magnesium ions can be customized. AMCPs had surface negativity and complexing ability that realized the controlled release of ions (Ca2+, Mg2+, and P) and drugs (such as doxorubicin) over a long period. Pyrophosphate gave it an excellent bacteriostatic effect. Increasingly released Mg2+ exhibited improved bioactivity though the content of Ca2+ decreased. While Mg2+ content was regulated to 15 wt %, it performed significantly enhanced stimulation on the proliferation, attachment, and differentiation (ALP activity, calcium nodules, and the related gene expression of osteogenesis) of mouse embryo osteoblast precursor cells (MC3T3-E1). Furthermore, the high content of Mg2+ also effectively promoted the proliferation, attachment, and migration of human umbilical vein endothelial cells (HUVECs) and the expression of angiogenic genes. In conclusion, pyrophosphate was an excellent carrier for bioactive ions, and the AMCPs we prepared had a variety of active functions for multiscenario bone repair applications.
Collapse
Affiliation(s)
- Mengmeng Yang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189 Jiangsu, China
- Center of Medical Physics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003 Jiangsu, China
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 Jiangsu, China
| | - Xiang Cai
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189 Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing, 211189 Jiangsu, China
| | - Cheng Wang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189 Jiangsu, China
| | - Zan Wang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189 Jiangsu, China
| | - Feng Xue
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189 Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing, 211189 Jiangsu, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189 Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing, 211189 Jiangsu, China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189 Jiangsu, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing, 211189 Jiangsu, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, China
- Jiangsu Key Laboratory for Light Metal Alloys, Nanjing 211212, China
| | - Qizhan Liu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189 Jiangsu, China
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 Jiangsu, China
| | - Xinye Ni
- Center of Medical Physics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003 Jiangsu, China
| |
Collapse
|
9
|
Liu C, Lin O, Pidaparthy S, Ni H, Lyu Z, Zuo JM, Chen Q. 4D-STEM Mapping of Nanocrystal Reaction Dynamics and Heterogeneity in a Graphene Liquid Cell. NANO LETTERS 2024; 24:3890-3897. [PMID: 38526426 DOI: 10.1021/acs.nanolett.3c05015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Chemical reaction kinetics at the nanoscale are intertwined with heterogeneity in structure and composition. However, mapping such heterogeneity in a liquid environment is extremely challenging. Here we integrate graphene liquid cell (GLC) transmission electron microscopy and four-dimensional scanning transmission electron microscopy to image the etching dynamics of gold nanorods in the reaction media. Critical to our experiment is the small liquid thickness in a GLC that allows the collection of high-quality electron diffraction patterns at low dose conditions. Machine learning-based data-mining of the diffraction patterns maps the three-dimensional nanocrystal orientation, groups spatial domains of various species in the GLC, and identifies newly generated nanocrystallites during reaction, offering a comprehensive understanding on the reaction mechanism inside a nanoenvironment. This work opens opportunities in probing the interplay of structural properties such as phase and strain with solution-phase reaction dynamics, which is important for applications in catalysis, energy storage, and self-assembly.
Collapse
Affiliation(s)
- Chang Liu
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Oliver Lin
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Saran Pidaparthy
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Haoyang Ni
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Zhiheng Lyu
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Jian-Min Zuo
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Zhang Y, Ma S, Nie J, Liu Z, Chen F, Li A, Pei D. Journey of Mineral Precursors in Bone Mineralization: Evolution and Inspiration for Biomimetic Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2207951. [PMID: 37621037 DOI: 10.1002/smll.202207951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/27/2023] [Indexed: 08/26/2023]
Abstract
Bone mineralization is a ubiquitous process among vertebrates that involves a dynamic physical/chemical interplay between the organic and inorganic components of bone tissues. It is now well documented that carbonated apatite, an inorganic component of bone, is proceeded through transient amorphous mineral precursors that transforms into the crystalline mineral phase. Here, the evolution on mineral precursors from their sources to the terminus in the bone mineralization process is reviewed. How organisms tightly control each step of mineralization to drive the formation, stabilization, and phase transformation of amorphous mineral precursors in the right place, at the right time, and rate are highlighted. The paradigm shifts in biomineralization and biomaterial design strategies are intertwined, which promotes breakthroughs in biomineralization-inspired material. The design principles and implementation methods of mineral precursor-based biomaterials in bone graft materials such as implant coatings, bone cements, hydrogels, and nanoparticles are detailed in the present manuscript. The biologically controlled mineralization mechanisms will hold promise for overcoming the barriers to the application of biomineralization-inspired biomaterials.
Collapse
Affiliation(s)
- Yuchen Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shaoyang Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaming Nie
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhongbo Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Faming Chen
- School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
11
|
Shan S, Tang Z, Sun K, Jin W, Pan H, Tang R, Yin W, Xie Z, Chen Z, Shao C. ACP-Mediated Phase Transformation for Collagen Mineralization: A New Understanding of the Mechanism. Adv Healthc Mater 2024; 13:e2302418. [PMID: 37742096 DOI: 10.1002/adhm.202302418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/16/2023] [Indexed: 09/25/2023]
Abstract
Despite significant efforts utilizing advanced technologies, the contentious debate surrounding the intricate mechanism underlying collagen fibril mineralization, particularly with regard to amorphous precursor infiltration and phase transformation, persists. This work proposes an amorphous calcium phosphate (ACP)-mediated pathway for collagen fibril mineralization and utilizing stochastic optical reconstruction microscopy technology, and has experimentally confirmed for the first time that the ACP nanoparticles can infiltrate inside collagen fibrils. Subsequently, the ACP-mediated phase transformation occurs within collagen fibrils to form HAP crystallites, and significantly enhances the mechanical properties of the mineralized collagen fibrils compared to those achieved by the calcium phosphate ion (CPI)-mediated mineralization and resembles the natural counterpart. Furthermore, demineralized dentin can be effectively remineralized through ACP-mediated mineralization, leading to complete restoration of its mechanical properties. This work provides a new paradigm of collagen mineralization via particle-mediated phase transformation, deepens the understanding of the mechanism behind the mineralization of collagen fibrils, and offers a new strategy for hard tissue repair.
Collapse
Affiliation(s)
- Songzhe Shan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Zhenhang Tang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Kaida Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Wenjing Jin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Haihua Pan
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, 310058, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Wei Yin
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Zhuo Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Changyu Shao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| |
Collapse
|
12
|
Schmid SY, Lachowski K, Chiang HT, Pozzo L, De Yoreo J, Zhang S. Mechanisms of Biomolecular Self-Assembly Investigated Through In Situ Observations of Structures and Dynamics. Angew Chem Int Ed Engl 2023; 62:e202309725. [PMID: 37702227 DOI: 10.1002/anie.202309725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Indexed: 09/14/2023]
Abstract
Biomolecular self-assembly of hierarchical materials is a precise and adaptable bottom-up approach to synthesizing across scales with considerable energy, health, environment, sustainability, and information technology applications. To achieve desired functions in biomaterials, it is essential to directly observe assembly dynamics and structural evolutions that reflect the underlying energy landscape and the assembly mechanism. This review will summarize the current understanding of biomolecular assembly mechanisms based on in situ characterization and discuss the broader significance and achievements of newly gained insights. In addition, we will also introduce how emerging deep learning/machine learning-based approaches, multiparametric characterization, and high-throughput methods can boost the development of biomolecular self-assembly. The objective of this review is to accelerate the development of in situ characterization approaches for biomolecular self-assembly and to inspire the next generation of biomimetic materials.
Collapse
Affiliation(s)
- Sakshi Yadav Schmid
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kacper Lachowski
- Chemical Engineering, University of Washington, Seattle, WA 98105, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98105, USA
| | - Huat Thart Chiang
- Chemical Engineering, University of Washington, Seattle, WA 98105, USA
| | - Lilo Pozzo
- Chemical Engineering, University of Washington, Seattle, WA 98105, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98105, USA
- Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA
| | - Jim De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA
| | - Shuai Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98105, USA
- Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
13
|
DiCecco LA, Gao R, Gray JL, Kelly DF, Sone ED, Grandfield K. Liquid Transmission Electron Microscopy for Probing Collagen Biomineralization. NANO LETTERS 2023; 23:9760-9768. [PMID: 37669509 DOI: 10.1021/acs.nanolett.3c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Collagen biomineralization is fundamental to hard tissue assembly. While studied extensively, collagen mineralization processes are not fully understood, with the majority of theories derived from electron microscopy (EM) under static, dehydrated, or frozen conditions, unlike the liquid phase environment where mineralization occurs. Herein, novel liquid transmission EM (TEM) strategies are presented, in which collagen mineralization was explored in liquid for the first time via TEM. Custom thin-film enclosures were employed to visualize the mineralization of reconstituted collagen fibrils in a calcium phosphate and polyaspartic acid solution to promote intrafibrillar mineralization. TEM highlighted that at early time points precursor mineral particles attached to collagen and progressed to crystalline mineral platelets aligned with fibrils at later time points. This aligns with observations from other techniques and validates the liquid TEM approach. This work provides a new liquid imaging approach for exploring collagen biomineralization, advancing toward understanding disease pathogenesis and remineralization strategies for hard tissues.
Collapse
Affiliation(s)
- Liza-Anastasia DiCecco
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-4400, United States
| | - Ruixin Gao
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Jennifer L Gray
- Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Deborah F Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-4400, United States
- Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Structural Oncology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Eli D Sone
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
| | - Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
14
|
Hihara H, Izumita K, Kawata T, Akatsuka R, Tagaino R, Kitaoka A, Kayaba C, Ikeda K, Sasaki K. A novel treatment based on powder jet deposition technique for dentin hypersensitivity: a randomized controlled trial. BMC Oral Health 2023; 23:695. [PMID: 37759198 PMCID: PMC10537872 DOI: 10.1186/s12903-023-03431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND This study aimed to evaluate the efficacy and safety of dentin hypersensitivity (DH) treatment using a newly developed device based on a powder jet deposition (PJD) technique that creates a hydroxyapatite (HAP) layer on the dentin surface, thereby alleviating the hypersensitivity. The effect of the PJD treatment was compared with that of conventional treatment using Teethmate Desensitizer (TMD; calcium-phosphate containing material with TTCP (Ca4(PO4)2O) and DCPA (CaHPO4)), which has been used clinically in Japan with well-confirmed effectiveness. MATERIALS AND METHODS A randomized controlled trial was conducted including 35 patients who had symptoms of DH in two or more quadrants. Two test teeth were selected per patient (70 teeth in total) and randomly assigned to PJD or TMD treatment. The efficacy was evaluated using the improvement rate for air and scratch pain according to the scores obtained via visual analog scale 12 weeks after treatment. The safety assessment was performed focusing on gingival index (GI) and spontaneous pain. The t-test was used to analyze the non-inferiority of PJD treatment compared to TMD treatment. RESULTS The improvement rate of air pain was 69.0% for PJD and 69.7% for TMD. The improvement rate of scratch pain was 80.8% for PJD and 81.7% for TMD. Non-inferiority with a margin of 10% was not observed for both air and scratch pain. No change was observed in GI from baseline and the improvement rate of spontaneous pain for PJD was higher than that for TMD. CONCLUSION Non-inferiority of PJD to TMD treatment was not observed in this study; however, it was not statistically demonstrated, and the results were thus interpreted as inconclusive. PJD did improve the DH symptoms, as did TMD. PJD's therapeutic effect was most likely attributable to the deposition of a HAP layer on the tooth surface, which would alleviate hypersensitivity for at least 12 weeks without causing severe adverse events. TRIAL REGISTRATION UMIN-CTR. ID: UMIN000025022. date: 02/12/2016.
Collapse
Affiliation(s)
- Hiroki Hihara
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo- machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Kuniyuki Izumita
- Perioperative Oral Care Support, Tohoku University Hospital, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Tetsuo Kawata
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo- machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
- Otemachi Kawata Dental Clinic, 6-19 Otemachi, Aoba-ku, Sendai, Miyagi, 980-0805, Japan
| | - Ryo Akatsuka
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo- machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
- Akatsuka Dental Clinic, 2838-1 Mawatari, Hitachinaka, Ibaraki, 312-0012, Japan
| | - Ryo Tagaino
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aobaku, Sendai, Miyagi, 980-8575, Japan
| | - Aki Kitaoka
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo- machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Chie Kayaba
- Department of Development Promotion, Clinical Research, Innovation and Education Center, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Koji Ikeda
- Department of Development Promotion, Clinical Research, Innovation and Education Center, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Keiichi Sasaki
- Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
15
|
Murphy B, Morris MA, Baez J. Development of Hydroxyapatite Coatings for Orthopaedic Implants from Colloidal Solutions: Part 1-Effect of Solution Concentration and Deposition Kinetics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2577. [PMID: 37764606 PMCID: PMC10535049 DOI: 10.3390/nano13182577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
This study introduces and explores the use of supersaturated solutions of calcium and phosphate ions to generate well-defined hydroxyapatite coatings for orthopaedic implants. The deposition of hydroxyapatite is conducted via several solutions of metastable precursors that precipitate insoluble hydroxyapatite minerals at a substrate-solution interface. Solutions of this nature are intrinsically unstable, but this paper outlines process windows in terms of time, temperature, concentration and pH in which coating deposition is controlled via the stop/go reaction. To understand the kinetics of the deposition process, comparisons based on ionic strength, particle size, electron imaging, elemental analyses and mass of the formed coating for various deposition solutions are carried out. This comprehensive dataset enables the measurement of deposition kinetics and identification of an optimum solution and its reaction mechanism. This study has established stable and reproducible process windows, which are precisely controlled, leading to the successful formation of desired hydroxyapatite films. The data demonstrate that this process is a promising and highly repeatable method for forming hydroxyapatites with desirable thickness, morphology and chemical composition at low temperatures and low capital cost compared to the existing techniques.
Collapse
Affiliation(s)
- Bríd Murphy
- Advanced Materials & Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 CP49 Dublin, Ireland;
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| | - Mick A. Morris
- Advanced Materials & Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 CP49 Dublin, Ireland;
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| | - Jhonattan Baez
- Advanced Materials & Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 CP49 Dublin, Ireland;
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| |
Collapse
|
16
|
Korpanty J, Gianneschi NC. Exploration of Organic Nanomaterials with Liquid-Phase Transmission Electron Microscopy. Acc Chem Res 2023; 56:2298-2312. [PMID: 37580021 DOI: 10.1021/acs.accounts.3c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
ConspectusOrganic, soft materials with solution-phase nanoscale structures, such as emulsions, hydrogels, and thermally responsive materials, are inherently difficult to directly image via dry state and cryogenic-transmission electron microscopy (TEM). Therefore, we lack a routine microscopy method with sufficient resolution that can, in tandem with scattering techniques, probe the morphology and dynamics of these and many related systems. These challenges motivate liquid cell (LC) TEM method development, aimed at making the technique generally available and routine. To date, the field has been and continues to be dominantly focused on analyzing solution-phase inorganic materials. These mostly metallic nanoparticles have been studied at electron fluxes that can allow for high-resolution imaging, in the range of hundreds to thousands of e- Å-2 s-1. Despite excellent contrast, in these cases, one often contends with knock-on damage, direct radiolysis, and sensitization of the solvent by virtue of enhanced secondary electron production by the impinging electron beam. With an interest in soft materials, we face both related and distinct challenges, especially in achieving a high-enough contrast within solvated liquid cells. Additionally, we must be aware of artifacts associated with high-flux imaging conditions in terms of direct radiolysis of the solvent and the sensitive materials themselves. Regardless, with care, it has become possible to gain real insight into both static and dynamic organic nanomaterials in solution. This is due, in large part, to key advances that have been made, including improved sample preparation protocols, image capture technologies, and image analysis, which have allowed LCTEM to have utility. To enable solvated soft matter characterization by LCTEM, a generalizable multimodal workflow was developed by leveraging both experimental and theoretical precedents from across the LCTEM field and adjacent works concerned with solution radiolysis and nanoparticle tracking analyses. This workflow consists of (1) modeling electron beam-solvent interactions, (2) studying electron beam-sample interactions via LCTEM coupled with post-mortem analysis, (3) the construction of "damage plots" displaying sample integrity under varied imaging and sample conditions, (4) optimized LCTEM imaging, (5) image processing, and (6) correlative analysis via X-ray or light scattering. In this Account, we present this outlook and the challenges we continue to overcome in the direct imaging of dynamic solvated nanoscale soft materials.
Collapse
Affiliation(s)
- Joanna Korpanty
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Lurie Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Lurie Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Department of Biomedical Engineering and Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
17
|
Yu Y, Wu T, Dong L. Surface Oxygen Vacancies of Rutile Nanorods Accelerate Biomineralization. ACS OMEGA 2023; 8:20066-20072. [PMID: 37305277 PMCID: PMC10249081 DOI: 10.1021/acsomega.3c02348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023]
Abstract
Titanium dioxide (TiO2) materials have been widely used in biomedical applications of bone tissue engineering. However, the mechanism underlying the induced biomineralization onto the TiO2 surface still remains elusive. In this study, we demonstrated that the surface oxygen vacancy defects of rutile nanorods could be gradually eliminated by the regularly used annealing treatment, which restrained the heterogeneous nucleation of hydroxyapatite (HA) onto rutile nanorods in simulated body fluids (SBFs). Moreover, we also observed that the surface oxygen vacancies upregulated the mineralization of human mesenchymal stromal cells (hMSCs) on rutile TiO2 nanorod substrates. This work therefore emphasized the importance of subtle changes of surface oxygen vacancy defective features of oxidic biomaterials during the regularly used annealing treatment on their bioactive performances and provided new insights into the fundamental understanding of interactions of materials with the biological environment.
Collapse
Affiliation(s)
- Yanwen Yu
- First
People’s Hospital of Linping District, Hangzhou 311100, Zhejiang, China
| | - Tong Wu
- Guangdian
Metrology & Testing (Hangzhou) Co., Ltd., Hangzhou 310018, Zhejiang, China
| | - Lingqing Dong
- Stomatology
Hospital, School of Stomatology, Zhejiang University School of Medicine,
Zhejiang Province Clinical Research Center for Oral Diseases, Key
Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
18
|
Mayfield JE, Dixon JE. Emerging mechanisms of regulation for endoplasmic/sarcoplasmic reticulum Ca2+ stores by secretory pathway kinase FAM20C. Curr Opin Chem Biol 2023; 74:102279. [DOI: 10.1016/j.cbpa.2023.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 03/28/2023]
|
19
|
Tian J, Sun M, Hong M, Yu B, Li M, Geng Y, Li S, Zhang Y, Li Z, Chen Q. In situ study of wet chemical etching of ZnO nanowires with different diameters and polar surfaces by LCTEM. NANOSCALE 2023; 15:8781-8791. [PMID: 37099151 DOI: 10.1039/d3nr00881a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Understanding how nanomaterials evolve during the etching process is critical in many fields. Herein, the wet chemical etching process of zinc oxide (ZnO) nanowires is studied in situ in radiolytic water via liquid cell transmission electron microscopy (LCTEM). The dissolution rate of thin nanowires is constant with reducing diameter, while thick nanowires (with the original diameter being larger than 95 nm) show complicated etching behaviors. The dissolution rate of thick nanowires is constant at the first stage and then increases. Anisotropic etching occurs at both ends of thick nanowires and distinct tips are formed. Different polarities at the two ends of the nanowire lead to differently shaped tips and different tip formation processes. The arrangement of the sidewall cones determines the macroscopic angle of the final tips. The present results are important for understanding liquid phase etching behavior in different dimensions and with different polar ends.
Collapse
Affiliation(s)
- Jiamin Tian
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China.
| | - Mei Sun
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China.
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Mengyu Hong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, China.
| | - Bocheng Yu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, China
| | - Menglan Li
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yu Geng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, China.
| | - Shuo Li
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China.
| | - Yue Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, China.
| | - Zhihong Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, China
| | - Qing Chen
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China.
| |
Collapse
|
20
|
Wan T, Zhang M, Jiang HR, Zhang YC, Zhang XM, Wang YL, Zhang PX. Tissue-Engineered Nanomaterials Play Diverse Roles in Bone Injury Repair. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091449. [PMID: 37176994 PMCID: PMC10180507 DOI: 10.3390/nano13091449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Nanomaterials with bone-mimicking characteristics and easily internalized by the cell could create suitable microenvironments in which to regulate the therapeutic effects of bone regeneration. This review provides an overview of the current state-of-the-art research in developing and using nanomaterials for better bone injury repair. First, an overview of the hierarchical architecture from the macroscale to the nanoscale of natural bone is presented, as these bone tissue microstructures and compositions are the basis for constructing bone substitutes. Next, urgent clinical issues associated with bone injury that require resolution and the potential of nanomaterials to overcome them are discussed. Finally, nanomaterials are classified as inorganic or organic based on their chemical properties. Their basic characteristics and the results of related bone engineering studies are described. This review describes theoretical and technical bases for the development of innovative methods for repairing damaged bone and should inspire therapeutic strategies with potential for clinical applications.
Collapse
Affiliation(s)
- Teng Wan
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Hao-Ran Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Yi-Chong Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Xiao-Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Yi-Lin Wang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| |
Collapse
|
21
|
Feraru A, Tóth ZR, Mureșan-Pop M, Baia M, Gyulavári T, Páll E, Turcu RVF, Magyari K, Baia L. Anionic Polysaccharide Cryogels: Interaction and In Vitro Behavior of Alginate-Gum Arabic Composites. Polymers (Basel) 2023; 15:polym15081844. [PMID: 37111992 PMCID: PMC10146865 DOI: 10.3390/polym15081844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
In the present study, polysaccharide-based cryogels demonstrate their potential to mimic a synthetic extracellular matrix. Alginate-based cryogel composites with different gum arabic ratios were synthesized by an external ionic cross-linking protocol, and the interaction between the anionic polysaccharides was investigated. The structural features provided by FT-IR, Raman, and MAS NMR spectra analysis indicated that a chelation mechanism is the main process linking the two biopolymers. In addition, SEM investigations revealed a porous, interconnected, and well-defined structure suitable as a scaffold in tissue engineering. The in vitro tests confirmed the bioactive character of the cryogels through the development of the apatite layer on the surface of the samples after immersion in simulated body fluid, identifying the formation of a stable phase of calcium phosphate and a small amount of calcium oxalate. Cytotoxicity tests performed on fibroblast cells demonstrated the non-toxic effect of alginate-gum arabic cryogel composites. In addition, an increase in flexibility was noted for samples with a high gum arabic content, which determines an appropriate environment to promote tissue regeneration. The newly obtained biomaterials that exhibit all these properties can be successfully involved in the regeneration of soft tissues, wound management, or controlled drug release systems.
Collapse
Affiliation(s)
- Alexandra Feraru
- Doctoral School of Physics, Babes-Bolyai University, M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania
| | - Zsejke-Réka Tóth
- Doctoral School of Physics, Babes-Bolyai University, M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania
| | - Marieta Mureșan-Pop
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania
| | - Monica Baia
- Faculty of Physics, Babes-Bolyai University, M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babes-Bolyai University, Fântânele 30, 400294 Cluj-Napoca, Romania
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. Sqr. 1, 6720 Szeged, Hungary
| | - Emőke Páll
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Romulus V F Turcu
- Faculty of Physics, Babes-Bolyai University, M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donath 67-103, 400293 Cluj-Napoca, Romania
| | - Klára Magyari
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania
| | - Lucian Baia
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania
- Faculty of Physics, Babes-Bolyai University, M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babes-Bolyai University, Fântânele 30, 400294 Cluj-Napoca, Romania
| |
Collapse
|
22
|
Shao C, Bapat RA, Su J, Moradian-Oldak J. Regulation of Hydroxyapatite Nucleation In Vitro through Ameloblastin-Amelogenin Interactions. ACS Biomater Sci Eng 2023; 9:1834-1842. [PMID: 35068157 PMCID: PMC9308824 DOI: 10.1021/acsbiomaterials.1c01113] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Amelogenin (Amel) and ameloblastin (Ambn) are two primary extracellular enamel matrix proteins that play crucial roles for proper thickness, prismatic structure, and robust mechanical properties. Previous studies have shown that Amel and Ambn bind to each other, but the effect of their coassembly on the nucleation of hydroxyapatite (HAP) is unclear. Here, we systematically investigated the coassembly of recombinant mouse Amel and Ambn in various ratios using in situ atomic force microscopy, dynamic light scattering, and transmission electron microscopy. The size of protein particles decreased as the Ambn:Amel ratio increased. To define the coassembly domain on Ambn, we used Ambn-derived peptides and Ambn variants to examine their effects on the amelogenin particle size distribution. We found that the peptide sequence encoded by exon 5 of Ambn affected Amel self-assembly but the variant lacking this sequence did not have any effect on Amel self-assembly. Furthermore, through monitoring the pH change in bulk mineralization solution, we tracked the nucleation behavior of HAP in the presence of Ambn and Amel and found that their coassemblies at different ratios showed varying abilities to stabilize amorphous calcium phosphate. These results demonstrated that Ambn and Amel coassemble with each other via a motif within the sequence encoded by exon 5 of Ambn and cooperate in regulating the nucleation of HAP crystals, enhancing our understanding of the important role of enamel matrix proteins in amelogenesis.
Collapse
Affiliation(s)
- Changyu Shao
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, California 90033, United States
| | - Rucha Arun Bapat
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, California 90033, United States
| | - Jingtan Su
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, California 90033, United States
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, California 90033, United States
| |
Collapse
|
23
|
Besnard C, Marie A, Sasidharan S, Harper RA, Shelton RM, Landini G, Korsunsky AM. Synchrotron X-ray Studies of the Structural and Functional Hierarchies in Mineralised Human Dental Enamel: A State-of-the-Art Review. Dent J (Basel) 2023; 11:98. [PMID: 37185477 PMCID: PMC10137518 DOI: 10.3390/dj11040098] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Hard dental tissues possess a complex hierarchical structure that is particularly evident in enamel, the most mineralised substance in the human body. Its complex and interlinked organisation at the Ångstrom (crystal lattice), nano-, micro-, and macro-scales is the result of evolutionary optimisation for mechanical and functional performance: hardness and stiffness, fracture toughness, thermal, and chemical resistance. Understanding the physical-chemical-structural relationships at each scale requires the application of appropriately sensitive and resolving probes. Synchrotron X-ray techniques offer the possibility to progress significantly beyond the capabilities of conventional laboratory instruments, i.e., X-ray diffractometers, and electron and atomic force microscopes. The last few decades have witnessed the accumulation of results obtained from X-ray scattering (diffraction), spectroscopy (including polarisation analysis), and imaging (including ptychography and tomography). The current article presents a multi-disciplinary review of nearly 40 years of discoveries and advancements, primarily pertaining to the study of enamel and its demineralisation (caries), but also linked to the investigations of other mineralised tissues such as dentine, bone, etc. The modelling approaches informed by these observations are also overviewed. The strategic aim of the present review was to identify and evaluate prospective avenues for analysing dental tissues and developing treatments and prophylaxis for improved dental health.
Collapse
Affiliation(s)
- Cyril Besnard
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Ali Marie
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Sisini Sasidharan
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Robert A. Harper
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Richard M. Shelton
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Gabriel Landini
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Alexander M. Korsunsky
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| |
Collapse
|
24
|
Yu M, Hua Y, Sarwar MT, Yang H. Nanoscale Interactions of Humic Acid and Minerals Reveal Mechanisms of Carbon Protection in Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:286-296. [PMID: 36524600 DOI: 10.1021/acs.est.2c06814] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The concentrations of terrestrially sourced dissolved organic matter (DOM) have expanded throughout aquatic ecosystems in recent decades. Although sorption to minerals in soils is one major pathway to sequestrate soil organic matter, the mechanisms of organic matter-mineral interactions are not thoroughly understood. Here, we investigated the effect of calcium phosphate mineralization on humic acid (HA) fixation in simulated soil solutions, either with or without clay mineral montmorillonite (Mt). We found that Mt in solution promoted nucleation and crystallization of calcium phosphate (CaP) due to amorphous calcium phosphate clustering and coalescence on Mt surface, which contributed to the long-term persistence and accumulation of HA. Organic ligands with specific chemical groups on HA have higher binding energies to CaP-Mt than to CaP/Mt, according to dynamic force spectroscopy observations. Moreover, CaP-Mt formed in solution showed a great capacity for HA adsorption with a maximum adsorption quantity of 156.89 mg/g. Our findings directly support that Mt is crucial for DOM sequestration by facilitating CaP precipitation/transformation. This has an impact on how effectively we understand the long-term turnover of DOM and highlights knowledge gaps that might assist in resolving essential soil C sequestration issues.
Collapse
Affiliation(s)
- Menghan Yu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Yicheng Hua
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Muhammad Tariq Sarwar
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
25
|
Oral bio-interfaces: Properties and functional roles of salivary multilayer in food oral processing. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Xu J, Shi H, Luo J, Yao H, Wang P, Li Z, Wei J. Advanced materials for enamel remineralization. Front Bioeng Biotechnol 2022; 10:985881. [PMID: 36177189 PMCID: PMC9513249 DOI: 10.3389/fbioe.2022.985881] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Dental caries, a chronic and irreversible disease caused by caries-causing bacteria, has been listed as one of the three major human diseases to be prevented and treated. Therefore, it is critical to effectively stop the development of enamel caries. Remineralization treatment can control the progression of caries by inhibiting and reversing enamel demineralization at an early stage. In this process, functional materials guide the deposition of minerals on the damaged enamel, and the structure and hardness of the enamel are then restored. These remineralization materials have great potential for clinical application. In this review, advanced materials for enamel remineralization were briefly summarized, furthermore, an outlook on the perspective of remineralization materials were addressed.
Collapse
Affiliation(s)
- Jiarong Xu
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
| | - Hui Shi
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| | - Jun Luo
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| | - Haiyan Yao
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
| | - Pei Wang
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
| | - Zhihua Li
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
- *Correspondence: Zhihua Li, ; Junchao Wei,
| | - Junchao Wei
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
- *Correspondence: Zhihua Li, ; Junchao Wei,
| |
Collapse
|
27
|
Karim ET, Szalai V, Cumberland L, Myers AF, Takagi S, Frukhtbeyn SA, Pazos I, Chow LC. Electron Paramagnetic Resonance Characterization of Sodium- and Carbonate-Containing Hydroxyapatite Cement. Inorg Chem 2022; 61:13022-13033. [PMID: 35930806 PMCID: PMC9400659 DOI: 10.1021/acs.inorgchem.2c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ionizing radiation-induced paramagnetic defects in calcified tissues like tooth enamel are indicators of irradiation dose. Hydroxyapatite (HA), the principal constituent in these materials, incorporates a variety of anions (CO32-, F-, Cl-, and SiO44-) and cations (Mn2+, Li+, Cu2+, Fe3+, Mg2+, and Na+) that directly or indirectly contribute to the formation of stable paramagnetic centers upon irradiation. Here, we used an underexploited synthesis method based on the ambient temperature setting reaction of a self-hardening calcium phosphate cement (CPC) to create carbonate-containing hydroxyapatite (CHA) and investigate its paramagnetic properties following γ-irradiation. Powder X-ray diffraction and IR spectroscopic characterization of the hardened CHA samples indicate the formation of pure B-type CHA cement. CHA samples exposed to γ-radiation doses ranging from 1 Gy to 150 kGy exhibited an electron paramagnetic resonance (EPR) signal from an orthorhombic CO2•- free radical. At γ-radiation doses from 30 to 150 kGy, a second signal emerged that is assigned to the CO3•- free radical. We observed that the formation of this second species is dose-dependent, which provided a means to extend the useful dynamic range of irradiated CHA to doses >30 kGy. These results indicate that CHA synthesized via a CPC cement is a promising substrate for EPR-based dosimetry. Further studies on the CHA cement are underway to determine the suitability of these materials for a range of biological and industrial dosimetry applications.
Collapse
Affiliation(s)
- Eaman T Karim
- American Dental Association Science and Research Institute, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Veronika Szalai
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Lonnie Cumberland
- Radiation Physics Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Alline F Myers
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Shozo Takagi
- American Dental Association Science and Research Institute, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Stanislav A Frukhtbeyn
- American Dental Association Science and Research Institute, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Ileana Pazos
- Radiation Physics Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Laurence C Chow
- American Dental Association Science and Research Institute, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
28
|
Wang J, Li J, Li M, Ma K, Wang D, Su L, Zhang X, Tang BZ. Nanolab in a Cell: Crystallization-Induced In Situ Self-Assembly for Cancer Theranostic Amplification. J Am Chem Soc 2022; 144:14388-14395. [PMID: 35900284 DOI: 10.1021/jacs.2c06111] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Conducting crystallization-assisted self-assembly in living biosystems to obtain large-size nanoparticles and achieve a specific physiological purpose remains an appealing yet significantly challenging task. In this study, we designed Au(I)-disulfide nanosheets containing an aggregation-induced emission photosensitizer, namely, NSs@TTVP, which exhibited pH-responsive crystallization-driven self-assembly capability in lysosomes of cancer cells and tumor tissues of mice. The crystallization process endowed NSs@TTVP with a microscale morphology, stronger fluorescence output, and highly enhanced reactive oxygen species production efficiency. The in vivo results demonstrated that NSs@TTVP shows both long-term retention in tumors and extensive destruction to cancer cells, making it supremely powerful for fluorescence imaging-guided tumor tracking and inhibition.
Collapse
Affiliation(s)
- Jianxing Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.,School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jie Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Meng Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ke Ma
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lei Su
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.,School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
29
|
Sung J, Bae Y, Park H, Kang S, Choi BK, Kim J, Park J. Liquid-Phase Transmission Electron Microscopy for Reliable In Situ Imaging of Nanomaterials. Annu Rev Chem Biomol Eng 2022; 13:167-191. [PMID: 35700529 DOI: 10.1146/annurev-chembioeng-092120-034534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Liquid-phase transmission electron microscopy (LPTEM) is a powerful in situ visualization technique for directly characterizing nanomaterials in the liquid state. Despite its successful application in many fields, several challenges remain in achieving more accurate and reliable observations. We present LPTEM in chemical and biological applications, including studies for the morphological transformation and dynamics of nanoparticles, battery systems, catalysis, biomolecules, and organic systems. We describe the possible interactions and effects of the electron beam on specimens during observation and present sample-specific approaches to mitigate and control these electron-beam effects. We provide recent advances in achieving atomic-level resolution for liquid-phase investigation of structures anddynamics. Moreover, we discuss the development of liquid cell platforms and the introduction of machine-learning data processing for quantitative and objective LPTEM analysis.
Collapse
Affiliation(s)
- Jongbaek Sung
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Yuna Bae
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Hayoung Park
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Sungsu Kang
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Back Kyu Choi
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Joodeok Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Jungwon Park
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.,Institute of Engineering Research, College of Engineering, Seoul National University, Seoul, Republic of Korea.,Advanced Institutes of Convergence Technology, Seoul National University, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
30
|
Zhang X, Wu L, Feng G, Lei S. Mineralization of calcium phosphate on two-dimensional polymer films with controllable density of carboxyl groups. J Mater Chem B 2022; 10:3793-3797. [PMID: 35485398 DOI: 10.1039/d2tb00195k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional polymers functionalized with controllable density of carboxyl groups were constructed with the Langmuir-Blodgett method. Mineralization of calcium phosphate shows significantly different characteristics on these films, which clearly indicates that the density of carboxy groups plays a determining role in controlling the nucleation and orientated growth of calcium phosphate.
Collapse
Affiliation(s)
- Xinyu Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| | - Lingli Wu
- Medical College, Northwest Minzu University, Lanzhou 730000, China.
| | - Guangyuan Feng
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| | - Shengbin Lei
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| |
Collapse
|
31
|
Cho Y, Moon M, Holló G, Lagzi I, Yang SH. Bioinspired Control of Calcium Phosphate Liesegang Patterns Using Anionic Polyelectrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2515-2524. [PMID: 35148116 PMCID: PMC8892956 DOI: 10.1021/acs.langmuir.1c02980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/28/2022] [Indexed: 05/31/2023]
Abstract
The Liesegang phenomenon is a spontaneous pattern formation, which is a periodic distribution of the precipitate discovered in diffusion-limited systems. Over the past century, it has been experimentally attempted to control the periodicity of patterns and structures of precipitates by varying the concentration of the hydrogel or electrolytes, adding organic or inorganic impurities, and applying an electric or pH field. In this work, the periodic patterns of calcium phosphate were manipulated with an anionic macromolecular additive inspired by bone mineralization in which various noncollagenous proteins are involved in the formation of a polymer-induced liquid precursor. The periodic patterns were systematically controlled by adjusting the amount of poly(acrylic acid), and they were numerically simulated by adjusting the threshold concentration of nucleation. The change of the pattern is explained by improved stability and directional diffusion of the intermediate.
Collapse
Affiliation(s)
- Young
Shin Cho
- Department
of Chemistry Education, Korea National University
of Education (KNUE), Chungbuk 28173, Republic of Korea
| | - Miyoung Moon
- Department
of Chemistry Education, Korea National University
of Education (KNUE), Chungbuk 28173, Republic of Korea
| | - Gábor Holló
- MTA-BME
Condensed Matter Physics Research Group, Budapest University of Technology and Economics, Budapest H-1111, Hungary
| | - István Lagzi
- MTA-BME
Condensed Matter Physics Research Group, Budapest University of Technology and Economics, Budapest H-1111, Hungary
- Department
of Physics, Budapest University of Technology
and Economics, Budapest H-1111, Hungary
| | - Sung Ho Yang
- Department
of Chemistry Education, Korea National University
of Education (KNUE), Chungbuk 28173, Republic of Korea
| |
Collapse
|
32
|
Amornkitbamrung U, In Y, Wang Z, Song J, Oh SH, Hong MH, Shin H. c-Axis-Oriented Platelets of Crystalline Hydroxyapatite in Biomimetic Intrafibrillar Mineralization of Polydopamine-Functionalized Collagen Type I. ACS OMEGA 2022; 7:4821-4831. [PMID: 35187302 PMCID: PMC8851625 DOI: 10.1021/acsomega.1c05198] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Mineralized collagen fibrils are important basic building blocks of calcified tissues, such as bone and dentin. Polydopamine (PDA) can introduce functional groups, i.e., hydroxyl and amine groups, on the surfaces of type I collagen (Col-I) as possible nucleation sites of calcium phosphate (CaP) crystallization. Molecular bindings in between PDA and Col-I fibrils (Col-PDA) have been found to significantly reduce the interfacial energy. The wetting effect, mainly hydrophilicity due to the functional groups, escalates the degree of mineralization. The assembly of Col-I molecules into fibrils was initiated at the designated number of collagenous molecules and PDA. In contrast to the infiltration of amorphous calcium phosphate (ACP) precursors into the Col-I matrix by polyaspartic acid (pAsp), this collagen assembly process allows nucleation and ACP to exist in advance by PDA in the intrafibrillar matrix. PDA bound to specific sites, i.e., gap and overlap zones, by the regular arrangement of Col-I fibrils enhanced ACP nucleation and thus mineralization. As a result, the c-axis-oriented platelets of crystalline hydroxyapatite in the Col-I fibril matrix were observed in the enhanced mineralization through PDA functionalization.
Collapse
Affiliation(s)
- Urasawadee Amornkitbamrung
- Nature
Inspired Materials Processing Research Center, Department of Energy
Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yongjae In
- Nature
Inspired Materials Processing Research Center, Department of Energy
Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Zhen Wang
- Department
of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiyoon Song
- Nature
Inspired Materials Processing Research Center, Department of Energy
Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Ho Oh
- Department
of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Min-Ho Hong
- Nature
Inspired Materials Processing Research Center, Department of Energy
Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyunjung Shin
- Nature
Inspired Materials Processing Research Center, Department of Energy
Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
33
|
Qin D, He Z, Li P, Zhang S. Liquid-Liquid Phase Separation in Nucleation Process of Biomineralization. Front Chem 2022; 10:834503. [PMID: 35186885 PMCID: PMC8854647 DOI: 10.3389/fchem.2022.834503] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 12/21/2022] Open
Abstract
Biomineralization is a typical interdisciplinary subject attracting biologists, chemists, and geologists to figure out its potential mechanism. A mounting number of studies have revealed that the classical nucleation theory is not suitable for all nucleation process of biominerals, and phase-separated structures such as polymer-induced liquid precursors (PILPs) play essential roles in the non-classical nucleation processes. These structures are able to play diverse roles biologically or pathologically, and could also give inspiring clues to bionic applications. However, a lot of confusion and dispute occurred due to the intricacy and interdisciplinary nature of liquid precursors. Researchers in different fields may have different opinions because the terminology and current state of understanding is not common knowledge. As a result, our team reviewed the most recent articles focusing on the nucleation processes of various biominerals to clarify the state-of-the-art understanding of some essential concepts and guide the newcomers to enter this intricate but charming field.
Collapse
Affiliation(s)
| | | | - Peng Li
- *Correspondence: Peng Li, ; Shutian Zhang,
| | | |
Collapse
|
34
|
Chang R, Liu Y, Zhang Y, Zhang S, Han B, Chen F, Chen Y. Phosphorylated and Phosphonated Low-Complexity Protein Segments for Biomimetic Mineralization and Repair of Tooth Enamel. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103829. [PMID: 34978158 PMCID: PMC8867149 DOI: 10.1002/advs.202103829] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/18/2021] [Indexed: 05/03/2023]
Abstract
Biomimetic mineralization based on self-assembly has made great progress, providing bottom-up strategies for the construction of new organic-inorganic hybrid materials applied in the treatment of hard tissue defects. Herein, inspired by the cooperative effects of key components in biomineralization microenvironments, a new type of biocompatible peptide scaffold based on flexibly self-assembling low-complexity protein segments (LCPSs) containing phosphate or phosphonate groups is developed. These LCPSs can retard the transformation of amorphous calcium phosphate into hydroxyapatite (HAP), leading to merged mineralization structures. Moreover, the application of phosphonated LCPS over phosphorylated LCPS can prevent hydrolysis by phosphatases that are enriched in extracellular mineralization microenvironments. After being coated on the etched tooth enamel, these LCPSs facilitate the growth of HAP to generate new enamel layers comparable to the natural layers and mitigate the adhesion of Streptococcus mutans. In addition, they can effectively stimulate the differentiation pathways of osteoblasts. These results shed light on the potential biomedical applications of two LCPSs in hard tissue repair.
Collapse
Affiliation(s)
- Rong Chang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Yang‐Jia Liu
- Central LaboratoryPeking University Hospital of StomatologyBeijing100081China
| | - Yun‐Lai Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Shi‐Ying Zhang
- Central LaboratoryPeking University Hospital of StomatologyBeijing100081China
| | - Bei‐Bei Han
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Feng Chen
- Central LaboratoryPeking University Hospital of StomatologyBeijing100081China
| | - Yong‐Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
35
|
Yoshino F, Sasaki R, Asada Y, Shiozaki K, Shimoda S, Yamamoto T. Studies on Change in Solubility over Time of the Bioactive Material Amorphous Calcium Phosphate and Precipitation of Hydroxyapatite. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Fumitaka Yoshino
- Department of Operative Dentistry, Tsurumi University School of Dental Medicine
| | - Rina Sasaki
- Department of Operative Dentistry, Tsurumi University School of Dental Medicine
| | - Yuka Asada
- Department of Anatomy, Tsurumi University School of Dental Medicine
| | | | - Shinji Shimoda
- Department of Anatomy, Tsurumi University School of Dental Medicine
| | - Takatsugu Yamamoto
- Department of Operative Dentistry, Tsurumi University School of Dental Medicine
| |
Collapse
|
36
|
Lei C, Wang YH, Zhuang PX, Li YT, Wan QQ, Ma YX, Tay FR, Niu LN. Applications of Cryogenic Electron Microscopy in Biomineralization Research. J Dent Res 2021; 101:505-514. [PMID: 34918556 DOI: 10.1177/00220345211053814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biological mineralization is a natural process manifested by living organisms in which inorganic minerals crystallize under the scrupulous control of biomolecules, producing hierarchical organic-inorganic composite structures with physical properties and design that galvanize even the most ardent structural engineer and architect. Understanding the mechanisms that control the formation of biominerals is challenging in the biomimetic engineering of hard tissues. In this regard, the contribution of cryogenic electron microscopy (cryo-EM) has been nothing short of phenomenal. By preserving materials in their native hydrated status and reducing damage caused by ion beam radiation, cryo-EM outperforms conventional transmission electron microscopy in its ability to directly observe the morphologic evolution of mineral precursor phases at different stages of biomineralization with nanoscale spatial resolution and subsecond temporal resolution in 2 or 3 dimensions. In the present review, the development and applications of cryo-EM are discussed to support the use of this powerful technique in dental research. Because of the rapid development of cryogenic sample preparation techniques, direct electron detection, and image-processing algorithms, the last decade has witnessed an exponential increase in the use of cryo-EM in structural biology and materials research. By amalgamating with other analytic techniques, cryo-EM may be used for qualitative and quantitative analyses of the kinetics and thermodynamic mechanisms in which organic macromolecules participate in the transformation of mineral precursors from their original liquid state to amorphous and ultimately crystalline phases. The present review concentrates on the biomineralization of calcium phosphate mineral phases, while that of calcium carbonate, silica, and magnetite is only briefly mentioned. Bioinspired organic matrix-mediated inorganic crystallization strategies are discussed from the perspective of tissue regeneration engineering.
Collapse
Affiliation(s)
- C Lei
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Y H Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi'an, China.,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - P X Zhuang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Y T Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Q Q Wan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Y X Ma
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - F R Tay
- The Graduate School, Augusta University, Augusta, GA, USA
| | - L N Niu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| |
Collapse
|
37
|
An Occam’s razor: Synthesis of osteoinductive nanocrystalline implant coatings on hierarchical superstructures formed by Mugil cephalus skin hydrolysate. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Dorozhkin SV. Synthetic amorphous calcium phosphates (ACPs): preparation, structure, properties, and biomedical applications. Biomater Sci 2021; 9:7748-7798. [PMID: 34755730 DOI: 10.1039/d1bm01239h] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amorphous calcium phosphates (ACPs) represent a metastable amorphous state of other calcium orthophosphates (abbreviated as CaPO4) possessing variable compositional but rather identical glass-like physical properties, in which there are neither translational nor orientational long-range orders of the atomic positions. In nature, ACPs of a biological origin are found in the calcified tissues of mammals, some parts of primitive organisms, as well as in the mammalian milk. Manmade ACPs can be synthesized in a laboratory by various methods including wet-chemical precipitation, in which they are the first solid phases, precipitated after a rapid mixing of aqueous solutions containing dissolved ions of Ca2+ and PO43- in sufficient amounts. Due to the amorphous nature, all types of synthetic ACPs appear to be thermodynamically unstable and, unless stored in dry conditions or doped by stabilizers, they tend to transform spontaneously to crystalline CaPO4, mainly to ones with an apatitic structure. This intrinsic metastability of the ACPs is of a great biological relevance. In particular, the initiating role that metastable ACPs play in matrix vesicle biomineralization raises their importance from a mere laboratory curiosity to that of a reasonable key intermediate in skeletal calcifications. In addition, synthetic ACPs appear to be very promising biomaterials both for manufacturing artificial bone grafts and for dental applications. In this review, the current knowledge on the occurrence, structural design, chemical composition, preparation, properties, and biomedical applications of the synthetic ACPs have been summarized.
Collapse
|
39
|
Takahashi KZ, Aoyagi T, Fukuda JI. Multistep nucleation of anisotropic molecules. Nat Commun 2021; 12:5278. [PMID: 34489445 PMCID: PMC8421422 DOI: 10.1038/s41467-021-25586-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/18/2021] [Indexed: 12/31/2022] Open
Abstract
Phase transition of anisotropic materials is ubiquitously observed in physics, biology, materials science, and engineering. Nevertheless, how anisotropy of constituent molecules affects the phase transition dynamics is still poorly understood. Here we investigate numerically the phase transition of a simple model system composed of anisotropic molecules, and report on our discovery of multistep nucleation of nuclei with layered positional ordering (smectic ordering), from a fluid-like nematic phase with orientational order only (no positional order). A trinity of molecular dynamics simulation, machine learning, and molecular cluster analysis yielding free energy landscapes unambiguously demonstrates the dynamics of multistep nucleation process involving characteristic metastable clusters that precede supercritical smectic nuclei and cannot be accounted for by the classical nucleation theory. Our work suggests that molecules of simple shape can exhibit rich and complex nucleation processes, and our numerical approach will provide deeper understanding of phase transitions and resulting structures in anisotropic materials such as biological systems and functional materials.
Collapse
Affiliation(s)
- Kazuaki Z Takahashi
- Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
| | - Takeshi Aoyagi
- Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Jun-Ichi Fukuda
- Department of Physics, Faculty of Science, Kyushu University, Fukuoka, Fukuoka, Japan
| |
Collapse
|
40
|
Berríos-Cartagena N, Rubio-Dávila MM, Rivera-Delgado I, Feliciano-Bonilla MM, De Cardona-Juliá EA, Ortiz JG. Effects of Zinc, Mercury, or Lead on [ 3H]MK-801 and [ 3H]Fluorowillardiine Binding to Rat Synaptic Membranes. Neurochem Res 2021; 46:3159-3165. [PMID: 34370167 DOI: 10.1007/s11064-021-03407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022]
Abstract
Glutamate (Glu) is considered the most important excitatory amino acid neurotransmitter in the mammalian Central Nervous System. Zinc (Zn) is co-released with Glu during synaptic transmission and interacts with Glutamate receptors and transporters. We performed binding experiments using [3H]MK-801 (NMDA), and [3H]Fluorowillardine (AMPA) as ligands to study Zn-Glutamate interactions in rat cortical synaptic membranes. We also examined the effects of mercury and lead on NMDA or AMPA receptors. Zinc at 1 nM, significantly potentiates [3H]MK-801 binding. Lead inhibits [3H]MK-801 binding at micromolar concentrations. At millimolar concentrations, Hg also has a significant inhibitory effect. These effects are not reversed by Zn (1 nM). Zinc displaces the [3H]FW binding curve to the right. Lead (nM) and Hg (μM) inhibit [3H]FW binding. At certain concentrations, Zn reverses the effects of these metals on [3H]FW binding. These specific interactions serve to clarify the role of Zn, Hg, and Pb in physiological and pathological conditions.
Collapse
Affiliation(s)
- N Berríos-Cartagena
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico
| | - M M Rubio-Dávila
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico
| | - I Rivera-Delgado
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico
| | - M M Feliciano-Bonilla
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico
| | - E A De Cardona-Juliá
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico
| | - J G Ortiz
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico.
| |
Collapse
|
41
|
Zhang J, Ji Y, Jiang S, Shi M, Cai W, Miron RJ, Zhang Y. Calcium-Collagen Coupling is Vital for Biomineralization Schedule. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100363. [PMID: 34047068 PMCID: PMC8336496 DOI: 10.1002/advs.202100363] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Indexed: 05/08/2023]
Abstract
Biomineralization is a chemical reaction that occurs in organisms in which collagen initiates and guides the growth and crystallization of matched apatite minerals. However, there is little known about the demand pattern for calcium salts and collagen needed by biomineralization. In this study, natural bone biomineralization is analyzed, and a novel interplay between calcium concentration and collagen production is observed. Any quantitative change in one of the entities causes a corresponding change in the other. Translocation-associated membrane protein 2 (TRAM2) is identified as an intermediate factor whose silencing disrupts this relationship and causes poor mineralization. TRAM2 directly interacts with the sarcoplasmic/endoplasmic reticulum calcium ATPase 2b (SERCA2b) and modulates SERCA2b activity to couple calcium enrichment with collagen biosynthesis. Collectively, these findings indicate that osteoblasts can independently and directly regulate the process of biomineralization via this coupling. This knowledge has significant implications for the developmentally inspired design of biomaterials for bone regenerative applications.
Collapse
Affiliation(s)
- Jinglun Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Yaoting Ji
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Shuting Jiang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Miusi Shi
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Wenjin Cai
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Richard J. Miron
- Centre for Collaborative ResearchNova Southeastern UniversityCell Therapy InstituteFort LauderdaleFL33314‐7796USA
- Department of PeriodontologyCollege of Dental MedicineNova Southeastern UniversityFort LauderdaleFL33314‐7796USA
- Department of Periodontics and Oral SurgeryUniversity of Ann ArborAnn ArborMI48109USA
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| |
Collapse
|
42
|
Epasto LM, Georges T, Selimović A, Guigner JM, Azaïs T, Kurzbach D. Formation and Evolution of Nanoscale Calcium Phosphate Precursors under Biomimetic Conditions. Anal Chem 2021; 93:10204-10211. [PMID: 34251166 PMCID: PMC8319911 DOI: 10.1021/acs.analchem.1c01561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Simulated body fluids (SBFs) that mimic human blood plasma are widely used media for in vitro studies in an extensive array of research fields, from biomineralization to surface and corrosion sciences. We show that these solutions undergo dynamic nanoscopic conformational rearrangements on the timescale of minutes to hours, even though they are commonly considered stable or metastable. In particular, we find and characterize nanoscale inhomogeneities made of calcium phosphate (CaP) aggregates that emerge from homogeneous SBFs within a few hours and evolve into prenucleation species (PNS) that act as precursors in CaP crystallization processes. These ionic clusters consist of ∼2 nm large spherical building units that can aggregate into suprastructures with sizes of over 200 nm. We show that the residence times of phosphate ions in the PNS depend critically on the total PNS surface. These findings are particularly relevant for understanding nonclassical crystallization phenomena, in which PNS are assumed to act as building blocks for the final crystal structure.
Collapse
Affiliation(s)
- Ludovica M Epasto
- Faculty of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Str. 38, 1090 Vienna, Austria
| | - Tristan Georges
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4, Place Jussieu, F-75005 Paris, France
| | - Albina Selimović
- Faculty of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Str. 38, 1090 Vienna, Austria
| | - Jean-Michel Guigner
- Institut de Minéralogie et Physique des Milieux Condensés (IMPMC), Sorbonne Université, 4, Place Jussieu, F-75005 Paris, France
| | - Thierry Azaïs
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4, Place Jussieu, F-75005 Paris, France
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Str. 38, 1090 Vienna, Austria
| |
Collapse
|
43
|
Improvement of Drug-Loading Properties of Hydroxyapatite Particles Using Triethylamine as a Capping Agent: A Novel Approach. CRYSTALS 2021. [DOI: 10.3390/cryst11060703] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Particles that modify delivery characteristics are a focus of drug-loading research. Hydroxyapatite particles (HAPs) have excellent biocompatibility, shape controllability, and high adsorption, making them a potential candidate for drug-delivery carriers. However, there are still some defects in the current methods used to prepare HAPs. In order to avoid agglomeration and improve the drug-loading properties of HAPs, the present study provides a novel triethylamine (TEA)-capped coprecipitation template method to prepare HAPs at room temperature. In addition, pure water and anhydrous ethanol were used as solvents to investigate the capping effect of the small-molecule capping agent TEA during the synthesis of HAPs. The results showed that the HAPs prepared in the TEA ethanol system had a smaller particle size (150–250 nm), better dispersion and higher crystallinity. The results were significantly different from those of the conventional preparation methods without TEA. However, the hydroxyapatite crystal would agglomerate to a certain extent after being stored for a period of time, forming micro/nano-sized agglomerates of nanocrystals. FITR analysis and SEM observation showed that the capping effect of TEA promoted the formation of a smaller template and dispersed HAPs were quickly formed by dissolution and reprecipitation processes. The drug-loading experiments showed that the HAPs prepared in the TEA ethanol system had high drug-loading capacity (239.8 ± 13.4 mg·g−1) as well as an improved drug-release profile demonstrated in the drug-release experiment. The larger specific surface area associated with the smaller particle size was beneficial to the adsorption of drugs. After drying at 60 °C, TEA was evaporated from the HAPs which agglomerated into larger micron particles with more drug encapsulated. Thus, the effect of a sustained release was achieved. In the present research, a novel approach was developed by using triethylamine as the capping agent to prepare micro/nano-sized agglomerates of HAP nanocrystals with improved drug loading, which is predicted to have potential application in drug delivery.
Collapse
|
44
|
Simon P, Pompe W, Bobeth M, Worch H, Kniep R, Formanek P, Hild A, Wenisch S, Sturm E. Podosome-Driven Defect Development in Lamellar Bone under the Conditions of Senile Osteoporosis Observed at the Nanometer Scale. ACS Biomater Sci Eng 2021; 7:2255-2267. [PMID: 33938726 PMCID: PMC8290401 DOI: 10.1021/acsbiomaterials.0c01493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The degradation mechanism of human trabecular bone harvested from the central part of the femoral head of a patient with a fragility fracture of the femoral neck under conditions of senile osteoporosis was investigated by high-resolution electron microscopy. As evidenced by light microscopy, there is a disturbance of bone metabolism leading to severe and irreparable damages to the bone structure. These defects are evoked by osteoclasts and thus podosome activity. Podosomes create typical pit marks and holes of about 300-400 nm in diameter on the bone surface. Detailed analysis of the stress field caused by the podosomes in the extracellular bone matrix was performed. The calculations yielded maximum stress in the range of few megapascals resulting in formation of microcracks around the podosomes. Disintegration of hydroxyapatite and free lying collagen fibrils were observed at the edges of the plywood structure of the bone lamella. At the ultimate state, the disintegration of the mineralized collagen fibrils to a gelatinous matrix comes along with a delamination of the apatite nanoplatelets resulting in a brittle, porous bone structure. The nanoplatelets aggregate to big hydroxyapatite plates with a size of up to 10 x 20 μm2. The enhanced plate growth can be explained by the interaction of two mechanisms in the ruffled border zone: the accumulation of delaminated hydroxyapatite nanoplatelets near clusters of podosomes and the accelerated nucleation and random growth of HAP nanoplatelets due to a nonsufficient concentration of process-directing carboxylated osteocalcin cOC.
Collapse
Affiliation(s)
- Paul Simon
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany
| | - Wolfgang Pompe
- Technical University of Dresden, Institute of Materials Science, 01069 Dresden, Germany
| | - Manfred Bobeth
- Technical University of Dresden, Institute of Materials Science, 01069 Dresden, Germany
| | - Hartmut Worch
- Technical University of Dresden, Institute of Materials Science, 01069 Dresden, Germany
| | - Rüdiger Kniep
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany
| | - Petr Formanek
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Anne Hild
- Clinical Anatomy, Clinic of Small Animals, Justus-Liebig-University, 35385 Giessen, Germany
| | - Sabine Wenisch
- Clinical Anatomy, Clinic of Small Animals, Justus-Liebig-University, 35385 Giessen, Germany
| | - Elena Sturm
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany.,University of Konstanz, Physical Chemistry, POB 714, D-78457 Konstanz, Germany
| |
Collapse
|
45
|
Shimada BK, Pomozi V, Zoll J, Kuo S, Martin L, Le Saux O. ABCC6, Pyrophosphate and Ectopic Calcification: Therapeutic Solutions. Int J Mol Sci 2021; 22:ijms22094555. [PMID: 33925341 PMCID: PMC8123679 DOI: 10.3390/ijms22094555] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Pathological (ectopic) mineralization of soft tissues occurs during aging, in several common conditions such as diabetes, hypercholesterolemia, and renal failure and in certain genetic disorders. Pseudoxanthoma elasticum (PXE), a multi-organ disease affecting dermal, ocular, and cardiovascular tissues, is a model for ectopic mineralization disorders. ABCC6 dysfunction is the primary cause of PXE, but also some cases of generalized arterial calcification of infancy (GACI). ABCC6 deficiency in mice underlies an inducible dystrophic cardiac calcification phenotype (DCC). These calcification diseases are part of a spectrum of mineralization disorders that also includes Calcification of Joints and Arteries (CALJA). Since the identification of ABCC6 as the “PXE gene” and the development of several animal models (mice, rat, and zebrafish), there has been significant progress in our understanding of the molecular genetics, the clinical phenotypes, and pathogenesis of these diseases, which share similarities with more common conditions with abnormal calcification. ABCC6 facilitates the cellular efflux of ATP, which is rapidly converted into inorganic pyrophosphate (PPi) and adenosine by the ectonucleotidases NPP1 and CD73 (NT5E). PPi is a potent endogenous inhibitor of calcification, whereas adenosine indirectly contributes to calcification inhibition by suppressing the synthesis of tissue non-specific alkaline phosphatase (TNAP). At present, therapies only exist to alleviate symptoms for both PXE and GACI; however, extensive studies have resulted in several novel approaches to treating PXE and GACI. This review seeks to summarize the role of ABCC6 in ectopic calcification in PXE and other calcification disorders, and discuss therapeutic strategies targeting various proteins in the pathway (ABCC6, NPP1, and TNAP) and direct inhibition of calcification via supplementation by various compounds.
Collapse
Affiliation(s)
- Briana K Shimada
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA
| | - Viola Pomozi
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - Janna Zoll
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA
| | - Sheree Kuo
- Department of Pediatrics, Kapi'olani Medical Center for Women and Children, University of Hawaii, Honolulu, HI 96826, USA
| | - Ludovic Martin
- PXE Consultation Center, MAGEC Reference Center for Rare Skin Diseases, Angers University Hospital, 49100 Angers, France
- BNMI, CNRS 6214/INSERM 1083, University Bretagne-Loire, 49100 Angers, France
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA
| |
Collapse
|