1
|
Khanal R, Heinen N, Bogomolova A, Meister TL, Herrmann ST, Westhoven S, Nocke MK, Todt D, Jockenhövel F, Klein IM, Hartmann L, Vondran FWR, Steinmann E, Zimmer G, Ott M, Brown RJP, Sharma AD, Pfaender S. MicroRNAs modulate SARS-CoV-2 infection of primary human hepatocytes by regulating the entry factors ACE2 and TMPRSS2. Liver Int 2024; 44:2983-2995. [PMID: 39175256 DOI: 10.1111/liv.16079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND AND AIMS Severe acute respiratory syndrome coronavirus (SARS-CoV-2) preferentially infects the respiratory tract; however, several studies have implicated a multi-organ involvement. Hepatic dysfunctions caused by SARS-CoV-2 infection have been increasingly recognized and described to correlate with disease severity. To elucidate molecular factors that could contribute towards hepatic infection, we concentrated on microRNAs (miRNAs), a class of small non-coding RNAs that modulate various cellular processes and which are reported to be differentially regulated during liver injury. We aimed to study the infection of primary human hepatocytes (PHH) with SARS-CoV-2 and to evaluate the potential of miRNAs for modulating viral infection. METHODS We analysed liver autopsies from a coronavirus disease 19 (COVID-19)-positive cohort for the presence of viral RNA using Nanopore sequencing. PHH were used for the infection with SARS-CoV-2. The candidate miRNAs targeting angiotensin converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) were identified using in silico approaches. To discover the potential regulatory mechanism, transfection experiments, qRT-PCRs, western blots and luciferase reporter assays were performed. RESULTS We could detect SARS-CoV-2 RNA in COVID-19-positive liver autopsies. We show that PHH express ACE2 and TMPRSS2 and can be readily infected with SARS-CoV-2, resulting in robust replication. Transfection of selected miRNA mimics reduced SARS-CoV-2 receptor expression and SARS-CoV-2 burden in PHH. In silico and biochemical analyses supported a potential direct binding of miR-141-3p to the SARS-CoV-2 genome. CONCLUSION We confirm that PHH are susceptible to SARS-CoV-2 infection and demonstrate selected miRNAs targeting SARS-CoV-2 entry factors and/or the viral genome reduce viral loads. These data provide novel insights into hepatic susceptibility to SARS-CoV-2 and associated dysfunctions in COVID-19.
Collapse
Affiliation(s)
- Rajendra Khanal
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- Research Group Liver Regeneration & RNA Therapeutics, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Natalie Heinen
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Alexandra Bogomolova
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- Research Group Liver Regeneration & RNA Therapeutics, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Toni L Meister
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Institute for Infection Research and Vaccine Development (IIRVD), Centre for Internal Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Simon T Herrmann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Research Unit Emerging Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Saskia Westhoven
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Research Unit Emerging Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Maximilian K Nocke
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Freya Jockenhövel
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Isabel M Klein
- Tissue Bank of the German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Laura Hartmann
- Tissue Bank of the German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian W R Vondran
- Department of General, Visceral, Pediatric and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Gert Zimmer
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Michael Ott
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Richard J P Brown
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- Research Group Liver Regeneration & RNA Therapeutics, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Stephanie Pfaender
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Research Unit Emerging Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany
- University of Lübeck, Lübeck, Germany
| |
Collapse
|
2
|
Qu B, Miskey C, Gömer A, Kleinert RDV, Ibanez SC, Eberle R, Ebenig A, Postmus D, Nocke MK, Herrmann M, Itotia TK, Herrmann ST, Heinen N, Höck S, Hastert FD, von Rhein C, Schürmann C, Li X, van Zandbergen G, Widera M, Ciesek S, Schnierle BS, Tarr AW, Steinmann E, Goffinet C, Pfaender S, Locker JK, Mühlebach MD, Todt D, Brown RJP. TMPRSS2-mediated SARS-CoV-2 uptake boosts innate immune activation, enhances cytopathology, and drives convergent virus evolution. Proc Natl Acad Sci U S A 2024; 121:e2407437121. [PMID: 38814864 PMCID: PMC11161796 DOI: 10.1073/pnas.2407437121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
The accessory protease transmembrane protease serine 2 (TMPRSS2) enhances severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uptake into ACE2-expressing cells, although how increased entry impacts downstream viral and host processes remains unclear. To investigate this in more detail, we performed infection assays in engineered cells promoting ACE2-mediated entry with and without TMPRSS2 coexpression. Electron microscopy and inhibitor experiments indicated TMPRSS2-mediated cell entry was associated with increased virion internalization into endosomes, and partially dependent upon clathrin-mediated endocytosis. TMPRSS2 increased panvariant uptake efficiency and enhanced early rates of virus replication, transcription, and secretion, with variant-specific profiles observed. On the host side, transcriptional profiling confirmed the magnitude of infection-induced antiviral and proinflammatory responses were linked to uptake efficiency, with TMPRSS2-assisted entry boosting early antiviral responses. In addition, TMPRSS2-enhanced infections increased rates of cytopathology, apoptosis, and necrosis and modulated virus secretion kinetics in a variant-specific manner. On the virus side, convergent signatures of cell-uptake-dependent innate immune induction were recorded in viral genomes, manifesting as switches in dominant coupled Nsp3 residues whose frequencies were correlated to the magnitude of the cellular response to infection. Experimentally, we demonstrated that selected Nsp3 mutations conferred enhanced interferon antagonism. More broadly, we show that TMPRSS2 orthologues from evolutionarily diverse mammals facilitate panvariant enhancement of cell uptake. In summary, our study uncovers previously unreported associations, linking cell entry efficiency to innate immune activation kinetics, cell death rates, virus secretion dynamics, and convergent selection of viral mutations. These data expand our understanding of TMPRSS2's role in the SARS-CoV-2 life cycle and confirm its broader significance in zoonotic reservoirs and animal models.
Collapse
Affiliation(s)
- Bingqian Qu
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, 63225Langen, Germany
- European Virus Bioinformatics Center, 07743Jena, Germany
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, 63225Langen, Germany
| | - André Gömer
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801Bochum, Germany
| | | | - Sara Calvo Ibanez
- Electron Microscopy of Pathogens, Paul-Ehrlich-Institut, 63225Langen, Germany
| | - Regina Eberle
- Electron Microscopy of Pathogens, Paul-Ehrlich-Institut, 63225Langen, Germany
| | - Aileen Ebenig
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, 63225Langen, Germany
| | - Dylan Postmus
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Maximilian K. Nocke
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801Bochum, Germany
| | - Maike Herrmann
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, 63225Langen, Germany
| | - Tabitha K. Itotia
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, 63225Langen, Germany
- Department of Physical Sciences, Chuka University, 60400Chuka, Kenya
| | - Simon T. Herrmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801Bochum, Germany
| | - Natalie Heinen
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801Bochum, Germany
| | - Sebastian Höck
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, 63225Langen, Germany
| | | | | | - Christoph Schürmann
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, 63225Langen, Germany
| | - Xue Li
- Department of Cardiology, Medical University Hospital, 69120Heidelberg, Germany
| | - Ger van Zandbergen
- Division of Immunology, Paul-Ehrlich-Institut, 63225Langen, Germany
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University of Mainz, 55131Mainz, Germany
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg-University Mainz, 55131Mainz, Germany
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596Frankfurt am Main, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, 60596Frankfurt am Main, Germany
- German Center for Infection Research, 38124Braunschweig, Germany
| | | | - Alexander W. Tarr
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, NottinghamNG7 2UH, United Kingdom
- School of Life Sciences and National Institute for Health and Care Research, Nottingham Biomedical Research Centre, University of Nottingham, NottinghamNG7 2UH, United Kingdom
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801Bochum, Germany
| | - Christine Goffinet
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801Bochum, Germany
- Research Unit Emerging Viruses, Leibniz Institute of Virology, 20251Hamburg, Germany
- University of Lübeck, 23562Lübeck, Germany
| | - Jacomina Krijnse Locker
- Electron Microscopy of Pathogens, Paul-Ehrlich-Institut, 63225Langen, Germany
- Justus Liebig University Geissen, 35390Giessen, Germany
| | - Michael D. Mühlebach
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, 63225Langen, Germany
- German Center for Infection Research, 63225Giessen-Marburg-Langen, Germany
| | - Daniel Todt
- European Virus Bioinformatics Center, 07743Jena, Germany
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801Bochum, Germany
| | - Richard J. P. Brown
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, 63225Langen, Germany
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801Bochum, Germany
| |
Collapse
|
3
|
Frericks N, Brown RJP, Reinecke BM, Herrmann M, Brüggemann Y, Todt D, Miskey C, Vondran FWR, Steinmann E, Pietschmann T, Sheldon J. Unraveling the dynamics of hepatitis C virus adaptive mutations and their impact on antiviral responses in primary human hepatocytes. J Virol 2024; 98:e0192123. [PMID: 38319104 PMCID: PMC10949430 DOI: 10.1128/jvi.01921-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Hepatitis C virus (HCV) infection progresses to chronicity in the majority of infected individuals. Its high intra-host genetic variability enables HCV to evade the continuous selection pressure exerted by the host, contributing to persistent infection. Utilizing a cell culture-adapted HCV population (p100pop) which exhibits increased replicative capacity in various liver cell lines, this study investigated virus and host determinants that underlie enhanced viral fitness. Characterization of a panel of molecular p100 clones revealed that cell culture adaptive mutations optimize a range of virus-host interactions, resulting in expanded cell tropism, altered dependence on the cellular co-factor micro-RNA 122 and increased rates of virus spread. On the host side, comparative transcriptional profiling of hepatoma cells infected either with p100pop or its progenitor virus revealed that enhanced replicative fitness correlated with activation of endoplasmic reticulum stress signaling and the unfolded protein response. In contrast, infection of primary human hepatocytes with p100pop led to a mild attenuation of virion production which correlated with a greater induction of cell-intrinsic antiviral defense responses. In summary, long-term passage experiments in cells where selective pressure from innate immunity is lacking improves multiple virus-host interactions, enhancing HCV replicative fitness. However, this study further indicates that HCV has evolved to replicate at low levels in primary human hepatocytes to minimize innate immune activation, highlighting that an optimal balance between replicative fitness and innate immune induction is key to establish persistence. IMPORTANCE Hepatitis C virus (HCV) infection remains a global health burden with 58 million people currently chronically infected. However, the detailed molecular mechanisms that underly persistence are incompletely defined. We utilized a long-term cell culture-adapted HCV, exhibiting enhanced replicative fitness in different human liver cell lines, in order to identify molecular principles by which HCV optimizes its replication fitness. Our experimental data revealed that cell culture adaptive mutations confer changes in the host response and usage of various host factors. The latter allows functional flexibility at different stages of the viral replication cycle. However, increased replicative fitness resulted in an increased activation of the innate immune system, which likely poses boundary for functional variation in authentic hepatocytes, explaining the observed attenuation of the adapted virus population in primary hepatocytes.
Collapse
Affiliation(s)
- Nicola Frericks
- Institute for Experimental Virology, TWINCORE, Hannover, Germany
- Department for Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Richard J. P. Brown
- Department for Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
- Division of Veterinary Medicine, Paul Ehrlich Institute, Langen, Germany
| | | | - Maike Herrmann
- Division of Veterinary Medicine, Paul Ehrlich Institute, Langen, Germany
| | - Yannick Brüggemann
- Department for Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Florian W. R. Vondran
- Department for General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
- Clinic for General, Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Julie Sheldon
- Institute for Experimental Virology, TWINCORE, Hannover, Germany
| |
Collapse
|
4
|
Jiang H, Nair V, Sun Y, Ding C. The diverse roles of peroxisomes in the interplay between viruses and mammalian cells. Antiviral Res 2024; 221:105780. [PMID: 38092324 DOI: 10.1016/j.antiviral.2023.105780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023]
Abstract
Peroxisomes are ubiquitous organelles found in eukaryotic cells that play a critical role in the oxidative metabolism of lipids and detoxification of reactive oxygen species (ROS). Recently, the role of peroxisomes in viral infections has been extensively studied. Although several studies have reported that peroxisomes exert antiviral activity, evidence indicates that viruses have also evolved diverse strategies to evade peroxisomal antiviral signals. In this review, we summarize the multiple roles of peroxisomes in the interplay between viruses and mammalian cells. Focus is given on the peroxisomal regulation of innate immune response, lipid metabolism, ROS production, and viral regulation of peroxisomal biosynthesis and degradation. Understanding the interactions between peroxisomes and viruses provides novel insights for the development of new antiviral strategies.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China
| | - Venugopal Nair
- Avian Oncogenic Viruses Group, UK-China Centre of Excellence in Avian Disease Research, The Pirbright Institute, Pirbright, Guildford, Surrey, United Kingdom
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China.
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China.
| |
Collapse
|
5
|
Frericks N, Brown RJP, Reinecke BM, Herrmann M, Brüggemann Y, Todt D, Miskey C, Vondran FWR, Steinmann E, Pietschmann T, Sheldon J. Hepatitis C virus cell culture adaptive mutations enhance cell culture propagation by multiple mechanisms but boost antiviral responses in primary human hepatocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568224. [PMID: 38045248 PMCID: PMC10690267 DOI: 10.1101/2023.11.22.568224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Hepatitis C virus (HCV) infection progresses to chronicity in the majority of infected individuals. Its high intra-host genetic variability enables HCV to evade the continuous selection pressure exerted by the host, contributing to persistent infection. Utilizing a cell culture adapted HCV population (p100pop) which exhibits increased replicative capacity in various liver cell lines, this study investigated virus and host determinants which underlie enhanced viral fitness. Characterization of a panel of molecular p100 clones revealed that cell culture adaptive mutations optimize a range of virus-host interactions, resulting in expanded cell tropism, altered dependence on the cellular co-factor micro-RNA 122 and increased rates of virus spread. On the host side, comparative transcriptional profiling of hepatoma cells infected either with p100pop or its progenitor virus revealed that enhanced replicative fitness correlated with activation of endoplasmic reticulum stress signaling and the unfolded protein response. In contrast, infection of primary human hepatocytes with p100pop led to a mild attenuation of virion production which correlated with a greater induction of cell-intrinsic antiviral defense responses. In summary, long-term passage experiments in cells where selective pressure from innate immunity is lacking improves multiple virus-host interactions, enhancing HCV replicative fitness. However, this study further indicates that HCV has evolved to replicate at low levels in primary human hepatocytes to minimize innate immune activation, highlighting that an optimal balance between replicative fitness and innate immune induction is key to establishing persistence. Author Summary HCV infection remains a global health burden with 58 million people currently chronically infected. However, the detailed molecular mechanisms which underly persistence are incompletely defined. We utilized a long-term cell culture adapted HCV, exhibiting enhanced replicative fitness in different human liver cell lines, in order to identify molecular principles by which HCV optimizes its replication fitness. Our experimental data revealed that cell culture adaptive mutations confer changes in the host response and usage of various host factors. The latter allows functional flexibility at different stages of the viral replication cycle. However, increased replicative fitness resulted in an increased activation of the innate immune system, which likely poses boundary for functional variation in authentic hepatocytes, explaining the observed attenuation of the adapted virus population in primary hepatocytes.
Collapse
|
6
|
Peng J, Li J, Liang J, Li W, Yang Y, Yang Y, Zhang S, Huang X, Han F. A C-type lectin-like receptor CD302 in yellow drum (Nibea albiflora) functioning in antibacterial activity and innate immune signaling. Int J Biol Macromol 2023; 247:125734. [PMID: 37423436 DOI: 10.1016/j.ijbiomac.2023.125734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Molecular dissection of disease resistance against Vibrio harveyi infection in yellow drum at the genome-wide level uncovered a C-type lectin-like receptor cluster of differentiation CD302 (named as YdCD302) in our previous study. Here, the gene expression pattern of YdCD302 and its function in mediating the defense response to V. harveyi attack were investigated. Gene expression analysis demonstrated that YdCD302 was ubiquitously distributed in various tissues with the highest transcript abundance in liver. The YdCD302 protein exhibited agglutination and antibacterial activity against V. harveyi cells. Binding assay indicated that YdCD302 can physically interact with V. harveyi cells in a Ca2+-independent manner, and the interaction can activate reactive oxygen species (ROS) production in the bacterial cells to induce RecA/LexA-mediated cell death. After infection with V. harveyi, the expression of YdCD302 can be up-regulated significantly in the main immune organs of yellow drum and potentially further trigger the cytokines involved innate immunity. These findings provide insight into the genetic basis of the disease resistance trait in yellow drum and shed light on the functioning of the CD302 C-type lectin-like receptor in host-pathogen interactions. The molecular and functional characterization of YdCD302 is a significant step towards a better understanding of disease resistance mechanisms and the development of new strategies for disease control.
Collapse
Affiliation(s)
- Jia Peng
- Key Laboratory of Healthy Mariculture for the East China Sea, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen 361000, China
| | - Jiacheng Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen 361000, China
| | - Jingjie Liang
- Key Laboratory of Healthy Mariculture for the East China Sea, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen 361000, China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen 361000, China
| | - Yao Yang
- Key Laboratory of Healthy Mariculture for the East China Sea, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen 361000, China
| | - Yukai Yang
- Shenzhen Base of South China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Sen Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen 361000, China
| | - Xiaolin Huang
- Shenzhen Base of South China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen 361000, China.
| |
Collapse
|
7
|
Zhang Y, Kinast V, Sheldon J, Frericks N, Todt D, Zimmer M, Caliskan N, Brown RJP, Steinmann E, Pietschmann T. Mouse Liver-Expressed Shiftless Is an Evolutionarily Conserved Antiviral Effector Restricting Human and Murine Hepaciviruses. Microbiol Spectr 2023; 11:e0128423. [PMID: 37341610 PMCID: PMC10433982 DOI: 10.1128/spectrum.01284-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
Mice are refractory to infection with human-tropic hepatitis C virus (HCV), although distantly related rodent hepaciviruses (RHV) circulate in wild rodents. To investigate whether liver intrinsic host factors can exhibit broad restriction against these distantly related hepaciviruses, we focused on Shiftless (Shfl), an interferon (IFN)-regulated gene (IRG) which restricts HCV in humans. Unusually, and in contrast to selected classical IRGs, human and mouse SHFL orthologues (hSHFL and mSHFL, respectively) were highly expressed in hepatocytes in the absence of viral infection, weakly induced by IFN, and highly conserved at the amino acid level (>95%). Replication of both HCV and RHV subgenomic replicons was suppressed by ectopic expression of mSHFL in human or rodent hepatoma cell lines. Gene editing of endogenous mShfl in mouse liver tumor cells increased HCV replication and virion production. Colocalization of mSHFL protein with viral double-stranded RNA (dsRNA) intermediates was confirmed and could be ablated by mutational disruption of the SHFL zinc finger domain, concomitant with a loss of antiviral activity. In summary, these data point to an evolutionarily conserved function for this gene in humans and rodents: SHFL is an ancient antiviral effector which targets distantly related hepaciviruses via restriction of viral RNA replication. IMPORTANCE Viruses have evolved ways to evade or blunt innate cellular antiviral mechanisms within their cognate host species. However, these adaptations may fail when viruses infect new species and can therefore limit cross-species transmission. This may also prevent development of animal models for human-pathogenic viruses. HCV shows a narrow species tropism likely due to distinct human host factor usage and innate antiviral defenses limiting infection of nonhuman liver cells. Interferon (IFN)-regulated genes (IRGs) partially inhibit HCV infection of human cells by diverse mechanisms. Here, we show that mouse Shiftless (mSHFL), a protein that interferes with HCV replication factories, inhibits HCV replication and infection in human and mouse liver cells. We further report that the zinc finger domain of SHFL is important for viral restriction. These findings implicate mSHFL as a host factor that impairs HCV infection of mice and provide guidance for development of HCV animal models needed for vaccine development.
Collapse
Affiliation(s)
- Yudi Zhang
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Volker Kinast
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Julie Sheldon
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Nicola Frericks
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Matthias Zimmer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Zentrum für Infektionsforschung (Helmholtz Centre for Infection Research), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Würzburg, Germany
| | - Neva Caliskan
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Zentrum für Infektionsforschung (Helmholtz Centre for Infection Research), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Würzburg, Germany
| | - Richard J. P. Brown
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Division of Veterinary Medicine, Paul Ehrlich Institute, Langen, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| |
Collapse
|
8
|
Chen L, Wei X, Gu D, Xu Y, Zhou H. Human liver cancer organoids: Biological applications, current challenges, and prospects in hepatoma therapy. Cancer Lett 2023; 555:216048. [PMID: 36603689 DOI: 10.1016/j.canlet.2022.216048] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
Liver cancer and disease are among the most socially challenging global health concerns. Although organ transplantation, surgical resection and anticancer drugs are the main methods for the treatment of liver cancer, there are still no proven cures owing to the lack of donor livers and tumor heterogeneity. Recently, advances in tumor organoid technology have attracted considerable attention as they can simulate the spatial constructs and pathophysiological characteristics of tumorigenesis and metastasis in a more realistic manner. Organoids may further contribute to the development of tailored therapies. Combining organoids with other emerging techniques, such as CRISPR-HOT, organ-on-a-chip, and 3D bioprinting, may further develop organoids and address their bottlenecks to create more practical models that generalize different tissue or organ interactions in tumor progression. In this review, we summarize the various methods in which liver organoids may be generated and describe their biological and clinical applications, present challenges, and prospects for their integration with emerging technologies. These rapidly developing liver organoids may become the focus of in vitro clinical model development and therapeutic research for liver diseases in the near future.
Collapse
Affiliation(s)
- Lichan Chen
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Xiafei Wei
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China.
| | - Dayong Gu
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Yong Xu
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Hongzhong Zhou
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Schwoerer MP, Ploss A. Barriers to hepatitis C virus infection in mice. Curr Opin Virol 2022; 56:101273. [PMID: 36244239 DOI: 10.1016/j.coviro.2022.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022]
Abstract
Hepatitis C virus (HCV) is unable to infect mice, a fact that has severely limited their use as small-animal models for HCV pathogenesis and as tools for HCV vaccine development. HCV is blocked at various stages of its life cycle in mouse cells, due to incompatibility with host factors, the presence of dominant restriction factors, and effective immune responses. Molecular mechanisms for several such blocks have been characterized. The stepwise understanding of these limitations in mice will enable the development of an immunocompetent mouse that can fully support HCV infection and exhibit disease similar to that of infected humans.
Collapse
Affiliation(s)
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
10
|
Ebenig A, Muraleedharan S, Kazmierski J, Todt D, Auste A, Anzaghe M, Gömer A, Postmus D, Gogesch P, Niles M, Plesker R, Miskey C, Gellhorn Serra M, Breithaupt A, Hörner C, Kruip C, Ehmann R, Ivics Z, Waibler Z, Pfaender S, Wyler E, Landthaler M, Kupke A, Nouailles G, Goffinet C, Brown RJP, Mühlebach MD. Vaccine-associated enhanced respiratory pathology in COVID-19 hamsters after TH2-biased immunization. Cell Rep 2022; 40:111214. [PMID: 35952673 PMCID: PMC9346010 DOI: 10.1016/j.celrep.2022.111214] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/17/2022] [Accepted: 07/22/2022] [Indexed: 12/15/2022] Open
Abstract
Vaccine-associated enhanced respiratory disease (VAERD) is a severe complication for some respiratory infections. To investigate the potential for VAERD induction in coronavirus disease 2019 (COVID-19), we evaluate two vaccine leads utilizing a severe hamster infection model: a T helper type 1 (TH1)-biased measles vaccine-derived candidate and a TH2-biased alum-adjuvanted, non-stabilized spike protein. The measles virus (MeV)-derived vaccine protects the animals, but the protein lead induces VAERD, which can be alleviated by dexamethasone treatment. Bulk transcriptomic analysis reveals that our protein vaccine prepares enhanced host gene dysregulation in the lung, exclusively up-regulating mRNAs encoding the eosinophil attractant CCL-11, TH2-driving interleukin (IL)-19, or TH2 cytokines IL-4, IL-5, and IL-13. Single-cell RNA sequencing (scRNA-seq) identifies lung macrophages or lymphoid cells as sources, respectively. Our findings imply that VAERD is caused by the concerted action of hyperstimulated macrophages and TH2 cytokine-secreting lymphoid cells and potentially links VAERD to antibody-dependent enhancement (ADE). In summary, we identify the cytokine drivers and cellular contributors that mediate VAERD after TH2-biased vaccination.
Collapse
Affiliation(s)
- Aileen Ebenig
- Product Testing of IVMPs, Div. of Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Samada Muraleedharan
- Product Testing of IVMPs, Div. of Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Julia Kazmierski
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr-University, 44801 Bochum, Germany; European Virus Bioinformatics Center (EVBC), 07743 Jena, Germany
| | - Arne Auste
- Product Testing of IVMPs, Div. of Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany; German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Martina Anzaghe
- Div. of Immunology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - André Gömer
- Department for Molecular and Medical Virology, Ruhr-University, 44801 Bochum, Germany; Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Dylan Postmus
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Patricia Gogesch
- Div. of Immunology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Marc Niles
- Div. of Immunology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Roland Plesker
- Animal Facilities, Div. Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Csaba Miskey
- Div. of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | | | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Cindy Hörner
- Product Testing of IVMPs, Div. of Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany; German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Carina Kruip
- Product Testing of IVMPs, Div. of Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Rosina Ehmann
- Institute for Microbiology, Bundeswehr, 80937 München, Germany
| | - Zoltan Ivics
- Div. of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Zoe Waibler
- Div. of Immunology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Stephanie Pfaender
- Department for Molecular and Medical Virology, Ruhr-University, 44801 Bochum, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115 Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115 Berlin, Germany; IRI Life Sciences, Institute for Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Alexandra Kupke
- German Center for Infection Research, Gießen-Marburg-Langen, Germany; Institute for Virology, Phillipps-University, 35043 Marburg, Germany
| | - Geraldine Nouailles
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Christine Goffinet
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Richard J P Brown
- Virus Tropism and Immunogenicity, Div. of Veterinary Medicine, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Michael D Mühlebach
- Product Testing of IVMPs, Div. of Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany; German Center for Infection Research, Gießen-Marburg-Langen, Germany.
| |
Collapse
|
11
|
Barnes E, Cooke GS, Lauer GM, Chung RT. Implementation of a controlled human infection model for evaluation of HCV vaccine candidates. Hepatology 2022; 77:1757-1772. [PMID: 35736236 DOI: 10.1002/hep.32632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/08/2022]
Abstract
Hepatitis C virus (HCV) remains a major global health concern. Directly acting antiviral (DAA) drugs have transformed the treatment of HCV. However, it has become clear that, without an effective HCV vaccine, it will not be possible to meet the World Health Organization targets of HCV viral elimination. Promising new vaccine technologies that generate high magnitude antiviral T and B cell immune responses and significant new funding have recently become available, stimulating the HCV vaccine pipeline. In the absence of an immune competent animal model for HCV, the major block in evaluating new HCV vaccine candidates will be the assessment of vaccine efficacy in humans. The development of a controlled human infection model (CHIM) for HCV could overcome this block, enabling the head-to-head assessment of vaccine candidates. The availability of highly effective DAA means that a CHIM for HCV is possible for the first time. In this review, we highlight the challenges and issues with currently available strategies to assess HCV vaccine efficacy including HCV "at-risk" cohorts and animal models. We describe the development of CHIM in other infections that are increasingly utilized by trialists and explore the ethical and safety concerns specific for an HCV CHIM. Finally, we propose an HCV CHIM study design including the selection of volunteers, the development of an infectious inoculum, the evaluation of host immune and viral parameters, and the definition of study end points for use in an HCV CHIM. Importantly, the study design (including number of volunteers required, cost, duration of study, and risk to volunteers) varies significantly depending on the proposed mechanism of action (sterilizing/rapid viral clearance vs. delayed viral clearance) of the vaccine under evaluation. We conclude that an HCV CHIM is now realistic, that safety and ethical concerns can be addressed with the right study design, and that, without an HCV CHIM, it is difficult to envisage how the development of an HCV vaccine will be possible.
Collapse
Affiliation(s)
- Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, UK
| | - Graham S Cooke
- Department of Infectious Disease, Imperial College London, Oxford, UK
| | - Georg M Lauer
- Liver Center, GI Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Raymond T Chung
- Liver Center, GI Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Abstract
C-type lectin domain-containing proteins (CTLDcps) shape host responses to pathogens and infectious disease outcomes. Previously, we identified the murine CTLDcp Cd302 as restriction factor, limiting hepatitis C virus (HCV) infection of murine hepatocytes. In this study, we investigated in detail the human orthologue's ability to restrict HCV infection in human liver cells. CD302 overexpression in Huh-7.5 cells potently inhibited infection of diverse HCV chimeras representing seven genotypes. Transcriptional profiling revealed abundant CD302 mRNA expression in human hepatocytes, the natural cellular target of HCV. Knockdown of endogenously expressed CD302 modestly enhanced HCV infection of Huh-7.5 cells and primary human hepatocytes. Functional analysis of naturally occurring CD302 transcript variants and engineered CD302 mutants showed that the C-type lectin-like domain (CTLD) is essential for HCV restriction, whereas the cytoplasmic domain (CPD) is dispensable. Coding single nucleotide polymorphisms occurring in human populations and mapping to different domains of CD302 did not influence the capacity of CD302 to restrict HCV. Assessment of the anti-HCV phenotype at different life cycle stages indicated that CD302 preferentially targets the viral entry step. In contrast to the murine orthologue, overexpression of human CD302 did not modulate downstream expression of nuclear receptor-controlled genes. Ectopic CD302 expression restricted infection of liver tropic hepatitis E virus (HEV), while it did not affect infection rates of two respiratory viruses, including respiratory syncytial virus (RSV) and the alpha coronavirus HVCoV-229E. Together, these findings suggest that CD302 contributes to liver cell-intrinsic defense against HCV and might mediate broader antiviral defenses against additional hepatotropic viruses. IMPORTANCE The liver represents an immunoprivileged organ characterized by enhanced resistance to immune responses. However, the importance of liver cell-endogenous, noncytolytic innate immune responses in pathogen control is not well defined. Although the role of myeloid cell-expressed CTLDcps in host responses to viruses has been characterized in detail, we have little information about their potential functions in the liver and their relevance for immune responses in this organ. Human hepatocytes endogenously express the CTLDcp CD302. Here, we provide evidence that CD302 limits HCV infection of human liver cells, likely by inhibiting a viral cell entry step. We confirm that the dominant liver-expressed transcript variant, as well as naturally occurring coding variants of CD302, maintain the capacity to restrict HCV. We further show that the CTLD of the protein is critical for the anti-HCV activity and that overexpressed CD302 limits HEV infection. Thus, CD302 likely contributes to human liver-intrinsic antiviral defenses.
Collapse
|
13
|
Genome Sequences of West Nile Virus Reference Materials. Microbiol Resour Announc 2021; 10:e0074021. [PMID: 34709054 PMCID: PMC8552714 DOI: 10.1128/mra.00740-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the sequences of two West Nile virus (WNV) strains (lineages 1 and 2) developed by the Paul-Ehrlich-Institut as reference materials. The materials are calibrated against the 1st World Health Organization WNV RNA International Standard and are intended for use in nucleic acid technology assays supporting transfusion safety.
Collapse
|
14
|
Cellular OCIAD2 protein is a proviral factor for hepatitis C virus replication. Int J Biol Macromol 2021; 188:147-159. [PMID: 34371038 DOI: 10.1016/j.ijbiomac.2021.08.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/23/2022]
Abstract
Hepatitis C virus (HCV) nonstructural protein NS4B is necessary for HCV replication. Our previous research found that NS4B-associated cellular proteins PREB and Surfeit 4 are involved in HCV replication. However, the molecular mechanism of HCV replication is not fully understood. Here we identified cellular ovarian cancer immunoreactive antigen domain containing 2 (OCIAD2) protein as a novel NS4B-associated HCV host cofactor by screening with small interfering RNA. Knockdown of OCIAD2 reduced significantly the HCV replication in a dose-dependent and genotype-independent manner. Further research showed that OCIAD2 was recruited into the HCV RNA replication complex by the interaction with NS4B. Interestingly, HCV replication induced OCIAD2 expression. In turn, overexpression of wild OCIAD2 also promoted virus replication whereas that of OCIAD2 mutant lacking the ability to bind NS4B exerted no effect on HCV replication. We also examined whether OCIAD2 interacted with other proteins participating in the HCV RNA replication complex including viral proteins NS5A, NS5B, and cellular proteins PREB, Surfeit 4. The results showed that OCIAD2 interacted with PREB and NS5A, but not NS5B or Surfeit 4. Our findings provide new insights into the function of OCIAD2 and HCV replication mechanism.
Collapse
|
15
|
Qu B, Brown RJP. Strategies to Inhibit Hepatitis B Virus at the Transcript Level. Viruses 2021; 13:v13071327. [PMID: 34372533 PMCID: PMC8310268 DOI: 10.3390/v13071327] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022] Open
Abstract
Approximately 240 million people are chronically infected with hepatitis B virus (HBV), despite four decades of effective HBV vaccination. During chronic infection, HBV forms two distinct templates responsible for viral transcription: (1) episomal covalently closed circular (ccc)DNA and (2) host genome-integrated viral templates. Multiple ubiquitous and liver-specific transcription factors are recruited onto these templates and modulate viral gene transcription. This review details the latest developments in antivirals that inhibit HBV gene transcription or destabilize viral transcripts. Notably, nuclear receptor agonists exhibit potent inhibition of viral gene transcription from cccDNA. Small molecule inhibitors repress HBV X protein-mediated transcription from cccDNA, while small interfering RNAs and single-stranded oligonucleotides result in transcript degradation from both cccDNA and integrated templates. These antivirals mediate their effects by reducing viral transcripts abundance, some leading to a loss of surface antigen expression, and they can potentially be added to the arsenal of drugs with demonstrable anti-HBV activity. Thus, these candidates deserve special attention for future repurposing or further development as anti-HBV therapeutics.
Collapse
Affiliation(s)
- Bingqian Qu
- Division of Veterinary Medicine, Paul Ehrlich Institute, 63225 Langen, Germany
- European Virus Bioinformatics Center, 07743 Jena, Germany
- Correspondence: (B.Q.); (R.J.P.B.)
| | - Richard J. P. Brown
- Division of Veterinary Medicine, Paul Ehrlich Institute, 63225 Langen, Germany
- Correspondence: (B.Q.); (R.J.P.B.)
| |
Collapse
|
16
|
Khoshdel-Rad N, Zahmatkesh E, Bikmulina P, Peshkova M, Kosheleva N, Bezrukov EA, Sukhanov RB, Solovieva A, Shpichka A, Timashev P, Vosough M. Modeling Hepatotropic Viral Infections: Cells vs. Animals. Cells 2021; 10:1726. [PMID: 34359899 PMCID: PMC8305759 DOI: 10.3390/cells10071726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
The lack of an appropriate platform for a better understanding of the molecular basis of hepatitis viruses and the absence of reliable models to identify novel therapeutic agents for a targeted treatment are the two major obstacles for launching efficient clinical protocols in different types of viral hepatitis. Viruses are obligate intracellular parasites, and the development of model systems for efficient viral replication is necessary for basic and applied studies. Viral hepatitis is a major health issue and a leading cause of morbidity and mortality. Despite the extensive efforts that have been made on fundamental and translational research, traditional models are not effective in representing this viral infection in a laboratory. In this review, we discuss in vitro cell-based models and in vivo animal models, with their strengths and weaknesses. In addition, the most important findings that have been retrieved from each model are described.
Collapse
Affiliation(s)
- Niloofar Khoshdel-Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (N.K.-R.); (E.Z.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Ensieh Zahmatkesh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (N.K.-R.); (E.Z.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Polina Bikmulina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Nastasia Kosheleva
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- FSBSI ‘Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Evgeny A. Bezrukov
- Department of Urology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.B.); (R.B.S.)
| | - Roman B. Sukhanov
- Department of Urology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.B.); (R.B.S.)
| | - Anna Solovieva
- Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (N.K.-R.); (E.Z.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| |
Collapse
|
17
|
Arez F, Rodrigues AF, Brito C, Alves PM. Bioengineered Liver Cell Models of Hepatotropic Infections. Viruses 2021; 13:773. [PMID: 33925701 PMCID: PMC8146083 DOI: 10.3390/v13050773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis viruses and liver-stage malaria are within the liver infections causing higher morbidity and mortality rates worldwide. The highly restricted tropism of the major human hepatotropic pathogens-namely, the human hepatitis B and C viruses and the Plasmodium falciparum and Plasmodium vivax parasites-has hampered the development of disease models. These models are crucial for uncovering the molecular mechanisms underlying the biology of infection and governing host-pathogen interaction, as well as for fostering drug development. Bioengineered cell models better recapitulate the human liver microenvironment and extend hepatocyte viability and phenotype in vitro, when compared with conventional two-dimensional cell models. In this article, we review the bioengineering tools employed in the development of hepatic cell models for studying infection, with an emphasis on 3D cell culture strategies, and discuss how those tools contributed to the level of recapitulation attained in the different model layouts. Examples of host-pathogen interactions uncovered by engineered liver models and their usefulness in drug development are also presented. Finally, we address the current bottlenecks, trends, and prospect toward cell models' reliability, robustness, and reproducibility.
Collapse
MESH Headings
- Animals
- Bioengineering/methods
- Cell Culture Techniques
- Disease Models, Animal
- Disease Susceptibility
- Drug Discovery
- Hepatitis/drug therapy
- Hepatitis/etiology
- Hepatitis/metabolism
- Hepatitis/pathology
- Hepatitis, Viral, Human/etiology
- Hepatitis, Viral, Human/metabolism
- Hepatitis, Viral, Human/pathology
- Hepatocytes/metabolism
- Hepatocytes/parasitology
- Hepatocytes/virology
- Host-Pathogen Interactions
- Humans
- Liver/metabolism
- Liver/parasitology
- Liver/virology
- Liver Diseases, Parasitic/etiology
- Liver Diseases, Parasitic/metabolism
- Liver Diseases, Parasitic/pathology
Collapse
Affiliation(s)
- Francisca Arez
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (F.A.); (A.F.R.); (C.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana F. Rodrigues
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (F.A.); (A.F.R.); (C.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (F.A.); (A.F.R.); (C.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (F.A.); (A.F.R.); (C.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
18
|
Initial HCV infection of adult hepatocytes triggers a temporally structured transcriptional program containing diverse pro- and anti-viral elements. J Virol 2021; 95:JVI.00245-21. [PMID: 33658347 PMCID: PMC8139656 DOI: 10.1128/jvi.00245-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transcriptional profiling provides global snapshots of virus-mediated cellular reprogramming, which can simultaneously encompass pro- and antiviral components. To determine early transcriptional signatures associated with HCV infection of authentic target cells, we performed ex vivo infections of adult primary human hepatocytes (PHHs) from seven donors. Longitudinal sampling identified minimal gene dysregulation at six hours post infection (hpi). In contrast, at 72 hpi, massive increases in the breadth and magnitude of HCV-induced gene dysregulation were apparent, affecting gene classes associated with diverse biological processes. Comparison with HCV-induced transcriptional dysregulation in Huh-7.5 cells identified limited overlap between the two systems. Of note, in PHHs, HCV infection initiated broad upregulation of canonical interferon (IFN)-mediated defense programs, limiting viral RNA replication and abrogating virion release. We further find that constitutive expression of IRF1 in PHHs maintains a steady-state antiviral program in the absence of infection, which can additionally reduce HCV RNA translation and replication. We also detected infection-induced downregulation of ∼90 genes encoding components of the EIF2 translation initiation complex and ribosomal subunits in PHHs, consistent with a signature of translational shutoff. As HCV polyprotein translation occurs independently of the EIF2 complex, this process is likely pro-viral: only translation initiation of host transcripts is arrested. The combination of antiviral intrinsic and inducible immunity, balanced against pro-viral programs, including translational arrest, maintains HCV replication at a low-level in PHHs. This may ultimately keep HCV under the radar of extra-hepatocyte immune surveillance while initial infection is established, promoting tolerance, preventing clearance and facilitating progression to chronicity.IMPORTANCEAcute HCV infections are often asymptomatic and therefore frequently undiagnosed. We endeavored to recreate this understudied phase of HCV infection using explanted PHHs and monitored host responses to initial infection. We detected temporally distinct virus-induced perturbations in the transcriptional landscape, which were initially narrow but massively amplified in breadth and magnitude over time. At 72 hpi, we detected dysregulation of diverse gene programs, concurrently promoting both virus clearance and virus persistence. On the one hand, baseline expression of IRF1 combined with infection-induced upregulation of IFN-mediated effector genes suppresses virus propagation. On the other, we detect transcriptional signatures of host translational inhibition, which likely reduces processing of IFN-regulated gene transcripts and facilitates virus survival. Together, our data provide important insights into constitutive and virus-induced transcriptional programs in PHHs, and identifies simultaneous antagonistic dysregulation of pro-and anti-viral programs which may facilitate host tolerance and promote viral persistence.
Collapse
|
19
|
Kumashie KG, Cebula M, Hagedorn C, Kreppel F, Pils MC, Koch-Nolte F, Rissiek B, Wirth D. Improved Functionality of Exhausted Intrahepatic CXCR5+ CD8+ T Cells Contributes to Chronic Antigen Clearance Upon Immunomodulation. Front Immunol 2021; 11:592328. [PMID: 33613516 PMCID: PMC7886981 DOI: 10.3389/fimmu.2020.592328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022] Open
Abstract
Chronic hepatotropic viral infections are characterized by exhausted CD8+ T cells in the presence of cognate antigen in the liver. The impairment of T cell response limits the control of chronic hepatotropic viruses. Immune-modulatory strategies are attractive options to re-invigorate exhausted T cells. However, in hepatotropic viral infections, the knowledge about immune-modulatory effects on the in-situ regulation of exhausted intrahepatic CD8+ T cells is limited. In this study, we elucidated the functional heterogeneity in the pool of exhausted CD8+ T cells in the liver of mice expressing the model antigen Ova in a fraction of hepatocytes. We found a subpopulation of intrahepatic CXCR5+ Ova-specific CD8+ T cells, which are profoundly cytotoxic, exhibiting efficient metabolic functions as well as improved memory recall and self-maintenance. The intrahepatic Ova-specific CXCR5+ CD8+ T cells are possibly tissue resident cells, which may rely largely on OXPHOS and glycolysis to fuel their cellular processes. Importantly, host conditioning with CpG oligonucleotide reinvigorates and promotes exhausted T cell expansion, facilitating complete antigen eradication. The CpG oligonucleotide-mediated reinvigoration may support resident memory T cell formation and the maintenance of CXCR5+ Ova-specific CD8+ T cells in the liver. These findings suggest that CpG oligodinucleotide may preferentially target CXCR5+ CD8+ T cells for expansion to facilitate the revival of exhausted T cells. Thus, therapeutic strategies aiming to expand CXCR5+ CD8+ T cells might provide a novel approach against chronic liver infection.
Collapse
Affiliation(s)
- Kingsley Gideon Kumashie
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marcin Cebula
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Claudia Hagedorn
- Chair of Biochemistry and Molecular Medicine, University Witten/Herdecke, Witten, Germany
| | - Florian Kreppel
- Chair of Biochemistry and Molecular Medicine, University Witten/Herdecke, Witten, Germany
| | - Marina C Pils
- Mouse Pathology Unit, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Institute of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dagmar Wirth
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
20
|
So CW, Randall G. Three-Dimensional Cell Culture Systems for Studying Hepatitis C Virus. Viruses 2021; 13:v13020211. [PMID: 33573191 PMCID: PMC7911643 DOI: 10.3390/v13020211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocytes, the major target of hepatitis C virus (HCV), are highly polarized. HCV infection requires extensive trafficking to distinct subcellular domains in the polarized hepatocyte. Polarized cells and three-dimensional organoids are commonly used to study liver functions and differentiation. Researchers have begun adapting these cell culture models that morphologically and physiologically resemble hepatocytes in vivo to study HCV infection. This review summarizes the use of three-dimensional cell culture systems in studies of HCV infection.
Collapse
|