1
|
Enninful A, Zhang Z, Klymyshyn D, Zong H, Bai Z, Farzad N, Su G, Baysoy A, Nam J, Yang M, Lu Y, Zhang NR, Braubach O, Xu ML, Ma Z, Fan R. Integration of Imaging-based and Sequencing-based Spatial Omics Mapping on the Same Tissue Section via DBiTplus. RESEARCH SQUARE 2024:rs.3.rs-5398491. [PMID: 39711562 PMCID: PMC11661374 DOI: 10.21203/rs.3.rs-5398491/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Spatially mapping the transcriptome and proteome in the same tissue section can significantly advance our understanding of heterogeneous cellular processes and connect cell type to function. Here, we present Deterministic Barcoding in Tissue sequencing plus (DBiTplus), an integrative multi-modality spatial omics approach that combines sequencing-based spatial transcriptomics and image-based spatial protein profiling on the same tissue section to enable both single-cell resolution cell typing and genome-scale interrogation of biological pathways. DBiTplus begins with in situ reverse transcription for cDNA synthesis, microfluidic delivery of DNA oligos for spatial barcoding, retrieval of barcoded cDNA using RNaseH, an enzyme that selectively degrades RNA in an RNA-DNA hybrid, preserving the intact tissue section for high-plex protein imaging with CODEX. We developed computational pipelines to register data from two distinct modalities. Performing both DBiT-seq and CODEX on the same tissue slide enables accurate cell typing in each spatial transcriptome spot and subsequently image-guided decomposition to generate single-cell resolved spatial transcriptome atlases. DBiTplus was applied to mouse embryos with limited protein markers but still demonstrated excellent integration for single-cell transcriptome decomposition, to normal human lymph nodes with high-plex protein profiling to yield a single-cell spatial transcriptome map, and to human lymphoma FFPE tissue to explore the mechanisms of lymphomagenesis and progression. DBiTplusCODEX is a unified workflow including integrative experimental procedure and computational innovation for spatially resolved single-cell atlasing and exploration of biological pathways cell-by-cell at genome-scale.
Collapse
Affiliation(s)
- Archibald Enninful
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Zhaojun Zhang
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Dmytro Klymyshyn
- Akoya Biosciences, Inc. 1080 O’Brien Dr Suite A, Menlo Park, CA 94025 USA
| | - Hailing Zong
- Akoya Biosciences, Inc. 1080 O’Brien Dr Suite A, Menlo Park, CA 94025 USA
| | - Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Negin Farzad
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Graham Su
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Alev Baysoy
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Jungmin Nam
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Mingyu Yang
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Yao Lu
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Nancy R. Zhang
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Oliver Braubach
- Canopy Biosciences, 4340 Duncan Avenue, St. Louis, MO, 63110, USA
| | - Mina L. Xu
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Zongming Ma
- Department of Statistics and Data Science, Yale University, New Haven, CT, 06520, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06520, USA
- Human and Translational Immunology Program, Yale School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
2
|
Song H, Hao Y, Xie Q, Chen X, Li N, Wang J, Zhang X, Zhang Y, Hong J, Xue S, Zhang P, Xie S, Wang X. Hoxc10-mediated 'positional memory' regulates cartilage formation subsequent to femoral heterotopic grafting. J Cell Mol Med 2024; 28:e70140. [PMID: 39434203 PMCID: PMC11493555 DOI: 10.1111/jcmm.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
The Hox gene plays a crucial role in the bone development, determining their structure and morphology. Limb bone grafts expressing Hox positive genes are commonly used for free transplantation to repair Hox negative mandibular critical bone defects. However, the specific role of original Hox genes in newly formed bone during the cross-layer bone grafting healing process remains unexplored. Our findings demonstrate that femurs ectopically grafted into the mandibular environment retained a significant ability to differentiate into cartilage and form cartilaginous callus, which may be a key factor contributing to differences in bone graft healing. Hoxc10, an embryonic layer-specific genes, regulates cartilage formation during bone healing. Mechanistically, we observed Hoxc10 retention in co-cultured femoral BMSCs. Knocking out Hoxc10 narrows the bone gap and reduces cartilage formation. In summary, we reveal Hoxc10's 'positional memory' after adult cross-layer bone graft, influencing the outcomes of autologous bone graft.
Collapse
Affiliation(s)
- Haoyue Song
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Yujia Hao
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Qingpeng Xie
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Xiaohang Chen
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Na Li
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Jia Wang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Yuan Zhang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Jinjia Hong
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Shuyun Xue
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Pengfei Zhang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Si Xie
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Xing Wang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| |
Collapse
|
3
|
Okino R, Goda Y, Ono Y. The Hox-based positional memory in muscle stem cells. J Biochem 2024; 176:277-283. [PMID: 39194026 DOI: 10.1093/jb/mvae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024] Open
Abstract
The skeletal muscle is a contractile tissue distributed throughout the body with various anatomical sizes, shapes and functions. In pathological conditions, such as muscular dystrophy, age-related sarcopenia and cancer cachexia, skeletal muscles are not uniformly affected throughout the body. This region-specific vulnerability cannot be fully explained by known physiological classifications, including muscle fiber types. Accumulating evidence indicates that the expression patterns of topographic homeobox (Hox) genes provide a molecular signature of positional memory, reflecting the anatomical locations and embryonic history of muscles and their associated muscle stem cells in adult mice and humans. Hox-based positional memory is not merely a remnant of embryonic development but is expected to be an intrinsic determinant controlling muscle function because recent studies have shown that aberrant Hox genes affect muscle stem cells. In this review, we discuss the concept of Hox-based positional memory, which may offer a new perspective on the region-specific pathophysiology of muscle disorders.
Collapse
Affiliation(s)
- Ryosuke Okino
- Muscle Biology Laboratory, Research Team for Aging Science, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Yuki Goda
- Muscle Biology Laboratory, Research Team for Aging Science, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Yusuke Ono
- Muscle Biology Laboratory, Research Team for Aging Science, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811, Japan
| |
Collapse
|
4
|
Wellik DM. Hox genes and patterning the vertebrate body. Curr Top Dev Biol 2024; 159:1-27. [PMID: 38729674 DOI: 10.1016/bs.ctdb.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The diversity of vertebrate body plans is dizzying, yet stunning for the many things they have in common. Vertebrates have inhabited virtually every part of the earth from its coldest to warmest climates. They locomote by swimming, flying, walking, slithering, or climbing, or combinations of these behaviors. And they exist in many different sizes, from the smallest of frogs, fish and lizards to giraffes, elephants, and blue whales. Despite these differences, vertebrates follow a remarkably similar blueprint for the establishment of their body plan. Within the relatively small amount of time required to complete gastrulation, the process through which the three germ layers, ectoderm, mesoderm, and endoderm are created, the embryo also generates its body axis and is simultaneously patterned. For the length of this axis, the genes that distinguish the neck from the rib cage or the trunk from the sacrum are the Hox genes. In vertebrates, there was evolutionary pressure to maintain this set of genes in the organism. Over the past decades, much has been learned regarding the regulatory mechanisms that ensure the appropriate expression of these genes along the main body axes. Genetic functions continue to be explored though much has been learned. Much less has been discerned on the identity of co-factors used by Hox proteins for the specificity of transcriptional regulation or what downstream targets and pathways are critical for patterning events, though there are notable exceptions. Current work in the field is demonstrating that Hox genes continue to function in many organs long after directing early patterning events. It is hopeful continued research will shed light on remaining questions regarding mechanisms used by this important and conserved set of transcriptional regulators.
Collapse
Affiliation(s)
- Deneen M Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, United States.
| |
Collapse
|
5
|
Girolamo DD, Benavente-Diaz M, Murolo M, Grimaldi A, Lopes PT, Evano B, Kuriki M, Gioftsidi S, Laville V, Tinevez JY, Letort G, Mella S, Tajbakhsh S, Comai G. Extraocular muscle stem cells exhibit distinct cellular properties associated with non-muscle molecular signatures. Development 2024; 151:dev202144. [PMID: 38240380 DOI: 10.1242/dev.202144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/27/2023] [Indexed: 02/22/2024]
Abstract
Skeletal muscle stem cells (MuSCs) are recognised as functionally heterogeneous. Cranial MuSCs are reported to have greater proliferative and regenerative capacity when compared with those in the limb. A comprehensive understanding of the mechanisms underlying this functional heterogeneity is lacking. Here, we have used clonal analysis, live imaging and single cell transcriptomic analysis to identify crucial features that distinguish extraocular muscle (EOM) from limb muscle stem cell populations. A MyogeninntdTom reporter showed that the increased proliferation capacity of EOM MuSCs correlates with deferred differentiation and lower expression of the myogenic commitment gene Myod. Unexpectedly, EOM MuSCs activated in vitro expressed a large array of extracellular matrix components typical of mesenchymal non-muscle cells. Computational analysis underscored a distinct co-regulatory module, which is absent in limb MuSCs, as driver of these features. The EOM transcription factor network, with Foxc1 as key player, appears to be hardwired to EOM identity as it persists during growth, disease and in vitro after several passages. Our findings shed light on how high-performing MuSCs regulate myogenic commitment by remodelling their local environment and adopting properties not generally associated with myogenic cells.
Collapse
Affiliation(s)
- Daniela Di Girolamo
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Maria Benavente-Diaz
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Sorbonne Universités, Complexité du Vivant, F-75005 Paris, France
| | - Melania Murolo
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Alexandre Grimaldi
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Sorbonne Universités, Complexité du Vivant, F-75005 Paris, France
| | - Priscilla Thomas Lopes
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Brendan Evano
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Mao Kuriki
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Stamatia Gioftsidi
- Université Paris-Est, 77420 Champs-sur- Marne, France
- Freie Universität Berlin, 14195 Berlin, Germany
- Inserm, IMRB U955-E10, 94000 Créteil, France
| | - Vincent Laville
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Jean-Yves Tinevez
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, 75015 Paris, France
| | - Gaëlle Letort
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr Roux, 75015 Paris, France
| | - Sebastian Mella
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Glenda Comai
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| |
Collapse
|
6
|
Gu S, Wen C, Xiao Z, Huang Q, Jiang Z, Liu H, Gao J, Li J, Sun C, Yang N. MyoV: a deep learning-based tool for the automated quantification of muscle fibers. Brief Bioinform 2024; 25:bbad528. [PMID: 38271484 PMCID: PMC10810329 DOI: 10.1093/bib/bbad528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Accurate approaches for quantifying muscle fibers are essential in biomedical research and meat production. In this study, we address the limitations of existing approaches for hematoxylin and eosin-stained muscle fibers by manually and semiautomatically labeling over 660 000 muscle fibers to create a large dataset. Subsequently, an automated image segmentation and quantification tool named MyoV is designed using mask regions with convolutional neural networks and a residual network and feature pyramid network as the backbone network. This design enables the tool to allow muscle fiber processing with different sizes and ages. MyoV, which achieves impressive detection rates of 0.93-0.96 and precision levels of 0.91-0.97, exhibits a superior performance in quantification, surpassing both manual methods and commonly employed algorithms and software, particularly for whole slide images (WSIs). Moreover, MyoV is proven as a powerful and suitable tool for various species with different muscle development, including mice, which are a crucial model for muscle disease diagnosis, and agricultural animals, which are a significant meat source for humans. Finally, we integrate this tool into visualization software with functions, such as segmentation, area determination and automatic labeling, allowing seamless processing for over 400 000 muscle fibers within a WSI, eliminating the model adjustment and providing researchers with an easy-to-use visual interface to browse functional options and realize muscle fiber quantification from WSIs.
Collapse
Affiliation(s)
- Shuang Gu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Zhen Xiao
- School of Computer and Information, Hefei University of Technology, Anhui 230009, China
| | - Qiang Huang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zheyi Jiang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Honghong Liu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jia Gao
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junying Li
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Hainan 572025, China
| |
Collapse
|
7
|
Motohashi N, Minegishi K, Aoki Y. Inherited myogenic abilities in muscle precursor cells defined by the mitochondrial complex I-encoding protein. Cell Death Dis 2023; 14:689. [PMID: 37857600 PMCID: PMC10587152 DOI: 10.1038/s41419-023-06192-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
Skeletal muscle comprises different muscle fibers, including slow- and fast-type muscles, and satellite cells (SCs), which exist in individual muscle fibers and possess different myogenic properties. Previously, we reported that myoblasts (MBs) from slow-type enriched soleus (SOL) had a high potential to self-renew compared with cells derived from fast-type enriched tibialis anterior (TA). However, whether the functionality of myogenic cells in adult muscles is attributed to the muscle fiber in which they reside and whether the characteristics of myogenic cells derived from slow- and fast-type fibers can be distinguished at the genetic level remain unknown. Global gene expression analysis revealed that the myogenic potential of MBs was independent of the muscle fiber type they reside in but dependent on the region of muscles they are derived from. Thus, in this study, proteomic analysis was conducted to clarify the molecular differences between MBs derived from TA and SOL. NADH dehydrogenase (ubiquinone) iron-sulfur protein 8 (Ndufs8), a subunit of NADH dehydrogenase in mitochondrial complex I, significantly increased in SOL-derived MBs compared with that in TA-derived cells. Moreover, the expression level of Ndufs8 in MBs significantly decreased with age. Gain- and loss-of-function experiments revealed that Ndufs8 expression in MBs promoted differentiation, self-renewal, and apoptosis resistance. In particular, Ndufs8 suppression in MBs increased p53 acetylation, followed by a decline in NAD/NADH ratio. Nicotinamide mononucleotide treatment, which restores the intracellular NAD+ level, could decrease p53 acetylation and increase myogenic cell self-renewal ability in vivo. These results suggested that the functional differences in MBs derived from SOL and TA governed by the mitochondrial complex I-encoding gene reflect the magnitude of the decline in SC number observed with aging, indicating that the replenishment of NAD+ is a possible approach for improving impaired cellular functions caused by aging or diseases.
Collapse
Affiliation(s)
- Norio Motohashi
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan.
| | - Katsura Minegishi
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan.
| |
Collapse
|
8
|
Oyakawa S, Yamaguchi Y, Kadowaki T, Sakai E, Noguromi M, Tanimoto A, Ono Y, Murata H, Tsukuba T. Rab44 deficiency accelerates recovery from muscle damage by regulating mTORC1 signaling and transport of fusogenic regulators. J Cell Physiol 2023; 238:2253-2266. [PMID: 37565627 DOI: 10.1002/jcp.31082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023]
Abstract
The skeletal muscle is a tissue that shows remarkable plasticity to adapt to various stimuli. The development and regeneration of skeletal muscles are regulated by numerous molecules. Among these, we focused on Rab44, a large Rab GTPase, that has been recently identified in immune cells and osteoclasts. Recently, bioinformatics data has revealed that Rab44 is upregulated during the myogenic differentiation of myoblasts into myotubes in C2C12 cells. Thus, Rab44 may be involved in myogenesis. Here, we have investigated the effects of Rab44 deficiency on the development and regeneration of skeletal muscle in Rab44 knockout (KO) mice. Although KO mice exhibited body and muscle weights similar to those of wild-type (WT) mice, the histochemical analysis showed that the myofiber cross-sectional area (CSA) of KO mice was significantly smaller than that of WT mice. Importantly, the results of muscle regeneration experiments using cardiotoxin revealed that the CSA of KO mice was significantly larger than that of WT mice, suggesting that Rab44 deficiency promotes muscle regeneration. Consistent with the in vivo results, in vitro experiments indicated that satellite cells derived from KO mice displayed enhanced proliferation and differentiation. Mechanistically, KO satellite cells exhibited an increased mechanistic target of rapamycin complex 1 (mTORC1) signaling compared to WT cells. Additionally, enhanced cell surface transport of myomaker and myomixer, which are essential membrane proteins for myoblast fusion, was observed in KO satellite cells compared to WT cells. Therefore, Rab44 deficiency enhances muscle regeneration by modulating the mTORC1 signaling pathway and transport of fusogenic regulators.
Collapse
Affiliation(s)
- Shun Oyakawa
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Prosthetic Dentistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yu Yamaguchi
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tomoko Kadowaki
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Eiko Sakai
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mayuko Noguromi
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Prosthetic Dentistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ayuko Tanimoto
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Murata
- Department of Prosthetic Dentistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
9
|
Wurmser M, Madani R, Chaverot N, Backer S, Borok M, Dos Santos M, Comai G, Tajbakhsh S, Relaix F, Santolini M, Sambasivan R, Jiang R, Maire P. Overlapping functions of SIX homeoproteins during embryonic myogenesis. PLoS Genet 2023; 19:e1010781. [PMID: 37267426 DOI: 10.1371/journal.pgen.1010781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/10/2023] [Indexed: 06/04/2023] Open
Abstract
Four SIX homeoproteins display a combinatorial expression throughout embryonic developmental myogenesis and they modulate the expression of the myogenic regulatory factors. Here, we provide a deep characterization of their role in distinct mouse developmental territories. We showed, at the hypaxial level, that the Six1:Six4 double knockout (dKO) somitic precursor cells adopt a smooth muscle fate and lose their myogenic identity. At the epaxial level, we demonstrated by the analysis of Six quadruple KO (qKO) embryos, that SIX are required for fetal myogenesis, and for the maintenance of PAX7+ progenitor cells, which differentiated prematurely and are lost by the end of fetal development in qKO embryos. Finally, we showed that Six1 and Six2 are required to establish craniofacial myogenesis by controlling the expression of Myf5. We have thus described an unknown role for SIX proteins in the control of myogenesis at different embryonic levels and refined their involvement in the genetic cascades operating at the head level and in the genesis of myogenic stem cells.
Collapse
Affiliation(s)
- Maud Wurmser
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Rouba Madani
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Nathalie Chaverot
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Stéphanie Backer
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Matthew Borok
- Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, Creteil, France
| | | | - Glenda Comai
- Stem Cells & Development, Institut Pasteur, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells & Development, Institut Pasteur, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Frédéric Relaix
- Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, Creteil, France
| | - Marc Santolini
- Université de Paris Cité, Interaction Data Lab, CRI Paris, INSERM. Paris, France
| | - Ramkumar Sambasivan
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Pascal Maire
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| |
Collapse
|
10
|
Leclerc K, Remark LH, Ramsukh M, Josephson AM, Palma L, Parente PEL, Sambon M, Lee S, Lopez EM, Morgani SM, Leucht P. Hox genes are crucial regulators of periosteal stem cell identity. Development 2023; 150:dev201391. [PMID: 36912250 PMCID: PMC10112919 DOI: 10.1242/dev.201391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/20/2023] [Indexed: 03/14/2023]
Abstract
Periosteal stem and progenitor cells (PSPCs) are major contributors to bone maintenance and repair. Deciphering the molecular mechanisms that regulate their function is crucial for the successful generation and application of future therapeutics. Here, we pinpoint Hox transcription factors as necessary and sufficient for periosteal stem cell function. Hox genes are transcriptionally enriched in periosteal stem cells and their overexpression in more committed progenitors drives reprogramming to a naïve, self-renewing stem cell-like state. Crucially, individual Hox family members are expressed in a location-specific manner and their stem cell-promoting activity is only observed when the Hox gene is matched to the anatomical origin of the PSPC, demonstrating a role for the embryonic Hox code in adult stem cells. Finally, we demonstrate that Hoxa10 overexpression partially restores the age-related decline in fracture repair. Together, our data highlight the importance of Hox genes as key regulators of PSPC identity in skeletal homeostasis and repair.
Collapse
Affiliation(s)
- Kevin Leclerc
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Lindsey H. Remark
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Malissa Ramsukh
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Anne Marie Josephson
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Laura Palma
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo E. L. Parente
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Margaux Sambon
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Sooyeon Lee
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm 89081, Germany
| | - Emma Muiños Lopez
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Sophie M. Morgani
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Philipp Leucht
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
11
|
Xie L, Ding N, Sheng S, Zhang H, Yin H, Gao L, Zhang H, Ma S, Yang A, Li G, Jiao Y, Shi Q, Jiang Y, Zhang H. Cooperation between NSPc1 and DNA methylation represses HOXA11 expression and promotes apoptosis of trophoblast cells during preeclampsia. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1-13. [PMID: 36815373 PMCID: PMC10157525 DOI: 10.3724/abbs.2023012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/03/2022] [Indexed: 02/05/2023] Open
Abstract
Accumulating evidence has shown that the apoptosis of trophoblast cells plays an important role in the pathogenesis of preeclampsia, and an intricate interplay between DNA methylation and polycomb group (PcG) protein-mediated gene silencing has been highlighted recently. Here, we provide evidence that the expression of nervous system polycomb 1 (NSPc1), a BMI1 homologous polycomb protein, is significantly elevated in trophoblast cells during preeclampsia, which accelerates trophoblast cell apoptosis. Since NSPc1 acts predominantly as a transcriptional inactivator that specifically represses HOXA11 expression in trophoblast cells during preeclampsia, we further show that NSPc1 is required for DNMT3a recruitment and maintenance of the DNA methylation in the HOXA11 promoter in trophoblast cells during preeclampsia. In addition, we find that the interplay of DNMT3a and NSPc1 represses the expression of HOXA11 and promotes trophoblast cell apoptosis. Taken together, these results indicate that the cooperation between NSPc1 and DNMT3a reduces HOXA11 expression in preeclampsia pathophysiology, which provides novel therapeutic approaches for targeted inhibition of trophoblast cell apoptosis during preeclampsia pathogenesis.
Collapse
Affiliation(s)
- Lin Xie
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Ning Ding
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Siqi Sheng
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Honghong Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - He Yin
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- Department of Clinical MedicineNingxia Medical UniversityYinchuan750004China
| | - Lina Gao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- Department of Clinical MedicineNingxia Medical UniversityYinchuan750004China
| | - Hui Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Shengchao Ma
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Anning Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Guizhong Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Yun Jiao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- Department of Infectious DiseasesGeneral Hospital of Ningxia Medical UniversityYinchuan750004China
| | - Qing Shi
- Department of GynecologyGeneral Hospital of Ningxia Medical UniversityYinchuan750004China
| | - Yideng Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Huiping Zhang
- Department of Medical GeneticsMaternal and Child Health of Hunan ProvinceChangsha410008China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- General Hospital of Ningxia Medical UniversityYinchuan750004China
| |
Collapse
|
12
|
Bovine HOXA11 Gene Identified from RNA-Seq: mRNA Profile Analysis and Genetic Variation Detection Using ME Method and Their Associations with Carcass Traits. Cells 2023; 12:cells12040539. [PMID: 36831206 PMCID: PMC9953915 DOI: 10.3390/cells12040539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The Homeobox A11 (HOXA11) gene regulates limb skeletal development and muscle growth, thus, it was selected as a candidate gene for bovine carcass traits. In this study, we analyzed the mRNA expression level of HOXA11 in various tissues and cells, and determined the genetic variations in the HOXA11 gene, which might be used as molecular markers for cattle breeding. The mRNA expression profiles of HOXA11 in bovine different tissues showed that HOXA11 was highly expressed in both fat and muscle. The gene expression trend of HOXA11 in myoblasts and adipocytes indicated that HOXA11 might be involved in the differentiation of bovine myoblasts and adipocytes. The data in the Ensembl database showed that there are two putative insertion/deletion (InDel) polymorphisms in the bovine HOXA11 gene. The insertion site (rs515880802) was located in the upstream region (NC_037331.1: g. 68853364-68853365) and named as P1-Ins-4-bp, and the deletion site (rs517582703) was located in the intronic region (NC_037331.1: g. 68859510-68859517) and named as P2-Del-8-bp. These polymorphisms within the HOXA11 gene were identified and genotyped by PCR amplification, agarose gel electrophoresis and DNA sequencing in the 640 Shandong Black Cattle Genetic Resource (SDBCGR) population. Moreover, the mutation frequency was very low after detection, so the mathematical expectation (ME) method was used for detection. Statistical analysis demonstrated that P1-Ins-4-bp was significantly correlated with the beef shoulder (p = 0.012) and tongue root (p = 0.004). Meanwhile, P2-Del-8-bp displayed a significant correlation with the back tendon (p = 0.008), money tendon (p = 2.84 × 10-4), thick flank (p = 0.034), beef shin (p = 9.09 × 10-7), triangle thick flank (p = 0.04), triangle flank (p = 1.00 × 10-6), rump (p = 0.018) and small tenderloin (p = 0.043) in the female SDBCGR population. In summary, these outcomes may provide a new perspective for accelerating the molecular breeding of cattle through marker-assisted selection (MAS) strategies.
Collapse
|
13
|
Abbassi-Daloii T, el Abdellaoui S, Voortman LM, Veeger TTJ, Cats D, Mei H, Meuffels DE, van Arkel E, 't Hoen PAC, Kan HE, Raz V. A transcriptome atlas of leg muscles from healthy human volunteers reveals molecular and cellular signatures associated with muscle location. eLife 2023; 12:e80500. [PMID: 36744868 PMCID: PMC9988256 DOI: 10.7554/elife.80500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 02/03/2023] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscles support the stability and mobility of the skeleton but differ in biomechanical properties and physiological functions. The intrinsic factors that regulate muscle-specific characteristics are poorly understood. To study these, we constructed a large atlas of RNA-seq profiles from six leg muscles and two locations from one muscle, using biopsies from 20 healthy young males. We identified differential expression patterns and cellular composition across the seven tissues using three bioinformatics approaches confirmed by large-scale newly developed quantitative immune-histology procedures. With all three procedures, the muscle samples clustered into three groups congruent with their anatomical location. Concomitant with genes marking oxidative metabolism, genes marking fast- or slow-twitch myofibers differed between the three groups. The groups of muscles with higher expression of slow-twitch genes were enriched in endothelial cells and showed higher capillary content. In addition, expression profiles of Homeobox (HOX) transcription factors differed between the three groups and were confirmed by spatial RNA hybridization. We created an open-source graphical interface to explore and visualize the leg muscle atlas (https://tabbassidaloii.shinyapps.io/muscleAtlasShinyApp/). Our study reveals the molecular specialization of human leg muscles, and provides a novel resource to study muscle-specific molecular features, which could be linked with (patho)physiological processes.
Collapse
Affiliation(s)
| | - Salma el Abdellaoui
- Department of Human Genetics, Leiden University Medical CenterLeidenNetherlands
| | - Lenard M Voortman
- Division of Cell and Chemical Biology, Leiden University Medical CenterLeidenNetherlands
| | - Thom TJ Veeger
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical CenterLeidenNetherlands
| | - Davy Cats
- Sequencing Analysis Support Core, Leiden University Medical CenterLeidenNetherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical CenterLeidenNetherlands
| | - Duncan E Meuffels
- Orthopedic and Sport Medicine Department, Erasmus MC, University Medical Center RotterdamRotterdamNetherlands
| | | | - Peter AC 't Hoen
- Department of Human Genetics, Leiden University Medical CenterLeidenNetherlands
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical CenterRadboudNetherlands
| | - Hermien E Kan
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical CenterLeidenNetherlands
- Duchenne Center NetherlandsLeidenNetherlands
| | - Vered Raz
- Department of Human Genetics, Leiden University Medical CenterLeidenNetherlands
| |
Collapse
|
14
|
Abstract
Hox genes encode evolutionarily conserved transcription factors that are essential for the proper development of bilaterian organisms. Hox genes are unique because they are spatially and temporally regulated during development in a manner that is dictated by their tightly linked genomic organization. Although their genetic function during embryonic development has been interrogated, less is known about how these transcription factors regulate downstream genes to direct morphogenetic events. Moreover, the continued expression and function of Hox genes at postnatal and adult stages highlights crucial roles for these genes throughout the life of an organism. Here, we provide an overview of Hox genes, highlighting their evolutionary history, their unique genomic organization and how this impacts the regulation of their expression, what is known about their protein structure, and their deployment in development and beyond.
Collapse
Affiliation(s)
- Katharine A. Hubert
- Program in Genetics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Deneen M. Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
15
|
A stem cell aging framework, from mechanisms to interventions. Cell Rep 2022; 41:111451. [DOI: 10.1016/j.celrep.2022.111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
|
16
|
Pereira AG, Grizante MB, Kohlsdorf T. What snakes and caecilians have in common? Molecular interaction units and the independent origins of similar morphotypes in Tetrapoda. Proc Biol Sci 2022; 289:20220841. [PMID: 35975445 PMCID: PMC9382212 DOI: 10.1098/rspb.2022.0841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/25/2022] [Indexed: 12/14/2022] Open
Abstract
Developmental pathways encompass transcription factors and cis-regulatory elements that interact as transcription factor-regulatory element (TF-RE) units. Independent origins of similar phenotypes likely involve changes in different parts of these units, a hypothesis promisingly tested addressing the evolution of the rib-associated lumbar (RAL) morphotype that characterizes emblematic animals such as snakes and elephants. Previous investigation in these lineages identified a polymorphism in the Homology region 1 [H1] enhancer of the Myogenic factor-5 [Myf5], which interacts with HOX10 proteins to modulate rib development. Here we address the evolution of TF-RE units focusing on independent origins of RAL morphotypes. We compiled an extensive database for H1-Myf5 and HOX10 sequences with two goals: (i) evaluate if the enhancer polymorphism is present in amphibians exhibiting the RAL morphotype and (ii) test a hypothesis of enhanced evolutionary flexibility mediated by TF-RE units, according to which independent origins of the RAL morphotype might involve changes in either component of the interaction unit. We identified the H1-Myf5 polymorphism in lineages that diverged around 340 Ma, including Lissamphibia. Independent origins of the RAL morphotype in Tetrapoda involved sequence variation in either component of the TF-RE unit, confirming that different changes may similarly affect the phenotypic outcome of a given developmental pathway.
Collapse
Affiliation(s)
- Anieli G. Pereira
- Department of Biology, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mariana B. Grizante
- Department of Biology, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Dante Pazzanese Institute of Cardiology, Sao Paulo, Brazil
| | - Tiana Kohlsdorf
- Department of Biology, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
17
|
Otsuki L, Tanaka EM. Positional Memory in Vertebrate Regeneration: A Century's Insights from the Salamander Limb. Cold Spring Harb Perspect Biol 2022; 14:a040899. [PMID: 34607829 PMCID: PMC9248832 DOI: 10.1101/cshperspect.a040899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Salamanders, such as axolotls and newts, can regenerate complex tissues including entire limbs. But what mechanisms ensure that an amputated limb regenerates a limb, and not a tail or unpatterned tissue? An important concept in regeneration is positional memory-the notion that adult cells "remember" spatial identities assigned to them during embryogenesis (e.g., "head" or "hand") and use this information to restore the correct body parts after injury. Although positional memory is well documented at a phenomenological level, the underlying cellular and molecular bases are just beginning to be decoded. Herein, we review how major principles in positional memory were established in the salamander limb model, enabling the discovery of positional memory-encoding molecules, and advancing insights into their pattern-forming logic during regeneration. We explore findings in other amphibians, fish, reptiles, and mammals and speculate on conserved aspects of positional memory. We consider the possibility that manipulating positional memory in human cells could represent one route toward improved tissue repair or engineering of patterned tissues for therapeutic purposes.
Collapse
Affiliation(s)
- Leo Otsuki
- Research Institute of Molecular Pathology, 1030 Vienna, Austria
| | - Elly M Tanaka
- Research Institute of Molecular Pathology, 1030 Vienna, Austria
| |
Collapse
|
18
|
Goto A, Kokabu S, Dusadeemeelap C, Kawaue H, Matsubara T, Tominaga K, Addison WN. Tongue Muscle for the Analysis of Head Muscle Regeneration Dynamics. J Dent Res 2022; 101:962-971. [PMID: 35193429 DOI: 10.1177/00220345221075966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tongue muscle damage impairs speaking and eating, thereby degrading overall health and quality of life. Skeletal muscles of the body are diverse in embryonic origin, anatomic location, and gene expression profiles. Responses to disease, atrophy, aging, or drugs vary among different muscles. Currently, most muscle studies are focused on limb muscles and the tongue is neglected. The regenerative ability of tongue muscle remains unknown, and thus there is need for tongue muscle research models. Here, we present a comprehensive characterization of the spatiotemporal dynamics in a mouse model of tongue muscle regeneration and establish a method for the isolation of primary tongue-derived satellite cells. We compare and contrast our observations with the tibialis anterior (TA) limb muscle. Acute injury was induced by intramuscular injection of cardiotoxin, a cytolytic agent, and examined at multiple timepoints. Initially, necrotic myofibers with fragmented sarcoplasm became infiltrated with inflammatory cells. Concomitantly, satellite cells expanded rapidly. Seven days postinjury, regenerated myofibers with centralized nuclei appeared. Full regeneration, as well as an absence of fibrosis, was evident 21 d postinjury. Primary tongue-derived satellite cells were isolated by enzymatic separation of tongue epithelium from mesenchyme followed by magnetic-activated cell sorting. We observed that tongue displays an efficient regenerative response similar to TA but with slightly faster kinetics. In vitro, tongue-derived satellite cells differentiated robustly into mature myotubes with spontaneous contractile behavior and myogenic marker expression. Comparison of gene expression signatures between tongue and TA-derived satellite cells revealed differences in the expression of positional-identity genes, including the HOX family. In conclusion, we have established a model for tongue regeneration useful for investigations of orofacial muscle biology. Furthermore, we showed that tongue is a viable source of satellite cells with unique properties and inherited positional memory.
Collapse
Affiliation(s)
- A Goto
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.,Division of Oral and Maxillofacial Surgery, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - S Kokabu
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - C Dusadeemeelap
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - H Kawaue
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - T Matsubara
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - K Tominaga
- Division of Oral and Maxillofacial Surgery, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - W N Addison
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
19
|
Fujimaki S, Matsumoto T, Muramatsu M, Nagahisa H, Horii N, Seko D, Masuda S, Wang X, Asakura Y, Takahashi Y, Miyamoto Y, Usuki S, Yasunaga KI, Kamei Y, Nishinakamura R, Minami T, Fukuda T, Asakura A, Ono Y. The endothelial Dll4-muscular Notch2 axis regulates skeletal muscle mass. Nat Metab 2022; 4:180-189. [PMID: 35228746 DOI: 10.1038/s42255-022-00533-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 01/17/2022] [Indexed: 02/03/2023]
Abstract
Adult skeletal muscle is a highly plastic tissue that readily reduces or gains its mass in response to mechanical and metabolic stimulation; however, the upstream mechanisms that control muscle mass remain unclear. Notch signalling is highly conserved, and regulates many cellular events, including proliferation and differentiation of various types of tissue stem cell via cell-cell contact. Here we reveal that multinucleated myofibres express Notch2, which plays a crucial role in disuse- or diabetes-induced muscle atrophy. Mechanistically, in both atrophic conditions, the microvascular endothelium upregulates and releases the Notch ligand, Dll4, which then activates muscular Notch2 without direct cell-cell contact. Inhibition of the Dll4-Notch2 axis substantively prevents these muscle atrophy and promotes mechanical overloading-induced muscle hypertrophy in mice. Our results illuminate a tissue-specific function of the endothelium in controlling tissue plasticity and highlight the endothelial Dll4-muscular Notch2 axis as a central upstream mechanism that regulates catabolic signals from mechanical and metabolic stimulation, providing a therapeutic target for muscle-wasting diseases.
Collapse
Affiliation(s)
- Shin Fujimaki
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiro Matsumoto
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Masashi Muramatsu
- Division of Molecular and Vascular Biology, IRDA, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Nagahisa
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Naoki Horii
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Daiki Seko
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shinya Masuda
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Xuerui Wang
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Yoko Asakura
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Yukie Takahashi
- International Research Center for Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuta Miyamoto
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Kei-Ichiro Yasunaga
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yasutomi Kamei
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Takashi Minami
- Division of Molecular and Vascular Biology, IRDA, Kumamoto University, Kumamoto, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Atsushi Asakura
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan.
| |
Collapse
|
20
|
Anderson JE. Key concepts in muscle regeneration: muscle "cellular ecology" integrates a gestalt of cellular cross-talk, motility, and activity to remodel structure and restore function. Eur J Appl Physiol 2022; 122:273-300. [PMID: 34928395 PMCID: PMC8685813 DOI: 10.1007/s00421-021-04865-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022]
Abstract
This review identifies some key concepts of muscle regeneration, viewed from perspectives of classical and modern research. Early insights noted the pattern and sequence of regeneration across species was similar, regardless of the type of injury, and differed from epimorphic limb regeneration. While potential benefits of exercise for tissue repair was debated, regeneration was not presumed to deliver functional restoration, especially after ischemia-reperfusion injury; muscle could develop fibrosis and ectopic bone and fat. Standard protocols and tools were identified as necessary for tracking injury and outcomes. Current concepts vastly extend early insights. Myogenic regeneration occurs within the environment of muscle tissue. Intercellular cross-talk generates an interactive system of cellular networks that with the extracellular matrix and local, regional, and systemic influences, forms the larger gestalt of the satellite cell niche. Regenerative potential and adaptive plasticity are overlain by epigenetically regionalized responsiveness and contributions by myogenic, endothelial, and fibroadipogenic progenitors and inflammatory and metabolic processes. Muscle architecture is a living portrait of functional regulatory hierarchies, while cellular dynamics, physical activity, and muscle-tendon-bone biomechanics arbitrate regeneration. The scope of ongoing research-from molecules and exosomes to morphology and physiology-reveals compelling new concepts in muscle regeneration that will guide future discoveries for use in application to fitness, rehabilitation, and disease prevention and treatment.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
21
|
Poliacikova G, Maurel-Zaffran C, Graba Y, Saurin AJ. Hox Proteins in the Regulation of Muscle Development. Front Cell Dev Biol 2021; 9:731996. [PMID: 34733846 PMCID: PMC8558437 DOI: 10.3389/fcell.2021.731996] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Hox genes encode evolutionary conserved transcription factors that specify the anterior-posterior axis in all bilaterians. Being well known for their role in patterning ectoderm-derivatives, such as CNS and spinal cord, Hox protein function is also crucial in mesodermal patterning. While well described in the case of the vertebrate skeleton, much less is known about Hox functions in the development of different muscle types. In contrast to vertebrates however, studies in the fruit fly, Drosophila melanogaster, have provided precious insights into the requirement of Hox at multiple stages of the myogenic process. Here, we provide a comprehensive overview of Hox protein function in Drosophila and vertebrate muscle development, with a focus on the molecular mechanisms underlying target gene regulation in this process. Emphasizing a tight ectoderm/mesoderm cross talk for proper locomotion, we discuss shared principles between CNS and muscle lineage specification and the emerging role of Hox in neuromuscular circuit establishment.
Collapse
Affiliation(s)
| | | | - Yacine Graba
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Andrew J Saurin
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| |
Collapse
|
22
|
Collins BC, Kardon G. It takes all kinds: heterogeneity among satellite cells and fibro-adipogenic progenitors during skeletal muscle regeneration. Development 2021; 148:dev199861. [PMID: 34739030 PMCID: PMC8602941 DOI: 10.1242/dev.199861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Vertebrate skeletal muscle is composed of multinucleate myofibers that are surrounded by muscle connective tissue. Following injury, muscle is able to robustly regenerate because of tissue-resident muscle stem cells, called satellite cells. In addition, efficient and complete regeneration depends on other cells resident in muscle - including fibro-adipogenic progenitors (FAPs). Increasing evidence from single-cell analyses and genetic and transplantation experiments suggests that satellite cells and FAPs are heterogeneous cell populations. Here, we review our current understanding of the heterogeneity of satellite cells, their myogenic derivatives and FAPs in terms of gene expression, anatomical location, age and timing during the regenerative process - each of which have potentially important functional consequences.
Collapse
Affiliation(s)
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|