1
|
Liu S, Jia B, Wang Y, Zhao Y, Liu L, Fan F, Qin Y, Liu J, Jiang Y, Liu H, Zhao H, Li H, Zhou W, Wu H, Zhang D, Qu X, Qin M. Topological Synthesis of 2D High-Entropy Multimetallic (Oxy)hydroxide for Enhanced Lattice Oxygen Oxidation Mechanism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409530. [PMID: 39344144 DOI: 10.1002/adma.202409530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/18/2024] [Indexed: 10/01/2024]
Abstract
Owing to sluggish reaction kinetics and high potential, oxygen evolution reaction (OER) electrocatalysts face a trade-off between activity and stability. Herein, an innovative topological strategy is presented for preparing 2D multimetallic (oxy)hydroxide, including ternary CoFeZn, quaternary CoFeMnZn, and high-entropy CoFeMnCuZn. The key to the synthesis lies in using Ca-rich brownmillerite oxide as a precursor, which possesses inherent structural flexibility enabling tailored elemental adjustments and topologically transforms from a point-shared structure of metal-oxygen octahedrons into an edge-shared structure under alkaline conditions. The presence of Zn in the catalysts causes a shift in the center of the O2p band toward the Fermi level, resulting in more Co4+ species, which drive holes into oxygen ligands to promote intramolecular oxygen coupling. The triggered lattice oxidation mechanism is identified by detecting peroxo-like (O2 2-) negative species using tetramethylammonium chemical probe, along with 18O isotope labeling experiments. As a result, the catalyst demonstrates an overpotential of 267 mV at 10 mA cm-2, ranking it among the top-performing non-Ni-based catalysts. Importantly, the catalysts also show high Fe-leaching resistance during OER compared to conventional NiFe and CoFe hydroxides/(oxy)hydroxides. The assembled zinc-air battery enables stable operation for over 225 h at a low charging voltage of 1.93 V.
Collapse
Affiliation(s)
- Sijia Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Baorui Jia
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528000, China
| | - Yong Wang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Yongzhi Zhao
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Materials Science and Engineering, National University, Singapore, 117575, Singapore
| | - Luan Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fengsong Fan
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yunpu Qin
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianfang Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yirui Jiang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongru Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hong Zhao
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hao Li
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenxiang Zhou
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haoyang Wu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Deyin Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xuanhui Qu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Mingli Qin
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China
| |
Collapse
|
2
|
Zhao JW, Li Y, Luan D, Lou XWD. Structural evolution and catalytic mechanisms of perovskite oxides in electrocatalysis. SCIENCE ADVANCES 2024; 10:eadq4696. [PMID: 39321283 DOI: 10.1126/sciadv.adq4696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
Electrocatalysis plays a pivotal role in driving the progress of modern technologies and industrial processes such as energy conversion and emission reduction. Perovskite oxides, an important family of electrocatalysts, have garnered substantial attention in diverse catalytic reactions because of their highly tunable composition and structure, as well as their considerable activity and stability. This review delves into the mechanisms of electrocatalytic reactions that use perovskite oxides as electrocatalysts, while also providing a comprehensive summary of the potential key factors that influence catalytic activity across various reactions. Furthermore, this review offers an overview of advanced characterizations used for studying catalytic mechanisms and proposes approaches to designing highly efficient perovskite oxide electrocatalysts.
Collapse
Affiliation(s)
- Jia-Wei Zhao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong 999077, China
| | - Yunxiang Li
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
| |
Collapse
|
3
|
Wang M, Muhich BA, He Z, Yang Z, Yang D, Lucero M, Nguyen HKK, Sterbinsky GE, Árnadóttir L, Zhou H, Fei L, Feng Z. Metal Doping Regulates Electrocatalysts Restructuring During Oxygen Evolution Reaction. CHEMSUSCHEM 2024; 17:e202400332. [PMID: 38728628 DOI: 10.1002/cssc.202400332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 05/12/2024]
Abstract
High-efficiency and low-cost catalysts for oxygen evolution reaction (OER) are critical for electrochemical water splitting to generate hydrogen, which is a clean fuel for sustainable energy conversion and storage. Among the emerging OER catalysts, transition metal dichalcogenides have exhibited superior activity compared to commercial standards such as RuO2, but inferior stability due to uncontrolled restructuring with OER. In this study, we create bimetallic sulfide catalysts by adapting the atomic ratio of Ni and Co in CoxNi1-xSy electrocatalysts to investigate the intricate restructuring processes. Surface-sensitive X-ray photoelectron spectroscopy and bulk-sensitive X-ray absorption spectroscopy confirmed the favorable restructuring of transition metal sulfide material following OER processes. Our results indicate that a small amount of Ni substitution can reshape the Co local electronic structure, which regulates the restructuring process to optimize the balance between OER activity and stability. This work represents a significant advancement in the development of efficient and noble metal-free OER electrocatalysts through a doping-regulated restructuring approach.
Collapse
Affiliation(s)
- Maoyu Wang
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, United States
| | - Brian A Muhich
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States
| | - Zizhou He
- Chemical Engineering Department, University of Louisiana at Lafayette, Lafayette, LA 70504, United States
| | - Zhenzhen Yang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, United States
| | - Dongqi Yang
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States
| | - Marcos Lucero
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States
| | - Hoan Kim Khai Nguyen
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States
| | - George E Sterbinsky
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, United States
| | - Líney Árnadóttir
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States
| | - Hua Zhou
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, United States
| | - Ling Fei
- Chemical Engineering Department, University of Louisiana at Lafayette, Lafayette, LA 70504, United States
| | - Zhenxing Feng
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States
| |
Collapse
|
4
|
Park CH, Lee H, Choi JS, Yun TG, Lim Y, Bae HB, Chung SY. Atomic-Level Observation of Potential-Dependent Variations at the Surface of an Oxide Catalyst during Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403392. [PMID: 39011793 DOI: 10.1002/adma.202403392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Understanding the intricate details of the surface atomic structure and composition of catalysts during the oxygen evolution reaction (OER) is crucial for developing catalysts with high stability in water electrolyzers. While many notable studies highlight surface amorphization and reconstruction, systematic analytical tracing of the catalyst surface as a function of overpotential remains elusive. Heteroepitaxial (001) films of chemically stable and lattice-oxygen-inactive LaCoO3 are thus utilized as a model catalyst to demonstrate a series of atomic-resolution observations of the film surface at different anodic potentials. The first key finding is that atoms at the surface are fairly dynamic even at lower overpotentials. Angstrom-scale atomic displacements within the perovskite framework are identified below a certain potential level. Another noteworthy feature is that amorphization (or paracrystallization) with no long-range order is finally induced at higher overpotentials. In particular, surface analyses consistently support that the oxidation of lattice oxygen is coupled with amorphous phase formation at the high potentials. Theoretical calculations also reveal an upward shift of oxygen 2p states toward the Fermi level, indicating enhanced lattice oxygen activation when atom displacement occurs more extensively. This study emphasizes that the degradation behavior of OER catalysts can distinctively vary depending on the overpotential level.
Collapse
Affiliation(s)
- Chang Hyun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hyungdoh Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jin-Seok Choi
- KAIST Analysis Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Tae Gyu Yun
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Younghwan Lim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hyung Bin Bae
- KAIST Analysis Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Sung-Yoon Chung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| |
Collapse
|
5
|
Kogler M, Olgiati M, Ostermann M, Rachle P, Gahlawat S, Valtiner M, Pichler CM. Bulk-independent surface oxide composition controls the electrochemical performance of high-entropy alloys. JOURNAL OF MATERIALS CHEMISTRY. A 2024; 12:22565-22575. [PMID: 39206340 PMCID: PMC11348829 DOI: 10.1039/d4ta03619k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Multi-element alloys and high-entropy alloys show promising electrocatalytic behavior for water splitting and other catalytic reactions, due to their highly tunable composition. While preparation and synthesis of these materials are thoroughly investigated, the true reactive surface composition is still not well understood, as it may significantly differ from the bulk composition. Precise knowledge and understanding of resulting surface composition is crucial for effective control of the electrocatalytic performance. In this work, low energy ion scattering spectroscopy was applied to determine the surface oxide composition of a series of Ni-based multi-metallic alloys with Mn, Fe, Co, and Cr under alkaline, neutral and acidic conditions. The composition of the surface oxide was investigated with sub-nanometer depth resolution. In electrochemical tests, good catalytic activity was found for the oxygen evolution reaction, although a strong dependence on the selected reaction conditions was observed. The surface composition under OER conditions deviates significantly from the bulk composition. No significant benefit of high entropy alloying compared with binary or ternary alloys concerning catalytic OER performance was found.
Collapse
Affiliation(s)
- Matthias Kogler
- Institute of Applied Physics, Vienna University of Technology 1040 Vienna Austria
- Center for Electrochemical Surface Technology GmbH 2700 Wr. Neustadt Austria
| | - Matteo Olgiati
- Institute of Applied Physics, Vienna University of Technology 1040 Vienna Austria
- Center for Electrochemical Surface Technology GmbH 2700 Wr. Neustadt Austria
| | - Markus Ostermann
- Center for Electrochemical Surface Technology GmbH 2700 Wr. Neustadt Austria
| | - Philipp Rachle
- Institute of Applied Physics, Vienna University of Technology 1040 Vienna Austria
| | - Soniya Gahlawat
- Institute of Applied Physics, Vienna University of Technology 1040 Vienna Austria
- Center for Electrochemical Surface Technology GmbH 2700 Wr. Neustadt Austria
| | - Markus Valtiner
- Institute of Applied Physics, Vienna University of Technology 1040 Vienna Austria
- Center for Electrochemical Surface Technology GmbH 2700 Wr. Neustadt Austria
| | - Christian M Pichler
- Institute of Applied Physics, Vienna University of Technology 1040 Vienna Austria
- Center for Electrochemical Surface Technology GmbH 2700 Wr. Neustadt Austria
| |
Collapse
|
6
|
Chen D, Yu R, Zhao H, Jiao J, Mu X, Yu J, Mu S. Boron-Induced Interstitial Effects Drive Water Oxidation on Ordered Ir-B Compounds. Angew Chem Int Ed Engl 2024; 63:e202407577. [PMID: 38771672 DOI: 10.1002/anie.202407577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
Interstitial filling of light atoms strongly affects the electronic structure and adsorption properties of the parent catalyst due to ligand and ensemble effects. Different from the conventional doping and surface modification, constructing ordered intermetallic structures is more promising to overcome the dissolution and reconstruction of active sites through strong interactions generated by atomic periodic arrangement, achieving joint improvement in catalytic activity and stability. However, for tightly arranged metal lattices, such as iridium (Ir), obtaining ordered filling atoms and further unveiling their interstitial effects are still limited by highly activated processes. Herein, we report a high-temperature molten salt assisted strategy to form the intermetallic Ir-B compounds (IrB1.1) with ordered filling by light boron (B) atoms. The B residing in the interstitial lattice of Ir constitutes favorable adsorption surfaces through a donor-acceptor architecture, which has an optimal free energy uphill in rate-determining step (RDS) of oxygen evolution reaction (OER), resulting in enhanced activity. Meanwhile, the strong coupling of Ir-B structural units suppresses the demetallation and reconstruction behavior of Ir, ensuring catalytic stability. Such B-induced interstitial effects endow IrB1.1 with higher OER performance than commercial IrO2, which is further validated in proton exchange membrane water electrolyzers (PEMWEs).
Collapse
Affiliation(s)
- Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Ruohan Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- The Sanya Science and Education Innovation Park of, Wuhan University of Technology, Sanya, 572000, P. R. China
| | - Hongyu Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jixiang Jiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xueqin Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jun Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
7
|
Jones TE, Teschner D, Piccinin S. Toward Realistic Models of the Electrocatalytic Oxygen Evolution Reaction. Chem Rev 2024; 124:9136-9223. [PMID: 39038270 DOI: 10.1021/acs.chemrev.4c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The electrocatalytic oxygen evolution reaction (OER) supplies the protons and electrons needed to transform renewable electricity into chemicals and fuels. However, the OER is kinetically sluggish; it operates at significant rates only when the applied potential far exceeds the reversible voltage. The origin of this overpotential is hidden in a complex mechanism involving multiple electron transfers and chemical bond making/breaking steps. Our desire to improve catalytic performance has then made mechanistic studies of the OER an area of major scientific inquiry, though the complexity of the reaction has made understanding difficult. While historically, mechanistic studies have relied solely on experiment and phenomenological models, over the past twenty years ab initio simulation has been playing an increasingly important role in developing our understanding of the electrocatalytic OER and its reaction mechanisms. In this Review we cover advances in our mechanistic understanding of the OER, organized by increasing complexity in the way through which the OER is modeled. We begin with phenomenological models built using experimental data before reviewing early efforts to incorporate ab initio methods into mechanistic studies. We go on to cover how the assumptions in these early ab initio simulations─no electric field, electrolyte, or explicit kinetics─have been relaxed. Through comparison with experimental literature, we explore the veracity of these different assumptions. We summarize by discussing the most critical open challenges in developing models to understand the mechanisms of the OER.
Collapse
Affiliation(s)
- Travis E Jones
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Berlin 14195, Germany
| | - Detre Teschner
- Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Berlin 14195, Germany
- Department of Heterogeneous Reactions, Max-Planck-Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
| | - Simone Piccinin
- Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali, Trieste 34136, Italy
| |
Collapse
|
8
|
Ding X, Liu D, Zhao P, Chen X, Wang H, Oropeza FE, Gorni G, Barawi M, García-Tecedor M, de la Peña O'Shea VA, Hofmann JP, Li J, Kim J, Cho S, Wu R, Zhang KHL. Dynamic restructuring of nickel sulfides for electrocatalytic hydrogen evolution reaction. Nat Commun 2024; 15:5336. [PMID: 38914549 PMCID: PMC11196257 DOI: 10.1038/s41467-024-49015-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
Transition metal chalcogenides have been identified as low-cost and efficient electrocatalysts to promote the hydrogen evolution reaction in alkaline media. However, the identification of active sites and the underlying catalytic mechanism remain elusive. In this work, we employ operando X-ray absorption spectroscopy and near-ambient pressure X-ray photoelectron spectroscopy to elucidate that NiS undergoes an in-situ phase transition to an intimately mixed phase of Ni3S2 and NiO, generating highly active synergistic dual sites at the Ni3S2/NiO interface. The interfacial Ni is the active site for water dissociation and OH* adsorption while the interfacial S acts as the active site for H* adsorption and H2 evolution. Accordingly, the in-situ formation of Ni3S2/NiO interfaces enables NiS electrocatalysts to achieve an overpotential of only 95 ± 8 mV at a current density of 10 mA cm-2. Our work highlighted that the chemistry of transition metal chalcogenides is highly dynamic, and a careful control of the working conditions may lead to the in-situ formation of catalytic species that boost their catalytic performance.
Collapse
Affiliation(s)
- Xingyu Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Da Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Pengju Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xing Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hongxia Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Freddy E Oropeza
- Photoactivated Processes Unit, IMDEA Energy Institute, Parque Tecnológico de Móstoles, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain.
| | - Giulio Gorni
- Laser Processing Group, Institute of Optics (CSIC), C/Serrano 121, 28006, Madrid, Spain
- CELLS-ALBASynchrotron, Carrer de la Llum 2-26, 08290, Cerdanyola del Vallès, Spain
| | - Mariam Barawi
- Photoactivated Processes Unit, IMDEA Energy Institute, Parque Tecnológico de Móstoles, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain
| | - Miguel García-Tecedor
- Photoactivated Processes Unit, IMDEA Energy Institute, Parque Tecnológico de Móstoles, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain
| | - Víctor A de la Peña O'Shea
- Photoactivated Processes Unit, IMDEA Energy Institute, Parque Tecnológico de Móstoles, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain
| | - Jan P Hofmann
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Jianfeng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jongkyoung Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seungho Cho
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Renbing Wu
- Department of Materials Science, Fudan University, Shanghai, 200433, China.
| | - Kelvin H L Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
9
|
Li M, Qi J, Zeng H, Chen J, Liu Z, Gu L, Wang J, Zhang Y, Wang M, Zhang Y, Lu X, Yang C. Structural impacts on the degradation behaviors of Ir-based electrocatalysts during water oxidation in acid. J Colloid Interface Sci 2024; 674:108-117. [PMID: 38917711 DOI: 10.1016/j.jcis.2024.06.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Large-scale hydrogen production by electrocatalytic water splitting still remains as a critical challenge due to the severe catalyst degradation during the oxygen evolution reaction (OER) in acidic media. In this study, we investigate the structural impacts on catalyst degradation behaviors using three iridium-based oxides, namely SrIrO3, Sr2IrO4, and Sr4IrO6 as model catalysts. These Ir oxides possess different connection configurations of [IrO6] octahedra units in their structure. Stable OER performance is observed on SrIrO3 and attributed to the edge-linked [IrO6] structure and rapid formation of a continuous IrOx layer on its surface, which functions not only as the "real" catalyst but also a shield preventing continuous cation leaching (with <1.0 at.% of Ir leaching). In comparison, both Sr2IrO4 and Sr4IrO6 catalysts demonstrate quick current fading with structure transformation to rutile IrO2 and formation of inconducive SrSO4 precipitates on surface, blocking the reactive sites. Nevertheless, over 60 at.% of Ir leaching is detected from the Sr4IrO6 catalyst due to its isolated [IrO6] structure configuration. Results of this work highlight the structural impacts on the catalyst stability in acidic OER conditions.
Collapse
Affiliation(s)
- Mengxian Li
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jun Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Huiyan Zeng
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jiajun Chen
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zhongfei Liu
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
| | - Long Gu
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jianwen Wang
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yuying Zhang
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
| | - Miaomiao Wang
- Institute of Advanced Science Facilities, Shenzhen 518107, China
| | - Yan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiaoying Lu
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Hong Kong, China.
| | - Chunzhen Yang
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
10
|
Zhao L, Tao Z, You M, Xiao H, Wang S, Ma W, Huang Y, He B, Chen Q. Partial Exsolution Enables Superior Bifunctionality of Ir@SrIrO 3 for Acidic Overall Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309750. [PMID: 38564772 PMCID: PMC11199977 DOI: 10.1002/advs.202309750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/10/2024] [Indexed: 04/04/2024]
Abstract
The pursuit of efficient and durable bifunctional electrocatalysts for overall water splitting in acidic media is highly desirable, albeit challenging. SrIrO3 based perovskites are electrochemically active for oxygen evolution reaction (OER), however, their inert activities toward hydrogen evolution reaction (HER) severely restrict the practical implementation in overall water splitting. Herein, an Ir@SrIrO3 heterojunction is newly developed by a partial exsolution approach, ensuring strong metal-support interaction for OER and HER. Notably, the Ir@SrIrO3-175 electrocatalyst, prepared by annealing SrIrO3 in 5% H2 atmosphere at 175 °C, delivers ultralow overpotentials of 229 mV at 10 mA cm-2 for OER and 28 mV at 10 mA cm-2 for HER, surpassing most recently reported bifunctional electrocatalysts. Moreover, the water electrolyzer using the Ir@SrIrO3-175 bifunctional electrocatalyst demonstrates the potential application prospect with high electrochemical performance and excellent durability in acidic environment. Theoretical calculations unveil that constructing Ir@SrIrO3 heterojunction regulates interfacial electronic redistribution, ultimately enabling low energy barriers for both OER and HER.
Collapse
Affiliation(s)
- Ling Zhao
- School of Marine Science and EngineeringHainan UniversityHaikou570228P. R China
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Zetian Tao
- School of Resources, Environment and Safety EngineeringUniversity of South ChinaHengyangHunan421001P. R. China
| | - Maosheng You
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Huangwei Xiao
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Sijiao Wang
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Wenjia Ma
- School of Marine Science and EngineeringHainan UniversityHaikou570228P. R China
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Yonglong Huang
- School of Marine Science and EngineeringHainan UniversityHaikou570228P. R China
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Beibei He
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074P. R. China
| | - Qi Chen
- School of Marine Science and EngineeringHainan UniversityHaikou570228P. R China
| |
Collapse
|
11
|
Liu S, Huang WH, Meng S, Jiang K, Han J, Zhang Q, Hu Z, Pao CW, Geng H, Huang X, Zhan C, Yun Q, Xu Y, Huang X. 3D Noble-Metal Nanostructures Approaching Atomic Efficiency and Atomic Density Limits. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312140. [PMID: 38241656 DOI: 10.1002/adma.202312140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/10/2023] [Indexed: 01/21/2024]
Abstract
Noble metals have been widely used in catalysis, however, the scarcity and high cost of noble metal motivate researchers to balance the atomic efficiency and atomic density, which is formidably challenging. This article proposes a robust strategy for fabricating 3D amorphous noble metal-based oxides with simultaneous enhancement on atomic efficiency and density with the assistance of atomic channels, where the atomic utilization increases from 18.2% to 59.4%. The unique properties of amorphous bimetallic oxides and formation of atomic channels have been evidenced by detailed experimental characterizations and theoretical simulations. Moreover, the universality of the current strategy is validated by other binary oxides. When Cu2IrOx with atomic channels (Cu2IrOx-AE) is used as catalyst for oxygen evolution reaction (OER), the mass activity and turnover frequency value of Cu2IrOx-AE are 1-2 orders of magnitude higher than CuO/IrO2 and Cu2IrOx without atomic channels, largely outperforming the reported OER catalysts. Theoretical calculations reveal that the formation of atomic channels leads to various Ir sites, on which the proton of adsorbed *OH can transfer to adjacent O atoms of [IrO6]. This work may attract immediate interest of researchers in material science, chemistry, catalysis, and beyond.
Collapse
Affiliation(s)
- Shangheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, 215123, China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Shuang Meng
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Kezhu Jiang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jiajia Han
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Qiaobao Zhang
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187, Dresden, Germany
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Hongbo Geng
- School of Materials Engineering Changshu Institute of Technology Changshu, Changshu, 215500, China
| | - Xuan Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Changhong Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qinbai Yun
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, Kowloon, 999077, China
| | - Yong Xu
- Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, 215123, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
12
|
Wu YH, Janák M, Abdala PM, Borca CN, Wach A, Kierzkowska A, Donat F, Huthwelker T, Kuznetsov DA, Müller CR. Probing Surface Transformations of Lanthanum Nickelate Electrocatalysts during Oxygen Evolution Reaction. J Am Chem Soc 2024; 146:11887-11896. [PMID: 38529556 DOI: 10.1021/jacs.4c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Monitoring the spontaneous reconstruction of the surface of metal oxides under electrocatalytic reaction conditions is critical to identifying the active sites and establishing structure-activity relationships. Here, we report on a self-terminated surface reconstruction of Ruddlesden-Popper lanthanum nickel oxide (La2NiO4+δ) that occurs spontaneously during reaction with alkaline electrolyte species. Using a combination of high-resolution scanning transmission electron microscopy (HR-STEM), surface-sensitive X-ray photoelectron spectroscopy (XPS), and soft X-ray absorption spectroscopy (sXAS), as well as electrochemical techniques, we identify the structure of the reconstructed surface layer as an amorphous (oxy)hydroxide phase that features abundant under-coordinated nickel sites. No further amorphization of the crystalline oxide lattice (beyond the ∼2 nm thick layer formed) was observed during oxygen evolution reaction (OER) cycling experiments. Notably, the formation of the reconstructed surface layer increases the material's oxygen evolution reaction (OER) activity by a factor of 45 when compared to that of the pristine crystalline surface. In contrast, a related perovskite phase, i.e., LaNiO3, did not show noticeable surface reconstruction, and also no increase in its OER activity was observed. This work provides detailed insight into a surface reconstruction behavior dictated by the crystal structure of the parent oxide and highlights the importance of surface dynamics under reaction conditions.
Collapse
Affiliation(s)
- Yi-Hsuan Wu
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Marcel Janák
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Paula M Abdala
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | | | - Anna Wach
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, 30-392 Kraków, Poland
| | - Agnieszka Kierzkowska
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Felix Donat
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Thomas Huthwelker
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Denis A Kuznetsov
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Christoph R Müller
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
13
|
Zhao JW, Yue K, Zhang H, Wei SY, Zhu J, Wang D, Chen J, Fominski VY, Li GR. The formation of unsaturated IrO x in SrIrO 3 by cobalt-doping for acidic oxygen evolution reaction. Nat Commun 2024; 15:2928. [PMID: 38575606 PMCID: PMC10995174 DOI: 10.1038/s41467-024-46801-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Electrocatalytic water splitting is a promising route for sustainable hydrogen production. However, the high overpotential of the anodic oxygen evolution reaction poses significant challenge. SrIrO3-based perovskite-type catalysts have shown great potential for acidic oxygen evolution reaction, but the origins of their high activity are still unclear. Herein, we develop a Co-doped SrIrO3 system to enhance oxygen evolution reaction activity and elucidate the origin of catalytic activity. In situ experiments reveal Co activates surface lattice oxygen, rapidly exposing IrOx active sites, while bulk Co doping optimizes the adsorbate binding energy of IrOx. The Co-doped SrIrO3 demonstrates high oxygen evolution reaction electrocatalytic activity, markedly surpassing the commercial IrO2 catalysts in both conventional electrolyzer and proton exchange membrane water electrolyzer.
Collapse
Affiliation(s)
- Jia-Wei Zhao
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Kaihang Yue
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 585 Heshuo Road, Shanghai, 200050, China
| | - Hong Zhang
- Electron Microscopy Centre, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730099, China
| | - Shu-Yin Wei
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiawei Zhu
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Dongdong Wang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Junze Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Vyacheslav Yu Fominski
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, Moscow, 115409, Russia
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
14
|
Wang L, Du R, Liang X, Zou Y, Zhao X, Chen H, Zou X. Optimizing Edge Active Sites via Intrinsic In-Plane Iridium Deficiency in Layered Iridium Oxides for Oxygen Evolution Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312608. [PMID: 38195802 DOI: 10.1002/adma.202312608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/29/2023] [Indexed: 01/11/2024]
Abstract
Improving catalytic activity of surface iridium sites without compromising catalytic stability is the core task of designing more efficient electrocatalysts for oxygen evolution reaction (OER) in acid. This work presents phase transition of a bulk layered iridate Na2IrO3 in acid solution at room temperature, and subsequent exfoliation to produce 2D iridium oxide nanosheets with around 4 nm thickness. The nanosheets consist of OH-terminated, honeycomb-type layers of edge-sharing IrO6 octahedral framework with intrinsic in-plane iridium deficiency. The nanosheet material is among the most active Ir-based catalysts reported for acidic OER and gives an iridium mass activity improvement up to a factor of 16.5 over rutile IrO2 nanoparticles. The material also exhibits good catalytic and structural stability and retains the catalytic activity for more than 1300 h. The combined experimental and theoretical results demonstrate that edge Ir sites of the layer are active centers for OER, with structural hydroxyl groups participating in the catalytic cycle of OER via a non-traditional adsorbate evolution mechanism. The existence of intrinsic in-plane iridium deficiency is the key to building a unique local environment of edge active sites that have optimal surface oxygen adsorption properties and thereby high catalytic activity.
Collapse
Affiliation(s)
- Lina Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ruofei Du
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiao Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yongcun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiao Zhao
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
15
|
Do VH, Lee JM. Surface engineering for stable electrocatalysis. Chem Soc Rev 2024; 53:2693-2737. [PMID: 38318782 DOI: 10.1039/d3cs00292f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In recent decades, significant progress has been achieved in rational developments of electrocatalysts through constructing novel atomistic structures and modulating catalytic surface topography, realizing substantial enhancement in electrocatalytic activities. Numerous advanced catalysts were developed for electrochemical energy conversion, exhibiting low overpotential, high intrinsic activity, and selectivity. Yet, maintaining the high catalytic performance under working conditions with high polarization and vigorous microkinetics that induce intensive degradation of surface nanostructures presents a significant challenge for commercial applications. Recently, advanced operando and computational techniques have provided comprehensive mechanistic insights into the degradation of surficial functional structures. Additionally, various innovative strategies have been devised and proven effective in sustaining electrocatalytic activity under harsh operating conditions. This review aims to discuss the most recent understanding of the degradation microkinetics of catalysts across an entire range of anodic to cathodic polarizations, encompassing processes such as oxygen evolution and reduction, hydrogen reduction, and carbon dioxide reduction. Subsequently, innovative strategies adopted to stabilize the materials' structure and activity are highlighted with an in-depth discussion of the underlying rationale. Finally, we present conclusions and perspectives regarding future research and development. By identifying the research gaps, this review aims to inspire further exploration of surface degradation mechanisms and rational design of durable electrocatalysts, ultimately contributing to the large-scale utilization of electroconversion technologies.
Collapse
Affiliation(s)
- Viet-Hung Do
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141
| |
Collapse
|
16
|
Xiao Z, Huang H, Hu S, Weng Z, Huang Y, Du B, Zeng X, Meng Y, Huang C. Bifunctional Square-Planar NiO 4 Coordination of Topotactic LaNiO 2.0 Films for Efficient Oxygen Evolution Reaction. SMALL METHODS 2024; 8:e2300793. [PMID: 38009512 DOI: 10.1002/smtd.202300793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/15/2023] [Indexed: 11/29/2023]
Abstract
The high-efficient and low-cost oxygen evolution reaction (OER) is decisive for applications of oxide catalysts in metal-air batteries, electrolytic cells, and energy-storage technologies. Delicate regulations of active surface and catalytic reaction pathway of oxide materials principally determine thermodynamic energy barrier and kinetic rate during catalytic reactions, and thus have crucial impacts on OER performance. Herein, a synergistic modulation of catalytically active surface and reaction pathway through facile topotactic transformations switching from perovskite (PV) LaNiO3.0 film to infinite-layer (IL) LaNiO2.0 film is demonstrated, which absolutely contributes to improving OER performance. The square-planar NiO4 coordination of IL-LaNiO2.0 brings about more electrochemically active metal (Ni+ ) sites on the film surface. Meanwhile, the oxygen-deficient driven PV- IL topotactic transformations lead to a reaction pathway converted from absorbate evolution mechanism to lattice-oxygen-mediated mechanism (LOM). The non-concerted proton-electron transfer of LOM pathway, evidenced by the pH-dependent OER kinetics, further boosts the OER activity of IL-LaNiO2.0 films. These findings will advance the in-depth understanding of catalytic mechanisms and open new possibilities for developing highly active perovskite-derived oxide catalysts.
Collapse
Affiliation(s)
- Zhifei Xiao
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haoliang Huang
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Sixia Hu
- Sustech Core Research Facilities, Southern University of Science and Technology of China, Shenzhen, Guangdong, 518055, China
| | - Zhuanglin Weng
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuping Huang
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bing Du
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xierong Zeng
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuying Meng
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Chuanwei Huang
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
17
|
Fan J, Zhang X, Han M, Xiang X, Guo C, Lin Y, Shi N, Xu D, Lai Y, Bao J. Amorphous Ni-Fe-Mo Oxides Coupled with Crystalline Metallic Domains for Enhanced Electrocatalytic Oxygen Evolution by Promoted Lattice-Oxygen Participation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303927. [PMID: 37875651 DOI: 10.1002/smll.202303927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/10/2023] [Indexed: 10/26/2023]
Abstract
The crystalline/amorphous heterophase nanostructures are promising functional materials for biomedicals, catalysis, energy conversion, and storage. Despite great progress is achieved, facile synthesis of crystalline metal/amorphous multinary metal oxides nanohybrids remains challenging, and their electrocatalytic oxygen evolution reaction (OER) performance along with the catalytic mechanism are not systematically investigated. Herein, two kinds of ultrafine crystalline metal domains coupled with amorphous Ni-Fe-Mo oxides heterophase nanohybrids, including Ni/Ni0.5-a Fe0.5 Mo1.5 Ox and Ni-FeNi3 /Ni0.5-b Fe0.5-y Mo1.5 Ox , are fabricated through controllable reduction of amorphous Ni0.5 Fe0.5 Mo1.5 Ox precursors by simply tuning the amount of used reductant. Due to the suited component in metal domains, the special structure with dense crystalline/amorphous interfaces, and strong electronic coupling of their components, the resultant Ni-FeNi3 /Ni0.5-b Fe0.5-y Mo1.5 Ox nanohybrids show greatly enhanced OER activity with a low overpotential (278 mV) to reach 10 mA cm-2 current density and ultrahigh turnover frequency (38160 h-1 ), outperforming Ni/Ni0.5-a Fe0.5 Mo1.5 Ox , Ni0.5 Fe0.5 Mo1.5 Ox precursors, commercial IrO2 , and most of recently reported OER catalysts. Also, such Ni-FeNi3 /Ni0.5-b Fe0.5-y Mo1.5 Ox nanohybrids manifest good catalytic stability. As revealed by a series of spectroscopy and electrochemical analyses, their OER mechanism follows the lattice-oxygen-mediated (LOM) pathway. This work may shed light on the design of advanced heterophase nanohybrids, and promote their applications in water splitting, metal-air batteries, or other clean energy fields.
Collapse
Affiliation(s)
- Jiayao Fan
- Jiangsu Key Laboratory of New Power Batteries, and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xinyu Zhang
- Jiangsu Key Laboratory of New Power Batteries, and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Min Han
- Jiangsu Key Laboratory of New Power Batteries, and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
- Fujian Cross Strait Institute of Flexible Electronics (Future Technology), Fujian Normal University, Fuzhou, 350117, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Xing Xiang
- Fujian Cross Strait Institute of Flexible Electronics (Future Technology), Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Cong Guo
- Jiangsu Key Laboratory of New Power Batteries, and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yue Lin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Naien Shi
- Fujian Cross Strait Institute of Flexible Electronics (Future Technology), Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries, and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yu Lai
- Fujian Cross Strait Institute of Flexible Electronics (Future Technology), Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Jianchun Bao
- Jiangsu Key Laboratory of New Power Batteries, and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
18
|
Esterhuizen JA, Mathur A, Goldsmith BR, Linic S. High-Performance Iridium-Molybdenum Oxide Electrocatalysts for Water Oxidation in Acid: Bayesian Optimization Discovery and Experimental Testing. J Am Chem Soc 2024; 146:5511-5522. [PMID: 38373924 DOI: 10.1021/jacs.3c13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Ir oxides are costly and scarce catalysts for oxygen evolution reaction (OER) in acid. There has been extensive interest in developing alternatives that are either Ir-free or require smaller amounts of Ir to drive the reactions at acceptable rates. One design strategy is to identify Ir-based mixed oxides that achieve similar performance while requiring smaller amounts of Ir. The obstacle to this strategy has been a very large phase space of the Ir-based mixed metal oxides, in terms of the metals combined with Ir and the different crystallographic structures of the mixed oxides, which prevents a thorough exploration of possible materials. In this work, we developed a workflow that uses machine-learning-aided Bayesian optimization in combination with density functional theory to make the exploration of this phase space plausible. This screening identified Mo as a promising dopant for forming acid-tolerant Ir-based oxides for the OER. We synthesized and characterized the Ir-Mo mixed oxides in the form of thin-film electrocatalysts with a known surface area. We show that these mixed oxides exhibited overpotentials ∼30 mV lower than a pure Ir control while maintaining 24% lower Ir dissolution rates than the Ir control. These findings suggest that Mo is a promising dopant and highlight the promise of machine learning to guide the experimental exploration and optimization of catalytic materials.
Collapse
Affiliation(s)
- Jacques A Esterhuizen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Aarti Mathur
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Bryan R Goldsmith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Suljo Linic
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| |
Collapse
|
19
|
Magnussen OM, Drnec J, Qiu C, Martens I, Huang JJ, Chattot R, Singer A. In Situ and Operando X-ray Scattering Methods in Electrochemistry and Electrocatalysis. Chem Rev 2024; 124:629-721. [PMID: 38253355 PMCID: PMC10870989 DOI: 10.1021/acs.chemrev.3c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 01/24/2024]
Abstract
Electrochemical and electrocatalytic processes are of key importance for the transition to a sustainable energy supply as well as for a wide variety of other technologically relevant fields. Further development of these processes requires in-depth understanding of the atomic, nano, and micro scale structure of the materials and interfaces in electrochemical devices under reaction conditions. We here provide a comprehensive review of in situ and operando studies by X-ray scattering methods, which are powerful and highly versatile tools to provide such understanding. We discuss the application of X-ray scattering to a wide variety of electrochemical systems, ranging from metal and oxide single crystals to nanoparticles and even full devices. We show how structural data on bulk phases, electrode-electrolyte interfaces, and nanoscale morphology can be obtained and describe recent developments that provide highly local information and insight into the composition and electronic structure. These X-ray scattering studies yield insights into the structure in the double layer potential range as well as into the structural evolution during electrocatalytic processes and phase formation reactions, such as nucleation and growth during electrodeposition and dissolution, the formation of passive films, corrosion processes, and the electrochemical intercalation into battery materials.
Collapse
Affiliation(s)
- Olaf M. Magnussen
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
- Ruprecht-Haensel
Laboratory, Kiel University, 24118 Kiel, Germany
| | - Jakub Drnec
- ESRF,
Experiments Division, 38000 Grenoble, France
| | - Canrong Qiu
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
| | | | - Jason J. Huang
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| | - Raphaël Chattot
- ICGM,
Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier Cedex 5, France
| | - Andrej Singer
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| |
Collapse
|
20
|
Wang Q, Gu Y, Chen C, Han L, Fayaz MU, Pan F, Song C. Strain-Induced Uphill Hydrogen Distribution in Perovskite Oxide Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3726-3734. [PMID: 38197268 DOI: 10.1021/acsami.3c17472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Incorporating hydrogen into transition-metal oxides (TMOs) provides a facile and powerful way to manipulate the performances of TMOs, and thus numerous efforts have been invested in developing hydrogenation methods and exploring the property modulation via hydrogen doping. However, the distribution of hydrogen ions, which is a key factor in determining the physicochemical properties on a microscopic scale, has not been clearly illustrated. Here, focusing on prototypical perovskite oxide (NdNiO3 and La0.67Sr0.33MnO3) epitaxial films, we find that hydrogen distribution exhibits an anomalous "uphill" feature (against the concentration gradient) under tensile strain, namely, the proton concentration enhances upon getting farther from the hydrogen source. Distinctly, under a compressive strain state, hydrogen shows a normal distribution without uphill features. The epitaxial strain significantly influences the chemical lattice coupling and the energy profile as a function of the hydrogen doping position, thus dominating the hydrogen distribution. Furthermore, the strain-(H+) distribution relationship is maintained in different hydrogenation methods (metal-alkali treatment) which is first applied to perovskite oxides. The discovery of strain-dependent hydrogen distribution in oxides provides insights into tailoring the magnetoelectric and energy-conversion functionalities of TMOs via strain engineering.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Youdi Gu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Chong Chen
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Han
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Muhammad Umer Fayaz
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Feng Pan
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Cheng Song
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Bai J, Zhou W, Xu J, Zhou P, Deng Y, Xiang M, Xiang D, Su Y. RuO 2 Catalysts for Electrocatalytic Oxygen Evolution in Acidic Media: Mechanism, Activity Promotion Strategy and Research Progress. Molecules 2024; 29:537. [PMID: 38276614 PMCID: PMC10819928 DOI: 10.3390/molecules29020537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Proton Exchange Membrane Water Electrolysis (PEMWE) under acidic conditions outperforms alkaline water electrolysis in terms of less resistance loss, higher current density, and higher produced hydrogen purity, which make it more economical in long-term applications. However, the efficiency of PEMWE is severely limited by the slow kinetics of anodic oxygen evolution reaction (OER), poor catalyst stability, and high cost. Therefore, researchers in the past decade have made great efforts to explore cheap, efficient, and stable electrode materials. Among them, the RuO2 electrocatalyst has been proved to be a major promising alternative to Ir-based catalysts and the most promising OER catalyst owing to its excellent electrocatalytic activity and high pH adaptability. In this review, we elaborate two reaction mechanisms of OER (lattice oxygen mechanism and adsorbate evolution mechanism), comprehensively summarize and discuss the recently reported RuO2-based OER electrocatalysts under acidic conditions, and propose many advanced modification strategies to further improve the activity and stability of RuO2-based electrocatalytic OER. Finally, we provide suggestions for overcoming the challenges faced by RuO2 electrocatalysts in practical applications and make prospects for future research. This review provides perspectives and guidance for the rational design of highly active and stable acidic OER electrocatalysts based on PEMWE.
Collapse
Affiliation(s)
- Jirong Bai
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China; (J.B.); (P.Z.); (Y.D.); (M.X.)
| | - Wangkai Zhou
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China; (W.Z.); (J.X.)
| | - Jinnan Xu
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China; (W.Z.); (J.X.)
| | - Pin Zhou
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China; (J.B.); (P.Z.); (Y.D.); (M.X.)
| | - Yaoyao Deng
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China; (J.B.); (P.Z.); (Y.D.); (M.X.)
| | - Mei Xiang
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China; (J.B.); (P.Z.); (Y.D.); (M.X.)
| | - Dongsheng Xiang
- School of Medicine and Health, Yancheng Polytechnic College, Yancheng 224005, China
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
22
|
Meng A, Ding J, Luo C, Qin M, Zhang W. Modulating the oxygen evolution reaction activity of SrIrO 3/Pb(Mg 1/3Nb 2/3) 0.7Ti 0.3O 3 catalysts using electric-field polarization. Phys Chem Chem Phys 2023; 25:24976-24984. [PMID: 37697916 DOI: 10.1039/d3cp01877f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The physical properties of epitaxially grown SrIrO3 thin films are sensitive to external influences. This provides a rare opportunity to study their physical properties as regulated by electric-field polarization of their substrates, thus affecting their oxygen evolution reaction activity. In this work, SrIrO3 films were epitaxially grown on (001)-oriented Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMNPT) single-crystal substrates by pulsed laser deposition. After applying an electric field to the PMNPT along the [001] direction, a lattice strain is induced by rotation of its ferroelectric domains, and this lattice strain is transferred to the interior of the SrIrO3 film through the epitaxial interface. This changes the surface resistivity of the SrIrO3 film and affects its electrocatalytic activity. Our findings suggest that substrate polarization is a feasible method for regulating the electrocatalytic performance of SrIrO3 thin films, and this provides new inspiration for the structural design of other composite catalysts.
Collapse
Affiliation(s)
- Anxin Meng
- School of Future Technology, Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China.
| | - Jiabao Ding
- School of Future Technology, Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China.
| | - Caiqin Luo
- School of Future Technology, Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China.
| | - Mian Qin
- School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Weifeng Zhang
- School of Future Technology, Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China.
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| |
Collapse
|
23
|
He Q, Sheng B, Zhu K, Zhou Y, Qiao S, Wang Z, Song L. Phase Engineering and Synchrotron-Based Study on Two-Dimensional Energy Nanomaterials. Chem Rev 2023; 123:10750-10807. [PMID: 37581572 DOI: 10.1021/acs.chemrev.3c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In recent years, there has been significant interest in the development of two-dimensional (2D) nanomaterials with unique physicochemical properties for various energy applications. These properties are often derived from the phase structures established through a range of physical and chemical design strategies. A concrete analysis of the phase structures and real reaction mechanisms of 2D energy nanomaterials requires advanced characterization methods that offer valuable information as much as possible. Here, we present a comprehensive review on the phase engineering of typical 2D nanomaterials with the focus of synchrotron radiation characterizations. In particular, the intrinsic defects, atomic doping, intercalation, and heterogeneous interfaces on 2D nanomaterials are introduced, together with their applications in energy-related fields. Among them, synchrotron-based multiple spectroscopic techniques are emphasized to reveal their intrinsic phases and structures. More importantly, various in situ methods are employed to provide deep insights into their structural evolutions under working conditions or reaction processes of 2D energy nanomaterials. Finally, conclusions and research perspectives on the future outlook for the further development of 2D energy nanomaterials and synchrotron radiation light sources and integrated techniques are discussed.
Collapse
Affiliation(s)
- Qun He
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Beibei Sheng
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Kefu Zhu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Yuzhu Zhou
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Sicong Qiao
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zhouxin Wang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
- Zhejiang Institute of Photonelectronics, Jinhua, Zhejiang 321004, China
| |
Collapse
|
24
|
Rong C, Dastafkan K, Wang Y, Zhao C. Breaking the Activity and Stability Bottlenecks of Electrocatalysts for Oxygen Evolution Reactions in Acids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211884. [PMID: 37549889 DOI: 10.1002/adma.202211884] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/28/2023] [Indexed: 08/09/2023]
Abstract
Oxygen evolution reaction (OER) is a cornerstone reaction for a variety of electrochemical energy conversion and storage systems such as water splitting, CO2 /N2 reduction, reversible fuel cells, and metal-air batteries. However, OER catalysis in acids suffers from extra sluggish kinetics due to the additional step of water dissociation along with its multiple electron transfer processes. Furthermore, OER catalysts often suffer from poor stability in harsh acidic electrolytes due to the severe dissolution/corrosion processes. The development of active and stable OER catalysts in acids is highly demanded. Here, the recent advances in OER electrocatalysis in acids are reviewed and the key strategies are summarized to overcome the bottlenecks of activity and stability for both noble-metal-based and noble metal-free catalysts, including i) morphology engineering, ii) composition engineering, and iii) defect engineering. Recent achievements in operando characterization and theoretical calculations are summarized which provide an unprecedented understanding of the OER mechanisms regarding active site identification, surface reconstruction, and degradation/dissolution pathways. Finally, views are offered on the current challenges and opportunities to break the activity-stability relationships for acidic OER in mechanism understanding, catalyst design, as well as standardized stability and activity evaluation for industrial applications such as proton exchange membrane water electrolyzers and beyond.
Collapse
Affiliation(s)
- Chengli Rong
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Kamran Dastafkan
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Yuan Wang
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
25
|
Huang B, Cui Y, Liu X, Zheng C, Wang H, Guan L. Dense-Packed RuO 2 Nanorods with In Situ Generated Metal Vacancies Loaded on SnO 2 Nanocubes for Proton Exchange Membrane Water Electrolyzer with Ultra-Low Noble Metal Loading. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301516. [PMID: 37086123 DOI: 10.1002/smll.202301516] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Proton exchange membrane water electrolyzer (PEMWE) is a green hydrogen production technology that can be coupled with intermittent power sources such as wind and photoelectric power. To achieve cost-effective operations, low noble metal loading on the anode catalyst layer is desired. In this study, a catalyst with RuO2 nanorods coated outside SnO2 nanocubes is designed, which forms continuous networks and provides high conductivity. This allows for the reduction of Ru contents in catalysts. Furthermore, the structure evolutions on the RuO2 surface are carefully investigated. The etched RuO2 surfaces are seen as the consequence of Co leaching, and theoretical calculations demonstrate that it is more effective in driving oxygen evolution. For electrochemical tests, the catalysts with 23 wt% Ru exhibit an overpotential of 178 mV at 10 mA cm-2 , which is much higher than most state-of-art oxygen evolution catalysts. In a practical PEMWE, the noble metal Ru loading on the anode side is only 0.3 mg cm-2 . The cell achieves 1.61 V at 1 A cm-2 and proper stability at 500 mA cm-2 , demonstrating the effectiveness of the designed catalyst.
Collapse
Affiliation(s)
- Bing Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350000, China
- College of Material Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqi Cui
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350000, China
| | - Xuwei Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350000, China
| | - Caixia Zheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350000, China
| | - Hao Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350000, China
| | - Lunhui Guan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350000, China
| |
Collapse
|
26
|
Chen S, Zhang S, Guo L, Pan L, Shi C, Zhang X, Huang ZF, Yang G, Zou JJ. Reconstructed Ir‒O‒Mo species with strong Brønsted acidity for acidic water oxidation. Nat Commun 2023; 14:4127. [PMID: 37438355 DOI: 10.1038/s41467-023-39822-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
Surface reconstruction generates real active species in electrochemical conditions; rational regulating reconstruction in a targeted manner is the key for constructing highly active catalyst. Herein, we use the high-valence Mo modulated orthorhombic Pr3Ir1-xMoxO7 as model to activate lattice oxygen and cations, achieving directional and accelerated surface reconstruction to produce self-terminated Ir‒Obri‒Mo (Obri represents the bridge oxygen) active species that is highly active for acidic water oxidation. The doped Mo not only contributes to accelerated surface reconstruction due to optimized Ir‒O covalency and more prone dissolution of Pr, but also affords the improved durability resulted from Mo-buffered charge compensation, thereby preventing fierce Ir dissolution and excessive lattice oxygen loss. As such, Ir‒Obri‒Mo species could be directionally generated, in which the strong Brønsted acidity of Obri induced by remaining Mo assists with the facilitated deprotonation of oxo intermediates, following bridging-oxygen-assisted deprotonation pathway. Consequently, the optimal catalyst exhibits the best activity with an overpotential of 259 mV to reach 10 mA cmgeo-2, 50 mV lower than undoped counterpart, and shows improved stability for over 200 h. This work provides a strategy of directional surface reconstruction to constructing strong Brønsted acid sites in IrOx species, demonstrating the perspective of targeted electrocatalyst fabrication under in situ realistic reaction conditions.
Collapse
Affiliation(s)
- Shiyi Chen
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
- Collaborative Innovative Centre of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Shishi Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
- Collaborative Innovative Centre of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Lei Guo
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
- Collaborative Innovative Centre of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
- Collaborative Innovative Centre of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
- Collaborative Innovative Centre of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
- Collaborative Innovative Centre of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China
| | - Zhen-Feng Huang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China.
- Collaborative Innovative Centre of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China.
| | - Guidong Yang
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China.
- Collaborative Innovative Centre of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China.
| |
Collapse
|
27
|
Ahmad W, Hou Y, Khan R, Wang L, Zhou S, Wang K, Wan Z, Zhou S, Yan W, Ling M, Liang C. V-Integration Modulates t 2g -Electrons of a Single Crystal Ir 1- x (Ir 0.8 V 0.2 O 2 ) x -BHC for Boosted and Durable OER in Acidic Electrolyte. SMALL METHODS 2023:e2201247. [PMID: 37086116 DOI: 10.1002/smtd.202201247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Realizing efficacious π-donation from the O 2p orbital to electron-deficient metal (t2g ) d-orbitals along with separately tuned adsorption of *O and *OOH, is an imperious pre-requisite for an electrocatalyst design to demonstrate boosted oxygen evolution reaction (OER) performance. To regulate the π-donation and the adsorption ability for *O and *OOH, herein, a facile strategy to modulate the electron transfer from electron-rich t2g -orbitals to electron-deficient t2g -orbitals, via strong π-donation from the π-symmetry lone pairs of the bridging O2- , and the d-band center of a biomimetic honeycomb (BHC)-like nanoarchitecture (Ir1- x (Ir0.8 V0.2 O2 )x -BHC) is introduced. The suitable integration of V heteroatoms in the single crystal system of IrO2 decreases the electron density on the neighboring Ir sites, and causes an upshift in the d-band center of Ir1- x (Ir0.8 V0.2 O2 )x -BHC, weakening the adsorption of *O while strengthening that of *OOH, lowers the energy barrier for OER. Therefore, BHC design demonstrates excellent OER performance (shows a small overpotential of 238 mV at 10 mA cm-2 and a Tafel slope of 39.87 mV dec-1 ) with remarkable stability (130 h) in corrosive acidic electrolyte. This work opens a new corridor to design robust biomimetic nanoarchitectures of modulated π-symmetry (t2g ) d-orbitals and the band structure, to achieve excellent activity and durability in acidic environment.
Collapse
Affiliation(s)
- Waqar Ahmad
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Yunpeng Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Rashid Khan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Liguang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Shiyu Zhou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Kun Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Zhengwei Wan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Shaodong Zhou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Wenjun Yan
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Min Ling
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Chengdu Liang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| |
Collapse
|
28
|
Li X, Ge L, Du Y, Huang H, Ha Y, Fu Z, Lu Y, Yang W, Wang X, Cheng Z. Highly Oxidized Oxide Surface toward Optimum Oxygen Evolution Reaction by Termination Engineering. ACS NANO 2023; 17:6811-6821. [PMID: 36943144 DOI: 10.1021/acsnano.3c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The oxygen evolution reaction (OER) is a critical step for sustainable fuel production through electrochemistry process. Maximizing active sites of nanocatalyst with enhanced intrinsic activity, especially the activation of lattice oxygen, is gradually recognized as the primary incentive. Since the surface reconfiguration to oxyhydroxide is unavoidable for oxygen-activated transition metal oxides, developing a surface termination like oxyhydroxide in oxides is highly desirable. In this work, we demonstrate an unusual surface termination of (111)-facet Co3O4 nanosheet that is exclusively containing edge-sharing octahedral Co3+ similar to CoOOH that can perform at approximately 40 times higher current density at 1.63 V (vs RHE) than commercial RuO2. It is found that this surface termination has an oxidized oxygen state in contrast to standard Co-O systems, which can serve as active site independently, breaking the scaling relationship limit. This work forwards the applications of oxide electrocatalysts in the energy conversion field by surface termination engineering.
Collapse
Affiliation(s)
- Xiaoning Li
- Institute for Superconducting and Electronic Materials (ISEM), Australia Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW 2500, Australia
| | - Liangbing Ge
- Department of Materials Science and Engineering & Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yumeng Du
- Institute for Superconducting and Electronic Materials (ISEM), Australia Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW 2500, Australia
| | - Haoliang Huang
- Department of Materials Science and Engineering & Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yang Ha
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zhengping Fu
- Department of Materials Science and Engineering & Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yalin Lu
- Department of Materials Science and Engineering & Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xiaolin Wang
- Institute for Superconducting and Electronic Materials (ISEM), Australia Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW 2500, Australia
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronic Materials (ISEM), Australia Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW 2500, Australia
| |
Collapse
|
29
|
Zhang L, Wang J, Jiang K, Xiao Z, Gao Y, Lin S, Chen B. Self-Reconstructed Metal-Organic Framework Heterojunction for Switchable Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2022; 61:e202214794. [PMID: 36278261 DOI: 10.1002/anie.202214794] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 11/18/2022]
Abstract
Designing metal-organic framework (MOF)-based catalysts with superior oxygen evolution reaction (OER) activity and robust durability simultaneously is highly required yet very challenging due to the limited intrinsic activity and their elusive evolution under harsh OER conditions. Herein, a steady self-reconstructed MOF heterojunction is constructed via redox electrochemistry and topology-guided strategy. Thanks to the inhibiting effect from hydrogen bonds of Ni-BDC-1 (BDC=1,4-benzenedicarboxylic acid), the obatained MOF heterojunction shows greatly improved OER activity with low overpotential of 225 mV at 10 mA cm-2 , relative to the totally reconstructed Ni-BDC-3 (332 mV). Density function theory calculations reveal that the formed built-in electric field in the MOF heterojunction remarkably optimizes the ad/desorption free energy of active Ni sites. Moreover, such MOF heterojunction shows superior durability attributed to the shielding effect of the surface-evolved NiOOH coating.
Collapse
Affiliation(s)
- Ling Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jiaji Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Ke Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Zhaohui Xiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yuntian Gao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Shiwei Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio One UTSA Circle, San Antonio, Texas, 78249-0698, USA
| |
Collapse
|
30
|
Mo Q, Zhang L, Li S, Song H, Fan Y, Su CY. Engineering Single-Atom Sites into Pore-Confined Nanospaces of Porphyrinic Metal-Organic Frameworks for the Highly Efficient Photocatalytic Hydrogen Evolution Reaction. J Am Chem Soc 2022; 144:22747-22758. [PMID: 36427195 DOI: 10.1021/jacs.2c10801] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
As a type of heterogeneous catalyst expected for the maximum atom efficiency, a series of single-atom catalysts (SACs) containing spatially isolated metal single atoms (M-SAs) have been successfully prepared by confining M-SAs in the pore-nanospaces of porphyrinic metal-organic frameworks (MOFs). The prepared MOF composites of M-SAs@Pd-PCN-222-NH2 (M = Pt, Ir, Au, and Ru) display exceptionally high and persistent efficiency in the photocatalytic hydrogen evolution reaction with a turnover number (TON) of up to 21713 in 32 h and a beginning/lasting turnover frequency (TOF) larger than 1200/600 h-1 based on M-SAs under visible light irradiation (λ ≥ 420 nm). The photo-/electrochemical property studies and density functional theory calculations disclose that the close proximity of the catalytically active Pt-SAs to the Pd-porphyrin photosensitizers with the confinement and stabilization effect by chemical binding could accelerate electron-hole separation and charge transfer in pore-nanospaces, thus promoting the catalytic H2 evolution reaction with lasting effectiveness.
Collapse
Affiliation(s)
- Qijie Mo
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Li Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Sihong Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Haili Song
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yanan Fan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
31
|
Lin HY, Lou ZX, Ding Y, Li X, Mao F, Yuan HY, Liu PF, Yang HG. Oxygen Evolution Electrocatalysts for the Proton Exchange Membrane Electrolyzer: Challenges on Stability. SMALL METHODS 2022; 6:e2201130. [PMID: 36333185 DOI: 10.1002/smtd.202201130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Hydrogen generated by proton exchange membrane (PEM) electrolyzer holds a promising potential to complement the traditional energy structure and achieve the global target of carbon neutrality for its efficient, clean, and sustainable nature. The acidic oxygen evolution reaction (OER), owing to its sluggish kinetic process, remains a bottleneck that dominates the efficiency of overall water splitting. Over the past few decades, tremendous efforts have been devoted to exploring OER activity, whereas most show unsatisfying stability to meet the demand for industrial application of PEM electrolyzer. In this review, systematic considerations of the origin and strategies based on OER stability challenges are focused on. Intrinsic deactivation of the material and the extrinsic balance of plant-induced destabilization are summarized. Accordingly, rational strategies for catalyst design including doping and leaching, support effect, coordination effect, strain engineering, phase and facet engineering are discussed for their contribution to the promoted OER stability. Moreover, advanced in situ/operando characterization techniques are put forward to shed light on the OER pathways as well as the structural evolution of the OER catalyst, giving insight into the deactivation mechanisms. Finally, outlooks toward future efforts on the development of long-term and practical electrocatalysts for the PEM electrolyzer are provided.
Collapse
Affiliation(s)
- Hao Yang Lin
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhen Xin Lou
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yeliang Ding
- China General Nuclear New Energy Holdings Co., Ltd., Beijing, 100071, China
| | - Xiaoxia Li
- China General Nuclear New Energy Holdings Co., Ltd., Beijing, 100071, China
| | - Fangxin Mao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hai Yang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
32
|
Gao J, Liu Y, Liu B, Huang KW. Progress of Heterogeneous Iridium-Based Water Oxidation Catalysts. ACS NANO 2022; 16:17761-17777. [PMID: 36355040 DOI: 10.1021/acsnano.2c08519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The water oxidation reaction (or oxygen evolution reaction, OER) plays a critical role in green hydrogen production via water splitting, electrochemical CO2 reduction, and nitrogen fixation. The four-electron and four-proton transfer OER process involves multiple reaction intermediates and elementary steps that lead to sluggish kinetics; therefore, a high overpotential is necessary to drive the reaction. Among the different water-splitting electrolyzers, the proton exchange membrane type electrolyzer has greater advantages, but its anode catalysts are limited to iridium-based materials. The iridium catalyst has been extensively studied in recent years due to its balanced activity and stability for acidic OER, and many exciting signs of progress have been made. In this review, the surface and bulk Pourbaix diagrams of iridium species in an aqueous solution are introduced. The iridium-based catalysts, including metallic or oxides, amorphous or crystalline, single crystals, atomically dispersed or nanostructured, and iridium compounds for OER, are then elaborated. The latest progress of active sites, reaction intermediates, reaction kinetics, and elementary steps is summarized. Finally, future research directions regarding iridium catalysts for acidic OER are discussed.
Collapse
Affiliation(s)
- Jiajian Gao
- Agency for Science, Technology, and Research, Institute of Sustainability for Chemicals, Energy and Environment, 1 Pesek Road, Jurong Island, Singapore627833
| | - Yan Liu
- Agency for Science, Technology, and Research, Institute of Sustainability for Chemicals, Energy and Environment, 1 Pesek Road, Jurong Island, Singapore627833
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore637459
| | - Kuo-Wei Huang
- Agency for Science, Technology, and Research, Institute of Sustainability for Chemicals, Energy and Environment, 1 Pesek Road, Jurong Island, Singapore627833
- KAUST Catalysis Center and Division of Science and Engineering, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
- Agency for Science, Technology, and Research, Institute of Materials Research and Engineering, Singapore138634
| |
Collapse
|
33
|
Liu W, Shi T, Feng Z. Bifunctional zeolitic imidazolate framework-67 coupling with CoNiSe electrocatalyst for efficient hydrazine-assisted water splitting. J Colloid Interface Sci 2022; 630:888-899. [DOI: 10.1016/j.jcis.2022.10.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/22/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
34
|
Li N, Cai L, Gao G, Liu Y, Wang C, Liu Z, Ji Q, Duan H, Wang LW, Yan W. Origin of Surface Amorphization and Catalytic Stability of Ca 2–xIrO 4 Nanocrystals for Acidic Oxygen Evolution: Critical Roles of Acid Anions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Na Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Liang Cai
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Guoping Gao
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Yuying Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Ziyi Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Qianqian Ji
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Hengli Duan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Lin-Wang Wang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| |
Collapse
|
35
|
Weber ML, Lole G, Kormanyos A, Schwiers A, Heymann L, Speck FD, Meyer T, Dittmann R, Cherevko S, Jooss C, Baeumer C, Gunkel F. Atomistic Insights into Activation and Degradation of La 0.6Sr 0.4CoO 3-δ Electrocatalysts under Oxygen Evolution Conditions. J Am Chem Soc 2022; 144:17966-17979. [PMID: 36130265 PMCID: PMC9545157 DOI: 10.1021/jacs.2c07226] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
stability of perovskite oxide catalysts for the oxygen
evolution
reaction (OER) plays a critical role in their applicability in water
splitting concepts. Decomposition of perovskite oxides under applied
potential is typically linked to cation leaching and amorphization
of the material. However, structural changes and phase transformations
at the catalyst surface were also shown to govern the activity of
several perovskite electrocatalysts under applied potential. Hence,
it is crucial for the rational design of durable perovskite catalysts
to understand the interplay between the formation of active surface
phases and stability limitations under OER conditions. In the present
study, we reveal a surface-dominated activation and deactivation mechanism
of the prominent electrocatalyst La0.6Sr0.4CoO3−δ under steady-state OER conditions. Using a
multiscale microscopy and spectroscopy approach, we identify the evolving
Co-oxyhydroxide as catalytically active surface species and La-hydroxide
as inactive species involved in the transient degradation behavior
of the catalyst. While the leaching of Sr results in the formation
of mixed surface phases, which can be considered as a part of the
active surface, the gradual depletion of Co from a self-assembled
active CoO(OH) phase and the relative enrichment of passivating La(OH)3 at the electrode surface result in the failure of the perovskite
catalyst under applied potential.
Collapse
Affiliation(s)
- Moritz L Weber
- Peter Grünberg Institute (PGI-7) and Jülich-Aachen Research Alliance (JARA-FIT), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Gaurav Lole
- Institute of Materials Physics, University of Göttingen, Göttingen 37077, Germany.,International Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, Göttingen 37077, Germany
| | - Attila Kormanyos
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Erlangen 91058, Germany
| | - Alexander Schwiers
- Peter Grünberg Institute (PGI-7) and Jülich-Aachen Research Alliance (JARA-FIT), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Lisa Heymann
- Peter Grünberg Institute (PGI-7) and Jülich-Aachen Research Alliance (JARA-FIT), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Florian D Speck
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Erlangen 91058, Germany.,Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Tobias Meyer
- Institute of Materials Physics, University of Göttingen, Göttingen 37077, Germany
| | - Regina Dittmann
- Peter Grünberg Institute (PGI-7) and Jülich-Aachen Research Alliance (JARA-FIT), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Erlangen 91058, Germany
| | - Christian Jooss
- Institute of Materials Physics, University of Göttingen, Göttingen 37077, Germany.,International Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, Göttingen 37077, Germany
| | - Christoph Baeumer
- Peter Grünberg Institute (PGI-7) and Jülich-Aachen Research Alliance (JARA-FIT), Forschungszentrum Jülich GmbH, Jülich 52425, Germany.,Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands
| | - Felix Gunkel
- Peter Grünberg Institute (PGI-7) and Jülich-Aachen Research Alliance (JARA-FIT), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| |
Collapse
|
36
|
Li N, Cai L, Gao G, Lin Y, Wang C, Liu H, Liu Y, Duan H, Ji Q, Hu W, Tan H, Qi Z, Wang LW, Yan W. Operando Direct Observation of Stable Water-Oxidation Intermediates on Ca 2-xIrO 4 Nanocrystals for Efficient Acidic Oxygen Evolution. NANO LETTERS 2022; 22:6988-6996. [PMID: 36005477 DOI: 10.1021/acs.nanolett.2c01777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report Ca2-xIrO4 nanocrystals exhibit record stability of 300 h continuous operation and high iridium mass activity (248 A gIr-1 at 1.5 VRHE) that is about 62 times that of benchmark IrO2. Lattice-resolution images and surface-sensitive spectroscopies demonstrate the Ir-rich surface layer (evolved from one-dimensional connected edge-sharing [IrO6] octahedrons) with high relative content of Ir5+ sites, which is responsible for the high activity and long-term stability. Combining operando infrared spectroscopy with X-ray absorption spectroscopy, we report the first direct observation of key intermediates absorbing at 946 cm-1 (Ir6+═O site) and absorbing at 870 cm-1 (Ir6+OO- site) on iridium-based oxides electrocatalysts, and further discover the Ir6+═O and Ir6+OO- intermediates are stable even just from 1.3 VRHE. Density functional theory calculations indicate the catalytic activity of Ca2IrO4 is enhanced remarkably after surface Ca leaching, and suggest IrOO- and Ir═O intermediates can be stabilized on positive charged active sites of Ir-rich surface layer.
Collapse
Affiliation(s)
- Na Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
- Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore
| | - Liang Cai
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore
| | - Guoping Gao
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yue Lin
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Hengjie Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Yuying Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Hengli Duan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Qianqian Ji
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Wei Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Hao Tan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zeming Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Lin-Wang Wang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| |
Collapse
|
37
|
Lv H, Lin L, Zhang X, Song Y, Li R, Li J, Matsumoto H, Ta N, Zeng C, Gong H, Fu Q, Wang G, Bao X. Redox-manipulated RhO nanoclusters uniformly anchored on Sr2Fe1.45Rh0.05Mo0.5O6–δ perovskite for CO2 electrolysis. FUNDAMENTAL RESEARCH 2022. [DOI: 10.1016/j.fmre.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
38
|
Chen H, Shi L, Sun K, Zhang K, Liu Q, Ge J, Liang X, Tian B, Huang Y, Shi Z, Wang Z, Zhang W, Liu M, Zou X. Protonated Iridate Nanosheets with a Highly Active and Stable Layered Perovskite Framework for Acidic Oxygen Evolution. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Lei Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Ke Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Kexin Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Qi Liu
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Junjie Ge
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiao Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Boyuan Tian
- State Key Laboratory of Advanced Transmission Technology (State Grid Smart Grid Research Institute Company Limited), Beijing 102209, China
| | - Yalan Huang
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Zhaoping Shi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zizhun Wang
- Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Wei Zhang
- Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Mingjie Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
39
|
Hu C, Hu Y, Zhu A, Li M, Wei J, Zhang Y, Xie W. Several Key Factors for Efficient Electrocatalytic Water Splitting: Active Site Coordination Environment, Morphology Changes and Intermediates Identification. Chemistry 2022; 28:e202200138. [DOI: 10.1002/chem.202200138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Cejun Hu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Haihe Laboratory of Sustainable Chemical Transformations Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 P. R. China
| | - Yanfang Hu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Haihe Laboratory of Sustainable Chemical Transformations Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 P. R. China
| | - Aonan Zhu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Haihe Laboratory of Sustainable Chemical Transformations Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 P. R. China
| | - Mingming Li
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Haihe Laboratory of Sustainable Chemical Transformations Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 P. R. China
| | - Junli Wei
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Haihe Laboratory of Sustainable Chemical Transformations Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 P. R. China
| | - Yuying Zhang
- School of Medicine Nankai University Weijin Rd. 94 Tianjin 300071 P. R. China
| | - Wei Xie
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Haihe Laboratory of Sustainable Chemical Transformations Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 P. R. China
| |
Collapse
|
40
|
Wohlgemuth M, Weber ML, Heymann L, Baeumer C, Gunkel F. Activity-Stability Relationships in Oxide Electrocatalysts for Water Electrolysis. Front Chem 2022; 10:913419. [PMID: 35815219 PMCID: PMC9259975 DOI: 10.3389/fchem.2022.913419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
The oxygen evolution reaction (OER) is one of the key kinetically limiting half reactions in electrochemical energy conversion. Model epitaxial catalysts have emerged as a platform to identify structure-function-relationships at the atomic level, a prerequisite to establish advanced catalyst design rules. Previous work identified an inverse relationship between activity and the stability of noble metal and oxide OER catalysts in both acidic and alkaline environments: The most active catalysts for the anodic OER are chemically unstable under reaction conditions leading to fast catalyst dissolution or amorphization, while the most stable catalysts lack sufficient activity. In this perspective, we discuss the role that epitaxial catalysts play in identifying this activity-stability-dilemma and introduce examples of how they can help overcome it. After a brief review of previously observed activity-stability-relationships, we will investigate the dependence of both activity and stability as a function of crystal facet. Our experiments reveal that the inverse relationship is not universal and does not hold for all perovskite oxides in the same manner. In fact, we find that facet-controlled epitaxial La0.6Sr0.4CoO3-δ catalysts follow the inverse relationship, while for LaNiO3-δ, the (111) facet is both the most active and the most stable. In addition, we show that both activity and stability can be enhanced simultaneously by moving from La-rich to Ni-rich termination layers. These examples show that the previously observed inverse activity-stability-relationship can be overcome for select materials and through careful control of the atomic arrangement at the solid-liquid interface. This realization re-opens the search for active and stable catalysts for water electrolysis that are made from earth-abundant elements. At the same time, these results showcase that additional stabilization via material design strategies will be required to induce a general departure from inverse stability-activity relationships among the transition metal oxide catalysts to ultimately grant access to the full range of available oxides for OER catalysis.
Collapse
Affiliation(s)
- Marcus Wohlgemuth
- Peter Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Jülich, Germany
| | - Moritz L. Weber
- Peter Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Jülich, Germany
| | - Lisa Heymann
- Peter Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Jülich, Germany
| | - Christoph Baeumer
- Peter Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Jülich, Germany
- MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
- *Correspondence: Christoph Baeumer, ; Felix Gunkel,
| | - Felix Gunkel
- Peter Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Jülich, Germany
- *Correspondence: Christoph Baeumer, ; Felix Gunkel,
| |
Collapse
|
41
|
Wan G, Zhang G, Chen JZ, Toney MF, Miller JT, Tassone CJ. Reaction-Mediated Transformation of Working Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Gang Wan
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Johnny Zhu Chen
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael F. Toney
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jeffrey T. Miller
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | | |
Collapse
|
42
|
Huang H, Fu L, Kong W, Ma H, Zhang X, Cai J, Wang S, Xie Z, Xie S. Equilibrated PtIr/IrO x Atomic Heterojunctions on Ultrafine 1D Nanowires Enable Superior Dual-Electrocatalysis for Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201333. [PMID: 35419953 DOI: 10.1002/smll.202201333] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Dual-active-sites atomically coupled on ultrafine 1D nanowires (NWs) can offer synergic atomic heterojunctions (AHJs) and high atomic-utilization toward multipurpose and superior catalysis. Here, ≈2-nm-thick PtIr/IrOx hybrid NWs are elaborately synthesized with equilibrated Pt/IrOx AHJs as high-efficiency bifunctional electrocatalysts for overall water splitting. Mechanism studies reveal the atomically coupled Pt-IrOx dual-sites are favorable for facilitating water dissociation, alleviating the binding of H* on Pt sites and inversely regulating the *OH adsorption and oxidation on bridge Ir-Ir sites. By simply equilibrating the Pt-IrOx ratio, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) can be substantially accelerated. In particular, Pt-rich PtIr/IrOx -30 NWs attain 11-fold enhancements for HER compared to Pt/C in 1.0 m KOH, while IrOx -rich PtIr/IrOx -50 NWs express about five times mass activity referring to Ir/C for OER. Remarkably, the ratio-optimized PtIr/IrOx NWs electrode couple achieves a durably continuous H2 production under a substantially low cell voltage.
Collapse
Affiliation(s)
- Hongpu Huang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Luhong Fu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Weiqiang Kong
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Hairui Ma
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Xue Zhang
- Shenzhen Engineering Center for the Fabrication of Two-Dimensional Atomic Crystals, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Junlin Cai
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Shupeng Wang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Zhaoxiong Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shuifen Xie
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| |
Collapse
|
43
|
Mom RV, Falling LJ, Kasian O, Algara-Siller G, Teschner D, Crabtree RH, Knop-Gericke A, Mayrhofer KJJ, Velasco-Vélez JJ, Jones TE. Operando Structure–Activity–Stability Relationship of Iridium Oxides during the Oxygen Evolution Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rik V. Mom
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Lorenz J. Falling
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Olga Kasian
- Helmholtz-Zentrum Berlin GmbH, Helmholtz Institute Erlangen-Nürnberg, 14109 Berlin, Germany
- Max Planck Institute for Iron Research, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
| | - Gerardo Algara-Siller
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Detre Teschner
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45413 Mülheim an der Ruhr, Germany
| | - Robert H. Crabtree
- Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Axel Knop-Gericke
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45413 Mülheim an der Ruhr, Germany
| | - Karl J. J. Mayrhofer
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstraße 3, 91058 Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | | | - Travis E. Jones
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
44
|
Dong C, Zhou J, Su X, Wang Y, Yang X, Zhu Y, Jiang H, Li C. Dechlorination-facilitated deprotonation of CoFe (Oxy)hydroxide catalysts under electrochemical oxygen evolution. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
45
|
Lončar A, Escalera‐López D, Cherevko S, Hodnik N. Inter-relationships between Oxygen Evolution and Iridium Dissolution Mechanisms. Angew Chem Int Ed Engl 2022; 61:e202114437. [PMID: 34942052 PMCID: PMC9305877 DOI: 10.1002/anie.202114437] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 11/08/2022]
Abstract
The widespread utilization of proton exchange membrane (PEM) electrolyzers currently remains uncertain, as they rely on the use of highly scarce iridium as the only viable catalyst for the oxygen evolution reaction (OER), which is known to present the major energy losses of the process. Understanding the mechanistic origin of the different activities and stabilities of Ir-based catalysts is, therefore, crucial for a scale-up of green hydrogen production. It is known that structure influences the dissolution, which is the main degradation mechanism and shares common intermediates with the OER. In this Minireview, the state-of-the-art understanding of dissolution and its relationship with the structure of different iridium catalysts is gathered and correlated to different mechanisms of the OER. A perspective on future directions of investigation is also given.
Collapse
Affiliation(s)
- Anja Lončar
- Laboratory for ElectrocatalysisDepartment of Materials ChemistryNational Institute of ChemistryHajdrihova 191000LjubljanaSlovenia
- University of Nova GoricaVipavska 135000Nova GoricaSlovenia
| | - Daniel Escalera‐López
- Helmholtz-Institute Erlangen-Nürnberg for Renewable EnergyForschungszentrum JülichCauerstrasse 191058ErlangenGermany
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable EnergyForschungszentrum JülichCauerstrasse 191058ErlangenGermany
| | - Nejc Hodnik
- Laboratory for ElectrocatalysisDepartment of Materials ChemistryNational Institute of ChemistryHajdrihova 191000LjubljanaSlovenia
- University of Nova GoricaVipavska 135000Nova GoricaSlovenia
| |
Collapse
|
46
|
Salmanion M, Nandy S, Chae KH, Najafpour MM. Further Insight into the Conversion of a Ni-Fe Metal-Organic Framework during Water-Oxidation Reaction. Inorg Chem 2022; 61:5112-5123. [PMID: 35297622 DOI: 10.1021/acs.inorgchem.2c00241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metal-organic frameworks (MOFs) are extensively investigated as catalysts in the oxygen-evolution reaction (OER). A Ni-Fe MOF with 2,5-dihydroxy terephthalate as a linker has been claimed to be among the most efficient catalysts for the oxygen-evolution reaction (OER) under alkaline conditions. Herein, the MOF stability under the OER was reinvestigated by electrochemical methods, X-ray diffraction, X-ray absorption spectroscopy, energy-dispersive spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy, nuclear magnetic resonance, operando visible spectroscopy, electrospray ionization mass spectroscopy, and Raman spectroscopy. The peaks corresponding to the carboxylate group are observed at 1420 and 1520 cm-1 using Raman spectroscopy. The peaks disappear after the reaction, suggesting the removal of the carboxylate group. A drop in carbon content but growth in oxygen content after the OER was detected by energy-dispersive spectra. This shows that after the OER, the surface of MOF is oxidized. SEM images also show deep restructures in the surface morphology of this Ni-Fe MOF after the OER. Nuclear magnetic resonance and electrospray ionization mass spectrometry show the decomposition of the linker in alkaline conditions and even in the absence of potential. These experimental data indicate that during the OER, the synthesized MOF transforms to a Fe-Ni-layered double hydroxide, and the formed metal oxide is a candidate for the OER catalysis. Generalization is not true; however, taken together, these findings suggest that the stability of Ni-Fe MOFs under harsh oxidation conditions should be reconsidered.
Collapse
Affiliation(s)
- Mahya Salmanion
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Subhajit Nandy
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.,Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.,Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
47
|
Lončar A, Escalera‐López D, Cherevko S, Hodnik N. Inter‐relationships between Oxygen Evolution and Iridium Dissolution Mechanisms. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anja Lončar
- Laboratory for Electrocatalysis Department of Materials Chemistry National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- University of Nova Gorica Vipavska 13 5000 Nova Gorica Slovenia
| | - Daniel Escalera‐López
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy Forschungszentrum Jülich Cauerstrasse 1 91058 Erlangen Germany
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy Forschungszentrum Jülich Cauerstrasse 1 91058 Erlangen Germany
| | - Nejc Hodnik
- Laboratory for Electrocatalysis Department of Materials Chemistry National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- University of Nova Gorica Vipavska 13 5000 Nova Gorica Slovenia
| |
Collapse
|
48
|
Sui J, Liu H, Hu S, Sun K, Wan G, Zhou H, Zheng X, Jiang HL. A General Strategy to Immobilize Single-Atom Catalysts in Metal-Organic Frameworks for Enhanced Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109203. [PMID: 34883530 DOI: 10.1002/adma.202109203] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/07/2021] [Indexed: 06/13/2023]
Abstract
Single-atom catalysts (SACs) are witnessing rapid development due to their high activity and selectivity toward diverse reactions. However, it remains a grand challenge in the general synthesis of SACs, particularly featuring an identical chemical microenvironment and on the same support. Herein, a universal synthetic protocol is developed to immobilize SACs in metal-organic frameworks (MOFs). Significantly, by means of SnO2 as a mediator or adaptor, not only different single-atom metal sites, such as Pt, Cu, and Ni, etc., can be installed, but also the MOF supports can be changed (for example, UiO-66-NH2 , PCN-222, and DUT-67) to afford M1 /SnO2 /MOF architecture. Taking UiO-66-NH2 as a representative, the Pt1 /SnO2 /MOF exhibits approximately five times higher activity toward photocatalytic H2 production than the corresponding Pt nanoparticles (≈2.5 nm) stabilized by SnO2 /UiO-66-NH2 . Remarkably, despite featuring identical parameters in the chemical microenvironment and support in M1 /SnO2 /UiO-66-NH2 , the Pt1 catalyst possesses a hydrogen evolution rate of 2167 µmol g-1 h-1 , superior to the Cu1 and Ni1 counterparts, which is attributed to the differentiated hydrogen binding free energies, as supported by density-functional theory (DFT) calculations. This is thought to be the first report on a universal approach toward the stabilization of SACs with identical chemical microenvironment on an identical support.
Collapse
Affiliation(s)
- Jianfei Sui
- College of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hang Liu
- College of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shaojin Hu
- College of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Kang Sun
- College of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Gang Wan
- Department of Mechanical Engineering and Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Xiao Zheng
- College of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- College of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
49
|
Zhou H, Li Z, Ma L, Duan H. Electrocatalytic oxidative upgrading of biomass platform chemicals: from the aspect of reaction mechanism. Chem Commun (Camb) 2022; 58:897-907. [PMID: 34981104 DOI: 10.1039/d1cc06254a] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidation reactions provide a wide range of important chemicals in industry; however, most of these chemicals are produced from fossil feedstocks. As a candidate of oxygen evolution reaction (OER), the electrooxidation of biomass platform chemicals instead of a petroleum source offers a sustainable and atom-economic avenue toward organic oxygenates, with additional benefits when coupled with renewable electricity driven processes. This highlight article describes the representative examples in this nascent area, including oxidative dehydrogenation, coupling, and cleavage. We classify the examples into inner-sphere and outer-sphere electrode reactions based on the classical electrocatalysis concept for better understanding of the reaction mechanism. Moreover, we highlight the recent progress in oxidative biomass electrorefining via inner-sphere anodic reactions, which are strongly dependent on the nature of the electrode material. Particularly, the understanding of the formation of reactive oxygen species, adsorption of substrates, and reconstruction of anode materials is presented. Finally, the existing challenges and perspectives are discussed.
Collapse
Affiliation(s)
- Hua Zhou
- Department of Chemistry, Tsinghua University, Beijing 100084, China. .,State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenhua Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lina Ma
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haohong Duan
- Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
50
|
Hirai S, Yagi S, Oh HC, Sato Y, Liu W, Liu EP, Chen WT, Miura A, Nagao M, Ohno T, Matsuda T. Highly active and stable surface structure for oxygen evolution reaction originating from balanced dissolution and strong connectivity in BaIrO 3 solid solutions. RSC Adv 2022; 12:24427-24438. [PMID: 36128544 PMCID: PMC9415035 DOI: 10.1039/d2ra04624e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
Catalysts for the oxygen evolution reaction (OER) are receiving great interest since OER remains the bottleneck of water electrolyzers for hydrogen production. Especially, OER in acidic solutions is crucial since it produces high current densities and avoids precipitation of carbonates. However, even the acid stable iridates undergo severe dissolution during the OER. BaIrO3 has the strongest IrO6 connectivity and stable surface structure, yet it suffers from lattice collapse after OER cycling, making it difficult to improve the OER durability. In the present study, we have successfully developed an OER catalyst with both high intrinsic activity and stability under acidic conditions by preventing the lattice collapse after repeated OER cycling. Specifically, we find that the substitution of Ir-site with Mn for BaIrO3 in combination with OER cycling leads to a remarkable activity enhancement by a factor of 28 and an overall improvement in stability. This dual enhancement of OER performance was accomplished by the novel strategy of slightly increasing the Ir-dissolution and balancing the elemental dissolution in BaIr1−xMnxO3 to reconstruct a rigid surface with BaIrO3-type structure. More importantly, the mass activity for BaIr0.8Mn0.2O3 reached ∼73 times of that for IrO2, making it a sustainable and promising OER catalyst for energy conversion technologies. We have prevented lattice collapse and developed an OER catalyst with both high activity and stability by slightly increasing Ir-dissolution and balancing the elemental dissolution in BaIr1−xMnxO3 for reconstructing the rigid catalytic surface.![]()
Collapse
Affiliation(s)
- Shigeto Hirai
- School of Earth, Energy and Environmental Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Japan
| | - Shunsuke Yagi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo 153-8505, Japan
| | - He-Chan Oh
- School of Earth, Energy and Environmental Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Japan
| | - Yoshiki Sato
- School of Earth, Energy and Environmental Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Japan
| | - Wei Liu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo 153-8505, Japan
| | - En-Pei Liu
- Center for Condensed Matter Sciences and Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Tin Chen
- Center for Condensed Matter Sciences and Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 10617, Taiwan
- Taiwan Consortium of Emergent Crystalline Materials, Ministry of Science and Technology, Taipei 10622, Taiwan
| | - Akira Miura
- Graduate School of Chemical Sciences and Engineering and Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Masanori Nagao
- University of Yamanashi, 7-32 Miyamae, Kofu, Yamanashi 400-0021, Japan
| | - Tomoya Ohno
- School of Earth, Energy and Environmental Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Japan
| | - Takeshi Matsuda
- School of Earth, Energy and Environmental Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Japan
| |
Collapse
|