1
|
Kaplan HS, Horvath PM, Rahman MM, Dulac C. The neurobiology of parenting and infant-evoked aggression. Physiol Rev 2025; 105:315-381. [PMID: 39146250 DOI: 10.1152/physrev.00036.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Parenting behavior comprises a variety of adult-infant and adult-adult interactions across multiple timescales. The state transition from nonparent to parent requires an extensive reorganization of individual priorities and physiology and is facilitated by combinatorial hormone action on specific cell types that are integrated throughout interconnected and brainwide neuronal circuits. In this review, we take a comprehensive approach to integrate historical and current literature on each of these topics across multiple species, with a focus on rodents. New and emerging molecular, circuit-based, and computational technologies have recently been used to address outstanding gaps in our current framework of knowledge on infant-directed behavior. This work is raising fundamental questions about the interplay between instinctive and learned components of parenting and the mutual regulation of affiliative versus agonistic infant-directed behaviors in health and disease. Whenever possible, we point to how these technologies have helped gain novel insights and opened new avenues of research into the neurobiology of parenting. We hope this review will serve as an introduction for those new to the field, a comprehensive resource for those already studying parenting, and a guidepost for designing future studies.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Patricia M Horvath
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Mohammed Mostafizur Rahman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
2
|
Kim KH, Noh K, Lee J, Lee S, Lee SJ. NEGR1 Modulates Mouse Affective Discrimination by Regulating Adult Olfactory Neurogenesis. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100355. [PMID: 39170714 PMCID: PMC11338060 DOI: 10.1016/j.bpsgos.2024.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 08/23/2024] Open
Abstract
Background Affective recognition and sensory processing are impaired in people with autism. However, no mouse model of autism comanifesting these symptoms is available, thereby limiting the exploration of the relationship between affective recognition and sensory processing in autism and the molecular mechanisms involved. Methods With Negr1 -/- mice, we conducted the affective state discrimination test and an odor habituation/dishabituation test. Data were analyzed using the k-means clustering method. We also employed a whole-cell patch clamp and bromodeoxyuridine incorporation assay to investigate underlying mechanisms. Results When encountering mice exposed to restraint stress or chronic pain, wild-type mice discriminated between them by either approaching the stressed mouse or avoiding the painful mouse, whereas Negr1 -/- mice showed unbiased social interactions with them. Next, we demonstrated that both wild-type and Negr1 -/- mice used their olfaction for social interaction in the experimental context, but Negr1 -/- mice showed aberrant olfactory habituation and dishabituation against social odors. In electrophysiological studies, inhibitory inputs to the mitral cells in the olfactory bulb were increased in Negr1 -/- mice compared with wild-type mice, and subsequently their excitability was decreased. As a potential underlying mechanism, we found that adult neurogenesis in the subventricular zone was diminished in Negr1 -/- mice, which resulted in decreased integration of newly generated inhibitory neurons in the olfactory bulb. Conclusions NEGR1 contributes to mouse affective recognition, possibly by regulating olfactory neurogenesis and subsequent olfactory sensory processing. We propose a novel neurobiological mechanism of autism-related behaviors based on disrupted adult olfactory neurogenesis.
Collapse
Affiliation(s)
- Kwang Hwan Kim
- Department of Brain and Cognitive Science, College of Natural Science, Seoul National University, Seoul, Republic of Korea
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Kyungchul Noh
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Jaesung Lee
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Soojin Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Sung Joong Lee
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Zhang Y, Luo W, Heinricher MM, Ryabinin AE. CFA-treated mice induce hyperalgesia in healthy mice via an olfactory mechanism. Eur J Pain 2024; 28:578-598. [PMID: 37985943 PMCID: PMC10947942 DOI: 10.1002/ejp.2201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Social interactions with subjects experiencing pain can increase nociceptive sensitivity in observers, even without direct physical contact. In previous experiments, extended indirect exposure to soiled bedding from mice with alcohol withdrawal-related hyperalgesia enhanced nociception in their conspecifics. This finding suggested that olfactory cues could be sufficient for nociceptive hypersensitivity in otherwise untreated animals (also known as "bystanders"). AIM The current study addressed this possibility using an inflammation-based hyperalgesia model and long- and short-term exposure paradigms in C57BL/6J mice. MATERIALS & METHOD Adult male and female mice received intraplantar injection of complete Freund's adjuvant (CFA) and were used as stimulus animals to otherwise naïve same-sex bystander mice (BS). Another group of untreated mice (OLF) was simultaneously exposed to the bedding of the stimulus mice. RESULTS In the long-term, 15-day exposure paradigm, the presence of CFA mice or their bedding resulted in reduced von Frey threshold but not Hargreaves paw withdrawal latency in BS or OLF mice. In the short-term paradigm, 1-hr interaction with CFA conspecifics or 1-hr exposure to their bedding induced mechanical hypersensitivity in BS and OLF mice lasting for 3 hrs. Chemical ablation of the main olfactory epithelium prevented bedding-induced and stimulus mice-induced mechanical hypersensitivity. Gas chromatography-mass spectrometry (GC-MS) analysis of the volatile compounds in the bedding of experimental mice revealed that CFA-treated mice released an increased number of compounds indicative of disease states. DISCUSSION AND CONCLUSION These results demonstrate that CFA-induced inflammatory pain can modulate nociception in bystander mice via an olfactory mechanism involving dynamic changes in volatile compounds detectable in the rodent bedding. SIGNIFICANCE Social context can influence nociceptive sensitivity. Recent studies suggested involvement of olfaction in this influence. In agreement with this idea, the present study shows that the presence of mice with inflammatory pain produces nociceptive hypersensitivity in nearby conspecifics. This enhanced nociception occurs via olfactory cues present in the mouse bedding. Analysis of the bedding from mice with inflammatory pain identifies a number of compounds indicative of disease states. These findings demonstrate the importance of olfactory system in influencing pain states.
Collapse
Affiliation(s)
- Yangmiao Zhang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Wentai Luo
- Department of Chemistry, Portland State University, Portland, OR 97207
| | - Mary M. Heinricher
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239
| | - Andrey E. Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
4
|
Papastrat KM, Lis CA, Caprioli D, Pickard H, Puche AC, Ramsey LA, Venniro M. Social odor choice buffers drug craving. Neuropsychopharmacology 2024; 49:731-739. [PMID: 38129664 PMCID: PMC10876954 DOI: 10.1038/s41386-023-01778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Social interactions are rewarding and protective against substance use disorders, but it is unclear which specific aspect of the complex sensory social experience drives these effects. Here, we investigated the role of olfactory sensory experience on social interaction, social preference over cocaine, and cocaine craving in rats. First, we conducted bulbectomy on both male and female rats to evaluate the necessity of olfactory system experience on the acquisition and maintenance of volitional social interaction. Next, we assessed the effect of bulbectomy on rats given a choice between social interaction and cocaine. Finally, we evaluated the influence of olfactory sensory experience by training rats on volitional partner-associated odors, assessing their preference for partner odors over cocaine to achieve voluntary abstinence and assessing its effect on the incubation of cocaine craving. Bulbectomy impaired operant social interaction without affecting food and cocaine self-administration. Rats with intact olfactory systems preferred social interaction over cocaine, while rats with impaired olfactory sense showed a preference for cocaine. Providing access to a partner odor in a choice procedure led to cocaine abstinence, preventing incubation of cocaine craving, in contrast to forced abstinence or non-contingent exposure to cocaine and partner odors. Our data suggests the olfactory sensory experience is necessary and sufficient for volitional social reward. Furthermore, the active preference for partner odors over cocaine buffers drug craving. Based on these findings, translational research should explore the use of social sensory-based treatments utilizing odor-focused foundations for individuals with substance use disorders.
Collapse
Affiliation(s)
- Kimberly M Papastrat
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cody A Lis
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daniele Caprioli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Hanna Pickard
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Philosophy & Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD, USA
| | - Adam C Puche
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Marco Venniro
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Matějková T, Dodoková A, Kreisinger J, Stopka P, Stopková R. Microbial, proteomic, and metabolomic profiling of the estrous cycle in wild house mice. Microbiol Spectr 2024; 12:e0203723. [PMID: 38171017 PMCID: PMC10846187 DOI: 10.1128/spectrum.02037-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
Symbiotic microbial communities affect the host immune system and produce molecules contributing to the odor of an individual. In many mammalian species, saliva and vaginal fluids are important sources of chemical signals that originate from bacterial metabolism and may act as honest signals of health and reproductive status. In this study, we aimed to define oral and vaginal microbiomes and their dynamics throughout the estrous cycle in wild house mice. In addition, we analyzed a subset of vaginal proteomes and metabolomes to detect potential interactions with microbiomes. 16S rRNA sequencing revealed that both saliva and vagina are dominated by Firmicutes and Proteobacteria but differ at the genus level. The oral microbiome is more stable during the estrous cycle and most abundant bacteria belong to the genera Gemella and Streptococcus, while the vaginal microbiome shows higher bacterial diversity and dynamics during the reproductive cycle and is characterized by the dominance of Muribacter and Rodentibacter. These two genera cover around 50% of the bacterial community during estrus. Proteomic profiling of vaginal fluids revealed specific protein patterns associated with different estrous phases. Highly expressed proteins in estrus involve the keratinization process thus providing estrus markers (e.g., Hrnr) while some proteins are downregulated such as immune-related proteins that limit bacterial growth (Camp, Clu, Elane, Lyz2, and Ngp). The vaginal metabolome contains volatile compounds potentially involved in chemical communication, for example, ketones, aldehydes, and esters of carboxylic acids. Data integration of all three OMICs data sets revealed high correlations, thus providing evidence that microbiomes, host proteomes, and metabolomes may interact.IMPORTANCEOur data revealed dynamic changes in vaginal, but not salivary, microbiome composition during the reproductive cycle of wild mice. With multiple OMICs platforms, we provide evidence that changes in microbiota in the vaginal environment are accompanied by changes in the proteomic and metabolomics profiles of the host. This study describes the natural microbiota of wild mice and may contribute to a better understanding of microbiome-host immune system interactions during the hormonal and cellular changes in the female reproductive tract. Moreover, analysis of volatiles in the vaginal fluid shows particular substances that can be involved in chemical communication and reproductive behavior.
Collapse
Affiliation(s)
- Tereza Matějková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Alica Dodoková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Romana Stopková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| |
Collapse
|
6
|
Pang P, Zhou X, Hu Y, Zhang Y, He B, Xu G. Time-series analysis of meteorological factors and emergency department visits due to dog/cat bites in Jinshan area, China. PeerJ 2024; 12:e16758. [PMID: 38250715 PMCID: PMC10800098 DOI: 10.7717/peerj.16758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Background Meteorological factors play an important role in human health. Clarifying the occurrence of dog and cat bites (DCBs) under different meteorological conditions can provide key insights into the prevention of DCBs. Therefore, the objective of the study was to explore the relationship between meteorological factors and DCBs and to provide caution to avoid the incidents that may occur by DCBs. Methods In this study, data on meteorological factors and cases of DCBs were retrospectively collected at the Shanghai Climate Center and Jinshan Hospital of Fudan University, respectively, in 2016-2020. The distributed lag non-linear and time series model (DLNM) were used to examine the effect of meteorological elements on daily hospital visits due to DCBs. Results A total of 26,857 DCBs were collected ranging from 1 to 39 cases per day. The relationship between ambient temperature and DCBs was J-shaped. DCBs were positively correlated with daily mean temperature (rs = 0.588, P < 0.01). The relative risk (RR) of DCBs was associated with high temperature (RR = 1.450; 95% CI [1.220-1.722]). Female was more susceptible to high temperature than male. High temperature increased the risk of DCBs. Conclusions The extremely high temperature increased the risk of injuries caused by DCBs, particularly for females. These data may help to develop public health strategies for potentially avoiding the occurrence of DCBs.
Collapse
Affiliation(s)
- Pei Pang
- Department of Medical Affairs, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyong Zhou
- Department of Medical Affairs, Jinshan Hospital, Fudan University, Shanghai, China
- Emergency Department, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yabin Hu
- Key Lab of Health Technology Assessment, National Health Commission of the People’s Republic of China, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Yin Zhang
- Shanghai Meteorological Service Center, Shanghai, China
| | - Baoshi He
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Agron S, de March CA, Weissgross R, Mishor E, Gorodisky L, Weiss T, Furman-Haran E, Matsunami H, Sobel N. A chemical signal in human female tears lowers aggression in males. PLoS Biol 2023; 21:e3002442. [PMID: 38127837 PMCID: PMC10734982 DOI: 10.1371/journal.pbio.3002442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Rodent tears contain social chemosignals with diverse effects, including blocking male aggression. Human tears also contain a chemosignal that lowers male testosterone, but its behavioral significance was unclear. Because reduced testosterone is associated with reduced aggression, we tested the hypothesis that human tears act like rodent tears to block male aggression. Using a standard behavioral paradigm, we found that sniffing emotional tears with no odor percept reduced human male aggression by 43.7%. To probe the peripheral brain substrates of this effect, we applied tears to 62 human olfactory receptors in vitro. We identified 4 receptors that responded in a dose-dependent manner to this stimulus. Finally, to probe the central brain substrates of this effect, we repeated the experiment concurrent with functional brain imaging. We found that sniffing tears increased functional connectivity between the neural substrates of olfaction and aggression, reducing overall levels of neural activity in the latter. Taken together, our results imply that like in rodents, a human tear-bound chemosignal lowers male aggression, a mechanism that likely relies on the structural and functional overlap in the brain substrates of olfaction and aggression. We suggest that tears are a mammalian-wide mechanism that provides a chemical blanket protecting against aggression.
Collapse
Affiliation(s)
- Shani Agron
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Claire A. de March
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Reut Weissgross
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Eva Mishor
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lior Gorodisky
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Weiss
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Edna Furman-Haran
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Noam Sobel
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Orlichenko A, Qu G, Su KJ, Liu A, Shen H, Deng HW, Wang YP. Identifiability in Functional Connectivity May Unintentionally Inflate Prediction Results. ARXIV 2023:arXiv:2308.01451v1. [PMID: 37576121 PMCID: PMC10418521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Functional magnetic resonance (fMRI) is an invaluable tool in studying cognitive processes in vivo. Many recent studies use functional connectivity (FC), partial correlation connectivity (PC), or fMRI-derived brain networks to predict phenotypes with results that sometimes cannot be replicated. At the same time, FC can be used to identify the same subject from different scans with great accuracy. In this paper, we show a method by which one can unknowingly inflate classification results from 61% accuracy to 86% accuracy by treating longitudinal or contemporaneous scans of the same subject as independent data points. Using the UK Biobank dataset, we find one can achieve the same level of variance explained with 50 training subjects by exploiting identifiability as with 10,000 training subjects without double-dipping. We replicate this effect in four different datasets: the UK Biobank (UKB), the Philadelphia Neurodevelopmental Cohort (PNC), the Bipolar and Schizophrenia Network for Intermediate Phenotypes (BSNIP), and an OpenNeuro Fibromyalgia dataset (Fibro). The unintentional improvement ranges between 7% and 25% in the four datasets. Additionally, we find that by using dynamic functional connectivity (dFC), one can apply this method even when one is limited to a single scan per subject. One major problem is that features such as ROIs or connectivities that are reported alongside inflated results may confuse future work. This article hopes to shed light on how even minor pipeline anomalies may lead to unexpectedly superb results.
Collapse
Affiliation(s)
- Anton Orlichenko
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Gang Qu
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Kuan-Jui Su
- School of Medicine, Tulane University, New Orleans, LA, USA
| | - Anqi Liu
- School of Medicine, Tulane University, New Orleans, LA, USA
| | - Hui Shen
- School of Medicine, Tulane University, New Orleans, LA, USA
| | - Hong-Wen Deng
- School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| |
Collapse
|
9
|
de Groot JHB, Haertl T, Loos HM, Bachmann C, Kontouli A, Smeets MAM. Unraveling the universality of chemical fear communication: evidence from behavioral, genetic, and chemical analyses. Chem Senses 2023; 48:bjad046. [PMID: 37944028 PMCID: PMC10718800 DOI: 10.1093/chemse/bjad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Indexed: 11/12/2023] Open
Abstract
Abundant evidence indicates that humans can communicate threat-related information to conspecifics through their body odors. However, prior research has been primarily conducted on Western (WEIRD) samples. In this study, we aimed to investigate whether threat-related information can be transmitted by individuals of East Asian descent who carry a single-nucleotide polymorphism (SNP) 538G → A in the ABCC11 gene, which significantly reduces (noticeable) body odor. To examine this, we recruited 18 self-identified male East Asian AA-homozygotes and 18 self-identified male Western individuals who were carriers of the functional G-allele. We collected samples of their fear-related and neutral body odors. Subsequently, we conducted a double-blind behavioral experiment in which we presented these samples to 69 self-identified female participants of Western Caucasian and East Asian backgrounds. The participants were asked to rate faces that were morphed between expressions of fear and disgust. Notably, despite the "odorless" phenotypical expression of the ABCC11-mutation in East Asians, their fear odor caused a perceptual fear bias in both East Asian and Caucasian receivers. This finding leaves open the possibility of universal fear chemosignaling. Additionally, we conducted exploratory chemical analysis to gain initial insights into the chemical composition of the body odors presented. In a subsequent pre-registered behavioral study (N = 33), we found that exposure to hexadecanoic acid, an abundant compound in the fear and neutral body odor samples, was sufficient to reproduce the observed behavioral effects. While exploratory, these findings provide insight into how specific chemical components can drive chemical fear communication.
Collapse
Affiliation(s)
- Jasper H B de Groot
- Behavioural Science Institute, Radboud University, Nijmegen, 6525 XZ, the Netherlands
| | - Tobias Haertl
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Helene M Loos
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
- Department of Chemistry and Pharmacy, Fraunhofer Institute for Process Engineering and Packaging, Freising 85354, Germany
| | - Christin Bachmann
- Department of Social, Health, & Organizational Psychology, Utrecht University, Utrecht, 3584 CS, the Netherlands
| | - Athanasia Kontouli
- Department of Social, Health, & Organizational Psychology, Utrecht University, Utrecht, 3584 CS, the Netherlands
| | - Monique A M Smeets
- Department of Social, Health, & Organizational Psychology, Utrecht University, Utrecht, 3584 CS, the Netherlands
| |
Collapse
|
10
|
Ravreby I, Snitz K, Sobel N. There is chemistry in social chemistry. SCIENCE ADVANCES 2022; 8:eabn0154. [PMID: 35749498 PMCID: PMC9232116 DOI: 10.1126/sciadv.abn0154] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/10/2022] [Indexed: 05/20/2023]
Abstract
Nonhuman terrestrial mammals sniff themselves and each other to decide who is friend or foe. Humans also sniff themselves and each other, but the function of this is unknown. Because humans seek friends who are similar to themselves, we hypothesized that humans may smell themselves and others to subconsciously estimate body odor similarity, which, in turn, may promote friendship. To test this, we recruited nonromantic same-sex friend dyads and harvested their body odor. We found that objective ratings obtained with an electronic nose, and subjective ratings obtained from independent human smellers converged to suggest that friends smell more similar to each other than random dyads. Last, we recruited complete strangers, smelled them with an electronic nose, and engaged them in nonverbal same-sex dyadic interactions. We observed that dyads who smelled more similar had more positive dyadic interactions. In other words, we could predict social bonding with an electronic nose. We conclude that there is indeed chemistry in social chemistry.
Collapse
|
11
|
Eisenstein M. Sniffing out smell's effects on human behaviour. Nature 2022; 606:S18-S20. [PMID: 35732777 DOI: 10.1038/d41586-022-01632-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|