1
|
Zhao Z, Zhang P, Zhao Y, Wang L, Zhang J, Bu F, Zhou W, Zhao R, Zhang X, Lv Z, Liu Y, Xia Y, Zhang W, Zhao T, Chao D, Li W, Zhao D. Versatile synthesis of uniform mesoporous superparticles from stable monomicelle units. Nat Protoc 2024:10.1038/s41596-024-01073-0. [PMID: 39537994 DOI: 10.1038/s41596-024-01073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/13/2024] [Indexed: 11/16/2024]
Abstract
Superstructures with architectural complexity and unique functionalities are promising for a variety of practical applications in many fields, including mechanics, sensing, photonics, catalysis, drug delivery and energy storage/conversion. In the past five years, a number of attempts have been made to build superparticles based on amphiphilic polymeric micelle units, but most have failed owing to their inherent poor stability. Determining how to stabilize micelles and control their superassembly is critical to obtaining the desired mesoporous superparticles. Here we provide a detailed procedure for the preparation of ultrastable polymeric monomicelle building units, the creation of a library of ultrasmall organic-inorganic nanohybrids, the modular superassembly of monomicelles into hierarchical superstructures and creation of novel multilevel mesoporous superstructures. The protocol enables precise control of the number of monomicelle units and the derived mesopores for superparticles. We show that ultrafine nanohybrids display enhanced mechanical antipressure performance compared with pristine polymeric micelles, and describe the functional characterization of mesoporous superstructures that exhibit excellent oxygen reduction reactivity. Except for the time (4.5 d) needed for the preparation of the triblock polystyrene-block-poly(4-vinylpyridine)-block-poly(ethylene oxide) PS-PVP-PEO or the polystyrene-block-poly(acrylic acid)-block-poly(ethylene oxide) (PS-PAA-PEO) copolymer, the synthesis of the ultrastable monomicelle, ultrafine organic-inorganic nanohybrids, hierarchical superstructures and mesoporous superparticles require ~6, 30, 8 and 24 h, respectively. The time needed for all characterizations and applications are 18 and 10 h, respectively.
Collapse
Affiliation(s)
- Zaiwang Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.
| | - Pengfei Zhang
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Yujuan Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Lipeng Wang
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Jie Zhang
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Fanxing Bu
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Wanhai Zhou
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Ruizheng Zhao
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Xingmiao Zhang
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Zirui Lv
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Yupu Liu
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Yuan Xia
- School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an, China
| | - Wei Zhang
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Tiancong Zhao
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Dongliang Chao
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Wei Li
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China.
| | - Dongyuan Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Tang Y, Shi Y, Su Y, Cao S, Hu J, Zhou H, Sun Y, Liu Z, Zhang S, Xue H, Pang H. Enhanced Capacitive Deionization of Hollow Mesoporous Carbon Spheres/MOFs Derived Nanocomposites by Interface-Coating and Space-Encapsulating Design. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403802. [PMID: 39140249 PMCID: PMC11497006 DOI: 10.1002/advs.202403802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/29/2024] [Indexed: 08/15/2024]
Abstract
Exploring new carbon-based electrode materials is quite necessary for enhancing capacitive deionization (CDI). Here, hollow mesoporous carbon spheres (HMCSs)/metal-organic frameworks (MOFs) derived carbon materials (NC(M)/HMCSs and NC(M)@HMCSs) are successfully prepared by interface-coating and space-encapsulating design, respectively. The obtained NC(M)/HMCSs and NC(M)@HMCSs possess a hierarchical hollow nanoarchitecture with abundant nitrogen doping, high specific surface area, and abundant meso-/microporous pores. These merits are conducive to rapid ion diffusion and charge transfer during the adsorption process. Compared to NC(M)/HMCSs, NC(M)@HMCSs exhibit superior electrochemical performance due to their better utilization of the internal space of hollow carbon, forming an interconnected 3D framework. In addition, the introduction of Ni ions is more conducive to the synergistic effect between ZIF(M)-derived carbon and N-doped carbon shell compared with other ions (Mn, Co, Cu ions). The resultant Ni-1-800-based CDI device exhibits excellent salt adsorption capacity (SAC, 37.82 mg g-1) and good recyclability. This will provide a new direction for the MOF nanoparticle-driven assembly strategy and the application of hierarchical hollow carbon nanoarchitecture to CDI.
Collapse
Affiliation(s)
- Yijian Tang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Yuxin Shi
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Yichun Su
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Shuai Cao
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Jinliang Hu
- Jiangsu Yangnong Chemical Group Co. Ltd.Yangzhou225009P. R. China
| | - Huijie Zhou
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Yangyang Sun
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Zheng Liu
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Songtao Zhang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Huaiguo Xue
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| |
Collapse
|
3
|
Pi Y, Li H, Liu J. Design of hollow structured nanoreactors for liquid-phase hydrogenations. Chem Commun (Camb) 2024; 60:9340-9351. [PMID: 39118564 DOI: 10.1039/d4cc02837f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Inspired by the attractive structures and functions of natural matter (such as cells, organelles and enzymes), chemists are constantly exploring innovative material platforms to mimic natural catalytic systems, particularly liquid-phase hydrogenations, which are of great significance for chemical upgrading and synthesis. Hollow structured nanoreactors (HSNRs), featuring unique nanoarchitectures and advantageous properties, offer new opportunities for achieving excellent catalytic activity, selectivity, stability and sustainability. Notwithstanding the great progress made in HSNRs, there still remain the challenges of precise synthetic chemistry, and mesoscale catalytic kinetic investigation, and smart catalysis. To this extent, we provide an overview of recent developments in the synthetic chemistry of HSNRs, the unique characteristics of these materials and catalytic mechanisms in HSNRs. Finally, a brief outlook, challenges and further opportunities for their synthetic methodologies and catalytic application are discussed. This review might promote the creation of further HSNRs, realize the sustainable production of fine chemicals and pharmaceuticals, and contribute to the development of materials science.
Collapse
Affiliation(s)
- Yutong Pi
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China.
| | - Haitao Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China.
| | - Jian Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China.
| |
Collapse
|
4
|
Liu L, Fan S, Wang W, Yin S, Lv Z, Zhang J, Zhang J, Yang L, Ma Y, Wei Q, Zhao D, Lan K. Tailored Hollow Mesoporous Carbon Nanospheres from Soft Emulsions Enhance Kinetics in Sodium Batteries. JACS AU 2024; 4:2666-2675. [PMID: 39055150 PMCID: PMC11267541 DOI: 10.1021/jacsau.4c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Mesoporous materials endowed with a hollow structure offer ample opportunities due to their integrated functionalities; however, current approaches mainly rely on the recruitment of solid rigid templates, and feasible strategies with better simplicity and tunability remain infertile. Here, we report a novel emulsion-driven coassembly method for constructing a highly tailored hollow architecture in mesoporous carbon, which can be completely processed on oil-water liquid interfaces instead of a solid rigid template. Such a facile and flexible methodology relies on the subtle employment of a 1,3,5-trimethylbenzene (TMB) additive, which acts as both an emulsion template and a swelling agent, leading to a compatible integration of oil droplets and composite micelles. The solution-based assembly process also shows high controllability, endowing the hollow carbon mesostructure with a uniform morphology of hundreds of nanometers and tunable cavities from 0 to 130 nm in diameter and porosities (mesopore sizes 2.5-7.7 nm; surface area 179-355 m2 g-1). Because of the unique features in permeability, diffusion, and surface access, the hollow mesoporous carbon nanospheres exhibit excellent high rate and cycling performances for sodium-ion storage. Our study reveals a cooperative assembly on the liquid interface, which could provide an alternative toolbox for constructing delicate mesostructures and complex hierarchies toward advanced technologies.
Collapse
Affiliation(s)
- Lu Liu
- College
of Chemistry and Materials, Department of Chemistry, Laboratory of
Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Sicheng Fan
- Department
of Material Science and Engineering, Xiamen
University, Xiamen 361005, P. R. China
| | - Wendi Wang
- College
of Energy Materials and Chemistry, College of Chemistry and Chemical
Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Sixing Yin
- College
of Chemistry and Materials, Department of Chemistry, Laboratory of
Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Zirui Lv
- College
of Chemistry and Materials, Department of Chemistry, Laboratory of
Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Jie Zhang
- College
of Chemistry and Materials, Department of Chemistry, Laboratory of
Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Jingyu Zhang
- College
of Energy Materials and Chemistry, College of Chemistry and Chemical
Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Lanhao Yang
- College
of Energy Materials and Chemistry, College of Chemistry and Chemical
Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Yuzhu Ma
- College
of Energy Materials and Chemistry, College of Chemistry and Chemical
Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Qiulong Wei
- Department
of Material Science and Engineering, Xiamen
University, Xiamen 361005, P. R. China
| | - Dongyuan Zhao
- College
of Chemistry and Materials, Department of Chemistry, Laboratory of
Advanced Materials, Fudan University, Shanghai 200433, P. R. China
- College
of Energy Materials and Chemistry, College of Chemistry and Chemical
Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Kun Lan
- College
of Energy Materials and Chemistry, College of Chemistry and Chemical
Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| |
Collapse
|
5
|
Zhong Z, Du G, Ma L, Wang Y, Jiang J. Self-Assembly of Lamellae-in-Lamellae by Double-Tail Cationic Surfactants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401210. [PMID: 38751126 PMCID: PMC11267300 DOI: 10.1002/advs.202401210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Indexed: 07/25/2024]
Abstract
The molecular structures of surfactants play a pivotal role in influencing their self-assembly behaviors. In this work, using simulations and experiments, an unconventional hierarchically layered structure in the didodecyldimethylammonium bromide (DDAB)/water binary system: lamellae-in-lamellae is revealed, a new self-assembly structure in surfactant system. This self-assembly structure refers to a lamellar structure with a shorter periodic length (inner lamellae) embedded in a lamellar phase with a longer periodic length (outer lamellae). The normal vectors of these two lamellar regions orient perpendicularly. In addition, it is observed that this lamellar-in-lamellar phase disappears when the two tails of the cationic surfactants become longer. The formation of the lamellar-in-lamellar architecture arises from multiple interacting factors. The key element is that the short tails of the DDAB surfactants enhance hydrophilicity and rigidity, which facilitates the formation of the inner lamellae. Moreover, the lateral monolayer of the inner lamellae provides shielding from the water and prompts the formation of the outer lamellae. These findings indicate that molecular structures and flexibility can profoundly redirect the hierarchical self-assembly behaviors in amphiphilic systems. More broadly, this work presents a new strategy to deliberately program hierarchical nanomaterials by designing specific surfactant molecules to act as tunable scaffolds, reactors, and carriers.
Collapse
Affiliation(s)
- Zhixuan Zhong
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Guanqun Du
- CAS Key Laboratory of ColloidInterface and Chemical ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesBeijing National Laboratory for Molecular ScienceInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Linbo Ma
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yilin Wang
- University of Chinese Academy of SciencesBeijing100049P. R. China
- CAS Key Laboratory of ColloidInterface and Chemical ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesBeijing National Laboratory for Molecular ScienceInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Jian Jiang
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
6
|
Zhang H, Zhang M, Liu R, He T, Xiang L, Wu X, Piao Z, Jia Y, Zhang C, Li H, Xu F, Zhou G, Mai Y. Fe 3O 4-doped mesoporous carbon cathode with a plumber's nightmare structure for high-performance Li-S batteries. Nat Commun 2024; 15:5451. [PMID: 38937487 PMCID: PMC11211388 DOI: 10.1038/s41467-024-49826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
Shuttling of lithium polysulfides and slow redox kinetics seriously limit the rate and cycling performance of lithium-sulfur batteries. In this study, Fe3O4-dopped carbon cubosomes with a plumber's nightmare structure (SP-Fe3O4-C) are prepared as sulfur hosts to construct cathodes with high rate capability and long cycling life for Li-S batteries. Their three-dimensional continuous mesochannels and carbon frameworks, along with the uniformly distributed Fe3O4 particles, enable smooth mass/electron transport, strong polysulfides capture capability, and fast catalytic conversion of the sulfur species. Impressively, the SP-Fe3O4-C cathode exhibits top-level comprehensive performance, with high specific capacity (1303.4 mAh g-1 at 0.2 C), high rate capability (691.8 mAh gFe3O41 at 5 C), and long cycling life (over 1200 cycles). This study demonstrates a unique structure for high-performance Li-S batteries and opens a distinctive avenue for developing multifunctional electrode materials for next-generation energy storage devices.
Collapse
Affiliation(s)
- Han Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Mengtian Zhang
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Ruiyi Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Tengfeng He
- Shanghai Aerospace Equipments Manufacturer Co., Ltd., 100 Huaning Road, Shanghai, 200245, China
| | - Luoxing Xiang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xinru Wu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhihong Piao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yeyang Jia
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Chongyin Zhang
- Shanghai Aerospace Equipments Manufacturer Co., Ltd., 100 Huaning Road, Shanghai, 200245, China
| | - Hong Li
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
7
|
Chen G, Zhang R, Yuan M, Xue S, Liu Y, Li B, Luo K, Lai Y, Zhang J, Lv H, Che R. Visualizing Nanoscale Interlayer Magnetic Interactions and Unconventional Low-Frequency Behaviors in Ferromagnetic Multishelled Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313411. [PMID: 38469974 DOI: 10.1002/adma.202313411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Precise manipulation of van der Waals forces within 2D atomic layers allows for exact control over electron-phonon coupling, leading to the exceptional quantum properties. However, applying this technique to diverse structures such as 3D materials is challenging. Therefore, investigating new hierarchical structures and different interlayer forces is crucial for overcoming these limitations and discovering novel physical properties. In this work, a multishelled ferromagnetic material with controllable shell numbers is developed. By strategically regulating the magnetic interactions between these shells, the magnetic properties of each shell are fine-tuned. This approach reveals distinctive magnetic characteristics including regulated magnetic domain configurations and enhanced effective fields. The nanoscale magnetic interactions between the shells are observed and analyzed, which shed light on the modified magnetic properties of each shell, enhancing the understanding and control of ferromagnetic materials. The distinctive magnetic interaction significantly boosts electromagnetic absorption at low-frequency frequencies used by fifth-generation wireless devices, outperforming ferromagnetic materials without multilayer structures by several folds. The application of magnetic interactions in materials science reveals thrilling prospects for technological and electronic innovation.
Collapse
Affiliation(s)
- Guanyu Chen
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering and Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Ruixuan Zhang
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
- Zhejiang Laboratory, Hangzhou, 311100, P. R. China
| | - Mingyue Yuan
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering and Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Shuyan Xue
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering and Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Yihao Liu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering and Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Bangxin Li
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering and Technology, Fudan University, Shanghai, 200438, P. R. China
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Kaicheng Luo
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering and Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Yuxiang Lai
- Pico Electron Microscopy Center, Innovation Institute for Ocean Materials Characterization, Center for Advanced Studies in Precision Instruments, Hainan University, Haikou, 570228, China
| | | | - Hualiang Lv
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering and Technology, Fudan University, Shanghai, 200438, P. R. China
- Zhejiang Laboratory, Hangzhou, 311100, P. R. China
| |
Collapse
|
8
|
Yu HP, Zhu YJ. Guidelines derived from biomineralized tissues for design and construction of high-performance biomimetic materials: from weak to strong. Chem Soc Rev 2024; 53:4490-4606. [PMID: 38502087 DOI: 10.1039/d2cs00513a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Living organisms in nature have undergone continuous evolution over billions of years, resulting in the formation of high-performance fracture-resistant biomineralized tissues such as bones and teeth to fulfill mechanical and biological functions, despite the fact that most inorganic biominerals that constitute biomineralized tissues are weak and brittle. During the long-period evolution process, nature has evolved a number of highly effective and smart strategies to design chemical compositions and structures of biomineralized tissues to enable superior properties and to adapt to surrounding environments. Most biomineralized tissues have hierarchically ordered structures consisting of very small building blocks on the nanometer scale (nanoparticles, nanofibers or nanoflakes) to reduce the inherent weaknesses and brittleness of corresponding inorganic biominerals, to prevent crack initiation and propagation, and to allow high defect tolerance. The bioinspired principles derived from biomineralized tissues are indispensable for designing and constructing high-performance biomimetic materials. In recent years, a large number of high-performance biomimetic materials have been prepared based on these bioinspired principles with a large volume of literature covering this topic. Therefore, a timely and comprehensive review on this hot topic is highly important and contributes to the future development of this rapidly evolving research field. This review article aims to be comprehensive, authoritative, and critical with wide general interest to the science community, summarizing recent advances in revealing the formation processes, composition, and structures of biomineralized tissues, providing in-depth insights into guidelines derived from biomineralized tissues for the design and construction of high-performance biomimetic materials, and discussing recent progress, current research trends, key problems, future main research directions and challenges, and future perspectives in this exciting and rapidly evolving research field.
Collapse
Affiliation(s)
- Han-Ping Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
9
|
Yin H, Guo W, Wang R, Doutch J, Li P, Tian Q, Zheng Z, Xie L, Feng Y. Self-Assembling Anti-Freezing Lamellar Nanostructures in Subzero Temperatures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309020. [PMID: 38368272 PMCID: PMC11077679 DOI: 10.1002/advs.202309020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/31/2024] [Indexed: 02/19/2024]
Abstract
The requirement for cryogenic supramolecular self-assembly of amphiphiles in subzero environments is a challenging topic. Here, the self-assembly of lamellar lyotropic liquid crystals (LLCs) are presented to a subzero temperature of -70 °C. These lamellar nanostructures are assembled from specifically tailored ultra-long-chain surfactant stearyl diethanolamine (SDA) in water/glycerol binary solvent. As the temperature falls below zero, LLCs with a liquid-crystalline Lα phase, a tilted Lβ phase, and a new folded configuration are obtained consecutively. A comprehensive experimental and computational study is performed to uncover the precise microstructure and formation mechanism. Both the ultra-long alkyl chain and head group of SDA play a crucial role in the formation of lamellar nanostructures. SDA head group is prone to forming hydrogen bonds with water, rather than glycerol. Glycerol cannot penetrate the lipid layer, which mixes with water arranging outside of the lipid bilayer, providing an ideal anti-freezing environment for SDA self-assembly. Based on these nanostructures and the ultra-low freezing point of the system, a series of novel cryogenic materials are created with potential applications in extremely cold environments. These findings would contribute to enriching the theory and research methodology of supramolecular self-assembly in extreme conditions and to developing novel anti-freezing materials.
Collapse
Affiliation(s)
- Hongyao Yin
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| | - Weiluo Guo
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| | - Runxi Wang
- Institute of New Energy and Low‐Carbon TechnologySichuan UniversityChengdu610065P. R. China
| | - James Doutch
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton LaboratoryHarwell CampusOXONDidcotOX11 0QXUK
| | - Peixun Li
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton LaboratoryHarwell CampusOXONDidcotOX11 0QXUK
| | - Qiang Tian
- State Key laboratory of Environment‐Friendly Energy Materials, School of Materials and ChemistrySouthwest University of Science and TechnologyMianyang621010P. R. China
| | - Zhuo Zheng
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| | - Lingzhi Xie
- Institute of New Energy and Low‐Carbon TechnologySichuan UniversityChengdu610065P. R. China
| | - Yujun Feng
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| |
Collapse
|
10
|
Geng Q, Fan L, Chen H, Zhang C, Xu Z, Tian Y, Yu C, Kang L, Yamauchi Y, Li C, Jiang L. Revolutionizing CO 2 Electrolysis: Fluent Gas Transportation within Hydrophobic Porous Cu 2O. J Am Chem Soc 2024; 146:10599-10607. [PMID: 38567740 DOI: 10.1021/jacs.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The success of electrochemical CO2 reduction at high current densities hinges on precise interfacial transportation and the local concentration of gaseous CO2. However, the creation of efficient CO2 transportation channels remains an unexplored frontier. In this study, we design and synthesize hydrophobic porous Cu2O spheres with varying pore sizes to unveil the nanoporous channel's impact on gas transfer and triple-phase interfaces. The hydrophobic channels not only facilitate rapid CO2 transportation but also trap compressed CO2 bubbles to form abundant and stable triple-phase interfaces, which are crucial for high-current-density electrocatalysis. In CO2 electrolysis, in situ spectroscopy and density functional theory results reveal that atomic edges of concave surfaces promote C-C coupling via an energetically favorable OC-COH pathway, leading to overwhelming CO2-to-C2+ conversion. Leveraging optimal gas transportation and active site exposure, the hydrophobic porous Cu2O with a 240 nm pore size (P-Cu2O-240) stands out among all the samples and exhibits the best CO2-to-C2+ productivity with remarkable Faradaic efficiency and formation rate up to 75.3 ± 3.1% and 2518.2 ± 8.1 μmol h-1 cm-2, respectively. This study introduces a novel paradigm for efficient electrocatalysts that concurrently addresses active site design and gas-transfer challenges.
Collapse
Affiliation(s)
- Qinghong Geng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Longlong Fan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huige Chen
- Functional Crystal Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunhui Zhang
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhe Xu
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ye Tian
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Cunming Yu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Lei Kang
- Functional Crystal Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
- Australian Institute for Bioengineering and Nanotechnology (AIBN), the University of Queensland, Brisbane 4072, QLD, Australia
| | - Cuiling Li
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 101407, China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 101407, China
| |
Collapse
|
11
|
Tian Q, Jing L, Yin Y, Liang Z, Du H, Yang L, Cheng X, Zuo D, Tang C, Liu Z, Liu J, Wan J, Yang J. Nanoengineering of Porous 2D Structures with Tunable Fluid Transport Behavior for Exceptional H 2O 2 Electrosynthesis. NANO LETTERS 2024; 24:1650-1659. [PMID: 38265360 DOI: 10.1021/acs.nanolett.3c04396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Precision nanoengineering of porous two-dimensional structures has emerged as a promising avenue for finely tuning catalytic reactions. However, understanding the pore-structure-dependent catalytic performance remains challenging, given the lack of comprehensive guidelines, appropriate material models, and precise synthesis strategies. Here, we propose the optimization of two-dimensional carbon materials through the utilization of mesopores with 5-10 nm diameter to facilitate fluid acceleration, guided by finite element simulations. As proof of concept, the optimized mesoporous carbon nanosheet sample exhibited exceptional electrocatalytic performance, demonstrating high selectivity (>95%) and a notable diffusion-limiting disk current density of -3.1 mA cm-2 for H2O2 production. Impressively, the electrolysis process in the flow cell achieved a production rate of 14.39 mol gcatalyst-1 h-1 to yield a medical-grade disinfectant-worthy H2O2 solution. Our pore engineering research focuses on modulating oxygen reduction reaction activity and selectivity by affecting local fluid transport behavior, providing insights into the mesoscale catalytic mechanism.
Collapse
Affiliation(s)
- Qiang Tian
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lingyan Jing
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yunchao Yin
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhenye Liang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongnan Du
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Lin Yang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaolei Cheng
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Daxian Zuo
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cheng Tang
- Beijing Key Laboratory of Green Chemical, Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhuoxin Liu
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jiayu Wan
- Global Institute of Future Technology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Jinlong Yang
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
12
|
Zhao T, Lin R, Xu B, Liu M, Chen L, Zhang F, Mei Y, Li X, Zhao D. Mesoporous Nano-Badminton with Asymmetric Mass Distribution: How Nanoscale Architecture Affects the Blood Flow Dynamics. J Am Chem Soc 2023; 145:21454-21464. [PMID: 37726207 DOI: 10.1021/jacs.3c07097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
While the nanobio interaction is crucial in determining nanoparticles' in vivo fate, a previous work on investigating nanoparticles' interaction with biological barriers is mainly carried out in a static state. Nanoparticles' fluid dynamics that share non-negligible impacts on their frequency of encountering biological hosts, however, is seldom given attention. Herein, inspired by badmintons' unique aerodynamics, badminton architecture Fe3O4&mPDA (Fe3O4 = magnetite nanoparticle and mPDA = mesoporous polydopamine) Janus nanoparticles have successfully been synthesized based on a steric-induced anisotropic assembly strategy. Due to the "head" Fe3O4 having much larger density than the mPDA "cone", it shows an asymmetric mass distribution, analogous to real badminton. Computational simulations show that nanobadmintons have a stable fluid posture of mPDA cone facing forward, which is opposite to that for the real badminton. The force analysis demonstrates that the badminton-like morphology and mass distribution endow the nanoparticles with a balanced motion around this posture, making its movement in fluid stable. Compared to conventional spherical Fe3O4@mPDA nanoparticles, the Janus nanoparticles with an asymmetric mass distribution have straighter blood flow trails and ∼50% reduced blood vessel wall encountering frequency, thus providing doubled blood half-life and ∼15% lower organ uptakes. This work provides novel methodology for the fabrication of unique nanomaterials, and the correlations between nanoparticle architectures, biofluid dynamics, organ uptake, and blood circulation time are successfully established, providing essential guidance for designing future nanocarriers.
Collapse
Affiliation(s)
- Tiancong Zhao
- Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Runfeng Lin
- Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Borui Xu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, P. R. China
| | - Minchao Liu
- Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Liang Chen
- Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Fan Zhang
- Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yongfeng Mei
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, P. R. China
| | - Xiaomin Li
- Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), School of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
13
|
Kang J, Kim JG, Han S, Cho Y, Pak C. A Gram Scale Soft-Template Synthesis of Heteroatom Doped Nanoporous Hollow Carbon Spheres for Oxygen Reduction Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2555. [PMID: 37764584 PMCID: PMC10534767 DOI: 10.3390/nano13182555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Heteroatom-doped nanoporous carbon materials with unique hierarchical structures have been shown to be promising supports and catalysts for energy conversion; however, hard-template methods are limited by their inflexibility and time-consuming process. Soft-template methods have been suggested as an alternative, but they are limited by their picky requirements for stable reactions and the few known precursors for small-batch synthesis. In this study, a gram-scale soft-template-based silica-assisted method was investigated for producing nitrogen-doped hollow nanoporous carbon spheres (N-HNCS). Nitrogen doping is accomplished during preparation with enhanced electrocatalytic activity without complicating the methodology. To investigate the effect of the unique structural characteristics of N-HNCS (specific surface area: 1250 m2 g-1; pore volume: 1.2 cm3 g-1), cobalt was introduced as an active center for the oxygen reduction reaction. Finely tuned reaction conditions resulted in well-dispersed cobalt particles with minimal agglomeration. This sheds light on the advancement of new experimental procedures for developing more active and promising non-noble catalysts in large and stable batches.
Collapse
Affiliation(s)
| | | | | | | | - Chanho Pak
- Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (J.K.); (J.G.K.); (Y.C.)
| |
Collapse
|
14
|
Chen G, Lu R, Li C, Yu J, Li X, Ni L, Zhang Q, Zhu G, Liu S, Zhang J, Kramm UI, Zhao Y, Wu G, Xie J, Feng X. Hierarchically Porous Carbons with Highly Curved Surfaces for Hosting Single Metal FeN 4 Sites as Outstanding Oxygen Reduction Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300907. [PMID: 37132284 DOI: 10.1002/adma.202300907] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/28/2023] [Indexed: 05/04/2023]
Abstract
Iron-nitrogen-carbon (FeNC) materials have emerged as a promising alternative to platinum-group metals for catalyzing the oxygen reduction reaction (ORR) in proton-exchange-membrane fuel cells. However, their low intrinsic activity and stability are major impediments. Herein, an FeN-C electrocatalyst with dense FeN4 sites on hierarchically porous carbons with highly curved surfaces (denoted as FeN4 -hcC) is reported. The FeN4 -hcC catalyst displays exceptional ORR activity in acidic media, with a high half-wave potential of 0.85 V (versus reversible hydrogen electrode) in 0.5 m H2 SO4 . When integrated into a membrane electrode assembly, the corresponding cathode displays a high maximum peak power density of 0.592 W cm-2 and demonstrates operating durability over 30 000 cycles under harsh H2 /air conditions, outperforming previously reported Fe-NC electrocatalysts. These experimental and theoretical studies suggest that the curved carbon support fine-tunes the local coordination environment, lowers the energies of the Fe d-band centers, and inhibits the adsorption of oxygenated species, which can enhance the ORR activity and stability. This work provides new insight into the carbon nanostructure-activity correlation for ORR catalysis. It also offers a new approach to designing advanced single-metal-site catalysts for energy-conversion applications.
Collapse
Affiliation(s)
- Guangbo Chen
- Center for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Ruihu Lu
- State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Chenzhao Li
- Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
- School of Mechanical Engineering, Purdue University, West Lafyette, IN, 47907, USA
| | - Jianmin Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaodong Li
- Center for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Department of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics, D-06120, Halle (Saale), Germany
| | - Lingmei Ni
- Department of Chemistry, Eduard-Zintl Insitute of Physical and Inorganic Chemistry, TU Darmstadt, D-64287, Darmstadt, Germany
| | - Qi Zhang
- Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
| | - Guangqi Zhu
- Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
| | - Shengwen Liu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Jiaxu Zhang
- Center for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Ulrike I Kramm
- Department of Chemistry, Eduard-Zintl Insitute of Physical and Inorganic Chemistry, TU Darmstadt, D-64287, Darmstadt, Germany
| | - Yan Zhao
- State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Jian Xie
- Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Department of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics, D-06120, Halle (Saale), Germany
| |
Collapse
|
15
|
Yang S, Wang Y, Wang Q, Li F, Ling D. DNA-Driven Dynamic Assembly/Disassembly of Inorganic Nanocrystals for Biomedical Imaging. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:340-355. [PMID: 37501793 PMCID: PMC10369495 DOI: 10.1021/cbmi.3c00028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/20/2023] [Accepted: 04/07/2023] [Indexed: 07/29/2023]
Abstract
DNA-mediated programming is emerging as an effective technology that enables controlled dynamic assembly/disassembly of inorganic nanocrystals (NC) with precise numbers and spatial locations for biomedical imaging applications. In this review, we will begin with a brief overview of the rules of NC dynamic assembly driven by DNA ligands, and the research progress on the relationship between NC assembly modes and their biomedical imaging performance. Then, we will give examples on how the driven program is designed by different interactions through the configuration switching of DNA-NC conjugates for biomedical applications. Finally, we will conclude with the current challenges and future perspectives of this emerging field. Hopefully, this review will deepen our knowledge on the DNA-guided precise assembly of NCs, which may further inspire the future development of smart chemical imaging devices and high-performance biomedical imaging probes.
Collapse
Affiliation(s)
- Shengfei Yang
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuqi Wang
- Frontiers
Science Center for Transformative Molecules, School of Chemistry and
Chemical Engineering, National Center for Translational Medicine,
State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- World
Laureates Association (WLA) Laboratories, Shanghai 201203, P. R. China
| | - Qiyue Wang
- Frontiers
Science Center for Transformative Molecules, School of Chemistry and
Chemical Engineering, National Center for Translational Medicine,
State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- World
Laureates Association (WLA) Laboratories, Shanghai 201203, P. R. China
| | - Fangyuan Li
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- World
Laureates Association (WLA) Laboratories, Shanghai 201203, P. R. China
- Hangzhou
Institute of Innovative Medicine, Zhejiang
University, Hangzhou 310058, P. R. China
| | - Daishun Ling
- Frontiers
Science Center for Transformative Molecules, School of Chemistry and
Chemical Engineering, National Center for Translational Medicine,
State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- World
Laureates Association (WLA) Laboratories, Shanghai 201203, P. R. China
- Hangzhou
Institute of Innovative Medicine, Zhejiang
University, Hangzhou 310058, P. R. China
| |
Collapse
|
16
|
Wang Z, Wang W, Sun L, Tang B, Zhang F, Luo A. A chiral multi-shelled mesoporous carbon nanospheres used for high-resolution gas chromatography separations. J Chromatogr A 2023; 1702:464100. [PMID: 37263056 DOI: 10.1016/j.chroma.2023.464100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Herein, a chiral multishelled mesoporous carbon nanospheres (MCNs) with unique spiral multishelled hollow mesoporous chiral structure is synthesized; the MCNs can be used as stationary phases for high-resolution gas chromatography (GC) and have good separation capacity. The successful preparation of MCNs is verified by a variety of characterizations. In addition, the MCNs-coated capillary column shows excellent separation performance for n-alkanes, n-alcohols, aromatic compounds, and esters, and it has a faster analysis time than the HP-5 commercial capillary column. The chromatography separation performance for various isomers and racemates of the MCNs stationary phase was evaluated, and it showed good separation capability for amino acid derivatives. The MCNs-coated capillary column has been demonstrated to present good reproducibility and stability. In summary, all of the chromatography experiments in this work indicate that this new stationary phase of the MCNs has good application potential for GC capillary separation.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing 100081, China
| | - Wei Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing 100081, China
| | - Liquan Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing 100081, China
| | - Bo Tang
- College of Food and Bioengineering, Bengbu University, Bengbu 233030, China
| | - Fulai Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing 100081, China
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing 100081, China.
| |
Collapse
|
17
|
Liu Z, Li W, Sheng W, Liu S, Li R, Li Q, Li D, Yu S, Li M, Li Y, Jia X. Tunable Hierarchically Structured Meso-Macroporous Carbon Spheres from a Solvent-Mediated Polymerization-Induced Self-Assembly. J Am Chem Soc 2023; 145:5310-5319. [PMID: 36758639 DOI: 10.1021/jacs.2c12977] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Herein, we report a versatile solvent-mediated polymerization-induced self-assembly (PISA) strategy to directly synthesize highly N-doped hierarchically porous structured carbon spheres with a tunable meso-macroporous configuration. The introduction of intermolecular hydrogen bonds is verified to enhance the interfacial interactions between block copolymers, oil droplets, and polyphenols. Moreover, the dominant hydrogen-bond-driven interactions can be systematically manipulated by selecting different cosolvent systems to generate diverse porous structures from the transformation of micellar and precursor co-assembly. Impressively, hierarchically structured meso-macroporous N-doped carbon spheres present simultaneously tunable sphere sizes and mesopores and macropores, ranging from 1.2 μm, 9/50 and 227 nm to 1.0 μm, 40, and 183 nm and 480, 24, and 95 nm. As a demonstration, dendritic-like N-doped hierarchically meso-macroporous carbon spheres manifest excellent enzyme-like activity, which is attributed to the continuous mass transport from the multiordered porosity. The current study provides a new platform for the synthesis of novel well-defined porous materials.
Collapse
Affiliation(s)
- Zhiqing Liu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Wei Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenbo Sheng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui middle Road 18, Lanzhou 730000, P. R. China
| | - Shiyu Liu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Rui Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Qian Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Danya Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Shui Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Meng Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Yongsheng Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.,Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200231, P. R. China
| | - Xin Jia
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| |
Collapse
|
18
|
Ricciardi B, Mecheri B, da Silva Freitas W, Ficca VCA, Placidi E, Gatto I, Carbone A, Capasso A, D'Epifanio A. Porous Iron‐Nitrogen‐Carbon Electrocatalysts for Anion Exchange Membrane Fuel Cells (AEMFC). ChemElectroChem 2023. [DOI: 10.1002/celc.202201115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Beatrice Ricciardi
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Barbara Mecheri
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Williane da Silva Freitas
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Valerio C. A. Ficca
- Department of Physics Sapienza University of Rome Piazzale Aldo Moro 2 00185 Rome Italy
| | - Ernesto Placidi
- Department of Physics Sapienza University of Rome Piazzale Aldo Moro 2 00185 Rome Italy
| | - Irene Gatto
- Institute for Advanced Energy Technologies “Nicola Giordano”-CNR-ITAE Via S. Lucia Sopra Contesse 5 98126 Messina Italy
| | - Alessandra Carbone
- Institute for Advanced Energy Technologies “Nicola Giordano”-CNR-ITAE Via S. Lucia Sopra Contesse 5 98126 Messina Italy
| | - Andrea Capasso
- International Iberian Nanotechnology Laboratory (INL) Braga 4715-330 Portugal
| | - Alessandra D'Epifanio
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
19
|
Liu Y, Liu S, Tian Y, Wang X. Dual/Triple Template-Induced Evolved Emulsion for Controllable Construction of Anisotropic Carbon Nanoparticles from Concave to Convex. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210963. [PMID: 36591699 DOI: 10.1002/adma.202210963] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Anisotropic mesoporous carbon (AMC) nanoparticles with asymmetric external morphologies, topological internal structure, and superior performance of carbon species are attracting great attention because of their seductive features differentiating them from symmetric nanoparticles. However, a bewildering challenge but crucial desire remains to endow them with flexibly tunable morphology and pore structure. Herein, a dual/triple-templating evolved emulsion strategy for tunable fabrication of AMC nanoparticles with distinctive defined structure by interface-energy-induced self-assembly is first reported based on a brand-new mechanism. It describes the possible formation process of the concave-cavity structure and allows for manipulation of the longitudinal and lateral sizes systematically by adjusting emulsion polarity and sodium oleate dosage, respectively. Interestingly, the internal pore structure can be rearranged into radial channels and the external morphology can realize structural transformation from concave to convex by innovatively introducing the third template n-hexanol, which is unprecedented at nanoscale. Remarkably, due to the excellent properties of carbon species and unique structural characteristics, AMC nanoparticles not only demonstrate good biocompatibility but also exhibit splendid performance in improving the dissolution and release rates of insoluble drug and enhancing the enzyme catalytic efficiency. Generally, this approach provides new inspiration and insights for expanding exquisite anisotropic nanomaterials for many potential applications.
Collapse
Affiliation(s)
- Yujie Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shilong Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yong Tian
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiufang Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
20
|
Peng L, Peng H, Li W, Zhao D. Monomicellar assembly to synthesize structured and functional mesoporous carbonaceous nanomaterials. Nat Protoc 2022; 18:1155-1178. [PMID: 36517608 DOI: 10.1038/s41596-022-00784-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/07/2022] [Indexed: 12/23/2022]
Abstract
The large pores of functional mesoporous carbonaceous nanomaterials have broad accessibility, making them efficient substrates for the mass transport of chemicals in biomedical applications, gas separation, catalysis, sensing, and energy storage and conversion. Recently, the assembly of monomicelles has been used to control the nanostructure and mesoporosity of carbonaceous nanomaterials, where the structure-oriented unit is a single micelle made up of block copolymers/surfactants and of precursor species (via hydrogen bonds, Coulombic and/or other noncovalent interactions). Each monomicelle then represents a template for a single mesopore, and multiple monomicelles can be stacked like LEGO blocks. After polymerization of the precursor species (in this case dopamine), carbonization results in the carbonaceous nanomaterial. The micellar size, structure and shape can be easily tuned by altering the synthetic conditions, providing a high degree of control over the structure of the final product, which can therefore be shaped into original nanostructures otherwise difficult to synthesize using conventional templating methods. Here we provide a detailed procedure for the preparation of the monomicelles, the monomicellar assembly into mesostructured polymeric samples and the conversion of polymeric samples to carbonaceous frameworks. We describe the functional characterization of two mesoporous carbonaceous nanomaterials that demonstrate excellent sodium-ion storage performance and oxygen reduction reactivity, respectively. The monomicellar assembly process for the synthesis of the ordered mesoporous polymers requires ~5 h; the synthesis, including subsequent centrifugation, freeze drying and carbonization, requires 2 d, whereas the entire procedure, including the characterization of the nanomaterials, requires ~4 d.
Collapse
|
21
|
Qiao M, Xing Y, Xie L, Kong B, Kleitz F, Li X, Du X. Temperature-Regulated Core Swelling and Asymmetric Shrinkage for Tunable Yolk@Shell Polydopamine@Mesoporous Silica Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205576. [PMID: 36399632 DOI: 10.1002/smll.202205576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Facile and controllable synthesis of functional yolk@shell structured nanospheres with a tunable inner core ('yolk') and mesoporous shell is highly desirable, yet it remains a great challenge. Herein, xx developed a strategy based on temperature-regulated swelling and restricted asymmetric shrinkage of polydopamine (PDA) nanospheres, combined with heterogeneous interface self-assembly growth. This method allows a simple and versatile preparation of PDA@mesoporous silica (MS) nanospheres exhibiting tunable yolk@shell architectures and shell pore sizes. Through reaction temperature-regulated swelling degree and confined shrinkage of PDA nanospheres, the volume ratio of the hollow cavity that the PDA core occupies can easily be tuned from ca. 2/3 to ca. 1/2, then to ca. 2/5, finally to ca. 1/3. Owing to the presence of PDA with excellent photothermal conversion capacity, the PDA@MS nanocomposites with asymmetric yolk distributions can become a colloidal nanomotor propelled by near-infrared (NIR) light. Noteworthily, the PDA@MS with half PDA yolk and microcracks in silica shell reaches 2.18 µm2 s-1 of effective diffusion coefficient (De) in the presence of 1.0 W cm-2 NIR light. This temperature-controlled swelling approach may provide new insight into the design and facile preparation of functional PDA-based yolk@shell structured nanocomposites for wide applications in biology and medicine.
Collapse
Affiliation(s)
- Minghang Qiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, China
| | - Yi Xing
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, China
| | - Lei Xie
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Freddy Kleitz
- Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna, Vienna, 1090, Austria
| | - Xiaoyu Li
- National Engineering Research Center of green recycling for Strategic Metal Resources, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academic of Sciences, University of Chinese Academic of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, China
| |
Collapse
|
22
|
Yuan R, Wang C, Chen L, Cheng H, Bi W, Yan W, Xie Y, Wu C. Mesoporous multi-shelled hollow resin nanospheres with ultralow thermal conductivity. Chem Sci 2022; 13:12180-12186. [PMID: 36349103 PMCID: PMC9600400 DOI: 10.1039/d2sc03659b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
Hollow nanostructures exhibit enclosed or semi-enclosed spaces inside and the consequent features of restricting molecular motion, which is crucial for intrinsic physicochemical properties. Herein, we developed a new configuration of hollow nanostructures with more than three layers of shells and simultaneously integrated mesopores on every shell. The novel interior configuration expresses the characteristics of periodic interfaces and abundant mesopores. Benefiting from the suppression of gas molecule convection by boundary scattering, the thermal conductivity of mesoporous multi-shelled hollow resin nanospheres reaches 0.013 W m-1 K-1 at 298 K. The designed interior mesostructural configuration of hollow nanostructures provides an ideal platform to clarify the influence of nanostructure design on intrinsic physicochemical properties and propels the development of hollow nanostructures.
Collapse
Affiliation(s)
- Ruilin Yuan
- School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Chun Wang
- School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Long Chen
- School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Han Cheng
- School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Wentuan Bi
- School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Yi Xie
- School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Changzheng Wu
- School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
23
|
Pi Y, Ma Y, Wang X, Price CAH, Li H, Liu Q, Wang L, Chen H, Hou G, Su BL, Liu J. Multilevel Hollow Phenolic Resin Nanoreactors with Precise Metal Nanoparticles Spatial Location toward Promising Heterogeneous Hydrogenations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205153. [PMID: 35999183 DOI: 10.1002/adma.202205153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Hollow nanostructures with fascinating properties have inspired numerous interests in broad research fields. Cell-mimicking complex hollow architectures with precise active components distributions are particularly important, while their synthesis remains highly challenging. Herein, a "top-down" chemical surgery strategy is introduced to engrave the 3-aminophenol formaldehyde resin (APF) spheres at nanoscale. Undergoing the cleavage of (Ar)CN bonds with ethanol as chemical scissors and subsequent repolymerization process, the Solid APF transform to multilevel hollow architecture with precise nanospatial distribution of organic functional groups (e.g., hydroxymethyl and amine). The transformation is tracked by electron microscopy and solid-state nuclear magnetic resonance techniques, the category and dosage of alcohol are pivotal for constructing multilevel hollow structures. Moreover, it is demonstrated the evolution of nanostructures accompanied with unique organic microenvironments is able to accurately confine multiple gold (Au) nanoparticles, leading to the formation of pomegranate-like particles. Through selectively depositing palladium (Pd) nanoparticles onto the outer shell, bimetallic Au@APF@Pd catalysts are formed, which exhibit excellent hydrogenation performance with turnover frequency (TOF) value up to 11257 h-1 . This work provides an effective method for precisely manipulating the nanostructure and composition of polymers at nanoscale and sheds light on the design of catalysts with precise spatial active components.
Collapse
Affiliation(s)
- Yutong Pi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Yanfu Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xinyao Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Cameron-Alexander Hurd Price
- Department of Chemical Engineering and Analytical Science, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
- The University of Manchester at Harwell, Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, UK
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Labs, Harwell campus, Didcot, Oxfordshire, OX11 0FA, UK
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Haitao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Qinglong Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Liwei Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Hongyu Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Bao-Lian Su
- Laboratory of Inorganic Materials Chemistry, University of Namur, 61, rue de Bruxelles, Namur, 5000, Belgium
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| |
Collapse
|
24
|
Jiang M, Chen J, Zhang Y, Song N, Jiang W, Yang J. Assembly: A Key Enabler for the Construction of Superior Silicon-Based Anodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203162. [PMID: 36045088 PMCID: PMC9596840 DOI: 10.1002/advs.202203162] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Silicon (Si) is regarded as the most promising anode material for high-energy lithium-ion batteries (LIBs) due to its high theoretical capacity, and low working potential. However, the large volume variation during the continuous lithiation/delithiation processes easily leads to structural damage and serious side reactions. To overcome the resultant rapid specific capacity decay, the nanocrystallization and compound strategies are proposed to construct hierarchically assembled structures with different morphologies and functions, which develop novel energy storage devices at nano/micro scale. The introduction of assembly strategies in the preparation process of silicon-based materials can integrate the advantages of both nanoscale and microstructures, which significantly enhance the comprehensive performance of the prepared silicon-based assemblies. Unfortunately, the summary and understanding of assembly are still lacking. In this review, the understanding of assembly is deepened in terms of driving forces, methods, influencing factors and advantages. The recent research progress of silicon-based assembled anodes and the mechanism of the functional advantages for assembled structures are reviewed from the aspects of spatial confinement, layered construction, fasciculate structure assembly, superparticles, and interconnected assembly strategies. Various feasible strategies for structural assembly and performance improvement are pointed out. Finally, the challenges and integrated improvement strategies for assembled silicon-based anodes are summarized.
Collapse
Affiliation(s)
- Miaomiao Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Junliang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Yingbing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Nan Song
- State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
- Institute of Functional MaterialsDonghua UniversityShanghai201620China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
- Institute of Functional MaterialsDonghua UniversityShanghai201620China
| |
Collapse
|
25
|
Dou S, Tian Q, Liu T, Xu J, Jing L, Zeng C, Yuan Q, Xu Y, Jia Z, Cai Q, Liu WD, Silva SRP, Chen Y, Liu J. Stress‐Regulation Design of Mesoporous Carbon Spheres Anodes with Radial Pore Channels Toward Ultrastable Potassium‐Ion Batteries. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Shuming Dou
- School of Materials Science and Engineering Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Tianjin Key Laboratory of Composite and Functional Materials Tianjin University Tianjin 300072 China
- School of Materials Science and Engineering Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Qiang Tian
- Dalian National Laboratory for Clean Energy State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Tao Liu
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province Center for X-Mechanics, Department of Engineering Mechanics Zhejiang University Hangzhou 310027 China
| | - Jie Xu
- School of Materials Science and Engineering Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Tianjin Key Laboratory of Composite and Functional Materials Tianjin University Tianjin 300072 China
| | - Lingyan Jing
- Dalian National Laboratory for Clean Energy State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Cuihua Zeng
- School of Materials Science and Engineering Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Tianjin Key Laboratory of Composite and Functional Materials Tianjin University Tianjin 300072 China
| | - Qunhui Yuan
- School of Materials Science and Engineering Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Yunhua Xu
- School of Materials Science and Engineering Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Tianjin Key Laboratory of Composite and Functional Materials Tianjin University Tianjin 300072 China
| | - Zheng Jia
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province Center for X-Mechanics, Department of Engineering Mechanics Zhejiang University Hangzhou 310027 China
| | - Qiong Cai
- DICP-Surrey Joint Centre for Future Materials Department of Chemical and Process Engineering Advanced Technology Institute University of Surrey Guilford Surrey GU2 7XH UK
| | - Wei-Di Liu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Brisbane Queensland 4072 Australia
| | - S. Ravi P. Silva
- DICP-Surrey Joint Centre for Future Materials Department of Chemical and Process Engineering Advanced Technology Institute University of Surrey Guilford Surrey GU2 7XH UK
| | - Yanan Chen
- School of Materials Science and Engineering Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education Tianjin Key Laboratory of Composite and Functional Materials Tianjin University Tianjin 300072 China
| | - Jian Liu
- Dalian National Laboratory for Clean Energy State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- DICP-Surrey Joint Centre for Future Materials Department of Chemical and Process Engineering Advanced Technology Institute University of Surrey Guilford Surrey GU2 7XH UK
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Brisbane Queensland 4072 Australia
| |
Collapse
|
26
|
Wang M, Mao X, Liu J, Deng B, Deng S, Jin S, Li W, Gong J, Deng R, Zhu J. A Versatile 3D-Confined Self-Assembly Strategy for Anisotropic and Ordered Mesoporous Carbon Microparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202394. [PMID: 35780503 PMCID: PMC9443438 DOI: 10.1002/advs.202202394] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/27/2022] [Indexed: 05/19/2023]
Abstract
Mesoporous carbon microparticles (MCMPs) with anisotropic shapes and ordered structures are attractive materials that remain challenging to access. In this study, a facile yet versatile route is developed to prepare anisotropic MCMPs by combining neutral interface-guided 3D confined self-assembly (3D-CSA) of block copolymer (BCP) with a self-templated direct carbonization strategy. This route enables pre-engineering BCP into microparticles with oblate shape and hexagonal packing cylindrical mesostructures, followed by selective crosslinking and decorating of their continuous phase with functional species (such as platinum nanoparticles, Pt NPs) via in situ growth. To realize uniform in situ growth, a "guest exchange" strategy is proposed to make room for functional species and a pre-crosslinking strategy is developed to preserve the structural stability of preformed BCP microparticles during infiltration. Finally, Pt NP-loaded MCMPs are derived from the continuous phase of BCP microparticles through selective self-templated direct carbonization without using any external carbon source. This study introduces an effective concept to obtain functional species-loaded and N-doped MCMPs with oblate shape and almost hexagonal structure (p6mm), which would find important applications in fuel cells, separation, and heterogeneous catalysis.
Collapse
Affiliation(s)
- Mian Wang
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Xi Mao
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Jingye Liu
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Bite Deng
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Shuai Deng
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Shaohong Jin
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Wang Li
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Jiang Gong
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Renhua Deng
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
27
|
Peng L, Peng H, Xu L, Wang B, Lan K, Zhao T, Che R, Li W, Zhao D. Anisotropic Self-Assembly of Asymmetric Mesoporous Hemispheres with Tunable Pore Structures at Liquid-Liquid Interfaces. J Am Chem Soc 2022; 144:15754-15763. [PMID: 35994568 DOI: 10.1021/jacs.2c06436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Asymmetric materials have attracted tremendous interest because of their intriguing physicochemical properties and promising applications, but endowing them with precisely controlled morphologies and porous structures remains a formidable challenge. Herein, a facile micelle anisotropic self-assembly approach on a droplet surface is demonstrated to fabricate asymmetric carbon hemispheres with a jellyfish-like shape and radial multilocular mesostructure. This facile synthesis follows an interface-energy-mediated nucleation and growth mechanism, which allows easy control of the micellar self-assembly behaviors from isotropic to anisotropic modes. Furthermore, the micelle structure can also be systematically manipulated by selecting different amphiphilic triblock copolymers as a template, resulting in diverse novel asymmetric nanostructures, including eggshell, lotus, jellyfish, and mushroom-shaped architectures. The unique jellyfish-like hemispheres possess large open mesopores (∼14 nm), a high surface area (∼684 m2 g-1), abundant nitrogen dopants (∼6.3 wt %), a core-shell mesostructure and, as a result, manifest excellent sodium-storage performance in both half and full-cell configurations. Overall, our approach provides new insights and inspirations for exploring sophisticated asymmetric nanostructures for many potential applications.
Collapse
Affiliation(s)
- Liang Peng
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Huarong Peng
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Li Xu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Baixian Wang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Kun Lan
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Tiancong Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Renchao Che
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
28
|
Xiang L, Yuan S, Wang F, Xu Z, Li X, Tian F, Wu L, Yu W, Mai Y. Porous Polymer Cubosomes with Ordered Single Primitive Bicontinuous Architecture and Their Sodium-Iodine Batteries. J Am Chem Soc 2022; 144:15497-15508. [PMID: 35979963 DOI: 10.1021/jacs.2c02881] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bicontinuous porous materials, which possess 3D interconnected pore channels facilitating a smooth mass transport, have attracted much interest in the fields of energy and catalysis. However, their synthesis remains very challenging. We report a general approach, using polymer cubosomes as the template, for the controllable synthesis of bicontinuous porous polymers with an ordered single primitive (SP) cubic structure, including polypyrrole (SP-PPy), poly-m-phenylenediamine (SP-PmPD), and polydopamine (SP-PDA). Specifically, the resultant SP-PPy had a unit cell parameter of 99 nm, pore diameter of 45 nm, and specific surface area of approximately 60 m2·g-1. As a proof of concept, the I2-adsorbed SP-PPy was employed as the cathode materials of newly emerged Na-I2 batteries, which delivered a record-high specific capacity (235 mA·h·g-1 at 0.5 C), excellent rate capability, and cycling stability (with a low capacity decay of 0.12% per cycle within 400 cycles at 1 C). The advantageous contributions of the bicontinuous structure and I3- adsorption mechanism of SP-PPy were revealed by a combination of ion diffusion experiments and theoretical calculations. This study opens a new avenue for the synthesis of porous polymers with new topologies, broadens the spectrum of bicontinuous-structured materials, and also develops a novel potential application for porous polymers.
Collapse
Affiliation(s)
- Luoxing Xiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Siqi Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Faxing Wang
- Center for Advancing Electronics Dresden (CFAED) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, Dresden 01069, Germany
| | - Zhihan Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiuhong Li
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai 201204, China
| | - Feng Tian
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai 201204, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
29
|
Zhao Z, Duan L, Zhao Y, Wang L, Zhang J, Bu F, Sun Z, Zhang T, Liu M, Chen H, Yang Y, Lan K, Lv Z, Zu L, Zhang P, Che R, Tang Y, Chao D, Li W, Zhao D. Constructing Unique Mesoporous Carbon Superstructures via Monomicelle Interface Confined Assembly. J Am Chem Soc 2022; 144:11767-11777. [PMID: 35731994 DOI: 10.1021/jacs.2c03814] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Constructing hierarchical three-dimensional (3D) mesostructures with unique pore structure, controllable morphology, highly accessible surface area, and appealing functionality remains a great challenge in materials science. Here, we report a monomicelle interface confined assembly approach to fabricate an unprecedented type of 3D mesoporous N-doped carbon superstructure for the first time. In this hierarchical structure, a large hollow locates in the center (∼300 nm in diameter), and an ultrathin monolayer of spherical mesopores (∼22 nm) uniformly distributes on the hollow shells. Meanwhile, a small hole (4.0-4.5 nm) is also created on the interior surface of each small spherical mesopore, enabling the superstructure to be totally interconnected. Vitally, such interconnected porous supraparticles exhibit ultrahigh accessible surface area (685 m2 g-1) and good underwater aerophilicity due to the abundant spherical mesopores. Additionally, the number (70-150) of spherical mesopores, particle size (22 and 42 nm), and shell thickness (4.0-26 nm) of the supraparticles can all be accurately manipulated. Besides this spherical morphology, other configurations involving 3D hollow nanovesicles and 2D nanosheets were also obtained. Finally, we manifest the mesoporous carbon superstructure as an advanced electrocatalytic material with a half-wave potential of 0.82 V (vs RHE), equivalent to the value of the commercial Pt/C electrode, and notable durability for oxygen reduction reaction (ORR).
Collapse
Affiliation(s)
- Zaiwang Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Linlin Duan
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yujuan Zhao
- Centre for High-Resolution Electron Microscopy (ChEM), School of Physical Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, P. R. China
| | - Lipeng Wang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Junye Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Fanxing Bu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Zhihao Sun
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Tengsheng Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Mengli Liu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Hanxing Chen
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yi Yang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Kun Lan
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Zirui Lv
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Lianhai Zu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Pengfei Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Renchao Che
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yun Tang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongliang Chao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
30
|
Sun M, Zhou H, Xiong H, Zhang R, Liu Z, Li D, Gao B, Qiao ZA. Acid-regulated hydrolysis and condensation of titanium cation toward controllable synthesis of multiphase mesoporous TiO2 for effectively enhance photocatalytic H2 evolution. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Affiliation(s)
- Kun Lan
- Laboratory of Advanced Materials, Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P.R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|