1
|
Cunningham K, Anderson DJ, Weissbourd B. Jellyfish for the study of nervous system evolution and function. Curr Opin Neurobiol 2024; 88:102903. [PMID: 39167996 DOI: 10.1016/j.conb.2024.102903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024]
Abstract
Jellyfish comprise a diverse clade of free-swimming predators that arose prior to the Cambrian explosion. They play major roles in ocean ecosystems via a suite of complex foraging, reproductive, and defensive behaviors. These behaviors arise from decentralized, regenerative nervous systems composed of body parts that generate the appropriate part-specific behaviors autonomously following excision. Here, we discuss the organization of jellyfish nervous systems and opportunities afforded by the recent development of a genetically tractable jellyfish model for systems and evolutionary neuroscience.
Collapse
Affiliation(s)
- Karen Cunningham
- Department of Biology and The Picower Institute for Learning and Memory, MIT, Cambridge, MA, 02139, USA
| | - David J Anderson
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Tianqiao and Chrissy Chen Institute for Neuroscience, Caltech, Pasadena, CA 91125, USA.
| | - Brandon Weissbourd
- Department of Biology and The Picower Institute for Learning and Memory, MIT, Cambridge, MA, 02139, USA.
| |
Collapse
|
2
|
Kim S, Badhiwala KN, Duret G, Robinson JT. Phototaxis is a satiety-dependent behavioral sequence in Hydra vulgaris. J Exp Biol 2024; 227:jeb247503. [PMID: 39155640 PMCID: PMC11449437 DOI: 10.1242/jeb.247503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Understanding how internal states such as satiety are connected to animal behavior is a fundamental question in neuroscience. Hydra vulgaris, a freshwater cnidarian with only 12 neuronal cell types, serves as a tractable model system for studying state-dependent behaviors. We found that starved hydras consistently move towards light, while fed hydras do not. By modeling this behavior as a set of three sequences of head orientation, jump distance and jump rate, we demonstrate that the satiety state only affects the rate of the animal jumping to a new position, while the orientation and jump distance are unaffected. These findings yield insights into how internal states in a simple organism, Hydra, affect specific elements of a behavior, and offer general principles for studying the relationship between state-dependent behaviors and their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Soonyoung Kim
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | | | - Guillaume Duret
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Jacob T Robinson
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Chari T, Gorin G, Pachter L. Biophysically interpretable inference of cell types from multimodal sequencing data. NATURE COMPUTATIONAL SCIENCE 2024; 4:677-689. [PMID: 39317762 DOI: 10.1038/s43588-024-00689-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/08/2024] [Indexed: 09/26/2024]
Abstract
Multimodal, single-cell genomics technologies enable simultaneous measurement of multiple facets of DNA and RNA processing in the cell. This creates opportunities for transcriptome-wide, mechanistic studies of cellular processing in heterogeneous cell populations, such as regulation of cell fate by transcriptional stochasticity or tumor proliferation through aberrant splicing dynamics. However, current methods for determining cell types or 'clusters' in multimodal data often rely on ad hoc approaches to balance or integrate measurements, and assumptions ignoring inherent properties of the data. To enable interpretable and consistent cell cluster determination, we present meK-means (mechanistic K-means) which integrates modalities through a unifying model of transcription to learn underlying, shared biophysical states. With meK-means we can cluster cells with nascent and mature mRNA measurements, utilizing the causal, physical relationships between these modalities. This identifies shared transcription dynamics across cells, which induce the observed molecule counts, and provides an alternative definition for 'clusters' through the governing parameters of cellular processes.
Collapse
Affiliation(s)
- Tara Chari
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
4
|
Fröhlich D, Bodner M, Raspotnig G, Hahn C. Simple protocol for combined extraction of exocrine secretions and RNA in small arthropods. Biol Methods Protoc 2024; 9:bpae054. [PMID: 39131584 PMCID: PMC11316613 DOI: 10.1093/biomethods/bpae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024] Open
Abstract
The integration of data from multiple sources and analytical techniques to obtain novel insights and answer challenging questions is a hallmark of modern science. In arthropods, exocrine secretions may act as pheromones, defensive substances, antibiotics, as well as surface protectants, and as such they play a crucial role in ecology and evolution. Exocrine chemical compounds are frequently characterized by gas chromatography-mass spectrometry. Technological advances of recent years now allow us to routinely characterize the total gene complement transcribed in a particular biological tissue, often in the context of experimental treatment, via RNAseq. We here introduce a novel methodological approach to successfully characterize exocrine secretions and full transcriptomes of one and the same individual of oribatid mites. We found that chemical extraction prior to RNA extraction had only minor effects on the total RNA integrity. De novo transcriptomes obtained from such combined extractions were of comparable quality to those assembled for samples that were subject to RNA extraction only, indicating that combined chemical/RNA extraction is perfectly suitable for phylotranscriptomic studies. However, in-depth analysis of RNA expression analysis indicates that chemical extraction prior to RNAseq may affect transcript degradation rates, similar to the effects reported in previous studies comparing RNA extraction protocols. With this pilot study, we demonstrate that profiling chemical secretions and RNA expression levels from the same individual is methodologically feasible, paving the way for future research to understand the genes and pathways underlying the syntheses of biogenic chemical compounds. Our approach should be applicable broadly to most arachnids, insects, and other arthropods.
Collapse
Affiliation(s)
- David Fröhlich
- Department of Biology, University of Graz, Graz, 8010, Austria
| | - Michaela Bodner
- Department of Biology, University of Graz, Graz, 8010, Austria
| | | | - Christoph Hahn
- Department of Biology, University of Graz, Graz, 8010, Austria
| |
Collapse
|
5
|
Dong Z, Wang F, Liu Y, Li Y, Yu H, Peng S, Sun T, Qu M, Sun K, Wang L, Ma Y, Chen K, Zhao J, Lin Q. Genomic and single-cell analyses reveal genetic signatures of swimming pattern and diapause strategy in jellyfish. Nat Commun 2024; 15:5936. [PMID: 39009560 PMCID: PMC11250803 DOI: 10.1038/s41467-024-49848-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
Jellyfish exhibit innovative swimming patterns that contribute to exploring the origins of animal locomotion. However, the genetic and cellular basis of these patterns remains unclear. Herein, we generated chromosome-level genome assemblies of two jellyfish species, Turritopsis rubra and Aurelia coerulea, which exhibit straight and free-swimming patterns, respectively. We observe positive selection of numerous genes involved in statolith formation, hair cell ciliogenesis, ciliary motility, and motor neuron function. The lineage-specific absence of otolith morphogenesis- and ciliary movement-related genes in T. rubra may be associated with homeostatic structural statocyst loss and straight swimming pattern. Notably, single-cell transcriptomic analyses covering key developmental stages reveal the enrichment of diapause-related genes in the cyst during reverse development, suggesting that the sustained diapause state favours the development of new polyps under favourable conditions. This study highlights the complex relationship between genetics, locomotion patterns and survival strategies in jellyfish, thereby providing valuable insights into the evolutionary lineages of movement and adaptation in the animal kingdom.
Collapse
Affiliation(s)
- Zhijun Dong
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Fanghan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yali Liu
- University of Chinese Academy of Sciences, Beijing, 100101, China
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yongxue Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Haiyan Yu
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Saijun Peng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Tingting Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Meng Qu
- University of Chinese Academy of Sciences, Beijing, 100101, China
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Ke Sun
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Lei Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuanqing Ma
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, Shandong, 264006, China
| | - Kai Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jianmin Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Qiang Lin
- University of Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
6
|
Schnitzler CE, Chang ES, Waletich J, Quiroga-Artigas G, Wong WY, Nguyen AD, Barreira SN, Doonan LB, Gonzalez P, Koren S, Gahan JM, Sanders SM, Bradshaw B, DuBuc TQ, Febrimarsa, de Jong D, Nawrocki EP, Larson A, Klasfeld S, Gornik SG, Moreland RT, Wolfsberg TG, Phillippy AM, Mullikin JC, Simakov O, Cartwright P, Nicotra M, Frank U, Baxevanis AD. The genome of the colonial hydroid Hydractinia reveals that their stem cells use a toolkit of evolutionarily shared genes with all animals. Genome Res 2024; 34:498-513. [PMID: 38508693 PMCID: PMC11067881 DOI: 10.1101/gr.278382.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Hydractinia is a colonial marine hydroid that shows remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, Hydractinia symbiolongicarpus and Hydractinia echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell-type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from nonself.
Collapse
Affiliation(s)
- Christine E Schnitzler
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - E Sally Chang
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Justin Waletich
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Gonzalo Quiroga-Artigas
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France
| | - Wai Yee Wong
- Department for Neurosciences and Developmental Biology, University of Vienna, 1030 Vienna, Austria
| | - Anh-Dao Nguyen
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sofia N Barreira
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Liam B Doonan
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
| | - Paul Gonzalez
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sergey Koren
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - James M Gahan
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Steven M Sanders
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Brian Bradshaw
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
| | - Timothy Q DuBuc
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
| | - Febrimarsa
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
- Pharmaceutical Biology Laboratory, Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Jawa Tengah 57169, Indonesia
| | - Danielle de Jong
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Eric P Nawrocki
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alexandra Larson
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
| | - Samantha Klasfeld
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sebastian G Gornik
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
- Center for Organismal Studies, University of Heidelberg, 69117 Heidelberg, Germany
| | - R Travis Moreland
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tyra G Wolfsberg
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Adam M Phillippy
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - James C Mullikin
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- NIH Intramural Sequencing Center, Rockville, Maryland 20852, USA
| | - Oleg Simakov
- Department for Neurosciences and Developmental Biology, University of Vienna, 1030 Vienna, Austria
| | - Paulyn Cartwright
- Department of Evolution and Ecology, University of Kansas, Lawrence, Kansas 66045, USA
| | - Matthew Nicotra
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Uri Frank
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
| | - Andreas D Baxevanis
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
7
|
Morizet D, Foucher I, Alunni A, Bally-Cuif L. Reconstruction of macroglia and adult neurogenesis evolution through cross-species single-cell transcriptomic analyses. Nat Commun 2024; 15:3306. [PMID: 38632253 PMCID: PMC11024210 DOI: 10.1038/s41467-024-47484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
Macroglia fulfill essential functions in the adult vertebrate brain, producing and maintaining neurons and regulating neuronal communication. However, we still know little about their emergence and diversification. We used the zebrafish D. rerio as a distant vertebrate model with moderate glial diversity as anchor to reanalyze datasets covering over 600 million years of evolution. We identify core features of adult neurogenesis and innovations in the mammalian lineage with a potential link to the rarity of radial glia-like cells in adult humans. Our results also suggest that functions associated with astrocytes originated in a multifunctional cell type fulfilling both neural stem cell and astrocytic functions before these diverged. Finally, we identify conserved elements of macroglial cell identity and function and their time of emergence during evolution.
Collapse
Affiliation(s)
- David Morizet
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, F-75015, Paris, France.
- Sorbonne Université, Collège doctoral, F-75005, Paris, France.
| | - Isabelle Foucher
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, F-75015, Paris, France
| | - Alessandro Alunni
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, F-75015, Paris, France
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR9197, F-91190, Gif-sur-Yvette, France
| | - Laure Bally-Cuif
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, F-75015, Paris, France.
| |
Collapse
|
8
|
Sierra NC, Gold DA. The evolution of cnidarian stinging cells supports a Precambrian radiation of animal predators. Evol Dev 2024; 26:e12469. [PMID: 38236185 DOI: 10.1111/ede.12469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/22/2023] [Accepted: 12/31/2023] [Indexed: 01/19/2024]
Abstract
Cnidarians-the phylum including sea anemones, corals, jellyfish, and hydroids-are one of the oldest groups of predatory animals. Nearly all cnidarians are carnivores that use stinging cells called cnidocytes to ensnare and/or envenom their prey. However, there is considerable diversity in cnidocyte form and function. Tracing the evolutionary history of cnidocytes may therefore provide a proxy for early animal feeding strategies. In this study, we generated a time-calibrated molecular clock of cnidarians and performed ancestral state reconstruction on 12 cnidocyte types to test the hypothesis that the original cnidocyte was involved in prey capture. We conclude that the first cnidarians had only the simplest and least specialized cnidocyte type (the isorhiza) which was just as likely to be used for adhesion and/or defense as the capture of prey. A rapid diversification of specialized cnidocytes occurred through the Ediacaran (~654-574 million years ago), with major subgroups developing unique sets of cnidocytes to match their distinct feeding styles. These results are robust to changes in the molecular clock model, and are consistent with growing evidence for an Ediacaran diversification of animals. Our work also provides insight into the evolution of this complex cell type, suggesting that convergence of forms is rare, with the mastigophore being an interesting counterexample.
Collapse
Affiliation(s)
- Noémie C Sierra
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, USA
- Integrative Genetics and Genomics, University of California, Davis, Davis, California, USA
| | - David A Gold
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, USA
- Integrative Genetics and Genomics, University of California, Davis, Davis, California, USA
| |
Collapse
|
9
|
Li Y, Xu P, Sun T, Peng S, Wang F, Wang L, Xing Y, Wang W, Zhao J, Dong Z. Environmental and molecular regulation of diapause formation in a scyphozoan jellyfish. Mol Ecol 2024; 33:e17249. [PMID: 38133544 DOI: 10.1111/mec.17249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Understanding the mechanisms underlying diapause formation is crucial for gaining insight into adaptive survival strategies across various species. In this study, we aimed to uncover the pivotal role of temperature and food availability in regulating diapausing podocyst formation in the jellyfish Aurelia coerulea. Furthermore, we explored the cellular and molecular basis of diapause formation using single-cell RNA sequencing. Our results showed cell-type-specific transcriptional landscapes during podocyst formation, which were underscored by the activation of specific transcription factors and signalling pathways. In addition, we found that the heat shock protein-coding genes HSC70 and HSP90a potentially act as hub genes that regulate podocyst formation. Finally, we mapped the single-cell atlas of diapausing podocysts and identified cell types involved in metabolism, environmental sensing, defence and development that may collectively contribute to the long-term survival and regulated excystment of diapausing podocysts. Taken together, the findings of this study provide novel insights into the molecular mechanisms that regulate diapause formation and contributes to a better understanding of adaptive survival strategies in a variety of ecological contexts.
Collapse
Affiliation(s)
- Yongxue Li
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengzhen Xu
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Sun
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Saijun Peng
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fanghan Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| | - Yixuan Xing
- Yantai University, School of Life Sciences, Yantai, Shandong, China
| | - Wenhui Wang
- Yantai University, School of Life Sciences, Yantai, Shandong, China
| | - Jianmin Zhao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhijun Dong
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Ye F, Wang J, Li J, Mei Y, Guo G. Mapping Cell Atlases at the Single-Cell Level. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305449. [PMID: 38145338 PMCID: PMC10885669 DOI: 10.1002/advs.202305449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/01/2023] [Indexed: 12/26/2023]
Abstract
Recent advancements in single-cell technologies have led to rapid developments in the construction of cell atlases. These atlases have the potential to provide detailed information about every cell type in different organisms, enabling the characterization of cellular diversity at the single-cell level. Global efforts in developing comprehensive cell atlases have profound implications for both basic research and clinical applications. This review provides a broad overview of the cellular diversity and dynamics across various biological systems. In addition, the incorporation of machine learning techniques into cell atlas analyses opens up exciting prospects for the field of integrative biology.
Collapse
Affiliation(s)
- Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
- Liangzhu LaboratoryZhejiang UniversityHangzhouZhejiang311121China
| | - Jingjing Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
- Liangzhu LaboratoryZhejiang UniversityHangzhouZhejiang311121China
| | - Jiaqi Li
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
| | - Yuqing Mei
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
| | - Guoji Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
- Liangzhu LaboratoryZhejiang UniversityHangzhouZhejiang311121China
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative MedicineDr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineHangzhouZhejiang310058China
- Institute of HematologyZhejiang UniversityHangzhouZhejiang310000China
| |
Collapse
|
11
|
Kaplan HS, Logeman BL, Zhang K, Santiago C, Sohail N, Naumenko S, Ho Sui SJ, Ginty DD, Ren B, Dulac C. Sensory Input, Sex, and Function Shape Hypothalamic Cell Type Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576835. [PMID: 38328205 PMCID: PMC10849564 DOI: 10.1101/2024.01.23.576835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mammalian behavior and physiology undergo dramatic changes in early life. Young animals rely on conspecifics to meet their homeostatic needs, until weaning and puberty initiate nutritional independence and sex-specific social interactions, respectively. How neuronal populations regulating homeostatic functions and social behaviors develop and mature during these transitions remains unclear. We used paired transcriptomic and chromatin accessibility profiling to examine the developmental trajectories of neuronal populations in the hypothalamic preoptic region, where cell types with key roles in physiological and behavioral control have been identified1-6. These data reveal a remarkable diversity of developmental trajectories shaped by the sex of the animal, and the location and behavioral or physiological function of the corresponding cell types. We identify key stages of preoptic development, including the perinatal emergence of sex differences, postnatal maturation and subsequent refinement of signaling networks, and nonlinear transcriptional changes accelerating at the time of weaning and puberty. We assessed preoptic development in various sensory mutants and find a major role for vomeronasal sensing in the timing of preoptic cell type maturation. These results provide novel insights into the development of neurons controlling homeostatic functions and social behaviors and lay ground for examining the dynamics of these functions in early life.
Collapse
Affiliation(s)
- Harris S. Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Brandon L. Logeman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Kai Zhang
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
- Current address: Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Celine Santiago
- Department of Neurobiology, Harvard Medical School, Howard Hughes Medical Institute, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Noor Sohail
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
| | - Serhiy Naumenko
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
- Newborn Screening Ontario, Ottawa, ON, Canada
| | - Shannan J. Ho Sui
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
| | - David D. Ginty
- Department of Neurobiology, Harvard Medical School, Howard Hughes Medical Institute, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
12
|
Bump P, Lubeck L. Marine Invertebrates One Cell at A Time: Insights from Single-Cell Analysis. Integr Comp Biol 2023; 63:999-1009. [PMID: 37188638 PMCID: PMC10714908 DOI: 10.1093/icb/icad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023] Open
Abstract
Over the past decade, single-cell RNA-sequencing (scRNA-seq) has made it possible to study the cellular diversity of a broad range of organisms. Technological advances in single-cell isolation and sequencing have expanded rapidly, allowing the transcriptomic profile of individual cells to be captured. As a result, there has been an explosion of cell type atlases created for many different marine invertebrate species from across the tree of life. Our focus in this review is to synthesize current literature on marine invertebrate scRNA-seq. Specifically, we provide perspectives on key insights from scRNA-seq studies, including descriptive studies of cell type composition, how cells respond in dynamic processes such as development and regeneration, and the evolution of new cell types. Despite these tremendous advances, there also lie several challenges ahead. We discuss the important considerations that are essential when making comparisons between experiments, or between datasets from different species. Finally, we address the future of single-cell analyses in marine invertebrates, including combining scRNA-seq data with other 'omics methods to get a fuller understanding of cellular complexities. The full diversity of cell types across marine invertebrates remains unknown and understanding this diversity and evolution will provide rich areas for future study.
Collapse
Affiliation(s)
- Paul Bump
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Lauren Lubeck
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| |
Collapse
|
13
|
Fujita S, Takahashi M, Kumano G, Kuranaga E, Miura M, Nakajima YI. Distinct stem-like cell populations facilitate functional regeneration of the Cladonema medusa tentacle. PLoS Biol 2023; 21:e3002435. [PMID: 38127832 PMCID: PMC10734932 DOI: 10.1371/journal.pbio.3002435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Blastema formation is a crucial process that provides a cellular source for regenerating tissues and organs. While bilaterians have diversified blastema formation methods, its mechanisms in non-bilaterians remain poorly understood. Cnidarian jellyfish, or medusae, represent early-branching metazoans that exhibit complex morphology and possess defined appendage structures highlighted by tentacles with stinging cells (nematocytes). Here, we investigate the mechanisms of tentacle regeneration, using the hydrozoan jellyfish Cladonema pacificum. We show that proliferative cells accumulate at the tentacle amputation site and form a blastema composed of cells with stem cell morphology. Nucleoside pulse-chase experiments indicate that most repair-specific proliferative cells (RSPCs) in the blastema are distinct from resident stem cells. We further demonstrate that resident stem cells control nematogenesis and tentacle elongation during both homeostasis and regeneration as homeostatic stem cells, while RSPCs preferentially differentiate into epithelial cells in the newly formed tentacle, analogous to lineage-restricted stem/progenitor cells observed in salamander limbs. Taken together, our findings propose a regeneration mechanism that utilizes both resident homeostatic stem cells (RHSCs) and RSPCs, which in conjunction efficiently enable functional appendage regeneration, and provide novel insight into the diversification of blastema formation across animal evolution.
Collapse
Affiliation(s)
- Sosuke Fujita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Mako Takahashi
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Aomori, Japan
| | - Gaku Kumano
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Aomori, Japan
| | - Erina Kuranaga
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Masayuki Miura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yu-ichiro Nakajima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
14
|
Lee EEL, O'Malley-Krohn I, Edsinger E, Wu S, Malamy J. Epithelial wound healing in Clytia hemisphaerica provides insights into extracellular ATP signaling mechanisms and P2XR evolution. Sci Rep 2023; 13:18819. [PMID: 37914720 PMCID: PMC10620158 DOI: 10.1038/s41598-023-45424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023] Open
Abstract
Epithelial wound healing involves the collective responses of many cells, including those at the wound margin (marginal cells) and those that lack direct contact with the wound (submarginal cells). How these responses are induced and coordinated to produce rapid, efficient wound healing remains poorly understood. Extracellular ATP (eATP) is implicated as a signal in epithelial wound healing in vertebrates. However, the role of eATP in wound healing in vivo and the cellular responses to eATP are unclear. Almost nothing is known about eATP signaling in non-bilaterian metazoans (Cnidaria, Ctenophora, Placozoa, and Porifera). Here, we show that eATP promotes closure of epithelial wounds in vivo in the cnidarian Clytia hemisphaerica (Clytia) indicating that eATP signaling is an evolutionarily ancient strategy in wound healing. Furthermore, eATP increases F-actin accumulation at the edges of submarginal cells. In Clytia, this indicates eATP is involved in coordinating cellular responses during wound healing, acting in part by promoting actin remodeling in cells at a distance from the wound. We also present evidence that eATP activates a cation channel in Clytia epithelial cells. This implies that the eATP signal is transduced through a P2X receptor (P2XR). Phylogenetic analyses identified four Clytia P2XR homologs and revealed two deeply divergent major branches in P2XR evolution, necessitating revision of current models. Interestingly, simple organisms such as cellular slime mold appear exclusively on one branch, bilaterians are found exclusively on the other, and many non-bilaterian metazoans, including Clytia, have P2XR sequences from both branches. Together, these results re-draw the P2XR evolutionary tree, provide new insights into the origin of eATP signaling in wound healing, and demonstrate that the cytoskeleton of submarginal cells is a target of eATP signaling.
Collapse
Affiliation(s)
- Elizabeth E L Lee
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Isabel O'Malley-Krohn
- Biological Sciences Collegiate Division, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Eric Edsinger
- Whitney Laboratory for Marine Biosciences, University of Florida, 9505 N Ocean Shore Blvd, St. Augustine, FL, 32080, USA
| | - Stephanie Wu
- Biological Sciences Collegiate Division, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Jocelyn Malamy
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA.
| |
Collapse
|
15
|
Najle SR, Grau-Bové X, Elek A, Navarrete C, Cianferoni D, Chiva C, Cañas-Armenteros D, Mallabiabarrena A, Kamm K, Sabidó E, Gruber-Vodicka H, Schierwater B, Serrano L, Sebé-Pedrós A. Stepwise emergence of the neuronal gene expression program in early animal evolution. Cell 2023; 186:4676-4693.e29. [PMID: 37729907 PMCID: PMC10580291 DOI: 10.1016/j.cell.2023.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/13/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
The assembly of the neuronal and other major cell type programs occurred early in animal evolution. We can reconstruct this process by studying non-bilaterians like placozoans. These small disc-shaped animals not only have nine morphologically described cell types and no neurons but also show coordinated behaviors triggered by peptide-secreting cells. We investigated possible neuronal affinities of these peptidergic cells using phylogenetics, chromatin profiling, and comparative single-cell genomics in four placozoans. We found conserved cell type expression programs across placozoans, including populations of transdifferentiating and cycling cells, suggestive of active cell type homeostasis. We also uncovered fourteen peptidergic cell types expressing neuronal-associated components like the pre-synaptic scaffold that derive from progenitor cells with neurogenesis signatures. In contrast, earlier-branching animals like sponges and ctenophores lacked this conserved expression. Our findings indicate that key neuronal developmental and effector gene modules evolved before the advent of cnidarian/bilaterian neurons in the context of paracrine cell signaling.
Collapse
Affiliation(s)
- Sebastián R Najle
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Xavier Grau-Bové
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anamaria Elek
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Navarrete
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Damiano Cianferoni
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Chiva
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Didac Cañas-Armenteros
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Arrate Mallabiabarrena
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Kai Kamm
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Harald Gruber-Vodicka
- Max Planck Institute for Marine Microbiology, Bremen, Germany; Zoological Institute, Christian Albrechts University, Kiel, Germany
| | - Bernd Schierwater
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany; American Museum of Natural History, Richard Gilder Graduate School, NY, USA
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Barcelona, Spain
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Barcelona, Spain.
| |
Collapse
|
16
|
Brunet T. Cell contractility in early animal evolution. Curr Biol 2023; 33:R966-R985. [PMID: 37751712 DOI: 10.1016/j.cub.2023.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Tissue deformation mediated by collective cell contractility is a signature characteristic of animals. In most animals, fast and reversible contractions of muscle cells mediate behavior, while slow and irreversible contractions of epithelial or mesenchymal cells play a key role in morphogenesis. Animal tissue contractility relies on the activity of the actin/myosin II complex (together referred to as 'actomyosin'), an ancient and versatile molecular machinery that performs a broad range of functions in development and physiology. This review synthesizes emerging insights from morphological and molecular studies into the evolutionary history of animal contractile tissue. The most ancient functions of actomyosin are cell crawling and cytokinesis, which are found in a wide variety of unicellular eukaryotes and in individual metazoan cells. Another contractile functional module, apical constriction, is universal in metazoans and shared with choanoflagellates, their closest known living relatives. The evolution of animal contractile tissue involved two key innovations: firstly, the ability to coordinate and integrate actomyosin assembly across multiple cells, notably to generate supracellular cables, which ensure tissue integrity but also allow coordinated morphogenesis and movements at the organism scale; and secondly, the evolution of dedicated contractile cell types for adult movement, belonging to two broad categories respectively defined by the expression of the fast (striated-type) and slow (smooth/non-muscle-type) myosin II paralogs. Both contractile cell types ancestrally resembled generic contractile epithelial or mesenchymal cells and might have played a versatile role in both behavior and morphogenesis. Modern animal contractile cells span a continuum between unspecialized contractile epithelia (which underlie behavior in modern placozoans), epithelia with supracellular actomyosin cables (found in modern sponges), epitheliomuscular tissues (with a concentration of actomyosin cables in basal processes, for example in sea anemones), and specialized muscle tissue that has lost most or all epithelial properties (as in ctenophores, jellyfish and bilaterians). Recent studies in a broad range of metazoans have begun to reveal the molecular basis of these transitions, powered by the elaboration of the contractile apparatus and the evolution of 'core regulatory complexes' of transcription factors specifying contractile cell identity.
Collapse
Affiliation(s)
- Thibaut Brunet
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, 25-28 Rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
17
|
Chari T, Gorin G, Pachter L. Biophysically Interpretable Inference of Cell Types from Multimodal Sequencing Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.17.558131. [PMID: 37745403 PMCID: PMC10516047 DOI: 10.1101/2023.09.17.558131] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Multimodal, single-cell genomics technologies enable simultaneous capture of multiple facets of DNA and RNA processing in the cell. This creates opportunities for transcriptome-wide, mechanistic studies of cellular processing in heterogeneous cell types, with applications ranging from inferring kinetic differences between cells, to the role of stochasticity in driving heterogeneity. However, current methods for determining cell types or 'clusters' present in multimodal data often rely on ad hoc or independent treatment of modalities, and assumptions ignoring inherent properties of the count data. To enable interpretable and consistent cell cluster determination from multimodal data, we present meK-Means (mechanistic K-Means) which integrates modalities and learns underlying, shared biophysical states through a unifying model of transcription. In particular, we demonstrate how meK-Means can be used to cluster cells from unspliced and spliced mRNA count modalities. By utilizing the causal, physical relationships underlying these modalities, we identify shared transcriptional kinetics across cells, which induce the observed gene expression profiles, and provide an alternative definition for 'clusters' through the governing parameters of cellular processes.
Collapse
Affiliation(s)
- Tara Chari
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Gennady Gorin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California
| |
Collapse
|
18
|
Amini S, Doyle JJ, Libault M. The evolving definition of plant cell type. FRONTIERS IN PLANT SCIENCE 2023; 14:1271070. [PMID: 37692436 PMCID: PMC10485272 DOI: 10.3389/fpls.2023.1271070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Affiliation(s)
- Sahand Amini
- Center for Plant Science Innovation, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Jeffrey J. Doyle
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, United States
- School of Integrative Plant Science, Plant Breeding & Genetics Section, Cornell University, Ithaca, NY, United States
| | - Marc Libault
- Center for Plant Science Innovation, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
- Single Cell Genomics Core Facility, Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
19
|
Gahan JM, Cartwright P, Nicotra ML, Schnitzler CE, Steinmetz PRH, Juliano CE. Cnidofest 2022: hot topics in cnidarian research. EvoDevo 2023; 14:13. [PMID: 37620964 PMCID: PMC10463417 DOI: 10.1186/s13227-023-00217-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
The second annual Cnidarian Model Systems Meeting, aka "Cnidofest", took place in Davis, California from 7 to 10th of September, 2022. The meeting brought together scientists using cnidarians to study molecular and cellular biology, development and regeneration, evo-devo, neurobiology, symbiosis, physiology, and comparative genomics. The diversity of topics and species represented in presentations highlighted the importance and versatility of cnidarians in addressing a wide variety of biological questions. In keeping with the spirit of the first meeting (and its predecessor, Hydroidfest), almost 75% of oral presentations were given by early career researchers (i.e., graduate students and postdocs). In this review, we present research highlights from the meeting.
Collapse
Affiliation(s)
- James M Gahan
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- Michael Sars Centre, University of Bergen, Thormøhlensgt. 55, 5008, Bergen, Norway
| | - Paulyn Cartwright
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| | - Matthew L Nicotra
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Christine E Schnitzler
- Whitney Laboratory for Marine Bioscience and Department of Biology, University of Florida, St. Augustine, FL, 32080, USA
| | | | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
20
|
De Jonghe J, Kaminski TS, Morse DB, Tabaka M, Ellermann AL, Kohler TN, Amadei G, Handford CE, Findlay GM, Zernicka-Goetz M, Teichmann SA, Hollfelder F. spinDrop: a droplet microfluidic platform to maximise single-cell sequencing information content. Nat Commun 2023; 14:4788. [PMID: 37553326 PMCID: PMC10409775 DOI: 10.1038/s41467-023-40322-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023] Open
Abstract
Droplet microfluidic methods have massively increased the throughput of single-cell sequencing campaigns. The benefit of scale-up is, however, accompanied by increased background noise when processing challenging samples and the overall RNA capture efficiency is lower. These drawbacks stem from the lack of strategies to enrich for high-quality material or specific cell types at the moment of cell encapsulation and the absence of implementable multi-step enzymatic processes that increase capture. Here we alleviate both bottlenecks using fluorescence-activated droplet sorting to enrich for droplets that contain single viable cells, intact nuclei, fixed cells or target cell types and use reagent addition to droplets by picoinjection to perform multi-step lysis and reverse transcription. Our methodology increases gene detection rates fivefold, while reducing background noise by up to half. We harness these properties to deliver a high-quality molecular atlas of mouse brain development, despite starting with highly damaged input material, and provide an atlas of nascent RNA transcription during mouse organogenesis. Our method is broadly applicable to other droplet-based workflows to deliver sensitive and accurate single-cell profiling at a reduced cost.
Collapse
Affiliation(s)
- Joachim De Jonghe
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Francis Crick Institute, London, United Kingdom
| | - Tomasz S Kaminski
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - David B Morse
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Marcin Tabaka
- International Centre for Translational Eye Research, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Anna L Ellermann
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Timo N Kohler
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Gianluca Amadei
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Charlotte E Handford
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | | | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, USA
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
21
|
Hopkins BR, Barmina O, Kopp A. A single-cell atlas of the sexually dimorphic Drosophila foreleg and its sensory organs during development. PLoS Biol 2023; 21:e3002148. [PMID: 37379332 DOI: 10.1371/journal.pbio.3002148] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/03/2023] [Indexed: 06/30/2023] Open
Abstract
To respond to the world around them, animals rely on the input of a network of sensory organs distributed throughout the body. Distinct classes of sensory organs are specialized for the detection of specific stimuli such as strain, pressure, or taste. The features that underlie this specialization relate both to the neurons that innervate sensory organs and the accessory cells they comprise. To understand the genetic basis of this diversity of cell types, both within and between sensory organs, we performed single-cell RNA sequencing on the first tarsal segment of the male Drosophila melanogaster foreleg during pupal development. This tissue displays a wide variety of functionally and structurally distinct sensory organs, including campaniform sensilla, mechanosensory bristles, and chemosensory taste bristles, as well as the sex comb, a recently evolved male-specific structure. In this study, we characterize the cellular landscape in which the sensory organs reside, identify a novel cell type that contributes to the construction of the neural lamella, and resolve the transcriptomic differences among support cells within and between sensory organs. We identify the genes that distinguish between mechanosensory and chemosensory neurons, resolve a combinatorial transcription factor code that defines 4 distinct classes of gustatory neurons and several types of mechanosensory neurons, and match the expression of sensory receptor genes to specific neuron classes. Collectively, our work identifies core genetic features of a variety of sensory organs and provides a rich, annotated resource for studying their development and function.
Collapse
Affiliation(s)
- Ben R Hopkins
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Olga Barmina
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| |
Collapse
|
22
|
Holstein TW. The Hydra stem cell system - Revisited. Cells Dev 2023; 174:203846. [PMID: 37121433 DOI: 10.1016/j.cdev.2023.203846] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
Cnidarians are >600 million years old and are considered the sister group of Bilateria based on numerous molecular phylogenetic studies. Apart from Hydra, the genomes of all major clades of Cnidaria have been uncovered (e.g. Aurelia, Clytia, Nematostella and Acropora) and they reveal a remarkable completeness of the metazoan genomic toolbox. Of particular interest is Hydra, a model system of aging research, regenerative biology, and stem cell biology. With the knowledge gained from scRNA research, it is now possible to characterize the expression profiles of all cell types with great precision. In functional studies, our picture of the Hydra stem cell biology has changed, and we are in the process of obtaining a clear picture of the homeostasis and properties of the different stem cell populations. Even though Hydra is often compared to plant systems, the new data on germline and regeneration, but also on the dynamics and plasticity of the nervous system, show that Hydra with its simple body plan represents in a nutshell the prototype of an animal with stem cell lineages, whose properties correspond in many ways to Bilateria. This review provides an overview of the four stem cell lineages, the two epithelial lineages that constitute the ectoderm and the endoderm, as well as the multipotent somatic interstitial lineage (MPSC) and the germline stem cell lineage (GSC), also known as the interstitial cells of Hydra.
Collapse
Affiliation(s)
- Thomas W Holstein
- Heidelberg University, Centre for Organismal Studies (COS), Molecular Evolution and Genomics, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany.
| |
Collapse
|
23
|
Scully T, Klein A. A mannitol-based buffer improves single-cell RNA sequencing of high-salt marine cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538465. [PMID: 37163054 PMCID: PMC10168337 DOI: 10.1101/2023.04.26.538465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) enables discovery of novel cell states by transcriptomic profiling with minimal prior knowledge, making it useful for studying non-model organisms. For most marine organisms, however, cells are viable at a higher salinity than is compatible with scRNA-seq, impacting data quality and cell representation. We show that a low-salinity phosphate buffer supplemented with D-mannitol (PBS-M) enables higher-quality scRNA-seq of blood cells from the tunicate Ciona robusta. Using PBS-M reduces cell death and ambient mRNA, revealing cell states not otherwise detected. This simple protocol modification could enable or improve scRNA-seq for the majority of marine organisms.
Collapse
Affiliation(s)
- Tal Scully
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Allon Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Lechable M, Tang X, Siebert S, Feldbacher A, Fernández-Quintero ML, Breuker K, Juliano CE, Liedl KR, Hobmayer B, Hartl M. High Intrinsic Oncogenic Potential in the Myc-Box-Deficient Hydra Myc3 Protein. Cells 2023; 12:cells12091265. [PMID: 37174665 PMCID: PMC10177328 DOI: 10.3390/cells12091265] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The proto-oncogene myc has been intensively studied primarily in vertebrate cell culture systems. Myc transcription factors control fundamental cellular processes such as cell proliferation, cell cycle control and stem cell maintenance. Myc interacts with the Max protein and Myc/Max heterodimers regulate thousands of target genes. The genome of the freshwater polyp Hydra encodes four myc genes (myc1-4). Previous structural and biochemical characterization showed that the Hydra Myc1 and Myc2 proteins share high similarities with vertebrate c-Myc, and their expression patterns suggested a function in adult stem cell maintenance. In contrast, an additional Hydra Myc protein termed Myc3 is highly divergent, lacking the common N-terminal domain and all conserved Myc-boxes. Single cell transcriptome analysis revealed that the myc3 gene is expressed in a distinct population of interstitial precursor cells committed to nerve- and gland-cell differentiation, where the Myc3 protein may counteract the stemness actions of Myc1 and Myc2 and thereby allow the implementation of a differentiation program. In vitro DNA binding studies showed that Myc3 dimerizes with Hydra Max, and this dimer efficiently binds to DNA containing the canonical Myc consensus motif (E-box). In vivo cell transformation assays in avian fibroblast cultures further revealed an unexpected high potential for oncogenic transformation in the conserved Myc3 C-terminus, as compared to Hydra Myc2 or Myc1. Structure modeling of the Myc3 protein predicted conserved amino acid residues in its bHLH-LZ domain engaged in Myc3/Max dimerization. Mutating these amino acid residues in the human c-Myc (MYC) sequence resulted in a significant decrease in its cell transformation potential. We discuss our findings in the context of oncogenic transformation and cell differentiation, both relevant for human cancer, where Myc represents a major driver.
Collapse
Affiliation(s)
- Marion Lechable
- Institute of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Xuechen Tang
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Inorganic and Theoretical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Angelika Feldbacher
- Institute of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Monica L Fernández-Quintero
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Inorganic and Theoretical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Organic Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Klaus R Liedl
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Inorganic and Theoretical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Bert Hobmayer
- Institute of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus Hartl
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Biochemistry, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
25
|
Rusin LY. Evolution of homology: From archetype towards a holistic concept of cell type. J Morphol 2023; 284:e21569. [PMID: 36789784 DOI: 10.1002/jmor.21569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The concept of homology lies in the heart of comparative biological science. The distinction between homology as structure and analogy as function has shaped the evolutionary paradigm for a century and formed the axis of comparative anatomy and embryology, which accept the identity of structure as a ground measure of relatedness. The advent of single-cell genomics overturned the classical view of cell homology by establishing a backbone regulatory identity of cell types, the basic biological units bridging the molecular and phenotypic dimensions, to reveal that the cell is the most flexible unit of living matter and that many approaches of classical biology need to be revised to understand evolution and diversity at the cellular level. The emerging theory of cell types explicitly decouples cell identity from phenotype, essentially allowing for the divergence of evolutionarily related morphotypes beyond recognition, as well as it decouples ontogenetic cell lineage from cell-type phylogeny, whereby explicating that cell types can share common descent regardless of their structure, function or developmental origin. The article succinctly summarizes current progress and opinion in this field and formulates a more generalistic view of biological cell types as avatars, transient or terminal cell states deployed in a continuum of states by the developmental programme of one and the same omnipotent cell, capable of changing or combining identities with distinct evolutionary histories or inventing ad hoc identities that never existed in evolution or development. It highlights how the new logic grounded in the regulatory nature of cell identity transforms the concepts of cell homology and phenotypic stability, suggesting that cellular evolution is inherently and massively network-like, with one-to-one homologies being rather uncommon and restricted to shallower levels of the animal tree of life.
Collapse
Affiliation(s)
- Leonid Y Rusin
- Laboratory for Mathematic Methods and Models in Bioinformatics, Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
- EvoGenome Analytics LLC, Odintsovo, Moscow Region, Russia
| |
Collapse
|
26
|
Garg N, Štibler UK, Eismann B, Mercker M, Bergheim BG, Linn A, Tuchscherer P, Engel U, Redl S, Marciniak-Czochra A, Holstein TW, Hess MW, Özbek S. Non-muscle myosin II drives critical steps of nematocyst morphogenesis. iScience 2023; 26:106291. [PMID: 36936784 PMCID: PMC10014300 DOI: 10.1016/j.isci.2023.106291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/04/2022] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Nematocysts are generated by secretion of proteins into a post-Golgi compartment. They consist of a capsule that elongates into a long tube, which is coiled inside the capsule matrix and expelled during its nano-second discharge deployed for prey capture. The driving force for discharge is an extreme osmotic pressure of 150 bar. The complex processes of tube elongation and invagination under these biomechanical constraints have so far been elusive. Here, we show that a non-muscle myosin II homolog (HyNMII) is essential for nematocyst formation in Hydra. In early nematocysts, HyNMII assembles to a collar around the neck of the protruding tube. HyNMII then facilitates tube outgrowth by compressing it along the longitudinal axis as evidenced by inhibitor treatment and genetic knockdown. In addition, live imaging of a NOWA::NOWA-GFP transgenic line, which re-defined NOWA as a tube component facilitating invagination, allowed us to analyze the impact of HyNMII on tube maturation.
Collapse
Affiliation(s)
- Niharika Garg
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Urška Knez Štibler
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Björn Eismann
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Moritz Mercker
- Institute for Applied Mathematics, Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Bruno Gideon Bergheim
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Anna Linn
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Patrizia Tuchscherer
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Ulrike Engel
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
- Nikon Imaging Center at the University of Heidelberg, Bioquant, Heidelberg University, 69120 Heidelberg, Germany
| | - Stefan Redl
- Institute of Neuroanatomy, Medical University of Innsbruck, Müllerstrasse 59, 6020 Innsbruck, Austria
- Institute of Zoology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Anna Marciniak-Czochra
- Institute for Applied Mathematics, Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Thomas W. Holstein
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Michael W. Hess
- Institute of Histology and Embryology, Medical University of Innsbruck, Müllerstrasse 59, 6020 Innsbruck, Austria
| | - Suat Özbek
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| |
Collapse
|
27
|
Cazet JF, Siebert S, Little HM, Bertemes P, Primack AS, Ladurner P, Achrainer M, Fredriksen MT, Moreland RT, Singh S, Zhang S, Wolfsberg TG, Schnitzler CE, Baxevanis AD, Simakov O, Hobmayer B, Juliano CE. A chromosome-scale epigenetic map of the Hydra genome reveals conserved regulators of cell state. Genome Res 2023; 33:283-298. [PMID: 36639202 PMCID: PMC10069465 DOI: 10.1101/gr.277040.122] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The epithelial and interstitial stem cells of the freshwater polyp Hydra are the best-characterized stem cell systems in any cnidarian, providing valuable insight into cell type evolution and the origin of stemness in animals. However, little is known about the transcriptional regulatory mechanisms that determine how these stem cells are maintained and how they give rise to their diverse differentiated progeny. To address such questions, a thorough understanding of transcriptional regulation in Hydra is needed. To this end, we generated extensive new resources for characterizing transcriptional regulation in Hydra, including new genome assemblies for Hydra oligactis and the AEP strain of Hydra vulgaris, an updated whole-animal single-cell RNA-seq atlas, and genome-wide maps of chromatin interactions, chromatin accessibility, sequence conservation, and histone modifications. These data revealed the existence of large kilobase-scale chromatin interaction domains in the Hydra genome that contain transcriptionally coregulated genes. We also uncovered the transcriptomic profiles of two previously molecularly uncharacterized cell types: isorhiza-type nematocytes and somatic gonad ectoderm. Finally, we identified novel candidate regulators of cell type-specific transcription, several of which have likely been conserved at least since the divergence of Hydra and the jellyfish Clytia hemisphaerica more than 400 million years ago.
Collapse
Affiliation(s)
- Jack F Cazet
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
- Lyell Immunopharma, South San Francisco, California 94080, USA
| | - Hannah Morris Little
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | - Philip Bertemes
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Abby S Primack
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | - Peter Ladurner
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Matthias Achrainer
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Mark T Fredriksen
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - R Travis Moreland
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sumeeta Singh
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Suiyuan Zhang
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tyra G Wolfsberg
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Christine E Schnitzler
- Whitney Laboratory for Marine Bioscience and Department of Biology, University of Florida, St. Augustine, Florida 32080, USA
| | - Andreas D Baxevanis
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Oleg Simakov
- Department of Molecular Evolution and Development, University of Vienna, 1010 Vienna, Austria
| | - Bert Hobmayer
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA;
| |
Collapse
|
28
|
Henke K, Farmer DT, Niu X, Kraus JM, Galloway JL, Youngstrom DW. Genetically engineered zebrafish as models of skeletal development and regeneration. Bone 2023; 167:116611. [PMID: 36395960 PMCID: PMC11080330 DOI: 10.1016/j.bone.2022.116611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Zebrafish (Danio rerio) are aquatic vertebrates with significant homology to their terrestrial counterparts. While zebrafish have a centuries-long track record in developmental and regenerative biology, their utility has grown exponentially with the onset of modern genetics. This is exemplified in studies focused on skeletal development and repair. Herein, the numerous contributions of zebrafish to our understanding of the basic science of cartilage, bone, tendon/ligament, and other skeletal tissues are described, with a particular focus on applications to development and regeneration. We summarize the genetic strengths that have made the zebrafish a powerful model to understand skeletal biology. We also highlight the large body of existing tools and techniques available to understand skeletal development and repair in the zebrafish and introduce emerging methods that will aid in novel discoveries in skeletal biology. Finally, we review the unique contributions of zebrafish to our understanding of regeneration and highlight diverse routes of repair in different contexts of injury. We conclude that zebrafish will continue to fill a niche of increasing breadth and depth in the study of basic cellular mechanisms of skeletal biology.
Collapse
Affiliation(s)
- Katrin Henke
- Department of Orthopaedics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - D'Juan T Farmer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA.
| | - Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jessica M Kraus
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
29
|
Bove CB, Ingersoll MV, Davies SW. Help Me, Symbionts, You're My Only Hope: Approaches to Accelerate our Understanding of Coral Holobiont Interactions. Integr Comp Biol 2022; 62:1756-1769. [PMID: 36099871 DOI: 10.1093/icb/icac141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 01/05/2023] Open
Abstract
Tropical corals construct the three-dimensional framework for one of the most diverse ecosystems on the planet, providing habitat to a plethora of species across taxa. However, these ecosystem engineers are facing unprecedented challenges, such as increasing disease prevalence and marine heatwaves associated with anthropogenic global change. As a result, major declines in coral cover and health are being observed across the world's oceans, often due to the breakdown of coral-associated symbioses. Here, we review the interactions between the major symbiotic partners of the coral holobiont-the cnidarian host, algae in the family Symbiodiniaceae, and the microbiome-that influence trait variation, including the molecular mechanisms that underlie symbiosis and the resulting physiological benefits of different microbial partnerships. In doing so, we highlight the current framework for the formation and maintenance of cnidarian-Symbiodiniaceae symbiosis, and the role that immunity pathways play in this relationship. We emphasize that understanding these complex interactions is challenging when you consider the vast genetic variation of the cnidarian host and algal symbiont, as well as their highly diverse microbiome, which is also an important player in coral holobiont health. Given the complex interactions between and among symbiotic partners, we propose several research directions and approaches focused on symbiosis model systems and emerging technologies that will broaden our understanding of how these partner interactions may facilitate the prediction of coral holobiont phenotype, especially under rapid environmental change.
Collapse
Affiliation(s)
- Colleen B Bove
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
30
|
Colgren J, Burkhardt P. The premetazoan ancestry of the synaptic toolkit and appearance of first neurons. Essays Biochem 2022; 66:781-795. [PMID: 36205407 PMCID: PMC9750855 DOI: 10.1042/ebc20220042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022]
Abstract
Neurons, especially when coupled with muscles, allow animals to interact with and navigate through their environment in ways unique to life on earth. Found in all major animal lineages except sponges and placozoans, nervous systems range widely in organization and complexity, with neurons possibly representing the most diverse cell-type. This diversity has led to much debate over the evolutionary origin of neurons as well as synapses, which allow for the directed transmission of information. The broad phylogenetic distribution of neurons and presence of many of the defining components outside of animals suggests an early origin of this cell type, potentially in the time between the first animal and the last common ancestor of extant animals. Here, we highlight the occurrence and function of key aspects of neurons outside of animals as well as recent findings from non-bilaterian animals in order to make predictions about when and how the first neuron(s) arose during animal evolution and their relationship to those found in extant lineages. With advancing technologies in single cell transcriptomics and proteomics as well as expanding functional techniques in non-bilaterian animals and the close relatives of animals, it is an exciting time to begin unraveling the complex evolutionary history of this fascinating animal cell type.
Collapse
Affiliation(s)
- Jeffrey Colgren
- Sars International Centre for Marine Molecular Biology, University of Bergen, Norway
| | - Pawel Burkhardt
- Sars International Centre for Marine Molecular Biology, University of Bergen, Norway
| |
Collapse
|
31
|
Ye F, Zhang G, E. W, Chen H, Yu C, Yang L, Fu Y, Li J, Fu S, Sun Z, Fei L, Guo Q, Wang J, Xiao Y, Wang X, Zhang P, Ma L, Ge D, Xu S, Caballero-Pérez J, Cruz-Ramírez A, Zhou Y, Chen M, Fei JF, Han X, Guo G. Construction of the axolotl cell landscape using combinatorial hybridization sequencing at single-cell resolution. Nat Commun 2022; 13:4228. [PMID: 35869072 PMCID: PMC9307617 DOI: 10.1038/s41467-022-31879-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 07/08/2022] [Indexed: 01/01/2023] Open
Abstract
The Mexican axolotl (Ambystoma mexicanum) is a well-established tetrapod model for regeneration and developmental studies. Remarkably, neotenic axolotls may undergo metamorphosis, a process that triggers many dramatic changes in diverse organs, accompanied by gradually decline of their regeneration capacity and lifespan. However, the molecular regulation and cellular changes in neotenic and metamorphosed axolotls are still poorly investigated. Here, we develop a single-cell sequencing method based on combinatorial hybridization to generate a tissue-based transcriptomic landscape of the neotenic and metamorphosed axolotls. We perform gene expression profiling of over 1 million single cells across 19 tissues to construct the first adult axolotl cell landscape. Comparison of single-cell transcriptomes between the tissues of neotenic and metamorphosed axolotls reveal the heterogeneity of non-immune parenchymal cells in different tissues and established their regulatory network. Furthermore, we describe dynamic gene expression patterns during limb development in neotenic axolotls. This system-level single-cell analysis of molecular characteristics in neotenic and metamorphosed axolotls, serves as a resource to explore the molecular identity of the axolotl and facilitates better understanding of metamorphosis. The Mexican axolotl is a well-established tetrapod model for regeneration and development. Here the authors report a scRNA-seq method to profile neotenic, metamorphic and limb development stages, highlighting unique perturbation patterns of cell type-related gene expression throughout metamorphosis.
Collapse
|
32
|
Tissue dissociation for single-cell and single-nuclei RNA sequencing for low amounts of input material. Front Zool 2022; 19:27. [DOI: 10.1186/s12983-022-00472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background
Recent technological advances opened the opportunity to simultaneously study gene expression for thousands of individual cells on a genome-wide scale. The experimental accessibility of such single-cell RNA sequencing (scRNAseq) approaches allowed gaining insights into the cell type composition of heterogeneous tissue samples of animal model systems and emerging models alike. A major prerequisite for a successful application of the method is the dissociation of complex tissues into individual cells, which often requires large amounts of input material and harsh mechanical, chemical and temperature conditions. However, the availability of tissue material may be limited for small animals, specific organs, certain developmental stages or if samples need to be acquired from collected specimens. Therefore, we evaluated different dissociation protocols to obtain single cells from small tissue samples of Drosophila melanogaster eye-antennal imaginal discs.
Results
We show that a combination of mechanical and chemical dissociation resulted in sufficient high-quality cells. As an alternative, we tested protocols for the isolation of single nuclei, which turned out to be highly efficient for fresh and frozen tissue samples. Eventually, we performed scRNAseq and single-nuclei RNA sequencing (snRNAseq) to show that the best protocols for both methods successfully identified relevant cell types. At the same time, snRNAseq resulted in less artificial gene expression that is caused by rather harsh dissociation conditions needed to obtain single cells for scRNAseq. A direct comparison of scRNAseq and snRNAseq data revealed that both datasets share biologically relevant genes among the most variable genes, and we showed differences in the relative contribution of the two approaches to identified cell types.
Conclusion
We present two dissociation protocols that allow isolating single cells and single nuclei, respectively, from low input material. Both protocols resulted in extraction of high-quality RNA for subsequent scRNAseq or snRNAseq applications. If tissue availability is limited, we recommend the snRNAseq procedure of fresh or frozen tissue samples as it is perfectly suited to obtain thorough insights into cellular diversity of complex tissue.
Collapse
|
33
|
siRNA-mediated gene knockdown via electroporation in hydrozoan jellyfish embryos. Sci Rep 2022; 12:16049. [PMID: 36180523 PMCID: PMC9525680 DOI: 10.1038/s41598-022-20476-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
As the sister group to bilaterians, cnidarians stand in a unique phylogenetic position that provides insight into evolutionary aspects of animal development, physiology, and behavior. While cnidarians are classified into two types, sessile polyps and free-swimming medusae, most studies at the cellular and molecular levels have been conducted on representative polyp-type cnidarians and have focused on establishing techniques of genetic manipulation. Recently, gene knockdown by delivery of short hairpin RNAs into eggs via electroporation has been introduced in two polyp-type cnidarians, Nematostella vectensis and Hydractinia symbiolongicarpus, enabling systematic loss-of-function experiments. By contrast, current methods of genetic manipulation for most medusa-type cnidarians, or jellyfish, are quite limited, except for Clytia hemisphaerica, and reliable techniques are required to interrogate function of specific genes in different jellyfish species. Here, we present a method to knock down target genes by delivering small interfering RNA (siRNA) into fertilized eggs via electroporation, using the hydrozoan jellyfish, Clytia hemisphaerica and Cladonema paciificum. We show that siRNAs targeting endogenous GFP1 and Wnt3 in Clytia efficiently knock down gene expression and result in known planula phenotypes: loss of green fluorescence and defects in axial patterning, respectively. We also successfully knock down endogenous Wnt3 in Cladonema by siRNA electroporation, which circumvents the technical difficulty of microinjecting small eggs. Wnt3 knockdown in Cladonema causes gene expression changes in axial markers, suggesting a conserved Wnt/β-catenin-mediated pathway that controls axial polarity during embryogenesis. Our gene-targeting siRNA electroporation method is applicable to other animals, including and beyond jellyfish species, and will facilitate the investigation and understanding of myriad aspects of animal development.
Collapse
|
34
|
Paganos P, Ronchi P, Carl J, Mizzon G, Martinez P, Benvenuto G, Arnone MI. Integrating single cell transcriptomics and volume electron microscopy confirms the presence of pancreatic acinar-like cells in sea urchins. Front Cell Dev Biol 2022; 10:991664. [PMID: 36060803 PMCID: PMC9437490 DOI: 10.3389/fcell.2022.991664] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023] Open
Abstract
The identity and function of a given cell type relies on the differential expression of gene batteries that promote diverse phenotypes and functional specificities. Therefore, the identification of the molecular and morphological fingerprints of cell types across taxa is essential for untangling their evolution. Here we use a multidisciplinary approach to identify the molecular and morphological features of an exocrine, pancreas-like cell type harbored within the sea urchin larval gut. Using single cell transcriptomics, we identify various cell populations with a pancreatic-like molecular fingerprint that are enriched within the S. purpuratus larva digestive tract. Among these, in the region where they reside, the midgut/stomach domain, we find that populations of exocrine pancreas-like cells have a unique regulatory wiring distinct from the rest the of the cell types of the same region. Furthermore, Serial Block-face scanning Electron Microscopy (SBEM) of the exocrine cells shows that this reported molecular diversity is associated to distinct morphological features that reflect the physiological and functional properties of this cell type. Therefore, we propose that these sea urchin exocrine cells are homologous to the well-known mammalian pancreatic acinar cells and thus we trace the origin of this particular cell type to the time of deuterostome diversification. Overall, our approach allows a thorough characterization of a complex cell type and shows how both the transcriptomic and morphological information contribute to disentangling the evolution of cell types and organs such as the pancreatic cells and pancreas.
Collapse
Affiliation(s)
| | - Paolo Ronchi
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jil Carl
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Giulia Mizzon
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Pedro Martinez
- Institut Català de Recerca i Estudis Avancats (ICREA), Barcelona, Spain,Genetics Department, University of Barcelona, Barcelona, Spain
| | | | - Maria Ina Arnone
- Stazione Zoologica Anton Dohrn (SZN), Naples, Italy,*Correspondence: Maria Ina Arnone,
| |
Collapse
|
35
|
Single-nucleus RNA-sequencing in pre-cellularization Drosophila melanogaster embryos. PLoS One 2022; 17:e0270471. [PMID: 35749552 PMCID: PMC9232161 DOI: 10.1371/journal.pone.0270471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/10/2022] [Indexed: 12/13/2022] Open
Abstract
Our current understanding of the regulation of gene expression in the early Drosophila melanogaster embryo comes from observations of a few genes at a time, as with in situ hybridizations, or observation of gene expression levels without regards to patterning, as with RNA-sequencing. Single-nucleus RNA-sequencing however, has the potential to provide new insights into the regulation of gene expression for many genes at once while simultaneously retaining information regarding the position of each nucleus prior to dissociation based on patterned gene expression. In order to establish the use of single-nucleus RNA sequencing in Drosophila embryos prior to cellularization, here we look at gene expression in control and insulator protein, dCTCF, maternal null embryos during zygotic genome activation at nuclear cycle 14. We find that early embryonic nuclei can be grouped into distinct clusters according to gene expression. From both virtual and published in situ hybridizations, we also find that these clusters correspond to spatial regions of the embryo. Lastly, we provide a resource of candidate differentially expressed genes that might show local changes in gene expression between control and maternal dCTCF null nuclei with no detectable differential expression in bulk. These results highlight the potential for single-nucleus RNA-sequencing to reveal new insights into the regulation of gene expression in the early Drosophila melanogaster embryo.
Collapse
|
36
|
Abstract
Neurons are the fundamental building blocks of nervous systems. It appears intuitive that the human brain is made up of hundreds, if not thousands different types of neurons. Conversely, the seemingly diffuse nerve net of Cnidaria is often assumed to be simple. However, evidence that the Cnidaria nervous system is indeed simple is sparse. Recent technical advances make it possible to assess the diversity and function of neurons with unprecedented resolution. Transgenic animals expressing genetically encoded Calcium sensors allow direct physiological assessments of neural responses within the nerve net and provide insight into the spatial organization of the nervous system. Moreover, response and activity patterns allow the characterization of cell types on a functional level. Molecular and genetic identities on the other hand can be assessed combining single-cell transcriptomic analysis with correlations of gene expression in defined neurons. Here I review recent advances on these two experimental strategies focusing on Hydra, Nematostella, and Clytia.
Collapse
Affiliation(s)
- Simon G Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
37
|
A novel regulatory gene promotes novel cell fate by suppressing ancestral fate in the sea anemone Nematostella vectensis. Proc Natl Acad Sci U S A 2022; 119:e2113701119. [PMID: 35500123 PMCID: PMC9172639 DOI: 10.1073/pnas.2113701119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this study, we demonstrate how a new cell type can arise through duplication of an ancestral cell type followed by functional divergence of the new daughter cell. Specifically, we show that stinging cells in a cnidarian (namely, a sea anemone) emerged by duplication of an ancestral neuron followed by inhibition of the RFamide neuropeptide it once secreted. This finding is evidence that stinging cells evolved from a specific subtype of neurons and suggests other neuronal subtypes may have been coopted for other novel secretory functions. Cnidocytes (i.e., stinging cells) are an unequivocally novel cell type used by cnidarians (i.e., corals, jellyfish, and their kin) to immobilize prey. Although they are known to share a common evolutionary origin with neurons, the developmental program that promoted the emergence of cnidocyte fate is not known. Using functional genomics in the sea anemone, Nematostella vectensis, we show that cnidocytes develop by suppression of neural fate in a subset of neurons expressing RFamide. We further show that a single regulatory gene, a C2H2-type zinc finger transcription factor (ZNF845), coordinates both the gain of novel (cnidocyte-specific) traits and the inhibition of ancestral (neural) traits during cnidocyte development and that this gene arose by domain shuffling in the stem cnidarian. Thus, we report a mechanism by which a truly novel regulatory gene (ZNF845) promotes the development of a truly novel cell type (cnidocyte) through duplication of an ancestral cell lineage (neuron) and inhibition of its ancestral identity (RFamide).
Collapse
|
38
|
Rathbun LI, Everett CA, Bergstralh DT. Emerging Cnidarian Models for the Study of Epithelial Polarity. Front Cell Dev Biol 2022; 10:854373. [PMID: 35433674 PMCID: PMC9012326 DOI: 10.3389/fcell.2022.854373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial tissues are vital to the function of most organs, providing critical functions such as secretion, protection, and absorption. Cells within an epithelial layer must coordinate to create functionally distinct apical, lateral, and basal surfaces in order to maintain proper organ function and organism viability. This is accomplished through the careful targeting of polarity factors to their respective locations within the cell, as well as the strategic placement of post-mitotic cells within the epithelium during tissue morphogenesis. The process of establishing and maintaining epithelial tissue integrity is conserved across many species, as important polarity factors and spindle orientation mechanisms can be found in many phyla. However, most of the information gathered about these processes and players has been investigated in bilaterian organisms such as C. elegans, Drosophila, and vertebrate species. This review discusses the advances made in the field of epithelial polarity establishment from more basal organisms, and the advantages to utilizing these simpler models. An increasing number of cnidarian model organisms have been sequenced in recent years, such as Hydra vulgaris and Nematostella vectensis. It is now feasible to investigate how polarity is established and maintained in basal organisms to gain an understanding of the most basal requirements for epithelial tissue morphogenesis.
Collapse
|
39
|
Houliston E, Leclère L, Munro C, Copley RR, Momose T. Past, present and future of Clytia hemisphaerica as a laboratory jellyfish. Curr Top Dev Biol 2022; 147:121-151. [PMID: 35337447 DOI: 10.1016/bs.ctdb.2021.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The hydrozoan species Clytia hemisphaerica was selected in the mid-2000s to address the cellular and molecular basis of body axis specification in a cnidarian, providing a reliable daily source of gametes and building on a rich foundation of experimental embryology. The many practical advantages of this species include genetic uniformity of laboratory jellyfish, derived clonally from easily-propagated polyp colonies. Phylogenetic distance from other laboratory models adds value in providing an evolutionary perspective on many biological questions. Here we outline the current state of the art regarding available experimental approaches and in silico resources, and illustrate the contributions of Clytia to understanding embryo patterning mechanisms, oogenesis and regeneration. Looking forward, the recent establishment of transgenesis methods is now allowing gene function and imaging studies at adult stages, making Clytia particularly attractive for whole organism biology studies across fields and extending its scientific impact far beyond the original question of interest.
Collapse
Affiliation(s)
- Evelyn Houliston
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France.
| | - Lucas Leclère
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France
| | - Catriona Munro
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France; Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, Paris, France
| | - Richard R Copley
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France
| | - Tsuyoshi Momose
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France
| |
Collapse
|
40
|
Weissbourd B, Momose T, Nair A, Kennedy A, Hunt B, Anderson DJ. A genetically tractable jellyfish model for systems and evolutionary neuroscience. Cell 2021; 184:5854-5868.e20. [PMID: 34822783 PMCID: PMC8629132 DOI: 10.1016/j.cell.2021.10.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/30/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022]
Abstract
Jellyfish are radially symmetric organisms without a brain that arose more than 500 million years ago. They achieve organismal behaviors through coordinated interactions between autonomously functioning body parts. Jellyfish neurons have been studied electrophysiologically, but not at the systems level. We introduce Clytia hemisphaerica as a transparent, genetically tractable jellyfish model for systems and evolutionary neuroscience. We generate stable F1 transgenic lines for cell-type-specific conditional ablation and whole-organism GCaMP imaging. Using these tools and computational analyses, we find that an apparently diffuse network of RFamide-expressing umbrellar neurons is functionally subdivided into a series of spatially localized subassemblies whose synchronous activation controls directional food transfer from the tentacles to the mouth. These data reveal an unanticipated degree of structured neural organization in this species. Clytia affords a platform for systems-level studies of neural function, behavior, and evolution within a clade of marine organisms with growing ecological and economic importance.
Collapse
Affiliation(s)
- Brandon Weissbourd
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Tsuyoshi Momose
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Aditya Nair
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ann Kennedy
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA
| | - Bridgett Hunt
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA
| | - David J Anderson
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|