1
|
Yu H, Zhang X, Meng X, Luo D, Liu X, Zhang G, Zhu C, Li Y, Yu Y, Yao H. Methanogenic and methanotrophic communities determine lower CH 4 fluxes in a subtropical paddy field under long-term elevated CO 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166904. [PMID: 37683846 DOI: 10.1016/j.scitotenv.2023.166904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Clarifying the effects of elevated CO2 concentration (e[CO2]) on CH4 emissions from paddy fields and its mechanisms is a crucial part of the research on agricultural systems in response to global climate change. However, the response of CH4 fluxes from rice fields to long-term e[CO2] (e[CO2] duration >10 years) and its microbial mechanism is still lacking. In this study, we used a long-term free-air CO2 enrichment experiment to examine the relationship between CH4 fluxes and the methanogenic and methanotrophic consortia under long- and short-term e[CO2]. We demonstrated that contrary to the effect of short-term e[CO2], long-term e[CO2] decreased CH4 fluxes. This may be associated with the reduction of methanogenic abundance and the increase of methanotrophic abundance under long-term e[CO2]. In addition, long-term e[CO2] also changed the community structure and composition of methanogens and methanotrophs compared with short-term e[CO2]. Partial least squares path modeling analysis showed that long-term e[CO2] also could affect the abundance and composition of methanogens and methanotrophs indirectly by influencing soil physical and chemical properties, thereby ultimately altering CH4 fluxes in paddy soils. These findings suggest that current estimates of short-term e[CO2]-induced CH4 fluxes from paddy fields may be overestimated. Therefore, a comprehensive assessment of climate‑carbon cycle feedbacks may need to consider the microbial regulation of CH4 production and oxidation processes in paddy ecosystems under long-term e[CO2].
Collapse
Affiliation(s)
- Haiyang Yu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xuechen Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xiangtian Meng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Dan Luo
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xinhui Liu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chunwu Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yongxiang Yu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Huaiying Yao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
2
|
Yao D, Yang J, Jia H, Zhou Y, Lv Q, Li X, Zhang H, Fesobi P, Liu H, Zhao F, Yu K. Application fruit tree hole storage brick fertilizer is beneficial to increase the nitrogen utilization of grape under subsurface drip irrigation. FRONTIERS IN PLANT SCIENCE 2023; 14:1259516. [PMID: 37790795 PMCID: PMC10544330 DOI: 10.3389/fpls.2023.1259516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023]
Abstract
It is very important to promote plant growth and decrease the nitrogen leaching in soil, to improve nitrogen (N) utilization efficiency. In this experiment, we designed a new fertilization strategy, fruit tree hole storage brick (FTHSB) application under subsurface drip irrigation, to characterise the effects of FTHSB addition on N absorption and utilization in grapes. Three treatments were set in this study, including subsurface drip irrigation (CK) control, fruit tree hole storage brick A (T1) treatment, and fruit tree hole storage brick B (T2) treatment. Results showed that the pore number and size of FTHSB A were significantly higher than FTHSB B. Compared with CK, T1 and T2 treatments significantly increased the biomass of different organs of grape, N utilization and 15N content in the roots, stems and leaves, along with more prominent promotion at T1 treatment. When the soil depth was 15-30 cm, the FTHSB application significantly increased the soil 15N content. But when the soil depth was 30-45 cm, it reduced the soil 15N content greatly. T1 and T2 treatments obviously increased the activities of nitrite reductase (NR) and glutamine synthetase (GS) in grape leaves, also the urease activity(UR) in 30 cm of soil. Our findings suggest that FTHSB promoted plant N utilization by reducing N loss in soil and increasing the enzyme activity related to nitrogen metabolism. In addition, this study showed that FTHSB A application was more effective than FTHSB B in improving nitrogen utilization in grapes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fengyun Zhao
- The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germplasm Resources of the Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Kun Yu
- The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germplasm Resources of the Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
3
|
Zhang J, Jiang Y, Ding C, Wang S, Zhao C, Yin W, Wang B, Yang R, Wang X. Remediation of lead and cadmium co-contaminated mining soil by phosphate-functionalized biochar: Performance, mechanism, and microbial response. CHEMOSPHERE 2023; 334:138938. [PMID: 37182708 DOI: 10.1016/j.chemosphere.2023.138938] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 05/16/2023]
Abstract
The remediation of heavy metals contaminated soils is of great significance for reducing their risk to human health. Here, pristine pinewood sawdust biochar (BC) and phosphate-functionalized biochar (PBC) were conducted to investigate their immobilization performance towards lead (Pb) and cadmium (Cd) in arable soil severely polluted by Pb (9240.5 mg kg-1) and Cd (10.71 mg kg-1) and microbial response in soil. Compared to pristine BC (2.6-12.1%), PBC was more effective in immobilizing Pb and Cd with an immobilization effectiveness of 45.2-96.2% after incubation of 60 days. Moreover, the labile Pb and Cd in soils were transformed to more stable species after addition of PBC, reducing their bioavailability. The immobilization mechanisms of Pb and Cd by PBC were mainly to facilitate the formation of stable phosphate precipitates e.g., Cd3(PO4)2, Cd5(PO4)3OH, Cd5H2(PO4)4‧4H2O, and pyromorphite-type minerals. Further, PBC increased pH, organic matter, cation exchange capacity, and available nutrients (phosphorus and potassium) in soils. High-throughput sequencing analysis of 16 S rRNA genes indicated that the diversity and composition of bacterial community responded to PBC addition due to PBC-induced changes in soil physicochemical properties, increasing the relative abundance of beneficial bacteria (e.g., Brevundimonas, Bacillus, and norank_f__chitinophagaceae) in the treated soils. What's more, these beneficial bacteria could not only facilitate Pb and Cd immobilization but also alter nutrient biogeochemical transformation (nitrogen and iron) in co-contaminated soils. Overall, PBC could be a promising material for immobilization of Pb and Cd and the simultaneous enhancement of soil quality and available nutrients in co-contaminated soils.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China; College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Yinkun Jiang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Chengyu Ding
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, 225127, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225127, Jiangsu, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China.
| | - Chenhao Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Weiqin Yin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Ruidong Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, 225127, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| |
Collapse
|
4
|
NG CWW, YAN WH, TSIM KWK, SO PS, XIA YT, TO CT. Effects of Bacillus subtilis and Pseudomonas fluorescens as the soil amendment. Heliyon 2022; 8:e11674. [PMID: 36439778 PMCID: PMC9691937 DOI: 10.1016/j.heliyon.2022.e11674] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/08/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
The application of soil beneficial bacteria (SBB) in agriculture is steadily increasing as it provides a promising way to replace chemical fertilisers and other supplements. Although the role of SBB as a biofertiliser is well understood, little is known about the response of soil physiochemical properties via the change in soil enzymatic activities with SBB growth. In this study, sterilised bulk soil was inoculated with Bacillus subtilis (BS) and Pseudomonas fluorescens (PF), which exhibit excellent characteristics in vitro for potentially improving soil quality. It is found that the contents of bioavailable nitrogen and ammonium in soil inoculated with SBB increased significantly, up to 34% and 57% relative to a control. This resulted from the enhancement of soil urease activity with BS and PF treatments by approximately 90% and 70%, respectively. The increased soil urease activity can be explained by the increased microorganism activity evident from the larger population size of BS (0.78–0.97 CFU mL−1/CFU mL−1) than PF (0.55–0.79 CFU mL−1/CFU mL−1) (p < 0.05). Results of principal component analysis also reinforce the interaction apparent in the significant relationship between soil urease activity and microbial biomass carbon (p < 0.05). Therefore, it can be concluded that the enhancement of soil enzymatic activities induced bulk soil fertility upregulation because of bacterial growth. These results demonstrate the application of SBB to be a promising strategy for bulk soil amendment, particularly nutrient restoration.
Collapse
Affiliation(s)
- Charles Wang Wai NG
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Wen Hui YAN
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
- Corresponding author.
| | - Karl Wah Keung TSIM
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Pui San SO
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Yi Teng XIA
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Chun Ting TO
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
5
|
Jia Z, Huang X, Li L, Li T, Duan Y, Ling N, Yu G. Rejuvenation of iron oxides enhances carbon sequestration by the 'iron gate' and 'enzyme latch' mechanisms in a rice-wheat cropping system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156209. [PMID: 35644381 DOI: 10.1016/j.scitotenv.2022.156209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/27/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The 'enzyme latch' theory believes that oxygen constraints on phenol oxidase can restrain the activity of hydrolytic enzymes responsible for decomposition, while the 'iron (Fe) gate' theory suggests that Fe oxidation can decrease phenol oxidase activity and enhance Fe-lignin complexation under oxygen exposure. The objective of this study was to explore the roles of the 'enzyme latch' and 'Fe gate' mechanisms in regulating soil organic carbon (SOC) sequestration in a rice-wheat cropping system subjected to six fertilization treatments: control (CT), chemical fertilizer (CF), CF plus manure (CFM), CF plus straw (CFS), CF plus manure and straw (CFMS), and CF plus organic-inorganic compound fertilizer (OICF). Soil samples were collected after the rice and wheat harvests and wet sieved into large macroaggregates, small macroaggregates, microaggregates, and silt and clay particles. Variations in amorphous and free Fe oxides, Fe-bound organic carbon and phenol oxidase activity were examined. After nine years, compared with the initial soil, the activation degree of free Fe oxides increased by 1.3- to 1.6-fold and the topsoil SOC stock increased by 13-61% across all treatments. Amorphous Fe oxide content, phenol oxidase activity and aggregate mean-weight diameter were higher after the wheat harvest than after the rice harvest. Amorphous Fe oxide content was positively correlated with Fe-bound organic carbon content (P < 0.001) but negatively correlated with phenol oxidase activity (P < 0.001). Therefore, seasonal alternation of wetting and drying can progressively drive the rejuvenation of Fe oxides and simultaneously affect the activity of phenol oxidase. Oxidative precipitation of amorphous Fe oxides promoted the formation of organo-Fe complexes and macroaggregates, while flooding of the paddies decreased the activity of phenol oxidase, thereby resulting in year-round hindered decomposition. Organic fertilization strengthened the roles of the 'Fe gate' and 'enzyme latch' mechanisms, and thus accelerated SOC sequestration in the rice-wheat cropping system.
Collapse
Affiliation(s)
- Zhixin Jia
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xiaolei Huang
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waster Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Lina Li
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
| | - Tingliang Li
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
| | - Yonghong Duan
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China.
| | - Ning Ling
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waster Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghui Yu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Li S, Xiao J, Sun T, Yu F, Zhang K, Feng Y, Xu C, Wang B, Cheng L. Synthetic microbial consortia with programmable ecological interactions. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuyao Li
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou 310058 China
| | - Jing Xiao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou 310058 China
| | - Tianzheng Sun
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou 310058 China
| | - Fangjian Yu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou 310058 China
| | - Kaihang Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou 310058 China
| | - Yuantao Feng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou 310058 China
| | - Chenchao Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou 310058 China
| | - Baojun Wang
- Hangzhou Innovation Center & College of Chemical and Biological Engineering Zhejiang University Hangzhou 311200 China
- Research Centre for Biological Computation, Zhejiang Laboratory Hangzhou 311100 China
| | - Lei Cheng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou 310058 China
| |
Collapse
|
7
|
Rivero RM, Mittler R, Blumwald E, Zandalinas SI. Developing climate-resilient crops: improving plant tolerance to stress combination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:373-389. [PMID: 34482588 DOI: 10.1111/tpj.15483] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/31/2021] [Indexed: 05/21/2023]
Abstract
Global warming and climate change are driving an alarming increase in the frequency and intensity of different abiotic stresses, such as droughts, heat waves, cold snaps, and flooding, negatively affecting crop yields and causing food shortages. Climate change is also altering the composition and behavior of different insect and pathogen populations adding to yield losses worldwide. Additional constraints to agriculture are caused by the increasing amounts of human-generated pollutants, as well as the negative impact of climate change on soil microbiomes. Although in the laboratory, we are trained to study the impact of individual stress conditions on plants, in the field many stresses, pollutants, and pests could simultaneously or sequentially affect plants, causing conditions of stress combination. Because climate change is expected to increase the frequency and intensity of such stress combination events (e.g., heat waves combined with drought, flooding, or other abiotic stresses, pollutants, and/or pathogens), a concentrated effort is needed to study how stress combination is affecting crops. This need is particularly critical, as many studies have shown that the response of plants to stress combination is unique and cannot be predicted from simply studying each of the different stresses that are part of the stress combination. Strategies to enhance crop tolerance to a particular stress may therefore fail to enhance tolerance to this specific stress, when combined with other factors. Here we review recent studies of stress combinations in different plants and propose new approaches and avenues for the development of stress combination- and climate change-resilient crops.
Collapse
Affiliation(s)
- Rosa M Rivero
- Department of Plant Nutrition, Campus Universitario de Espinardo, CEBAS-CSIC, Ed 25, Espinardo, Murcia, 30100, Spain
| | - Ron Mittler
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65201, USA
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Sara I Zandalinas
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65201, USA
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| |
Collapse
|
8
|
Tian MH, Shen LD, Liu X, Bai YN, Hu ZH, Jin JH, Feng YF, Liu Y, Yang WT, Yang YL, Liu JQ. Response of nitrite-dependent anaerobic methanotrophs to elevated atmospheric CO 2 concentration in paddy fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149785. [PMID: 34467934 DOI: 10.1016/j.scitotenv.2021.149785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Nitrite-dependent anaerobic methane oxidation (n-damo) catalyzed by Candidatus Methylomirabilis oxyfera (M. oxyfera)-like bacteria is a new pathway for the regulation of methane emissions from paddy fields. Elevated atmospheric CO2 concentrations (e[CO2]) can indirectly affect the structure and function of microbial communities. However, the response of M. oxyfera-like bacteria to e[CO2] is currently unknown. Here, we investigated the effect of e[CO2] (ambient CO2 + 200 ppm) on community composition, abundance, and activity of M. oxyfera-like bacteria at different depths (0-5, 5-10, and 10-20 cm) in paddy fields across multiple rice growth stages (tillering, jointing, and flowering). High-throughput sequencing showed that e[CO2] had no significant effect on the community composition of M. oxyfera-like bacteria. However, quantitative PCR suggested that the 16S rRNA gene abundance of M. oxyfera-like bacteria increased significantly in soil under e[CO2], particularly at the tillering stage. Furthermore, 13CH4 tracer experiments showed potential n-damo activity of 0.31-8.91 nmol CO2 g-1 (dry soil) d-1. E[CO2] significantly stimulated n-damo activity, especially at the jointing and flowering stages. The n-damo activity and abundance of M. oxyfera-like bacteria increased by an average of 90.9% and 50.0%, respectively, under e[CO2]. Correlation analysis showed that the increase in soil dissolved organic carbon content caused by e[CO2] had significant effects on the activity and abundance of M. oxyfera-like bacteria. Overall, this study provides the first evidence for a positive response of M. oxyfera-like bacteria to e[CO2], which may help reduce methane emissions from paddy fields under future climate change conditions.
Collapse
Affiliation(s)
- Mao-Hui Tian
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Li-Dong Shen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Xin Liu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Ya-Nan Bai
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zheng-Hua Hu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Jing-Hao Jin
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yan-Fang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210044, China
| | - Yang Liu
- Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Wang-Ting Yang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yu-Ling Yang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jia-Qi Liu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
9
|
Lian Z, Ouyang W, Liu H, Zhang D, Liu L. Ammonia volatilization modeling optimization for rice watersheds under climatic differences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144710. [PMID: 33636792 DOI: 10.1016/j.scitotenv.2020.144710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/11/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
The ammonia (NH3) volatilization mechanism is complicated with pronounced watershed differences of climate conditions, soil properties, and tillage practices. The watershed NH3 emission dynamics model was developed with the combination of field measurements, Soil Water Assessment Tool and NH3 volatilization algorithms. The temporal NH3 emissions patterns and the watershed NH3 volatilization dynamics were simulated with the improved NH3 volatilization modeling. Five monitoring sites and three case watersheds across China were selected to highlight the impacts of climatic conditions and validated the modeling. The average NH3 emissions of the three watersheds ranged from 14.94 to 120.33 kg N ha-1, which were mainly positively correlated with temperatures (r = 0.56, p < 0.01) and negatively correlated with soil organic carbon content (r = -0.33, p < 0.01). Analysis of similarities indicated that significant differences existed between the watersheds in terms of NH3 volatilization (RANOSIM = 0.758 and 0.834, p < 0.01). These analysis imply that environmental variabilities were more important than N input amounts.
Collapse
Affiliation(s)
- Zhongmin Lian
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, China
| | - Wei Ouyang
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, China.
| | - Hongbin Liu
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dan Zhang
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lianhua Liu
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, China
| |
Collapse
|