1
|
Vo NNT, Judelson HS. Promoter Analysis and Dissection Using Reporter Genes, Comparative Genomics, and Gel Shift Assays in Phytophthora. Methods Mol Biol 2025; 2892:1-21. [PMID: 39729265 DOI: 10.1007/978-1-0716-4330-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Transcriptional regulation allows cells to execute developmental programs, maintain homeostasis, and respond to intra- and extracellular signals. Central to these processes are promoters, which in eukaryotes are sequences upstream of genes that bind transcription factors (TFs) and which recruit RNA polymerase to initiate mRNA synthesis. Valuable tools for studying promoters include reporter genes, which can be used to indicate when and where genes are activated. Moreover, functional regions within promoters (typically TF binding sites) can be identified by integrating reporter assays with promoter mutagenesis. These sites may also be revealed through comparative genomics, or by the DNA-protein binding procedure known as a gel shift or electrophoretic mobility shift assay (EMSA). The latter can also be used to test if a specific TF binds a DNA target or assess the binding kinetics or affinity of the complex. In this chapter, we describe procedures for expressing reporter genes in Phytophthora, assaying reporter activity, identifying functional sites within promoters, and testing purified TFs or proteins within nuclear extracts for DNA binding.
Collapse
Affiliation(s)
- Nguyen N T Vo
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA.
| |
Collapse
|
2
|
Naert T, Yamamoto T, Han S, Horn M, Bethge P, Vladimirov N, Voigt FF, Figueiro-Silva J, Bachmann-Gagescu R, Helmchen F, Lienkamp SS. Pythia: Non-random DNA repair allows predictable CRISPR/Cas9 integration and gene editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614424. [PMID: 39386429 PMCID: PMC11463480 DOI: 10.1101/2024.09.23.614424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
CRISPR-based genome engineering holds enormous promise for basic science and therapeutic applications. Integrating and editing DNA sequences is still challenging in many cellular contexts, largely due to insufficient control of the repair process. We find that repair at the genome-cargo interface is predictable by deep-learning models and adheres to sequence context specific rules. Based on in silico predictions, we devised a strategy of triplet base-pair repeat repair arms that correspond to microhomologies at double-strand breaks (trimologies), which facilitated integration of large cargo (>2 kb) and protected the targeted locus and transgene from excessive damage. Successful integrations occurred in >30 loci in human cells and in in vivo models. Germline transmissible transgene integration in Xenopus, and endogenous tagging of tubulin in adult mice brains demonstrated integration during early embryonic cleavage and in non-dividing differentiated cells. Further, optimal repair arms for single- or double nucleotide edits were predictable, and facilitated small edits in vitro and in vivo using oligonucleotide templates. We provide a design-tool (Pythia, pythia-editing.org) to optimize custom integration, tagging or editing strategies. Pythia will facilitate genomic integration and editing for experimental and therapeutic purposes for a wider range of target cell types and applications.
Collapse
Affiliation(s)
- Thomas Naert
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Present address: Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Taiyo Yamamoto
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Shuting Han
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Melanie Horn
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Phillip Bethge
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Nikita Vladimirov
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP) Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
- Center for Microscopy and Image Analysis (ZMB), University of Zurich, Zurich, Switzerland
| | - Fabian F Voigt
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA
| | - Joana Figueiro-Silva
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Zurich Kidney Center
| | - Ruxandra Bachmann-Gagescu
- University Research Priority Program (URPP) Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Zurich Kidney Center
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP) Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
| | - Soeren S Lienkamp
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Zurich Kidney Center
| |
Collapse
|
3
|
Shalaby N, Xia Y, Kelly JJ, Sanchez-Pupo R, Martinez F, Fox MS, Thiessen JD, Hicks JW, Scholl TJ, Ronald JA. Imaging CAR-NK cells targeted to HER2 ovarian cancer with human sodium-iodide symporter-based positron emission tomography. Eur J Nucl Med Mol Imaging 2024; 51:3176-3190. [PMID: 38722382 PMCID: PMC11368970 DOI: 10.1007/s00259-024-06722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/14/2024] [Indexed: 09/03/2024]
Abstract
Chimeric antigen receptor (CAR) cell therapies utilize CARs to redirect immune cells towards cancer cells expressing specific antigens like human epidermal growth factor receptor 2 (HER2). Despite their potential, CAR T cell therapies exhibit variable response rates and adverse effects in some patients. Non-invasive molecular imaging can aid in predicting patient outcomes by tracking infused cells post-administration. CAR-T cells are typically autologous, increasing manufacturing complexity and costs. An alternative approach involves developing CAR natural killer (CAR-NK) cells as an off-the-shelf allogeneic product. In this study, we engineered HER2-targeted CAR-NK cells co-expressing the positron emission tomography (PET) reporter gene human sodium-iodide symporter (NIS) and assessed their therapeutic efficacy and PET imaging capability in a HER2 ovarian cancer mouse model.NK-92 cells were genetically modified to express a HER2-targeted CAR, the bioluminescence imaging reporter Antares, and NIS. HER2-expressing ovarian cancer cells were engineered to express the bioluminescence reporter Firefly luciferase (Fluc). Co-culture experiments demonstrated significantly enhanced cytotoxicity of CAR-NK cells compared to naive NK cells. In vivo studies involving mice with Fluc-expressing tumors revealed that those treated with CAR-NK cells exhibited reduced tumor burden and prolonged survival compared to controls. Longitudinal bioluminescence imaging demonstrated stable signals from CAR-NK cells over time. PET imaging using the NIS-targeted tracer 18F-tetrafluoroborate ([18F]TFB) showed significantly higher PET signals in mice treated with NIS-expressing CAR-NK cells.Overall, our study showcases the therapeutic potential of HER2-targeted CAR-NK cells in an aggressive ovarian cancer model and underscores the feasibility of using human-derived PET reporter gene imaging to monitor these cells non-invasively in patients.
Collapse
Affiliation(s)
- Nourhan Shalaby
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Ying Xia
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - John J Kelly
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Rafael Sanchez-Pupo
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Francisco Martinez
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Matthew S Fox
- Lawson Health Research Institute, London, ON, Canada
- Saint Joseph's Health Care, London, ON, Canada
| | - Jonathan D Thiessen
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Lawson Cyclotron and Radiochemistry Facility, London, ON, Canada
- Saint Joseph's Health Care, London, ON, Canada
| | - Justin W Hicks
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Lawson Cyclotron and Radiochemistry Facility, London, ON, Canada
| | - Timothy J Scholl
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Ontario Institute for Cancer Research, London, ON, Canada
| | - John A Ronald
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
4
|
Volpe A, Lyashchenko SK, Ponomarev V. Nuclear-Based Labeling of Cellular Immunotherapies: A Simple Protocol for Preclinical Use. Mol Imaging Biol 2024; 26:555-568. [PMID: 38958882 PMCID: PMC11281953 DOI: 10.1007/s11307-024-01923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/10/2024] [Accepted: 05/18/2024] [Indexed: 07/04/2024]
Abstract
Labeling and tracking existing and emerging cell-based immunotherapies using nuclear imaging is widely used to guide the preclinical phases of development and testing of existing and new emerging off-the-shelf cell-based immunotherapies. In fact, advancing our knowledge about their mechanism of action and limitations could provide preclinical support and justification for moving towards clinical experimentation of newly generated products and expedite their approval by the Food and Drug Administration (FDA).Here we provide the reader with a ready to use protocol describing the labeling methodologies and practical procedures to render different candidate cell therapies in vivo traceable by nuclear-based imaging. The protocol includes sufficient practical details to aid researchers at all career stages and from different fields in familiarizing with the described concepts and incorporating them into their work.
Collapse
Affiliation(s)
- Alessia Volpe
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Serge K Lyashchenko
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
5
|
Wu G, Liang Y, Chen C, Chen G, Zuo Q, Niu Y, Song J, Han W, Jin K, Li B. Identification of Two Potential Gene Insertion Sites for Gene Editing on the Chicken Z/W Chromosomes. Genes (Basel) 2024; 15:962. [PMID: 39062741 PMCID: PMC11276091 DOI: 10.3390/genes15070962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The identification of accurate gene insertion sites on chicken sex chromosomes is crucial for advancing sex control breeding materials. In this study, the intergenic region NC_006127.4 on the chicken Z chromosome and the non-repetitive sequence EE0.6 on the W chromosome were selected as potential gene insertion sites. Gene knockout vectors targeting these sites were constructed and transfected into DF-1 cells. T7E1 enzyme cleavage and luciferase reporter enzyme analyses revealed knockout efficiencies of 80.00% (16/20), 75.00% (15/20), and 75.00% (15/20) for the three sgRNAs targeting the EE0.6 site. For the three sgRNAs targeting the NC_006127.4 site, knockout efficiencies were 70.00% (14/20), 60.00% (12/20), and 45.00% (9/20). Gel electrophoresis and high-throughput sequencing were performed to detect potential off-target effects, showing no significant off-target effects for the knockout vectors at the two sites. EdU and CCK-8 proliferation assays revealed no significant difference in cell proliferation activity between the knockout and control groups. These results demonstrate that the EE0.6 and NC_006127.4 sites can serve as gene insertion sites on chicken sex chromosomes for gene editing without affecting normal cell proliferation.
Collapse
Affiliation(s)
- Gaoyuan Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.W.); (Y.L.); (C.C.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Youchen Liang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.W.); (Y.L.); (C.C.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.W.); (Y.L.); (C.C.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.W.); (Y.L.); (C.C.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.W.); (Y.L.); (C.C.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.W.); (Y.L.); (C.C.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA;
| | - Wei Han
- Poultry Institute of Chinese Academy of Agricultural Sciences, Yangzhou 225003, China;
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.W.); (Y.L.); (C.C.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (G.W.); (Y.L.); (C.C.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
6
|
Windisch R, Soliman S, Hoffmann A, Chen-Wichmann L, Danese A, Vosberg S, Bravo J, Lutz S, Kellner C, Fischer A, Gebhard C, Redondo Monte E, Hartmann L, Schneider S, Beier F, Strobl CD, Weigert O, Peipp M, Schündeln M, Stricker SH, Rehli M, Bernhagen J, Humpe A, Klump H, Brendel C, Krause DS, Greif PA, Wichmann C. Engineering an inducible leukemia-associated fusion protein enables large-scale ex vivo production of functional human phagocytes. Proc Natl Acad Sci U S A 2024; 121:e2312499121. [PMID: 38857395 PMCID: PMC11194515 DOI: 10.1073/pnas.2312499121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/20/2024] [Indexed: 06/12/2024] Open
Abstract
Ex vivo expansion of human CD34+ hematopoietic stem and progenitor cells remains a challenge due to rapid differentiation after detachment from the bone marrow niche. In this study, we assessed the capacity of an inducible fusion protein to enable sustained ex vivo proliferation of hematopoietic precursors and their capacity to differentiate into functional phagocytes. We fused the coding sequences of an FK506-Binding Protein 12 (FKBP12)-derived destabilization domain (DD) to the myeloid/lymphoid lineage leukemia/eleven nineteen leukemia (MLL-ENL) fusion gene to generate the fusion protein DD-MLL-ENL and retrovirally expressed the protein switch in human CD34+ progenitors. Using Shield1, a chemical inhibitor of DD fusion protein degradation, we established large-scale and long-term expansion of late monocytic precursors. Upon Shield1 removal, the cells lost self-renewal capacity and spontaneously differentiated, even after 2.5 y of continuous ex vivo expansion. In the absence of Shield1, stimulation with IFN-γ, LPS, and GM-CSF triggered terminal differentiation. Gene expression analysis of the obtained phagocytes revealed marked similarity with naïve monocytes. In functional assays, the novel phagocytes migrated toward CCL2, attached to VCAM-1 under shear stress, produced reactive oxygen species, and engulfed bacterial particles, cellular particles, and apoptotic cells. Finally, we demonstrated Fcγ receptor recognition and phagocytosis of opsonized lymphoma cells in an antibody-dependent manner. Overall, we have established an engineered protein that, as a single factor, is useful for large-scale ex vivo production of human phagocytes. Such adjustable proteins have the potential to be applied as molecular tools to produce functional immune cells for experimental cell-based approaches.
Collapse
Affiliation(s)
- Roland Windisch
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Sarah Soliman
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Adrian Hoffmann
- Vascular Biology, Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität München, Munich81377, Germany
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Linping Chen-Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Anna Danese
- Biomedical Center, Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Sebastian Vosberg
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
- German Cancer Consortium, Partner site Munich, Munich81377, Germany
- German Cancer Research Center, Heidelberg69120, Germany
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz8010, Austria
| | - Jimena Bravo
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main60596, Germany
| | - Sebastian Lutz
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Christian Kellner
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Alexander Fischer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg93053, Germany
| | - Claudia Gebhard
- Leibniz Institute for Immunotherapy, Regensburg93053, Germany
| | - Enric Redondo Monte
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
- German Cancer Consortium, Partner site Munich, Munich81377, Germany
- German Cancer Research Center, Heidelberg69120, Germany
| | - Luise Hartmann
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
- German Cancer Consortium, Partner site Munich, Munich81377, Germany
- German Cancer Research Center, Heidelberg69120, Germany
| | - Stephanie Schneider
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen52074, Germany
| | - Carolin Dorothea Strobl
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
- German Cancer Consortium, Partner site Munich, Munich81377, Germany
- German Cancer Research Center, Heidelberg69120, Germany
| | - Oliver Weigert
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
- German Cancer Consortium, Partner site Munich, Munich81377, Germany
- German Cancer Research Center, Heidelberg69120, Germany
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University of Kiel, Kiel24105, Germany
| | - Michael Schündeln
- Pediatric Hematology and Oncology, Department of Pediatrics III, University Hospital Essen and the University of Duisburg-Essen, Essen45147, Germany
| | - Stefan H. Stricker
- Biomedical Center, Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg93053, Germany
- Leibniz Institute for Immunotherapy, Regensburg93053, Germany
| | - Jürgen Bernhagen
- Vascular Biology, Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität München, Munich81377, Germany
- Munich Cluster for Systems Neurology, Munich81377, Germany
| | - Andreas Humpe
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Hannes Klump
- Institute for Transfusion Medicine, University Hospital Essen, Essen45147, Germany
- Institute for Transfusion Medicine and Cell Therapeutics, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen52074, Germany
| | - Christian Brendel
- Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02115
| | - Daniela S. Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main60596, Germany
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe-University, Frankfurt am Main60596, Germany
| | - Philipp A. Greif
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
- German Cancer Consortium, Partner site Munich, Munich81377, Germany
- German Cancer Research Center, Heidelberg69120, Germany
| | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
| |
Collapse
|
7
|
Huang Y, Chen X, Zhu Z, Mukherjee A. A Dual-Gene Reporter-Amplifier Architecture for Enhancing the Sensitivity of Molecular MRI by Water Exchange. Chembiochem 2024; 25:e202400087. [PMID: 38439618 PMCID: PMC11604348 DOI: 10.1002/cbic.202400087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/06/2024]
Abstract
The development of genetic reporters for magnetic resonance imaging (MRI) is essential for investigating biological functions in vivo. However, current MRI reporters have low sensitivity, making it challenging to create significant contrast against the tissue background, especially when only a small fraction of cells express the reporter. To overcome this limitation, we developed an approach for amplifying the sensitivity of molecular MRI by combining a chemogenetic contrast mechanism with a biophysical approach to increase water diffusion through the co-expression of a dual-gene construct comprising an organic anion transporting polypeptide, Oatp1b3, and a water channel, Aqp1. We first show that the expression of Aqp1 amplifies MRI contrast in cultured cells engineered to express Oatp1b3. We demonstrate that the contrast amplification is caused by Aqp1-driven increase in water exchange, which provides the gadolinium ions internalized by Oatp1b3-expressing cells with access to a larger water pool compared with exchange-limited conditions. We further show that our methodology allows cells to be detected using approximately 10-fold lower concentrations of gadolinium than that in the Aqp1-free scenario. Finally, we show that our approach enables the imaging of mixed-cell cultures containing a low fraction of Oatp1b3-labeled cells that are undetectable on the basis of Oatp1b3 expression alone.
Collapse
Affiliation(s)
| | - Xinyue Chen
- Department of Molecular, Cellular, and Developmental Biology
| | - Ziyue Zhu
- Department of Molecular, Cellular, and Developmental Biology
| | - Arnab Mukherjee
- Department of Chemistry
- Department of Molecular, Cellular, and Developmental Biology
- Department of Chemical Engineering
| |
Collapse
|
8
|
Bhattacharyya T, Mallett CL, Shapiro EM. MRI-Based Cell Tracking of OATP-Expressing Cell Transplants by Pre-Labeling with Gd-EOB-DTPA. Mol Imaging Biol 2024; 26:233-239. [PMID: 38448775 DOI: 10.1007/s11307-024-01904-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE A critical step in cell-based therapies is determining the exact position of transplanted cells immediately post-transplant. Here, we devised a method to detect cell transplants immediately post-transplant, using a clinical gadolinium-based contrast agent. These cells were detected as hyperintense signals using a clinically familiar T1-weighted MRI protocol. PROCEDURES HEK293 cells were stably transduced to express human OATP1B3, a hepatic organic anion transporting polypeptide that transports Gd-EOB-DTPA into cells that express the transporters, the intracellular accumulation of which cells causes signal enhancement on T1-weighted MRI. Cells were pre-labeled prior to injection in media containing Gd-EOB-DTPA for MRI evaluation and indocyanine green for cryofluorescence tomography validation. Labeled cells were injected into chicken hearts, in vitro, after which MRI and cryofluorescence tomography were performed in sequence. RESULTS OATP1B3-expressing cells had substantially reduced T1 following labeling with Gd-EOB-DTPA in culture. Following their implantation into chicken heart, these cells were robustly identified in T1-weighted MRI, with image-derived injection volumes of cells commensurate with intended injection volumes. Cryofluorescence tomography showed that the areas of signal enhancement in MRI overlapped with areas of indocyanine green signal, indicating that MRI signal enhancement was due to the transplanted cells. CONCLUSIONS OATP1B3-expressing cells can be pre-labeled with Gd-EOB-DTPA prior to injection into tissue, affording the use of clinically familiar T1-weighted MRI to robustly detect cell transplants immediately after transplant. This procedure is easily generalizable and has potential advantages over the use of iron oxide based cell labeling agents and imaging procedures.
Collapse
Affiliation(s)
- Tapas Bhattacharyya
- Molecular and Cellular Imaging Laboratory, Department of Radiology, Michigan State University, 846 Service Rd, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Christiane L Mallett
- Molecular and Cellular Imaging Laboratory, Department of Radiology, Michigan State University, 846 Service Rd, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Erik M Shapiro
- Molecular and Cellular Imaging Laboratory, Department of Radiology, Michigan State University, 846 Service Rd, East Lansing, MI, 48824, USA.
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA.
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
9
|
Zheng Y, Li Y, Zhou K, Li T, VanDusen NJ, Hua Y. Precise genome-editing in human diseases: mechanisms, strategies and applications. Signal Transduct Target Ther 2024; 9:47. [PMID: 38409199 PMCID: PMC10897424 DOI: 10.1038/s41392-024-01750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Precise genome-editing platforms are versatile tools for generating specific, site-directed DNA insertions, deletions, and substitutions. The continuous enhancement of these tools has led to a revolution in the life sciences, which promises to deliver novel therapies for genetic disease. Precise genome-editing can be traced back to the 1950s with the discovery of DNA's double-helix and, after 70 years of development, has evolved from crude in vitro applications to a wide range of sophisticated capabilities, including in vivo applications. Nonetheless, precise genome-editing faces constraints such as modest efficiency, delivery challenges, and off-target effects. In this review, we explore precise genome-editing, with a focus on introduction of the landmark events in its history, various platforms, delivery systems, and applications. First, we discuss the landmark events in the history of precise genome-editing. Second, we describe the current state of precise genome-editing strategies and explain how these techniques offer unprecedented precision and versatility for modifying the human genome. Third, we introduce the current delivery systems used to deploy precise genome-editing components through DNA, RNA, and RNPs. Finally, we summarize the current applications of precise genome-editing in labeling endogenous genes, screening genetic variants, molecular recording, generating disease models, and gene therapy, including ex vivo therapy and in vivo therapy, and discuss potential future advances.
Collapse
Affiliation(s)
- Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tiange Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Nathan J VanDusen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
10
|
Li S, Wang Y, van der Stoel M, Zhou X, Madhusudan S, Kanerva K, Nguyen VD, Eskici N, Olkkonen VM, Zhou Y, Raivio T, Ikonen E. HiHo-AID2: boosting homozygous knock-in efficiency enables robust generation of human auxin-inducible degron cells. Genome Biol 2024; 25:58. [PMID: 38409044 PMCID: PMC10895734 DOI: 10.1186/s13059-024-03187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Recent developments in auxin-inducible degron (AID) technology have increased its popularity for chemogenetic control of proteolysis. However, generation of human AID cell lines is challenging, especially in human embryonic stem cells (hESCs). Here, we develop HiHo-AID2, a streamlined procedure for rapid, one-step generation of human cancer and hESC lines with high homozygous degron-tagging efficiency based on an optimized AID2 system and homology-directed repair enhancers. We demonstrate its application for rapid and inducible functional inactivation of twelve endogenous target proteins in five cell lines, including targets with diverse expression levels and functions in hESCs and cells differentiated from hESCs.
Collapse
Affiliation(s)
- Shiqian Li
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland.
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland.
| | - Yafei Wang
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Miesje van der Stoel
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Xin Zhou
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Shrinidhi Madhusudan
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Kristiina Kanerva
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Van Dien Nguyen
- Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Nazli Eskici
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Vesa M Olkkonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - You Zhou
- Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Taneli Raivio
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, 00290, Helsinki, Finland
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland.
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland.
| |
Collapse
|
11
|
Huang Y, Chen X, Zhu Z, Mukherjee A. A dual-gene reporter-amplifier architecture for enhancing the sensitivity of molecular MRI by water exchange. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576672. [PMID: 38328134 PMCID: PMC10849537 DOI: 10.1101/2024.01.22.576672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The development of genetic reporters for magnetic resonance imaging (MRI) is essential for investigating biological functions in intact animals. However, current MRI reporters have low sensitivity, making it challenging to create significant contrast against the tissue background, especially when only a small percentage of cells express the reporter. To overcome this limitation, we developed an approach that amplifies signals by co-expressing an MRI reporter gene, Oatp1b3, with a water channel, aquaporin-1 (Aqp1). We first show that the expression of Aqp1 amplifies the paramagnetic relaxation effect of Oatp1b3 by facilitating transmembrane water exchange. This mechanism provides Oatp1b3-expressing cells with access to a larger water pool compared with typical exchange-limited conditions. We further demonstrated that our methodology allows dual-labeled cells to be detected using approximately 10-fold lower concentrations of contrast agent than that in the Aqp1-free scenario. Finally, we show that our approach enables the imaging of mixed-cell populations containing a low fraction of Oatp1b3-labeled cells that are otherwise undetectable based on Oatp1b3 expression alone.
Collapse
Affiliation(s)
| | - Xinyue Chen
- Department of Molecular, Cellular, and Developmental Biology
| | - Ziyue Zhu
- Department of Molecular, Cellular, and Developmental Biology
| | - Arnab Mukherjee
- Department of Chemistry
- Department of Molecular, Cellular, and Developmental Biology
| |
Collapse
|
12
|
Sorourian S, Behzad Behbahani A, Forouzanfar M, Jafarinia M, Safari F. Time and Cost-Effective Genome Editing Protocol for Simultaneous Caspase 8 Associated Protein 2 Gene Knock in/out in Chinese Hamster Ovary Cells Using CRISPR-Cas9 System. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3714. [PMID: 38827341 PMCID: PMC11139449 DOI: 10.30498/ijb.2024.398567.3714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/27/2023] [Indexed: 06/04/2024]
Abstract
Background CHO cells are preferred for producing biopharmaceuticals, and genome editing technologies offer opportunities to enhance recombinant protein production. Targeting apoptosis-related genes, such as Caspases 8-Associated Protein 2 (CASP8AP2), improves CHO cell viability and productivity. Integrating robust strategies with the CRISPR-Cas9 system enables its application in CHO cell engineering. Objectives This study was performed to develop a cost-effective protocol using the CRISPR-Cas9 system combined with the HITI strategy for simultaneous CASP8AP2 gene deletion/insertion in CHO cells and to assess its impact on cell viability and protein expression. Materials and Methods We developed an efficient protocol for CHO cell engineering by combining CRISPR/Cas9 with the HITI strategy. Two distinct sgRNA sequences were designed to target the 3' UTR region of the CASP8AP2 gene using CHOPCHOP software. The gRNAs were cloned into PX459 and PX460-1 vectors and transfected into CHO cells using the cost-effective PEI reagent. A manual selection system was employed to streamline the process of single-cell cloning. MTT assays assessed gene silencing and cell viability at 24, 48, and 72 hours. Flow cytometry evaluated protein expression in CASP8AP2-silenced CHO cells. Results The study confirmed the robustness of combining CRISPR-Cas9 with the HITI strategy, achieving a high 60% efficiency in generating knockout clones. PEI transfection successfully delivered the constructs to nearly 65% of the clones, with the majority being homozygous. The protocol proved feasible for resource-limited labs, requiring only an inverted fluorescent microscope. CASP8AP2 knockout (CHO-KO) cells exhibited significantly extended cell viability compared to CHO-K1 cells when treated with NaBu, with IC50 values of 7.28 mM and 14.25 mM at 48 hours, respectively (P-value 24 hours ≤ 0.0001, 48 hours ≤ 0.0001, P-value 72 hours = 0.0007). CHO CASP8AP2-silenced cells showed a 1.3-fold increase in JRed expression compared to native cells. Conclusions CRISPR-Cas9 and HITI strategy was used to efficiently engineer CHO cells for simultaneous CASP8AP2 gene deletion/insertion, which improved cell viability and protein expression.
Collapse
Affiliation(s)
- Soofia Sorourian
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Abbas Behzad Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Forouzanfar
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Mojtaba Jafarinia
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Yang J, Yan M, Wang Z, Zhang C, Guan M, Sun Z. Optical and MRI Multimodal Tracing of Stem Cells In Vivo. Mol Imaging 2023; 2023:4223485. [PMID: 38148836 PMCID: PMC10751174 DOI: 10.1155/2023/4223485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023] Open
Abstract
Stem cell therapy has shown great clinical potential in oncology, injury, inflammation, and cardiovascular disease. However, due to the technical limitations of the in vivo visualization of transplanted stem cells, the therapeutic mechanisms and biosafety of stem cells in vivo are poorly defined, which limits the speed of clinical translation. The commonly used methods for the in vivo tracing of stem cells currently include optical imaging, magnetic resonance imaging (MRI), and nuclear medicine imaging. However, nuclear medicine imaging involves radioactive materials, MRI has low resolution at the cellular level, and optical imaging has poor tissue penetration in vivo. It is difficult for a single imaging method to simultaneously achieve the high penetration, high resolution, and noninvasiveness needed for in vivo imaging. However, multimodal imaging combines the advantages of different imaging modalities to determine the fate of stem cells in vivo in a multidimensional way. This review provides an overview of various multimodal imaging technologies and labeling methods commonly used for tracing stem cells, including optical imaging, MRI, and the combination of the two, while explaining the principles involved, comparing the advantages and disadvantages of different combination schemes, and discussing the challenges and prospects of human stem cell tracking techniques.
Collapse
Affiliation(s)
- Jia Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Min Yan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Zhong Wang
- Affiliated Mental Health Center of Kunming Medical University, Kunming, Yunnan 650000, China
| | - Cong Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Miao Guan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Zhenglong Sun
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| |
Collapse
|
14
|
Bhattacharyya T, Mallett C, Shapiro EM. MRI-based cell tracking of OATP-expressing cell transplants by pre-labeling with Gd-EOB-DTPA. RESEARCH SQUARE 2023:rs.3.rs-3698429. [PMID: 38168297 PMCID: PMC10760244 DOI: 10.21203/rs.3.rs-3698429/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Purpose A critical step in cell-based therapies is determining the exact position of transplanted cells immediately post-transplant. Here, we devised a method to detect cell transplants immediately post-transplant, using a clinical gadolinium-based contrast agent. These cells were detected as hyperintense signals using a clinically familiar T1-weighted MRI protocol. Procedures HEK293 cells were stably transduced to express human OATP1B3, a hepatic organic anion transporting polypeptide that transports Gd-EOB-DTPA into cells that express the transporters, the intracellular accumulation of which cells causes signal enhancement on T1-weighted MRI. Cells were pre-labeled prior to injection in media containing Gd-EOB-DTPA for MRI evaluation and indocyanine green for cryofluorescence tomography validation. Labeled cells were injected into chicken hearts, in vitro, after which MRI and cryofluorescence tomography were performed in sequence. Results OATP1B3-expressing cells had substantially reduced T1 following labeling with Gd-EOB-DTPA in culture. Following their implantation into chicken heart, these cells were robustly identified in T1-weighted MRI, with image-derived injection volumes of cells commensurate with intended injection volumes. Cryofluorescence tomography showed that the areas of signal enhancement in MRI overlapped with areas of indocyanine green signal, indicating that MRI signal enhancement was due to the transplanted cells. Conclusions OATP1B3-expressing cells can be pre-labeled with Gd-EOB-DTPA prior to injection into tissue, affording the use of clinically familiar T1-weighted MRI to robustly detect cell transplants immediately after transplant. This procedure is easily generalizable and has potential advantages over the use of iron oxide based cell labeling agents and imaging procedures.
Collapse
|
15
|
Chirco KR, Martinez C, Lamba DA. Advancements in pre-clinical development of gene editing-based therapies to treat inherited retinal diseases. Vision Res 2023; 209:108257. [PMID: 37210864 PMCID: PMC10524382 DOI: 10.1016/j.visres.2023.108257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
One of the major goals in the inherited retinal disease (IRD) field is to develop an effective therapy that can be applied to as many patients as possible. Significant progress has already been made toward this end, with gene editing at the forefront. The advancement of gene editing-based tools has been a recent focus of many research groups around the world. Here, we provide an update on the status of CRISPR/Cas-derived gene editors, promising options for delivery of these editing systems to the retina, and animal models that aid in pre-clinical testing of new IRD therapeutics.
Collapse
Affiliation(s)
- Kathleen R Chirco
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States.
| | - Cassandra Martinez
- Department of Ophthalmology, University of California San Francisco, CA, United States; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, CA, United States
| | - Deepak A Lamba
- Department of Ophthalmology, University of California San Francisco, CA, United States; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, CA, United States
| |
Collapse
|
16
|
Balke-Want H, Keerthi V, Gkitsas N, Mancini AG, Kurgan GL, Fowler C, Xu P, Liu X, Asano K, Patel S, Fisher CJ, Brown AK, Tunuguntla RH, Patel S, Sotillo E, Mackall CL, Feldman SA. Homology-independent targeted insertion (HITI) enables guided CAR knock-in and efficient clinical scale CAR-T cell manufacturing. Mol Cancer 2023; 22:100. [PMID: 37365642 DOI: 10.1186/s12943-023-01799-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Chimeric Antigen Receptor (CAR) T cells are now standard of care (SOC) for some patients with B cell and plasma cell malignancies and could disrupt the therapeutic landscape of solid tumors. However, access to CAR-T cells is not adequate to meet clinical needs, in part due to high cost and long lead times for manufacturing clinical grade virus. Non-viral site directed CAR integration can be accomplished using CRISPR/Cas9 and double-stranded DNA (dsDNA) or single-stranded DNA (ssDNA) via homology-directed repair (HDR), however yields with this approach have been limiting for clinical application (dsDNA) or access to large yields sufficient to meet the manufacturing demands outside early phase clinical trials is limited (ssDNA). METHODS We applied homology-independent targeted insertion (HITI) or HDR using CRISPR/Cas9 and nanoplasmid DNA to insert an anti-GD2 CAR into the T cell receptor alpha constant (TRAC) locus and compared both targeted insertion strategies in our system. Next, we optimized post-HITI CRISPR EnrichMENT (CEMENT) to seamlessly integrate it into a 14-day process and compared our knock-in with viral transduced anti-GD2 CAR-T cells. Finally, we explored the off-target genomic toxicity of our genomic engineering approach. RESULTS Here, we show that site directed CAR integration utilizing nanoplasmid DNA delivered via HITI provides high cell yields and highly functional cells. CEMENT enriched CAR T cells to approximately 80% purity, resulting in therapeutically relevant dose ranges of 5.5 × 108-3.6 × 109 CAR + T cells. CRISPR knock-in CAR-T cells were functionally comparable with viral transduced anti-GD2 CAR-T cells and did not show any evidence of off-target genomic toxicity. CONCLUSIONS Our work provides a novel platform to perform guided CAR insertion into primary human T-cells using nanoplasmid DNA and holds the potential to increase access to CAR-T cell therapies.
Collapse
Affiliation(s)
- Hyatt Balke-Want
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Vimal Keerthi
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Nikolaos Gkitsas
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | | | - Gavin L Kurgan
- Integrated DNA Technologies, Inc, Coralville, IA, 52241, USA
| | - Carley Fowler
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Peng Xu
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Xikun Liu
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Kyle Asano
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Sunny Patel
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Christopher J Fisher
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Annie K Brown
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Ramya H Tunuguntla
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Shabnum Patel
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Elena Sotillo
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Crystal L Mackall
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| | - Steven A Feldman
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
17
|
Frâncio L, Freitas MVDE, Matte U. CRISPR/Cas patents and health-related publications in South America. AN ACAD BRAS CIENC 2023; 95:e20220629. [PMID: 37341274 DOI: 10.1590/0001-3765202320220629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/09/2022] [Indexed: 06/22/2023] Open
Abstract
CRISPR/Cas is being increasingly used for various applications. However, different countries introduce new technologies at different paces and purposes. This study reviews research progress using the CRISPR/Cas system in South America, focusing on health-related applications. The PubMed database was used to identify relevant articles about gene editing with CRISPR/Cas, whereas patents were searched in the Patentscope database. In addition, ClinicalTrials.gov was used to find information on active and recruiting clinical trials. A total of 668 non-duplicated articles (extracted from PubMed) and 225 patents (not all health-related) were found. One hundred ninety-two articles on health-related applications of CRISPR/Cas were analyzed in detail. In 95 out of these, more than 50% of the authors were affiliated with South American institutions. Experimental CRISPR/Cas studies target different diseases, particularly cancer, neurological, and endocrine disorders. Most patents refer to generic applications, but those with clear disease indications are for inborn errors of metabolism, ophthalmological, hematological, and immunological disorders. No clinical trials were found involving Latin American countries. Although research on gene editing in South America is advancing, our data show the low number of national innovations protected by intellectual property in this field.
Collapse
Affiliation(s)
- Lariane Frâncio
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 90650-001 Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre, Laboratório de Células, Tecidos e Genes, Rua Ramiro Barcelos, 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Martiela V DE Freitas
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 90650-001 Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre, Laboratório de Células, Tecidos e Genes, Rua Ramiro Barcelos, 2350, 90035-903 Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre, Núcleo de Bioinformática, Rua Ramiro Barcelos, 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Ursula Matte
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 90650-001 Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre, Laboratório de Células, Tecidos e Genes, Rua Ramiro Barcelos, 2350, 90035-903 Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre, Núcleo de Bioinformática, Rua Ramiro Barcelos, 2350, 90035-903 Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Av. Bento Gonçalves, 9500, 90650-001 Porto Alegre, RS, Brazil
| |
Collapse
|
18
|
Huang X, Li A, Xu P, Yu Y, Li S, Hu L, Feng S. Current and prospective strategies for advancing the targeted delivery of CRISPR/Cas system via extracellular vesicles. J Nanobiotechnology 2023; 21:184. [PMID: 37291577 DOI: 10.1186/s12951-023-01952-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as a promising platform for gene delivery owing to their natural properties and phenomenal functions, being able to circumvent the significant challenges associated with toxicity, problematic biocompatibility, and immunogenicity of the standard approaches. These features are of particularly interest for targeted delivery of the emerging clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) systems. However, the current efficiency of EV-meditated transport of CRISPR/Cas components remains insufficient due to numerous exogenous and endogenous barriers. Here, we comprehensively reviewed the current status of EV-based CRISPR/Cas delivery systems. In particular, we explored various strategies and methodologies available to potentially improve the loading capacity, safety, stability, targeting, and tracking for EV-based CRISPR/Cas system delivery. Additionally, we hypothesise the future avenues for the development of EV-based delivery systems that could pave the way for novel clinically valuable gene delivery approaches, and may potentially bridge the gap between gene editing technologies and the laboratory/clinical application of gene therapies.
Collapse
Affiliation(s)
- Xiaowen Huang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China
| | - Peng Xu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China
| | - Yangfan Yu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China
| | - Lina Hu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China.
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
19
|
McRae SW, Cleary M, DeRoche D, Martinez FM, Xia Y, Caravan P, Gale EM, Ronald JA, Scholl TJ. Development of a Suite of Gadolinium-Free OATP1-Targeted Paramagnetic Probes for Liver MRI. J Med Chem 2023; 66:6567-6576. [PMID: 37159947 DOI: 10.1021/acs.jmedchem.2c01561] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Five amphiphilic, anionic Mn(II) complexes were synthesized as contrast agents targeted to organic anion transporting polypeptide transporters (OATP) for liver magnetic resonance imaging (MRI). The Mn(II) complexes are synthesized in three steps, each from the commercially available trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) chelator, with T1-relaxivity of complexes ranging between 2.3 and 3.0 mM-1 s-1 in phosphate buffered saline at an applied field strength of 3.0 T. Pharmacokinetics were assessed in female BALB/c mice by acquiring T1-weighted images dynamically for 70 min after agent administration and determining contrast enhancement and washout in various organs. Uptake of Mn(II) complexes in human OATPs was investigated through in vitro assays using MDA-MB-231 cells engineered to express either OATP1B1 or OATP1B3 isoforms. Our study introduces a new class of Mn-based OATP-targeted contrast that can be broadly tuned via simple synthetic protocols.
Collapse
Affiliation(s)
- Sean W McRae
- Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Michael Cleary
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Daniel DeRoche
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Francisco M Martinez
- Imaging Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Ying Xia
- Imaging Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Peter Caravan
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Eric M Gale
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - John A Ronald
- Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Imaging Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Lawson Health Research Institute, London, Ontario N6A 3K7, Canada
| | - Timothy J Scholl
- Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Imaging Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| |
Collapse
|
20
|
Amiri S, Adibzadeh S, Ghanbari S, Rahmani B, Kheirandish MH, Farokhi-Fard A, Dastjerdeh MS, Davami F. CRISPR-interceded CHO cell line development approaches. Biotechnol Bioeng 2023; 120:865-902. [PMID: 36597180 DOI: 10.1002/bit.28329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/28/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
For industrial production of recombinant protein biopharmaceuticals, Chinese hamster ovary (CHO) cells represent the most widely adopted host cell system, owing to their capacity to produce high-quality biologics with human-like posttranslational modifications. As opposed to random integration, targeted genome editing in genomic safe harbor sites has offered CHO cell line engineering a new perspective, ensuring production consistency in long-term culture and high biotherapeutic expression levels. Corresponding the remarkable advancements in knowledge of CRISPR-Cas systems, the use of CRISPR-Cas technology along with the donor design strategies has been pushed into increasing novel scenarios in cell line engineering, allowing scientists to modify mammalian genomes such as CHO cell line quickly, readily, and efficiently. Depending on the strategies and production requirements, the gene of interest can also be incorporated at single or multiple loci. This review will give a gist of all the most fundamental recent advancements in CHO cell line development, such as different cell line engineering approaches along with donor design strategies for targeted integration of the desired construct into genomic hot spots, which could ultimately lead to the fast-track product development process with consistent, improved product yield and quality.
Collapse
Affiliation(s)
- Shahin Amiri
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Setare Adibzadeh
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Samaneh Ghanbari
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Behnaz Rahmani
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad H Kheirandish
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Aref Farokhi-Fard
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mansoureh S Dastjerdeh
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Davami
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
21
|
Nyström NN, McRae SW, Martinez FM, Kelly JJ, Scholl TJ, Ronald JA. A Genetically Encoded Magnetic Resonance Imaging Reporter Enables Sensitive Detection and Tracking of Spontaneous Metastases in Deep Tissues. Cancer Res 2023; 83:673-685. [PMID: 36512633 DOI: 10.1158/0008-5472.can-22-2770] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/11/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Metastasis is the leading cause of cancer-related death. However, it remains a poorly understood aspect of cancer biology, and most preclinical cancer studies do not examine metastasis, focusing solely on the primary tumor. One major factor contributing to this paradox is a gap in available tools for accurate spatiotemporal measurements of metastatic spread in vivo. Here, our objective was to develop an imaging reporter system that offers sensitive three-dimensional (3D) detection of cancer cells at high resolutions in live mice. An organic anion-transporting polypeptide 1b3 (oatp1b3) was used as an MRI reporter gene, and its sensitivity was systematically optimized for in vivo tracking of viable cancer cells in a spontaneous metastasis model. Metastases with oatp1b3-MRI could be observed at the single lymph node level and tracked over time as cancer cells spread to multiple lymph nodes and different organ systems in individual animals. While initial single lesions were successfully imaged in parallel via bioluminescence, later metastases were largely obscured by light scatter from the initial node. Importantly, MRI could detect micrometastases in lung tissue comprised on the order of 1,000 cancer cells. In summary, oatp1b3-MRI enables longitudinal tracking of cancer cells with combined high resolution and high sensitivity that provides 3D spatial information and the surrounding anatomical context. SIGNIFICANCE An MRI reporter gene system optimized for tracking metastasis in deep tissues at high resolutions and able to detect spontaneous micrometastases in lungs of mice provides a useful tool for metastasis research.
Collapse
Affiliation(s)
- Nivin N Nyström
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Department of Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Sean W McRae
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Imaging Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Francisco M Martinez
- Imaging Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
| | - John J Kelly
- Imaging Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Timothy J Scholl
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Imaging Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Physics and Astronomy, Western University, London, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - John A Ronald
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Imaging Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada.,Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
22
|
Shalaby N, Kelly JJ, Sehl OC, Gevaert JJ, Fox MS, Qi Q, Foster PJ, Thiessen JD, Hicks JW, Scholl TJ, Ronald JA. Complementary early-phase magnetic particle imaging and late-phase positron emission tomography reporter imaging of mesenchymal stem cells in vivo. NANOSCALE 2023; 15:3408-3418. [PMID: 36722918 DOI: 10.1039/d2nr03684c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Stem cell-based therapies have demonstrated significant potential in clinical applications for many debilitating diseases. The ability to non-invasively and dynamically track the location and viability of stem cells post administration could provide important information on individual patient response and/or side effects. Multi-modal cell tracking provides complementary information that can offset the limitations of a single imaging modality to yield a more comprehensive picture of cell fate. In this study, mesenchymal stem cells (MSCs) were engineered to express human sodium iodide symporter (NIS), a clinically relevant positron emission tomography (PET) reporter gene, as well as labeled with superparamagnetic iron oxide nanoparticles (SPIOs) to allow for detection with magnetic particle imaging (MPI). MSCs were additionally engineered with a preclinical bioluminescence imaging (BLI) reporter gene for comparison of BLI cell viability data to both MPI and PET data over time. MSCs were implanted into the hind limbs of immunocompromised mice and imaging with MPI, BLI and PET was performed over a 30-day period. MPI showed sensitive detection that steadily declined over the 30-day period, while BLI showed initial decreases followed by later rapid increases in signal. The PET signal of MSCs was significantly higher than the background at later timepoints. Early-phase imaging (day 0-9 post MSC injections) showed correlation between MPI and BLI data (R2 = 0.671), while PET and BLI showed strong correlation for late-phase (day 10-30 post MSC injections) imaging timepoints (R2 = 0.9817). We report the first use of combined MPI and PET for cell tracking and show the complementary benefits of MPI for sensitive detection of MSCs early after implantation and PET for longer-term measurements of cell viability.
Collapse
Affiliation(s)
- Nourhan Shalaby
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - John J Kelly
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Olivia C Sehl
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Julia J Gevaert
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Matthew S Fox
- Lawson Health Research Institute, London, ON, Canada
- Saint Joseph's Health Care, London, ON, Canada
| | - Qi Qi
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Lawson Health Research Institute, London, ON, Canada
| | - Paula J Foster
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jonathan D Thiessen
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Saint Joseph's Health Care, London, ON, Canada
| | - Justin W Hicks
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Lawson Health Research Institute, London, ON, Canada
| | - Timothy J Scholl
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - John A Ronald
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology & Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
23
|
Abstract
WNT/CTNNB1 signaling plays a critical role in the development of all multicellular animals. Here, we include both the embryonic stages, during which tissue morphogenesis takes place, and the postnatal stages of development, during which tissue homeostasis occurs. Thus, embryonic development concerns lineage development and cell fate specification, while postnatal development involves tissue maintenance and regeneration. Multiple tools are available to researchers who want to investigate, and ideally visualize, the dynamic and pleiotropic involvement of WNT/CTNNB1 signaling in these processes. Here, we discuss and evaluate the decisions that researchers need to make in identifying the experimental system and appropriate tools for the specific question they want to address, covering different types of WNT/CTNNB1 reporters in cells and mice. At a molecular level, advanced quantitative imaging techniques can provide spatio-temporal information that cannot be provided by traditional biochemical assays. We therefore also highlight some recent studies to show their potential in deciphering the complex and dynamic mechanisms that drive WNT/CTNNB1 signaling.
Collapse
|
24
|
Karagyaur M, Primak A, Efimenko A, Skryabina M, Tkachuk V. The Power of Gene Technologies: 1001 Ways to Create a Cell Model. Cells 2022; 11:cells11203235. [PMID: 36291103 PMCID: PMC9599997 DOI: 10.3390/cells11203235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 12/04/2022] Open
Abstract
Modern society faces many biomedical challenges that require urgent solutions. Two of the most important include the elucidation of mechanisms of socially significant diseases and the development of prospective drug treatments for these diseases. Experimental cell models are a convenient tool for addressing many of these problems. The power of cell models is further enhanced when combined with gene technologies, which allows the examination of even more subtle changes within the structure of the genome and permits testing of proteins in a native environment. The list and possibilities of these recently emerging technologies are truly colossal, which requires a rethink of a number of approaches for obtaining experimental cell models. In this review, we analyze the possibilities and limitations of promising gene technologies for obtaining cell models, and also give recommendations on the development and creation of relevant models. In our opinion, this review will be useful for novice cell biologists, as it provides some reference points in the rapidly growing universe of gene and cell technologies.
Collapse
Affiliation(s)
- Maxim Karagyaur
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
- Correspondence:
| | - Alexandra Primak
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Mariya Skryabina
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Vsevolod Tkachuk
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
| |
Collapse
|
25
|
Foley RA, Sims RA, Duggan EC, Olmedo JK, Ma R, Jonas SJ. Delivering the CRISPR/Cas9 system for engineering gene therapies: Recent cargo and delivery approaches for clinical translation. Front Bioeng Biotechnol 2022; 10:973326. [PMID: 36225598 PMCID: PMC9549251 DOI: 10.3389/fbioe.2022.973326] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats associated protein 9 (CRISPR/Cas9) has transformed our ability to edit the human genome selectively. This technology has quickly become the most standardized and reproducible gene editing tool available. Catalyzing rapid advances in biomedical research and genetic engineering, the CRISPR/Cas9 system offers great potential to provide diagnostic and therapeutic options for the prevention and treatment of currently incurable single-gene and more complex human diseases. However, significant barriers to the clinical application of CRISPR/Cas9 remain. While in vitro, ex vivo, and in vivo gene editing has been demonstrated extensively in a laboratory setting, the translation to clinical studies is currently limited by shortfalls in the precision, scalability, and efficiency of delivering CRISPR/Cas9-associated reagents to their intended therapeutic targets. To overcome these challenges, recent advancements manipulate both the delivery cargo and vehicles used to transport CRISPR/Cas9 reagents. With the choice of cargo informing the delivery vehicle, both must be optimized for precision and efficiency. This review aims to summarize current bioengineering approaches to applying CRISPR/Cas9 gene editing tools towards the development of emerging cellular therapeutics, focusing on its two main engineerable components: the delivery vehicle and the gene editing cargo it carries. The contemporary barriers to biomedical applications are discussed within the context of key considerations to be made in the optimization of CRISPR/Cas9 for widespread clinical translation.
Collapse
Affiliation(s)
- Ruth A. Foley
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, CA, United States
| | - Ruby A. Sims
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- California NanoSystems Institute, University of California, Los Angeles, CA, United States
| | - Emily C. Duggan
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Jessica K. Olmedo
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Rachel Ma
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Steven J. Jonas
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- California NanoSystems Institute, University of California, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, United States
| |
Collapse
|
26
|
Zhong L, Li J, Zu B, Zhu X, Lei D, Wang G, Hu X, Zhang T, Dou X. Highly Retentive, Anti-Interference, and Covert Individual Marking Taggant with Exceptional Skin Penetration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201497. [PMID: 35748174 PMCID: PMC9443463 DOI: 10.1002/advs.202201497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The development of high-performance individual marking taggants is of great significance. However, the interaction between taggant and skin is not fully understood, and a standard for marking taggants has yet to be realized. To achieve a highly retentive, anti-interference, and covert individual marking fluorescent taggant, Mn2+ -doped NaYF4 :Yb/Er upconversion nanoparticles (UCNPs), are surface-functionalized with polyethyleneimine (PEI) to remarkably enhance the interaction between the amino groups and skin, and thus to facilitate the surface adhesion and chemical penetration of the taggant. Electrostatic interaction between PEI600 -UCNPs and skin as well as remarkable penetration inside the epidermis is responsible for excellent taggant retention capability, even while faced with robust washing, vigorous wiping, and rubbing for more than 100 cycles. Good anti-interference capability and reliable marking performance in real cases are ensured by an intrinsic upconversion characteristic with a distinct red luminescent emission under 980 nm excitation. The present methodology is expected to shed light on the design of high-performance individual marking taggants from the perspective of the underlying interaction between taggant and skin, and to help advance the use of fluorescent taggants for practical application, such as special character tracking.
Collapse
Affiliation(s)
- Lianggen Zhong
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jiguang Li
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Baiyi Zu
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
| | - Xiaodan Zhu
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Da Lei
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
| | - Guangfa Wang
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
| | - Xiaoyun Hu
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Tianshi Zhang
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xincun Dou
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
27
|
Yun J, Baldini M, Chowdhury R, Mukherjee A. Designing Protein-Based Probes for Sensing Biological Analytes with Magnetic Resonance Imaging. ANALYSIS & SENSING 2022; 2:e202200019. [PMID: 37409177 PMCID: PMC10321474 DOI: 10.1002/anse.202200019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Genetically encoded sensors provide unique advantages for monitoring biological analytes with molecular and cellular-level specificity. While sensors derived from fluorescent proteins represent staple tools in biological imaging, these probes are limited to optically accessible preparations owing to physical curbs on light penetration. In contrast to optical methods, magnetic resonance imaging (MRI) may be used to noninvasively look inside intact organisms at any arbitrary depth and over large fields of view. These capabilities have spurred the development of innovative methods to connect MRI readouts with biological targets using protein-based probes that are in principle genetically encodable. Here, we highlight the state-of-the-art in MRI-based biomolecular sensors, focusing on their physical mechanisms, quantitative characteristics, and biological applications. We also describe how innovations in reporter gene technology are creating new opportunities to engineer MRI sensors that are sensitive to dilute biological targets.
Collapse
Affiliation(s)
- Jason Yun
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
| | - Michelle Baldini
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Rochishnu Chowdhury
- Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Arnab Mukherjee
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- Center for BioEngineering, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
28
|
Liang Y, Iqbal Z, Wang J, Xu L, Xu X, Ouyang K, Zhang H, Lu J, Duan L, Xia J. Cell-derived extracellular vesicles for CRISPR/Cas9 delivery: engineering strategies for cargo packaging and loading. Biomater Sci 2022; 10:4095-4106. [PMID: 35766814 DOI: 10.1039/d2bm00480a] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Genome editing technology has emerged as a potential therapeutic tool for treating incurable diseases. In particular, the discovery of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas systems and the design of single-guide RNAs (sgRNAs) have revolutionized genome editing applications. Unfortunately, compared with the rapid development of gene-editing tools, the progress in the development of delivery technologies is lagging behind and thus limiting the clinical application of genome editing. To overcome these limitations, researchers have investigated various delivery systems, including viral and non-viral vectors for delivering CRISPR/Cas and sgRNA complexes. As natural endogenous nanocarriers, extracellular vesicles (EVs) present advantages of biocompatibility, low immunogenicity, stability, and high permeability, making them one of the most promising drug delivery vehicles. This review provides an overview of the fundamental mechanisms of EVs from the aspects of biogenesis, trafficking, cargo delivery, and function as nanotherapeutic agents. We also summarize the latest trends in EV-based CRISPR/Cas delivery systems and discuss the prospects for future development. In particular, we put our emphasis on the state-of-the-art engineering strategies to realize efficient cargo packaging and loading. Altogether, EVs hold promise in bridging genome editing in the laboratory and clinical applications of gene therapies by providing a safe, effective, and targeted delivery vehicle.
Collapse
Affiliation(s)
- Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China.
| | - Zoya Iqbal
- Department of Orthopedics, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Jianhong Wang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China.
| | - Limei Xu
- Department of Orthopedics, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Xiao Xu
- Department of Orthopedics, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Kan Ouyang
- Department of Orthopedics, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Hao Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, Jiangsu, China.,EVLiXiR Biotech Inc., Nanjing 210032, Jiangsu, China
| | - Jianping Lu
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China.
| | - Li Duan
- Department of Orthopedics, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
29
|
Nyström NN, Liu H, Martinez FM, Zhang XA, Scholl TJ, Ronald JA. Gadolinium-free Magnetic Resonance Imaging of the Liver via an Oatp1-Targeted Manganese(III) Porphyrin. J Med Chem 2022; 65:9846-9857. [PMID: 35852350 DOI: 10.1021/acs.jmedchem.2c00500] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Controversy surrounding gadolinium-based contrast agents (GBCAs) has rendered their continued utility highly contentious, but the liver-specific GBCA Gd(III) ethoxybenzyl-diethylene triamine pentaacetic acid (Gd(III)-EOB-DTPA) remains in use because it provides unique diagnostic information that could not be obtained by any other means. To address the need for an alternate liver-specific MRI probe, we synthesized Mn(III) 20-(4-ethoxyphenyl) porphyrin-5,10,15-tricarboxylate (Mn(III)TriCP-PhOEt), which exhibited significantly higher r1 relaxivity than Gd(III)-EOB-DTPA in vitro, while also targeting hepatocyte-specific organic anion-transporting polypeptide 1 (Oatp1) channels as a marker of viability. In mice, Mn(III)TriCP-PhOEt resulted in significant and specific increases in liver signal intensity on T1-weighted images and significant decreases in liver T1 time relative to pre-contrast measurements. Our findings suggest that Mn(III)TriCP-PhOEt operates as a specific and sensitive MR probe for Oatp1-targeted imaging in vivo.
Collapse
Affiliation(s)
- Nivin N Nyström
- Department of Medical Biophysics, University of Western Ontario, London N6A 3K7, Ontario, Canada
- Imaging Research Laboratories, Robarts Research Institute, Western University, London N6A 3K7, Ontario, Canada
| | - Hanlin Liu
- Department of Chemistry, University of Toronto, Toronto M5S 1A4, Ontario, Canada
- Department of Physical and Environmental Sciences, University of Toronto, Toronto M5S 1A4, Ontario, Canada
| | - Francisco M Martinez
- Imaging Research Laboratories, Robarts Research Institute, Western University, London N6A 3K7, Ontario, Canada
| | - Xiao-An Zhang
- Department of Chemistry, University of Toronto, Toronto M5S 1A4, Ontario, Canada
- Department of Physical and Environmental Sciences, University of Toronto, Toronto M5S 1A4, Ontario, Canada
| | - Timothy J Scholl
- Department of Medical Biophysics, University of Western Ontario, London N6A 3K7, Ontario, Canada
- Imaging Research Laboratories, Robarts Research Institute, Western University, London N6A 3K7, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto M5G 0A3, Ontario, Canada
| | - John A Ronald
- Department of Medical Biophysics, University of Western Ontario, London N6A 3K7, Ontario, Canada
- Imaging Research Laboratories, Robarts Research Institute, Western University, London N6A 3K7, Ontario, Canada
- Lawson Health Research Institute, London N6C 2R5, Ontario, Canada
| |
Collapse
|
30
|
Rozov SM, Permyakova NV, Sidorchuk YV, Deineko EV. Optimization of Genome Knock-In Method: Search for the Most Efficient Genome Regions for Transgene Expression in Plants. Int J Mol Sci 2022; 23:ijms23084416. [PMID: 35457234 PMCID: PMC9027324 DOI: 10.3390/ijms23084416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Plant expression systems are currently regarded as promising alternative platforms for the production of recombinant proteins, including the proteins for biopharmaceutical purposes. However, the accumulation level of a target protein in plant expression systems is still rather low compared with the other existing systems, namely, mammalian, yeast, and E. coli cells. To solve this problem, numerous methods and approaches have been designed and developed. At the same time, the random nature of the distribution of transgenes over the genome can lead to gene silencing, variability in the accumulation of recombinant protein, and also to various insertional mutations. The current research study considered inserting target genes into pre-selected regions of the plant genome (genomic “safe harbors”) using the CRISPR/Cas system. Regions of genes expressed constitutively and at a high transcriptional level in plant cells (housekeeping genes) that are of interest as attractive targets for the delivery of target genes were characterized. The results of the first attempts to deliver target genes to the regions of housekeeping genes are discussed. The approach of “euchromatization” of the transgene integration region using the modified dCas9 associated with transcription factors is considered. A number of the specific features in the spatial chromatin organization allowing individual genes to efficiently transcribe are discussed.
Collapse
|
31
|
Hurley A, Lagor WR. Treating Cardiovascular Disease with Liver Genome Engineering. Curr Atheroscler Rep 2022; 24:75-84. [PMID: 35230602 PMCID: PMC8886347 DOI: 10.1007/s11883-022-00986-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2021] [Indexed: 11/30/2022]
Abstract
Purpose of Review This review examines recent progress in somatic genome editing for cardiovascular disease. We briefly highlight new gene editing approaches, delivery systems, and potential targets in the liver. Recent Findings In recent years, new editing and delivery systems have been applied successfully in model organisms to modify genes within hepatocytes. Disruption of several genes has been shown to dramatically lower plasma cholesterol and triglyceride levels in mice as well as non-human primates. More precise modification of cardiovascular targets has also been achieved through homology-directed repair or base editing. Improved viral vectors and nanoparticle delivery systems are addressing important delivery challenges and helping to mitigate safety concerns. Summary Liver-directed genome editing has the potential to cure both rare and common forms of cardiovascular disease. Exciting progress is already being made, including promising results from preclinical studies and the initiation of human gene therapy trials.
Collapse
Affiliation(s)
- Ayrea Hurley
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - William R Lagor
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
32
|
Shalaby N, Dubois VP, Ronald J. Molecular imaging of cellular immunotherapies in experimental and therapeutic settings. Cancer Immunol Immunother 2021; 71:1281-1294. [PMID: 34657195 PMCID: PMC9122865 DOI: 10.1007/s00262-021-03073-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 09/28/2021] [Indexed: 11/27/2022]
Abstract
Cell-based cancer immunotherapies are becoming a routine part of the armamentarium against cancer. While remarkable successes have been seen, including durable remissions, not all patients will benefit from these therapies and many can suffer from life-threatening side effects. These differences in efficacy and safety across patients and across tumor types (e.g., blood vs. solid), are thought to be due to differences in how well the immune cells traffic to their target tissue (e.g., tumor, lymph nodes, etc.) whilst avoiding non-target tissues. Across patient variability can also stem from whether the cells interact with (i.e., communicate with) their intended target cells (e.g., cancer cells), as well as if they proliferate and survive long enough to yield potent and long-lasting therapeutic effects. However, many cell-based therapies are monitored by relatively simple blood tests that lack any spatial information and do not reflect how many immune cells have ended up at particular tissues. The ex vivo labeling and imaging of infused therapeutic immune cells can provide a more precise and dynamic understanding of whole-body immune cell biodistribution, expansion, viability, and activation status in individual patients. In recent years numerous cellular imaging technologies have been developed that may provide this much-needed information on immune cell fate. For this review, we summarize various ex vivo labeling and imaging approaches that allow for tracking of cellular immunotherapies for cancer. Our focus is on clinical imaging modalities and summarize the progression from experimental to therapeutic settings. The imaging information provided by these technologies can potentially be used for many purposes including improved real-time understanding of therapeutic efficacy and potential side effects in individual patients after cell infusion; the ability to more readily compare new therapeutic cell designs to current designs for various parameters such as improved trafficking to target tissues and avoidance of non-target tissues; and the long-term ability to identify patient populations that are likely to be positive responders and at low-risk of side effects.
Collapse
Affiliation(s)
- Nourhan Shalaby
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada.,Robarts Research Institute, London, Ontario, Canada
| | - Veronica Phyllis Dubois
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada.,Robarts Research Institute, London, Ontario, Canada
| | - John Ronald
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada. .,Robarts Research Institute, London, Ontario, Canada. .,Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|