1
|
An Z, Dai Z, Liu J, Chen S, Wang X, Liu H, Sheng Z, Shan T. Designing High-Sensitivity Mechanochromic Luminescent Materials Through Friction-Induced Crystallization Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409974. [PMID: 39431466 DOI: 10.1002/advs.202409974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Despite recent significant breakthroughs in novel mechanochromic luminescent (ML) materials, developing a high-sensitivity ML material is still challengeable. Herein, a "friction-induced crystallization" strategy is proposed to realize highly sensitive transformations of luminescent signal, through an integration of polymeric chains and an aggregation-sensitive luminescent core, which act as mechanical sensors and fluochromic actuators, respectively. The coupling of these two components enables the material to crystallize in response to shear friction, thereby exhibiting blue-shift fluorescence due to a more restricted relaxation pathway. This study underscores a high-sensitivity ML material based on the precise regulation of molecular-scale motions, and also expands the scope and potential of ML materials toward user-friendly, interactive wearable devices.
Collapse
Affiliation(s)
- Zhihang An
- College of Biological & Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, P. R. China
| | - Zhenhao Dai
- College of Biological & Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, P. R. China
| | - Jiaping Liu
- College of Biological & Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, P. R. China
| | - Si Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xu Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Heyang Liu
- College of Biological & Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, P. R. China
- College of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, P. R. China
| | - Zhongyi Sheng
- College of Biological & Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, P. R. China
| | - Tianyu Shan
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
2
|
Koo J, Hyeong J, Jang J, Wi Y, Ko H, Rim M, Lim S, Na S, Choi Y, Jeong K. Photochemically and Thermally Programmed Optical Multi-States from a Single Diacetylene-Functionalized Cyanostilbene Luminogen. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307791. [PMID: 38225753 PMCID: PMC10953535 DOI: 10.1002/advs.202307791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/01/2023] [Indexed: 01/17/2024]
Abstract
To develop advanced optical systems, many scientists have endeavored to create smart optical materials which can tune their photophysical properties by changing molecular states. However, optical multi-states are obtained usually by mixing many dyes or stacking multi-layered structures. Here, multiple molecular states are tried to be generated with a single dye. In order to achieve the goal, a diacetylene-functionalized cyanostilbene luminogen (DACSM) is newly synthesized by covalently connecting diacetylene and cyanostilbene molecular functions. Photochemical reaction of cyanostilbene and topochemical polymerization of diacetylene can change the molecular state of DACSM. By thermal stimulations and the photochemical reaction, the conformation of polymerized DACSM is further tuned. The synergetic molecular cooperation of cyanostilbene and diacetylene generates multiple molecular states of DACSM. Utilizing the optical multi-states achieved from the newly developed DACSM, switchable optical patterns and smart secret codes are successfully demonstrated.
Collapse
Affiliation(s)
- Jahyeon Koo
- Department of Polymer‐Nano Science and TechnologyDepartment of Nano Convergence EngineeringJeonbuk National UniversityJeonju54896Republic of Korea
| | - Jaeseok Hyeong
- Department of Polymer‐Nano Science and TechnologyDepartment of Nano Convergence EngineeringJeonbuk National UniversityJeonju54896Republic of Korea
| | - Junhwa Jang
- Department of Polymer‐Nano Science and TechnologyDepartment of Nano Convergence EngineeringJeonbuk National UniversityJeonju54896Republic of Korea
| | - Youngjae Wi
- Department of Polymer‐Nano Science and TechnologyDepartment of Nano Convergence EngineeringJeonbuk National UniversityJeonju54896Republic of Korea
| | - Hyeyoon Ko
- Department of Polymer‐Nano Science and TechnologyDepartment of Nano Convergence EngineeringJeonbuk National UniversityJeonju54896Republic of Korea
| | - Minwoo Rim
- Department of Polymer‐Nano Science and TechnologyDepartment of Nano Convergence EngineeringJeonbuk National UniversityJeonju54896Republic of Korea
| | - Seok‐In Lim
- Department of Polymer‐Nano Science and TechnologyDepartment of Nano Convergence EngineeringJeonbuk National UniversityJeonju54896Republic of Korea
| | - Seok‐In Na
- Department of Flexible and Printable Electronics and LANL‐JBNU Engineering Institute‐KoreaJeonbuk National UniversityJeonju54896Republic of Korea
| | - Yu‐Jin Choi
- Materials DepartmentUniversity of CaliforniaSanta BarbaraCA93106USA
| | - Kwang‐Un Jeong
- Department of Polymer‐Nano Science and TechnologyDepartment of Nano Convergence EngineeringJeonbuk National UniversityJeonju54896Republic of Korea
| |
Collapse
|
3
|
Ma Y, Wang Q, Deng J, Yan X, Liu J, Ding L, Miao R, Fang Y. Ultrabright Acrylic Polymers with Tunable Fluorescence Enabled by Imprisoning Single TICT Probe. Macromol Rapid Commun 2024; 45:e2300592. [PMID: 37956231 DOI: 10.1002/marc.202300592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/08/2023] [Indexed: 11/15/2023]
Abstract
Bright and colorful fluorescent polymers are ideal materials for a variety of applications. Although polymers could be made fluorescent by physical doping or chemical binding of fluorescent units, it is a great challenge to get colorful and highly emissive polymers with a single fluorophore. Here the development of a general and facile method to synthesize ultrabright and colorful polymers using a single twisted intramolecular charge transfer (TICT) probe is reported. By incorporating polymerizable, highly fluorescent, and environmental sensitive TICT probe, a series of colorful acrylic polymers (emission from 481 to 543 nm) with almost 100% fluorescence quantum yields are prepared. Like the solvatochromic effect, functional groups within side chains of acrylic polymers (including alkyl chain, tetrahydrofurfuryl group, and hydroxyl group) provide varied environmental polarity for the incorporated fluorophore, resulting in a series of colorful polymeric materials. Benefiting from the excellent photophysical properties, the polymers show great potential in encryption, cultural relics protection, white light-emitting diode bulb making, and fingerprint identification.
Collapse
Affiliation(s)
- Yalei Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Qiuping Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Jia Deng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Xudong Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Rong Miao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| |
Collapse
|
4
|
Xiao H, Shi QX, Li Q, Cai HW, Sun XL, Wan WM, Qian QR. Barbier Polymerization-Induced Emission towards Fully Substituted Polyethylene Analogues with Non-Traditional Intrinsic Luminescence. Chemistry 2024; 30:e202303292. [PMID: 38014866 DOI: 10.1002/chem.202303292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 11/29/2023]
Abstract
The properties of polyethylene are highly dependent on the variety and quantity of substitutions. Generally, polyethylene can only be fully substituted with fluorine atoms, mainly e. g., polytetrafluoroethylene and nafion, because atomic radius of fluorine atom is small enough. The preparation of fully substituted polyethylene analogues (FSPEA) and their non-traditional intrinsic luminescence (NTIL) are attractive, especially for substitutions with relatively larger atomic radii than a fluorine atom. Here, Barbier polymerization-induced emission (PIE) is demonstrated as a universal method for the molecular design of NTIL type FSPEAs with intriguing aggregation-induced emission (AIE) behaviors. Through Barbier polymerization of diphenyldichloromethane and different peroxyesters in the presence of Mg in one pot, a series of FSPEAs, including polytriphenylethanol (PTPE), polydiphenylfurylethanol (PDPFE), polydiphenylthiophenylethanol (PDPTE) and polydiphenylnaphthylethanol (PDPNE) have been successfully prepared. Further potential applications for explosive detection, artificial light-harvesting system and white phosphor-converted light-emitting diode are investigated. Therefore, this work opens up a new approach for the molecular design of FSPEA with non-conjugated luminescence, which may cause inspirations to different research fields like polyolefin and luminescent materials.
Collapse
Affiliation(s)
- Hang Xiao
- College of Environment and Resources Engineering Research Center of Polymer Green Recycling of Ministry of Education Fujian Key Laboratory of Pollution Control &Resource Reuse, Fujian Normal University, Fuzhou, 350007, China
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Quan-Xi Shi
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qian Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Hua-Wen Cai
- College of Environment and Resources Engineering Research Center of Polymer Green Recycling of Ministry of Education Fujian Key Laboratory of Pollution Control &Resource Reuse, Fujian Normal University, Fuzhou, 350007, China
| | - Xiao-Li Sun
- College of Environment and Resources Engineering Research Center of Polymer Green Recycling of Ministry of Education Fujian Key Laboratory of Pollution Control &Resource Reuse, Fujian Normal University, Fuzhou, 350007, China
| | - Wen-Ming Wan
- College of Environment and Resources Engineering Research Center of Polymer Green Recycling of Ministry of Education Fujian Key Laboratory of Pollution Control &Resource Reuse, Fujian Normal University, Fuzhou, 350007, China
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qing-Rong Qian
- College of Environment and Resources Engineering Research Center of Polymer Green Recycling of Ministry of Education Fujian Key Laboratory of Pollution Control &Resource Reuse, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
5
|
Bao Y. Polymerization-Mediated Through-Space Charge Transfer: An Emerging Strategy for Light-Emitting Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38252874 DOI: 10.1021/acs.langmuir.3c03376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Through-space charge transfer (TSCT) has attracted increasing attention owing to its great potential in designing efficient light-emitting molecules and polymers. Complementary to through-bond charge transfer and Förster resonance energy transfer, TSCT offers an alternative approach for the manipulation of molecular fluorescence. Recently, the synergy between TSCT and polymer systems through polymerization-mediated charge transfer has fostered the advancements of innovative light-emitting functional materials featuring thermally activated delayed fluorescence and/or aggregation-induced emission. This perspective highlights the significant progress in tailoring emission properties through structural engineering of donor and acceptor groups within polymeric systems, leveraging the TSCT mechanism. This strategy has transcended the limitations of traditional charge transfer systems with its tolerance to extended donor-acceptor distance, paving the way for novel applications beyond organic light-emitting diodes. The discussion concludes with a forward-looking analysis of potential future research trajectories in the field of polymerization-mediated charge transfer for developing next-generation light-emitting materials.
Collapse
Affiliation(s)
- Yinyin Bao
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
6
|
Bhusanur DI, More KS, Al Kobaisi M, Singh PK, Bhosale SV, Bhosale SV. Synthesis, Photophysical Properties and Self-Assembly of a Tetraphenylethylene-Naphthalene Diimide Donor-Acceptor Molecule. Chem Asian J 2024:e202301046. [PMID: 38180124 DOI: 10.1002/asia.202301046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/06/2024]
Abstract
The development of new π-conjugated molecular structures with controlled self-assembly and distinct photophysical properties is crucial for advancing applications in optoelectronics and biomaterials. This study introduces the synthesis and detailed self-assembly analysis of tetraphenylethylene (TPE) functionalized naphthalene diimide (NDI), a novel donor-acceptor molecular structure referred to as TPE-NDI. The investigation specifically focuses on elucidating the self-assembly behavior of TPE-NDI in mixed solvents of varying polarities, namely chloroform: methylcyclohexane (CHCl3 : MCH) and chloroform: methanol (CHCl3 : MeOH). Employing a several analytical methodologies, including UV-Vis absorption and fluorescence emission spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering (DLS), these self-assembled systems have been comprehensively examined. The results reveal that TPE-NDI manifests as distinct particles in CHCl3 : MCH (fMCH =90 %), while transitioning to flower-like assemblies in CHCl3 : MeOH (fMeOH =90 %). This finding underscores the critical role of solvent polarity in dictating the morphological characteristics of TPE-NDI self-assembled aggregates. Furthermore, the study proposes a molecular packing mechanism, based on SEM data, offering significant insights into the design and development of functional supramolecular systems. Such advancements in understanding the molecular self-assembly new π-conjugated molecular structures are anticipated to pave the way for novel applications in material science and nanotechnology.
Collapse
Affiliation(s)
- Dnyaneshwar I Bhusanur
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, 500 007, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), 201 002, Ghaziabad, Uttar Pradesh, India
| | - Kerba S More
- Department School of Chemical Sciences, Goa University, 403 206, Taleigao Plateau, Goa, India
| | - Mohammad Al Kobaisi
- School of Science, RMIT University, GPO Box 2476, 3001, Melbourne, VIC, Australia
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, 400 085, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, 400 094, Mumbai, India
| | - Sidhanath V Bhosale
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, 500 007, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), 201 002, Ghaziabad, Uttar Pradesh, India
| | - Sheshanath V Bhosale
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kadaganchi, 585 367, Kalaburagi, Karnataka, India
| |
Collapse
|
7
|
Shang W, Wang Y, Zhu X, Liang T, Du C, Xiang J, Liu M. Helical Cage Rotors Switched on by Brake Molecule with Variable Fluorescence and Circularly Polarized Luminescence. J Am Chem Soc 2023; 145:27639-27649. [PMID: 38054305 DOI: 10.1021/jacs.3c09461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
While chiral molecular rotors have unique frames and cavities to possibly generate switchable chiroptical functions, it still remains a formidable challenge to precisely restrict their rotations to activate certain functions such as fluorescence as well as circularly polarized luminescence (CPL), which are strongly related to the local molecular rotations. Herein, we design a pair of enantiopure helical cage rotors, which emit light neither at the molecular state nor in the crystal or aggregation states, although they contain luminophore groups. However, upon mounting with fluoroaromatic borane (TFPB) as a molecular brake, the phenyl rotation of the helical cage can be effectively hindered and fluorescence and CPL activities of the molecular cage are switched on. Crystal structure analysis reveals that the rotation is restricted through synergistic B-O-H-N bonding and a fluoroaromatic-aromatic (ArF-Ar) dipole interaction. Moreover, the helical cages are switched on stepwise with color-variable fluorescence and CPL by the inner brake in the molecular state and the outer brake in the supramolecular assemblies, respectively. This work not only provides the design idea of chiroptical molecular rotors but also unveils how fluorescence and CPL could be generated in cage rotor systems.
Collapse
Affiliation(s)
- Weili Shang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Yuan Wang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Tongling Liang
- BNLMS, Center for Physicochemical Analysis and Measurement, Institute of Chemistry, CAS, ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Cong Du
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Junfeng Xiang
- BNLMS, Center for Physicochemical Analysis and Measurement, Institute of Chemistry, CAS, ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing 100190, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| |
Collapse
|
8
|
Fu Q, Shen S, Sun P, Gu Z, Bai Y, Wang X, Liu Z. Bioorthogonal chemistry for prodrug activation in vivo. Chem Soc Rev 2023; 52:7737-7772. [PMID: 37905601 DOI: 10.1039/d2cs00889k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Prodrugs have emerged as a major strategy for addressing clinical challenges by improving drug pharmacokinetics, reducing toxicity, and enhancing treatment efficacy. The emergence of new bioorthogonal chemistry has greatly facilitated the development of prodrug strategies, enabling their activation through chemical and physical stimuli. This "on-demand" activation using bioorthogonal chemistry has revolutionized the research and development of prodrugs. Consequently, prodrug activation has garnered significant attention and emerged as an exciting field of translational research. This review summarizes the latest advancements in prodrug activation by utilizing bioorthogonal chemistry and mainly focuses on the activation of small-molecule prodrugs and antibody-drug conjugates. In addition, this review also discusses the opportunities and challenges of translating these advancements into clinical practice.
Collapse
Affiliation(s)
- Qunfeng Fu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Changping Laboratory, Beijing 102206, China
| | - Siyong Shen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Pengwei Sun
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zhi Gu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yifei Bai
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Xianglin Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Changping Laboratory, Beijing 102206, China
- Peking University-Tsinghua University Center for Life Sciences, Peking University, Beijing 100871, China
- Key Laboratory of Carcinogenesis and Translational Research of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
9
|
Chen YJ, Wu LT, Li TA, Pu MQ, Sun XL, Bao H, Wan WM. Ketyl Radical Anion Mediated Radical Polymerization and Anionic Ring-Opening Polymerization to Give Polymers with Low Molecular Weight Distribution. Angew Chem Int Ed Engl 2023; 62:e202304033. [PMID: 37263979 DOI: 10.1002/anie.202304033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/03/2023]
Abstract
The development of novel polymerization capable of yielding polymers with low molecular weight distribution (Đ) is essential and significant in polymer chemistry, where monofunctional initiator contains only one initiation site in these polymerizations generally. Here, ketyl radical anion species is introduced to develop a novel Ketyl Mediated Polymerization (KMP), which enables radical polymerization at carbon radical site and anionic ring-opening polymerization at oxygen anion site, respectively. Meanwhile, polymerization and corresponding organic synthesis generally couldn't be performed simultaneously in one pot. Through KMP, organic synthesis and polymerization are achieved in one pot, where small molecules (cyclopentane derivates) and polymers with low Đ are successfully prepared under mild condition simultaneously. At the initiation step, both organic synthesis and polymerization are initiated by single electron transfer reaction with ketyl radical anion formation. Cyclopentane derivates are synthesized through 3-3 coupling reaction and cyclization. Polystyrene and polycaprolactone with low Đ and a full monomer conversion are prepared by KMP via radical polymerization and anionic ring-opening polymerization, respectively. This work therefore enables both organic synthesis and two different polymerizations from same initiation system, which saves time, labour, resource and energy and expands the reaction mode and method libraries of organic chemistry and polymer chemistry.
Collapse
Affiliation(s)
- Yu-Jiao Chen
- College of Environment and Resources, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Liang-Tao Wu
- College of Environment and Resources, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Tai-An Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Meng-Qin Pu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Xiao-Li Sun
- College of Environment and Resources, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Wen-Ming Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| |
Collapse
|
10
|
Liu X, Zhu C, Tang BZ. Informatics colourizes polymers. Nat Rev Chem 2023; 7:232-233. [PMID: 37117421 DOI: 10.1038/s41570-023-00484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
11
|
Xue H, Li DS, Cai HW, Sun XL, Wan WM. Radical Polymerization-Induced Nontraditional Intrinsic Luminescence of Triphenylmethyl Azide-Containing Polymers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Hong Xue
- College of Environment and Resources, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - De-Shan Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
| | - Hua-Wen Cai
- College of Environment and Resources, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Xiao-Li Sun
- College of Environment and Resources, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Wen-Ming Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
| |
Collapse
|
12
|
Charytanowicz T, Sieklucka B, Chorazy S. Lanthanide Hexacyanidoruthenate Frameworks for Multicolor to White-Light Emission Realized by the Combination of d-d, d-f, and f-f Electronic Transitions. Inorg Chem 2023; 62:1611-1627. [PMID: 36656797 PMCID: PMC9890488 DOI: 10.1021/acs.inorgchem.2c03885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We report an effective strategy toward tunable room-temperature multicolor to white-light emission realized by mixing three different lanthanide ions (Sm3+, Tb3+, and Ce3+) in three-dimensional (3D) coordination frameworks based on hexacyanidoruthenate(II) metalloligands. Mono-lanthanide compounds, K{LnIII(H2O)n[RuII(CN)6]}·mH2O (1, Ln = La, n = 3, m = 1.2; 2, Ln = Ce, n = 3, m = 1.3; 3, Ln = Sm, n = 2, m = 2.4; 4, Ln = Tb, n = 2, m = 2.4) are 3D cyanido-bridged networks based on the Ln-NC-Ru linkages, with cavities occupied by K+ ions and water molecules. They crystallize differently for larger (1, 2) and smaller (3, 4) lanthanides, in the hexagonal P63/m or the orthorhombic Cmcm space groups, respectively. All exhibit luminescence under the UV excitation, including weak blue emission in 1 due to the d-d 3T1g → 1A1g electronic transition of RuII, as well as much stronger blue emission in 2 related to the d-f 2D3/2 → 2F5/2,7/2 transitions of CeIII, red emission in 3 due to the f-f 4G5/2 → 6H5/2,7/2,9/2,11/2 transitions of SmIII, and green emission in 4 related to the f-f 5D4 → 7F6,5,4,3 transitions of TbIII. The lanthanide emissions, especially those of SmIII, take advantage of the RuII-to-LnIII energy transfer. The CeIII and TbIII emissions are also supported by the excitation of the d-f electronic states. Exploring emission features of the LnIII-RuII networks, two series of heterobi-lanthanide systems, K{SmxCe1-x(H2O)n[Ru(CN)6]}·mH2O (x = 0.47, 0.88, 0.88, 0.99, 0.998; 5-9) and K{TbxCe1-x(H2O)n[Ru(CN)6]}·mH2O (x = 0.56, 0.65, 0.93, 0.99, 0.997; 10-14) were prepared. They exhibit the composition- and excitation-dependent tuning of emission from blue to red and blue to green, respectively. Finally, the heterotri-lanthanide system of the K{Sm0.4Tb0.599Ce0.001(H2O)2[Ru(CN)6]}·2.5H2O (15) composition shows the rich emission spectrum consisting of the peaks related to CeIII, TbIII, and SmIII centers, which gives the emission color tuning from blue to orange and white-light emission of the CIE 1931 xy parameters of 0.325, 0.333.
Collapse
|
13
|
Xiao H, Shi QX, Su M, Sun XL, Bao H, Wan WM. One-Pot Synthesis of Stimuli-Responsive Fluorescent Polymers through Polymerization-Induced Emission. ACS Macro Lett 2023; 12:40-47. [PMID: 36546477 DOI: 10.1021/acsmacrolett.2c00653] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stimuli-responsive opposite emission (A)/absorption (B) polymer material (A∪B = Ω and A∩B = Ø) represents a novel polymer material that is difficult to prepare. Here, we demonstrate a one-pot strategy for the molecular design of stimuli-responsive opposite emission/absorption polymer material with intriguing properties of opposite emission/absorption and aggregation-induced emission (AIE) type nontraditional intrinsic luminescence (NTIL) in the visible region, through reversible addition-fragmentation chain transfer polymerization-induced emission (PIE) of the N,N-dimethyl-triphenylmethanol moiety. Investigations reveal that NTIL is due to the through-space conjugation effect caused by polymer chain entanglement, when increasing the repeating unit number. The corresponding stimuli-responsive opposite emission/absorption properties are derived from the carbocation-quinoid mechanism, which enables the fluorescence encryption capability. This work therefore demonstrates the proof of concept of a novel opposite emission/absorption polymer material that might cause inspiration in different fields.
Collapse
Affiliation(s)
- Hang Xiao
- College of Environment and Resources, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China.,Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Quan-Xi Shi
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China.,College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Min Su
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Xiao-Li Sun
- College of Environment and Resources, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Wen-Ming Wan
- College of Environment and Resources, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China.,Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
14
|
Ma X, Zhou M, Jia L, Ling G, Li J, Huang W, Wu D. High-contrast reversible multiple color-tunable solid luminescent ionic polymers for dynamic multilevel anti-counterfeiting. MATERIALS HORIZONS 2023; 10:107-121. [PMID: 36306818 DOI: 10.1039/d2mh00986b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dynamic color-tunable luminescent materials, which possess huge potential applications in advanced multilevel luminescence anti-counterfeiting, are of considerable interest. However, it remains challenging to develop simple high-contrast reversible multiple (triple or more than triple) color-tunable high-efficiency solid luminescent materials with low cost, facile synthesis, and good processability. Herein, by simply grafting charged multi-color AIEgen-based chromophores into polymers, a series of high-efficiency multiple color-tunable luminescent single ionic polymers are constructed through tuning feed ratios, counter anions and reaction solvents. Remarkably, some ionic polymers can not only achieve rare high-contrast reversible multiple color-tunable emission in solid states in response to different solvent stimuli, but also could realize excitation-dependent color-tunable emission. To the best of our knowledge, such charming multiple (triple or more than triple) color-tunable solid polymers responding to multiple external stimuli are still rare. Based on comparative studies of emission spectra, excitation spectra and fluorescence lifetimes before and after swelling, it could be inferred that solvent stimuli could induce microstructure changes of these ionic polymers and then change the aggregated-states of their corresponding AIE-active emission centers. Moreover, the different solvent stimuli could induce to produce different degrees of microstructure changes, resulting in their unique multiple color-tunable emission. More significantly, these smart color-tunable ionic polymers show great promise for applications in dynamic multilevel (three-level or even more than three-level) anti-counterfeiting.
Collapse
Affiliation(s)
- Xiao Ma
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China.
| | - Mingyue Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China.
| | - Ling Jia
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China.
| | - Guangkun Ling
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China.
| | - Jiashu Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China.
| | - Wei Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China.
| | - Dayu Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China.
| |
Collapse
|
15
|
Ye S, Meftahi N, Lyskov I, Tian T, Whitfield R, Kumar S, Christofferson AJ, Winkler DA, Shih CJ, Russo S, Leroux JC, Bao Y. Machine learning-assisted exploration of a versatile polymer platform with charge transfer-dependent full-color emission. Chem 2023. [DOI: 10.1016/j.chempr.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Ma C, Han T, Efstathiou S, Marathianos A, Houck HA, Haddleton DM. Aggregation-Induced Emission Poly(meth)acrylates for Photopatterning via Wavelength-Dependent Visible-Light-Regulated Controlled Radical Polymerization in Batch and Flow Conditions. Macromolecules 2022; 55:9908-9917. [DOI: 10.1021/acs.macromol.2c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/04/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Congkai Ma
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ting Han
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Spyridon Efstathiou
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Arkadios Marathianos
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Hannes A. Houck
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David M. Haddleton
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
17
|
Medium Effects on the Fluorescence of Imide-substituted Naphthalene Diimides. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Besford QA, Van den Heuvel W, Christofferson AJ. Dipolar Dispersion Forces in Water-Methanol Mixtures: Enhancement of Water Interactions upon Dilution Drives Self-Association. J Phys Chem B 2022; 126:6231-6239. [PMID: 35976055 DOI: 10.1021/acs.jpcb.2c04638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mixtures of short-chain alcohols and water produce anomalous thermodynamic and structural quantities, including molecular segregation into water-rich and alcohol-rich components. Herein, we used molecular dynamics simulations with polarizable models to investigate interactions that could drive the self-association of water molecules in mixtures with methanol (MeOH). As water was diluted with MeOH, significant changes in the distribution of molecules and solvation properties occurred, where water exhibited a clear preference for self-association. When common structural quantities were analyzed, it was found that there was a clear reduction in water-water hydrogen bonding and tetrahedral order (both in terms of typical bulk behavior), contrary to the observed water self-association. However, when dipolar dispersion forces between all molecules as a function of system composition were analyzed, it was found that water-water dipolar interactions became significantly stronger with dilution (6-fold stronger interaction in 75% MeOH compared to 0% MeOH). This was only observed for water, where MeOH-MeOH interactions became weaker as the systems were more dilute in MeOH. These forces result from specific dipole orientations, likely occurring to adopt lower energy configurations (i.e., head-to-tail or antiparallel). For water, this may result from lost other interactions (e.g., hydrogen bonding), leading to more rotational freedom between the dipole moments. These intriguing changes in dipolar interactions, which directly result from structural changes, can therefore explain, in part, the driving force for water self-association in MeOH-water mixtures.
Collapse
Affiliation(s)
- Quinn A Besford
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Willem Van den Heuvel
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Andrew J Christofferson
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia.,ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
19
|
Hu D, Huang H, Li R, Yuan J, Wei Y. “Living” fluorophores: Thermo-driven reversible ACQ-AIE transformation and ultra-sensitive in-situ monitor for dynamic Diels-Alder reactions. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
20
|
Mu B, Zhang Z, Hao X, Ma T, Tian W. Positional Isomerism-Mediated Copolymerization Realizing the Continuous Luminescence Color-Tuning of Liquid-Crystalline Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bin Mu
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhelin Zhang
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xiangnan Hao
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Tianshu Ma
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wei Tian
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
21
|
Wang Y, Wu H, Hu W, Stoddart JF. Color-Tunable Supramolecular Luminescent Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105405. [PMID: 34676928 DOI: 10.1002/adma.202105405] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Constructing multicolor photoluminescent materials with tunable properties is an attractive research objective on account of their abundant applications in materials science and biomedical engineering. By comparison with covalent synthesis, supramolecular chemistry has provided a more competitive and promising strategy for the production of organic materials and the regulation of their photophysical properties. By taking advantage of dynamic and reversible noncovalent bonding interactions, supramolecular strategies can, not only simplify the design and fabrication of organic materials, but can also endow them with dynamic reversibility and stimuli responsiveness, making it much easier to adjust the superstructures and properties of the materials. Occasionally, it is possible to introduce emergent properties into these materials, which are absent in their precursor compounds, broadening their potential applications. In an attempt to highlight the state-of-the-art noncovalent strategies available for the construction of smart luminescent materials, an overview of color-tunable materials is presented in this Review, with the emphasis being placed on the examples drawn from host-guest complexes, supramolecular assemblies and crystalline materials. The noncovalent synthesis of room-temperature phosphorescent materials and the modulation of their luminescent properties are also described. Finally, future directions and scientific challenges in the emergent field of color-tunable supramolecular emissive materials are discussed.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| |
Collapse
|
22
|
Zhang Z, Bai Q, Manandhar E, Zeng Y, Wu T, Wang M, Yao LY, Newkome GR, Wang P, Xie TZ. Supramolecular cuboctahedra with aggregation-induced emission enhancement and external binding ability. Chem Sci 2022; 13:5999-6007. [PMID: 35685785 PMCID: PMC9132066 DOI: 10.1039/d2sc00082b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/25/2022] [Indexed: 01/14/2023] Open
Abstract
Beyond the AIE (aggregation-induced emission) phenomenon in small molecules, supramolecules with AIE properties have evolved in the AIE family and accelerated the growth of supramolecular application diversity. Inspired by its mechanism, particularly the RIV (restriction of intramolecular vibrations) process, a feasible strategy of constructing an AIE-supramolecular cage based on the oxidation of sulfur atoms and coordination of metals is presented. In contrast to previous strategies that used molecular stacking to limit molecular vibrations, we achieved the desired goal using the synergistic effects of coordination-driven self-assembly and oxidation. Upon assembling with zinc ions, S1 was endowed with a distinct AIE property compared with its ligand L1, while S2 exhibited a remarkable fluorescence enhancement compared to L2. Also, the single cage-sized nanowire structure of supramolecules was obtained via directional electrostatic interactions with multiple anions and rigid-shaped cationic cages. Moreover, the adducts of zinc porphyrin and supramolecules were investigated and characterized by 2D DOSY, ESI-MS, TWIM-MS, UV-vis, and fluorescence spectroscopy. The protocol described here enriches the ongoing research on tunable fluorescence materials and paves the way towards constructing stimuli-responsive luminescent supramolecular cages. Beyond the AIE (aggregation-induced emission) phenomenon in small molecules, supramolecules with AIE properties have evolved in the AIE family and accelerated the growth of supramolecular application diversity.![]()
Collapse
Affiliation(s)
- Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou-510006 China
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou-510006 China
| | - Erendra Manandhar
- Departments of Polymer Science and Chemistry, University of Akron Akron OH 44325-4717 USA
| | - Yunting Zeng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun Jilin 130012 China
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou-510006 China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun Jilin 130012 China
| | - Liao-Yuan Yao
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 102488 China
| | - George R Newkome
- Departments of Polymer Science and Chemistry, University of Akron Akron OH 44325-4717 USA
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou-510006 China
| | - Ting-Zheng Xie
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou-510006 China
| |
Collapse
|
23
|
Bao Y. Recent Trends in Advanced Photoinitiators for Vat Photopolymerization 3D Printing. Macromol Rapid Commun 2022; 43:e2200202. [PMID: 35579565 DOI: 10.1002/marc.202200202] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/14/2022] [Indexed: 11/11/2022]
Abstract
3D printing has revolutionized the way of manufacturing with a huge impact on various fields, in particular biomedicine. Vat photopolymerization-based 3D printing techniques such as stereolithography (SLA) and digital light processing (DLP) attracted considerable attention owing to their superior print resolution, relatively high speed, low cost and flexibility in resin material design. As one key element of the SLA/DLP resin, photoinitiators or photoinitiating systems have experienced significant development in recent years, in parallel with the exploration of 3D printing (macro)monomers. The design of new photoinitiating systems can not only offer faster 3D printing speed and enable low-energy visible light fabrication, but also can bring new functions to the 3D printed products and even generate new printing methods in combination with advanced optics. This review evaluates recent trends in the development and application of advanced photoinitiators and photoinitiating systems for vat photopolymerization 3D printing, with a wide range of small molecules, polymers and nanoassemblies involved. Personal perspectives on the current limitations and future directions are eventually provided. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yinyin Bao
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich, 8093, Switzerland
| |
Collapse
|
24
|
Li Q, Wu Y, Cao J, Liu Y, Wang Z, Zhu H, Zhang H, Huang F. Pillararene-Induced Intramolecular Through-Space Charge Transfer and Single-Molecule White-Light Emission. Angew Chem Int Ed Engl 2022; 61:e202202381. [PMID: 35234348 DOI: 10.1002/anie.202202381] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Indexed: 12/15/2022]
Abstract
The fabrication of single-molecule white-light emission (SMWLE) materials has become a highly studied topic in recent years and through-space charge transfer (TSCT) is emerging as an important concept in this field. However, the preparation of ideal TSCT-based SMWLE materials is still a big challenge. Herein, we report a bifunctional pillar[5]arene (TPCN-P5-TPA) with a linear donor-spacer-acceptor structure and aggregation-induced emission (AIE) property. The bulky pillar[5]arene between the donor and acceptor induces a twisted conformation and a non-conjugated structure, resulting in intramolecular TSCT. In addition, the AIE feature and pillar[5]arene cavity endow TPCN-P5-TPA with responsiveness to viscosity and polar guests, by which the TSCT emission is triggered. The combination of blue locally-excited state emission and yellow TSCT emission of TPCN-P5-TPA generates SMWLE. Therefore, we provide a new and versatile strategy for the construction of TSCT-based SMWLE materials.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yitao Wu
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jiajun Cao
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yang Liu
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Zeju Wang
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Huangtianzhi Zhu
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Haoke Zhang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China.,MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
25
|
Yang H, Liu H, Shen Y, Zhang ST, Zhang Q, Song Q, Lv C, Zhang C, Yang B, Ma Y, Zhang Y. Multicolour Fluorescence Based on Excitation-Dependent Electron Transfer Processes in o-Carborane Dyads. Angew Chem Int Ed Engl 2022; 61:e202115551. [PMID: 34989081 DOI: 10.1002/anie.202115551] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 11/11/2022]
Abstract
Organic materials with excitation wavelength-dependent (Ex-de) emission are highly attractive for anticounterfeiting, optoelectronics and bioassay applications; however, the realization of Ex-de fluorescence, independent of aggregation states, remains a challenge. We herein report a photoinduced electron transfer (PeT) strategy to design Ex-de fluorescence materials by manipulating the relaxation pathways of multiple excited states. As expected, the o-carborane dyad presents a clear Ex-de fluorescence colour in the aggregated states, resulting from the tunable relative intensity of the dual-fluorescence spectra. Taking TP[1]B as an example, the amorphous powders emitted bright blue-violet, white and yellow colours under 390 nm, 365 nm and 254 nm UV illumination, respectively. Importantly, multicolour, flexible and transparent films as well as an anticounterfeiting application using this o-carborane dyad are demonstrated.
Collapse
Affiliation(s)
- Heyi Yang
- Department of Materials Chemistry, Huzhou University, East 2nd Ring Road. No. 759, Huzhou, 313000, P. R. China.,College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road. NO. 18, Hangzhou, 310014, P. R. China
| | - Haichao Liu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Yunxia Shen
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road. NO. 18, Hangzhou, 310014, P. R. China
| | - Shi-Tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Qing Zhang
- Department of Materials Chemistry, Huzhou University, East 2nd Ring Road. No. 759, Huzhou, 313000, P. R. China
| | - Qingbao Song
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road. NO. 18, Hangzhou, 310014, P. R. China
| | - Chunyan Lv
- Department of Materials Chemistry, Huzhou University, East 2nd Ring Road. No. 759, Huzhou, 313000, P. R. China
| | - Cheng Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road. NO. 18, Hangzhou, 310014, P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Yuguang Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - Yujian Zhang
- Department of Materials Chemistry, Huzhou University, East 2nd Ring Road. No. 759, Huzhou, 313000, P. R. China
| |
Collapse
|
26
|
Li Q, Wu Y, Cao J, Liu Y, Wang Z, Zhu H, Zhang H, Huang F. Pillararene‐Induced Intramolecular Through‐Space Charge Transfer and Single‐Molecule White‐Light Emission. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qi Li
- State Key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yitao Wu
- State Key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Jiajun Cao
- State Key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yang Liu
- State Key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Zeju Wang
- State Key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Huangtianzhi Zhu
- State Key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Haoke Zhang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
27
|
Zhang XJ, Gao RT, Kang SM, Wang XJ, Jiang RJ, Li GW, Zhou L, Liu N, Wu ZQ. Hydrogen-bonding dependent nontraditional fluorescence polyphenylallenes: Controlled synthesis and aggregation-induced emission behaviors. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Yang H, Liu H, Shen Y, Zhang S, Zhang Q, Song Q, Lv C, Zhang C, Yang B, Ma Y, Zhang Y. Multicolour Fluorescence Based on Excitation‐Dependent Electron Transfer Processes in
o
‐Carborane Dyads. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Heyi Yang
- Department of Materials Chemistry Huzhou University East 2nd Ring Road. No. 759 Huzhou 313000 P. R. China
- College of Chemical Engineering Zhejiang University of Technology Chaowang Road. NO. 18 Hangzhou 310014 P. R. China
| | - Haichao Liu
- State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun 130012 P. R. China
| | - Yunxia Shen
- College of Chemical Engineering Zhejiang University of Technology Chaowang Road. NO. 18 Hangzhou 310014 P. R. China
| | - Shi‐tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun 130012 P. R. China
| | - Qing Zhang
- Department of Materials Chemistry Huzhou University East 2nd Ring Road. No. 759 Huzhou 313000 P. R. China
| | - Qingbao Song
- College of Chemical Engineering Zhejiang University of Technology Chaowang Road. NO. 18 Hangzhou 310014 P. R. China
| | - Chunyan Lv
- Department of Materials Chemistry Huzhou University East 2nd Ring Road. No. 759 Huzhou 313000 P. R. China
| | - Cheng Zhang
- College of Chemical Engineering Zhejiang University of Technology Chaowang Road. NO. 18 Hangzhou 310014 P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun 130012 P. R. China
| | - Yuguang Ma
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou Guangdong P. R. China
| | - Yujian Zhang
- Department of Materials Chemistry Huzhou University East 2nd Ring Road. No. 759 Huzhou 313000 P. R. China
| |
Collapse
|
29
|
Hu D, Mao L, Wang M, Huang H, Hu R, Ma H, Yuan J, Wei Y. In Situ Visualization of Reversible Diels-Alder Reactions with Self-Reporting Aggregation-Induced Emission Luminogens. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3485-3495. [PMID: 34994541 DOI: 10.1021/acsami.1c20758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The dynamic reversible Diels-Alder (DA) reactions play essential roles in both academic and applied fields. Currently, in situ visualization and direct monitoring of the formation and cleavage of covalent bonds in DA reactions are hampered by finite compatibility and expensive precise instruments, especially limited in solid reactions. We herein report a fluorescence system capable of in situ visualization by naked eyes and monitoring DA/retro-DA reactions. With the fluorescence quenching effect, the synthesized TPEMI could work as an innovative self-indicator for both DA termination and retro-DA occurrence. The fluorescence increases during DA reactions, and the mechanism is investigated to establish qualitative and quantitative relations. Besides rapid screening of reaction conditions and monitoring of DA exchange processes, the TPEMI fluorescence system can visualize heterogeneous and solid-state reactions with the AIE character. The TPEMI platform is expected to offer novel insights into reversible DA processes and dynamic covalent chemistry.
Collapse
Affiliation(s)
- Danning Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liucheng Mao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Mengshi Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hongye Huang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Renjian Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haijun Ma
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jinying Yuan
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yen Wei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Center for Nanotechnology, Institute of Biomedical Technology, Chung Yuan Christian University, Taoyuan 32023, Taiwan, China
| |
Collapse
|
30
|
Li Y, Cao B, Li B, Liu Y, Shi Y, Liu C, Jin M, Gao J, Ding D. Ultrahigh Aggregation Induced Emission Efficiency in Multitwist-Based Luminogens under High Pressure. J Phys Chem Lett 2022; 13:136-141. [PMID: 34962404 DOI: 10.1021/acs.jpclett.1c03745] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Increasing aggregation induced emission (AIE) efficiency is of fundamental interest as it directly reflects performance of multitwist-based luminogens in bioimaging and in the photoelectric device field. However, an effective and convenient methodology to increase AIE efficiency significantly remains a challenge. Here, we present a general strategy to increase AIE efficiency of multitwist-based luminogens by pressure, resulting in a 120.1-fold enhancement of the AIE intensity of tris[4-(diethylamino)phenyl]amine (TDAPA) under high pressure compared to that of the traditional method. AIE efficiency of TDAPA increases from 0.5% to 46.1% during compression. Experimental and theoretical investigations reveal that the AIE efficiency enhancement originates from intramolecular vibration and the twisted intramolecular charge transfer are suppressed under high pressure. High AIE efficiency under high pressure provides an important inspiration for improving performance of multitwist-based luminogens in the lighting and biomedical fields.
Collapse
Affiliation(s)
- You Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Bifa Cao
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Bo Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yuliang Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Ying Shi
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Cailong Liu
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physical Science and Information Technology of Liaocheng University, Liaocheng 252059, China
| | - Mingxing Jin
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Jianbo Gao
- Ultrafast Photophysics of Quantum Devices Laboratory, Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Dajun Ding
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
31
|
Du C, Cheung CS, Zheng H, Li D, Du W, Gao H, Liang G, Gao H. Bathochromic-Shifted Emissions by Postfunctionalization of Nonconjugated Polyketones. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59288-59297. [PMID: 34856800 DOI: 10.1021/acsami.1c18822] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Most nontraditional intrinsic luminescent (NTIL) polymers currently show blue fluorescence. Tuning the emission color of NTIL polymers is of fundamental importance for their applications, but it still remains a scientific challenge. Herein, we initially develop an efficient strategy for bathochromic shifting of NTIL polymers by through-space acceptor-donor charge transfer between the in chain and the side chain. A variety of functionalized polyketones (FPK-R; where R = H, Ph, Me, tBu, F, and Cl) with furan rings built into the polymer chain were prepared by the Paal-Knorr reaction. FPK-R polymers showed bright and bathochromic-shifted fluorescence compared with their counterparts. The emission color could be tuned by changing the postfunctionalization conversion and varying the styrenic monomer substituent. Experimental and theoretical investigations revealed that the color tunability originated from enhanced through-space charge transfer between the side chain phenyl and the in chain furan rings.
Collapse
Affiliation(s)
- Cheng Du
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518035, China
| | - Chi Shing Cheung
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Handou Zheng
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Donghui Li
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenbo Du
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Heng Gao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Guodong Liang
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Haiyang Gao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
32
|
Bao Y. Controlling Molecular Aggregation-Induced Emission by Controlled Polymerization. Molecules 2021; 26:6267. [PMID: 34684848 PMCID: PMC8540238 DOI: 10.3390/molecules26206267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
In last twenty years, the significant development of AIE materials has been witnessed. A number of small molecules, polymers and composites with AIE activity have been synthesized, with some of these exhibiting great potential in optoelectronics and biomedical applications. Compared to AIE small molecules, macromolecular systems-especially well-defined AIE polymers-have been studied relatively less. Controlled polymerization methods provide the efficient synthesis of well-defined AIE polymers with varied monomers, tunable chain lengths and narrow dispersity. In particular, the preparation of single-fluorophore polymers through AIE molecule-initiated polymerization enables the systematic investigation of the structure-property relationships of AIE polymeric systems. Here, the main polymerization techniques involved in these polymers are summarized and the key parameters that affect their photophysical properties are analyzed. The author endeavored to collect meaningful information from the descriptions of AIE polymer systems in the literature, to find connections by comparing different representative examples, and hopes eventually to provide a set of general guidelines for AIE polymer design, along with personal perspectives on the direction of future research.
Collapse
Affiliation(s)
- Yinyin Bao
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| |
Collapse
|
33
|
Maiti A, Manna SK, Banik D, Mahapatra AK. Name reactions: strategies in the design of chemodosimeters for analyte detection. NEW J CHEM 2021. [DOI: 10.1039/d1nj04056a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design and synthesis of suitable chemodosimeters for the detection of toxic analytes has become challenging for new researchers nowadays in the molecular recognition field.
Collapse
Affiliation(s)
- Anwesha Maiti
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Debhog, Haldia, Purba Medinipur 721657, West Bengal, India
| | - Dipanjan Banik
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| |
Collapse
|