1
|
Tian C, Wu T, Zhou X, Zhao Y, Li B, Han X, Li K, Hou C, Li Y, Wang H, Zhang Q. Air-Processed Efficient Perovskite Solar Cells With Full Lifecycle Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411982. [PMID: 39460403 DOI: 10.1002/adma.202411982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/30/2024] [Indexed: 10/28/2024]
Abstract
Despite the outstanding power conversion efficiency of perovskite solar cells (PSCs) realized over the years, the entire lifecycle from preparation and operation to discarding of PSCs still needs to be carefully considered when it faces the upcoming large-scale production and deployment. In this study, bio-derived chitin-based polymers are employed to realize the full lifecycle regulation of air-processed PSCs by forming multiple coordinated and hydrogen bonds to stabilize the lead iodide and organic salt precursor inks, accelerating the solid-liquid reaction and crystallization of two-step deposition process, then achieving the high crystalline and oriented perovskites with less notorious charge defects in the open air. The air-prepared PSCs exhibit a decent efficiency of 25.18% with high preparation reproducibility and improved operational stability toward the harsh environment and mechanical stress stimuli. The modified PSCs display negligible fatigue behavior with keeping 92% of its initial efficiency after operating for 32 diurnal cycles (ISOS-LC-1 protocol). Meanwhile, closed-loop lead management of end-of-life PSCs including suppression of lead leakage, toxicity evaluation of broken devices, and recycling of lead iodide components are comprehensively investigated. This work sheds light on a promising avenue to realize the entire lifecycle regulation of air-processed efficient and stable PSCs.
Collapse
Affiliation(s)
- Chuanming Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Tianhao Wu
- Center for Energy Systems Design (CESD), International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Xinliang Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yu Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Bin Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xuefei Han
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yaogang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Qinghong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
2
|
Yang M, Tan Y, Yang G, Chang X, Tian T, Li WG, Fang Y, Shen J, Yang S, Wu WQ. Chemical Synergic Stabilization of High Br-Content Mixed-Halide Wide-Bandgap Perovskites for Durable Multi-Terminal Tandem Solar Cells with Minimized Pb Leakage. Angew Chem Int Ed Engl 2024:e202415966. [PMID: 39292507 DOI: 10.1002/anie.202415966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024]
Abstract
High Br-content lead mixed-halide perovskites with wide-bandgap (WBG) of 1.6-2.0 eV have showcased vast potential to be used in tandem solar cells. However, WBG perovskites often suffer from severe halide segregation, phase separation and ion migration under the stress of light, heat, moisture and electric bias, which would accelerate the decomposition of perovskite films and thus deteriorate the photovoltaic performance and even aggravate the lead leakage from damaged devices. Here, we report a novel chemical synergic interaction strategy to mitigate the abovementioned issues in WBG perovskites. To achieve that, a small amount of cationic β-cyclodextrin, composed of multiple ammonium cations, chlorine ions and abundant hydroxyl functional groups, was introduced into WBG perovskites, which effectively stabilized the halide ions and homogenized the phase distribution, comprehensively passivated the crystallographic defects, as well as efficiently immobilized the Pb2+ ions. Encouragingly, the cationic β-cyclodextrin was universal and useful for different WBG perovskite compositions (i.e. 1.68 eV, 1.79 eV and 1.99 eV), which favorably boosted the efficiencies by 10 %-36 % and extended the operational stability of resultant devices to 2680 h. The four-terminal all-perovskite tandem and six-terminal all-perovskite tandem solar cells integrated with different WBG perovskite sub-cells exhibited efficiencies up to 24.39 % and 22.42 %, respectively. More importantly, we demonstrated the cationic β-cyclodextrin-assisted internal chemical encapsulation effectively prevented the Pb leakage when the devices were severely damaged and immersed in water. Surprisingly, there was only 5.63 ppb Pb leaching out for the single-junction devices, far below than the U.S. standard for safe drinking water (<15 ppb). The target tandem solar cells with cationic β-cyclodextrin modification also realized a Pb sequestration efficiency of 93.4 % under the most adverse environment.
Collapse
Affiliation(s)
- Meifang Yang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Ying Tan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Guo Yang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xueqing Chang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Tian Tian
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Wen-Guang Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Yuxuan Fang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jinliang Shen
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding, 071002, P.R. China
| | - Shaopeng Yang
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding, 071002, P.R. China
| | - Wu-Qiang Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
3
|
Yang C, Hu W, Liu J, Han C, Gao Q, Mei A, Zhou Y, Guo F, Han H. Achievements, challenges, and future prospects for industrialization of perovskite solar cells. LIGHT, SCIENCE & APPLICATIONS 2024; 13:227. [PMID: 39227394 PMCID: PMC11372181 DOI: 10.1038/s41377-024-01461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/07/2024] [Accepted: 04/20/2024] [Indexed: 09/05/2024]
Abstract
In just over a decade, certified single-junction perovskite solar cells (PSCs) boast an impressive power conversion efficiency (PCE) of 26.1%. Such outstanding performance makes it highly viable for further development. Here, we have meticulously outlined challenges that arose during the industrialization of PSCs and proposed their corresponding solutions based on extensive research. We discussed the main challenges in this field including technological limitations, multi-scenario applications, sustainable development, etc. Mature photovoltaic solutions provide the perovskite community with invaluable insights for overcoming the challenges of industrialization. In the upcoming stages of PSCs advancement, it has become evident that addressing the challenges concerning long-term stability and sustainability is paramount. In this manner, we can facilitate a more effective integration of PSCs into our daily lives.
Collapse
Affiliation(s)
- Chuang Yang
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Wenjing Hu
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Jiale Liu
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Chuanzhou Han
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Qiaojiao Gao
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Anyi Mei
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Yinhua Zhou
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Fengwan Guo
- Collaborative Innovation Center for Advanced Organic Chemical Materials, Co-constructed by the Province and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, Hubei, China.
| | - Hongwei Han
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
4
|
Wei Q, Zheng D, Liu L, Liu J, Du M, Peng L, Wang K, Liu S. Fusing Science with Industry: Perovskite Photovoltaics Moving Rapidly into Industrialization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406295. [PMID: 38975994 DOI: 10.1002/adma.202406295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/23/2024] [Indexed: 07/09/2024]
Abstract
The organic-inorganic lead halide per materials have emerged as highly promising contenders in the field of photovoltaic technology, offering exceptional efficiency and cost-effectiveness. The commercialization of perovskite photovoltaics hinges on successfully transitioning from lab-scale perovskite solar cells to large-scale perovskite solar modules (PSMs). However, the efficiency of PSMs significantly diminishes with increasing device area, impeding commercial viability. Central to achieving high-efficiency PSMs is fabricating uniform functional films and optimizing interfaces to minimize energy loss. This review sheds light on the path toward large-scale PSMs, emphasizing the pivotal role of integrating cutting-edge scientific research with industrial technology. By exploring scalable deposition techniques and optimization strategies, the advancements and challenges in fabricating large-area perovskite films are revealed. Subsequently, the architecture and contact materials of PSMs are delved while addressing pertinent interface issues. Crucially, efficiency loss during scale-up and stability risks encountered by PSMs is analyzed. Furthermore, the advancements in industrial efforts toward perovskite commercialization are highlighted, emphasizing the perspective of PSMs in revolutionizing renewable energy. By highlighting the scientific and technical challenges in developing PSMs, the importance of combining science and industry to drive their industrialization and pave the way for future advancements is stressed.
Collapse
Affiliation(s)
- Qingyun Wei
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Dexu Zheng
- China National Nuclear Power Co., Ltd., Beijing, 100089, China
| | - Lu Liu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Jishuang Liu
- China National Nuclear Power Co., Ltd., Beijing, 100089, China
| | - Minyong Du
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Lei Peng
- China National Nuclear Power Co., Ltd., Beijing, 100089, China
| | - Kai Wang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Shengzhong Liu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- China National Nuclear Power Co., Ltd., Beijing, 100089, China
| |
Collapse
|
5
|
Liu G, Yang G, Feng W, Li H, Yang M, Zhong Y, Jiang X, Wu WQ. Regulating Surface Metal Abundance via Lattice-Matched Coordination for Versatile and Environmentally-Viable Sn-Pb Alloying Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405860. [PMID: 39108194 DOI: 10.1002/adma.202405860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/20/2024] [Indexed: 09/28/2024]
Abstract
Narrow-bandgap Sn-Pb alloying perovskites showcased great potential in constructing multiple-junction perovskite solar cells (PSCs) with efficiencies approaching or exceeding the Shockley-Queisser limit. However, the uncontrollable surface metal abundance (Sn2+ and Pb2+ ions) hinders their efficiency and versatility in different device structures. Additionally, the undesired Pb distribution mainly at the buried interface accelerates the Pb leakage when devices are damaged. In this work, a novel strategy is presented to modulate crystallization kinetics and surface metal abundance of Sn-Pb perovskites using a cobweb-like quadrangular macrocyclic porphyrin material, which features a molecular size compatible with the perovskite lattice and robustly coordinates with Pb2+ ions, thus immobilizing them and increasing surface Pb abundance by 61%. This modulation reduces toxic Pb leakage rates by 24-fold, with only ∼23 ppb Pb in water after severely damaged PSCs are immersed in water for 150 h.This strategy can also enhance chemical homogeneity, reduce trap density, release tensile strain and optimize carrier dynamics of Sn-Pb perovskites and relevant devices. Encouragingly, the power conversion efficiency (PCEs) of 23.28% for single-junction, full-stack devices and 21.34% for hole transport layer-free Sn-Pb PSCs are achieved.Notably, the related monolithic all-perovskite tandem solar cell also achieves a PCE of 27.03% with outstanding photostability.
Collapse
Affiliation(s)
- Gengling Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Guo Yang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Wenhuai Feng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Hui Li
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Rubattino 81, Milano, 20134, Italy
| | - Meifang Yang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yang Zhong
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Xianyuan Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Wu-Qiang Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
6
|
Zhang Z, Shi Y, Chen J, Shen P, Li H, Yang M, Wang S, Li X, Zhang F. Preventing lead leakage in perovskite solar cells and modules with a low-cost and stable chemisorption coating. MATERIALS HORIZONS 2024; 11:2449-2456. [PMID: 38450711 DOI: 10.1039/d4mh00033a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Despite the promising commercial prospects of perovskite solar cells, the issue of lead toxicity continues to hinder their future industrial applications. Here, we report a low-cost and rapidly degraded sulfosuccinic acid-modified polyvinyl alcohol (SMP) coating that prevents lead leakage and enhances device stability without compromising device performance. Even under different strict conditions (simulated heavy rain, acid rain, high temperatures, and competing ions), the coatings effectively prevent lead leakage by over 99%. After 75 days of outdoor exposure, the coating still demonstrates similar lead sequestration efficiency (SQE). In addition, it can be applied to different device structures (n-i-p and p-i-n) and modules, with over 99% SQE, making it a general method for preventing lead leakage.
Collapse
Affiliation(s)
- Zongxu Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yating Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jiujiang Chen
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Peng Shen
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300350, P. R. China
| | - Hongshi Li
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300350, P. R. China
| | - Mengjin Yang
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Shirong Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xianggao Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Fei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
7
|
Zhang X, Huang Q, Yin W, Zheng W. Challenges in Developing Perovskite Nanocrystals for Commercial Applications. Chempluschem 2024; 89:e202300693. [PMID: 38179846 DOI: 10.1002/cplu.202300693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Zero-dimensional lead halide perovskite nanocrystals (NCs) exhibit size-dependent bandgap and carrier confinement compared to bulk counterparts due to the quantum confinement effect, making them essential for achieving wide-color-gamut displays, studying excitonic spin relaxation, and constructing superlattices. Despite their promising potential, they face a variety of technical bottlenecks, such as insufficient color reproducibility, limited large-scale production, low stability, and toxicity. An outline of a research roadmap is provided in the review, which highlights key challenges in developing perovskite NCs for commercial applications.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, P. R. China
| | - Qianqian Huang
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, P. R. China
| | - Wenxu Yin
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, P. R. China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
8
|
Dai Y, Ge X, Shi B, Wang P, Zhao Y, Zhang X. Enhancing Ultraviolet Stability and Performance of Wide Bandgap Perovskite Solar Cells Through Ultraviolet Light-Absorbing Passivator. SMALL METHODS 2024:e2301793. [PMID: 38501843 DOI: 10.1002/smtd.202301793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Ultraviolet light (UV) has caused tremendous damage to perovskite solar cells (PSCs), degrading the perovskite and shortening their lifetime. Defects act as non-radiative recombination sites, accelerate the degradation process, reduce the efficiency of the device and weaken the stability of solar cell. In this work, to realize efficient and stable p-i-n wide bandgap solar cells under UV, a synergetic strategy utilizing UV light-absorbing passivator, (Trifluoroacetyl) benzotriazole (TFABI), enhance UV photostability and regulate the defect passivation is proposed. By using TFABI, the degradation of the perovskite absorption layer under UV light is suppressed, spectral response is enhanced and the Pb vacancy defects are passivated. As a result, the target device achieves an efficiency of 21.54%, exhibiting excellent long-term stability under 365 nm UV irradiation. After 60 h of irradiation, it retains 85% of its initial value (60 mW cm-2 , RH 25-30%, 25 °C).
Collapse
Affiliation(s)
- Yao Dai
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, National Key Laboratory of Photovoltaic Materials and Solar Cells, Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Xin Ge
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, National Key Laboratory of Photovoltaic Materials and Solar Cells, Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Biao Shi
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, National Key Laboratory of Photovoltaic Materials and Solar Cells, Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Pengyang Wang
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, National Key Laboratory of Photovoltaic Materials and Solar Cells, Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Ying Zhao
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, National Key Laboratory of Photovoltaic Materials and Solar Cells, Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Xiaodan Zhang
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, National Key Laboratory of Photovoltaic Materials and Solar Cells, Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| |
Collapse
|
9
|
Weerasinghe HC, Macadam N, Kim JE, Sutherland LJ, Angmo D, Ng LWT, Scully AD, Glenn F, Chantler R, Chang NL, Dehghanimadvar M, Shi L, Ho-Baillie AWY, Egan R, Chesman ASR, Gao M, Jasieniak JJ, Hasan T, Vak D. The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions. Nat Commun 2024; 15:1656. [PMID: 38472219 PMCID: PMC10933357 DOI: 10.1038/s41467-024-46016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
The rapid development of organic-inorganic hybrid perovskite solar cells has resulted in laboratory-scale devices having power conversion efficiencies that are competitive with commercialised technologies. However, hybrid perovskite solar cells are yet to make an impact beyond the research community, with translation to large-area devices fabricated by industry-relevant manufacturing methods remaining a critical challenge. Here we report the first demonstration of hybrid perovskite solar cell modules, comprising serially-interconnected cells, produced entirely using industrial roll-to-roll printing tools under ambient room conditions. As part of this development, costly vacuum-deposited metal electrodes are replaced with printed carbon electrodes. A high-throughput experiment involving the analysis of batches of 1600 cells produced using 20 parameter combinations enabled rapid optimisation over a large parameter space. The optimised roll-to-roll fabricated hybrid perovskite solar cells show power conversion efficiencies of up to 15.5% for individual small-area cells and 11.0% for serially-interconnected cells in large-area modules. Based on the devices produced in this work, a cost of ~0.7 USD W-1 is predicted for a production rate of 1,000,000 m² per year in Australia, with potential for further significant cost reductions.
Collapse
Affiliation(s)
| | - Nasiruddin Macadam
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Jueng-Eun Kim
- Flexible Electronics Laboratory, CSIRO Manufacturing, Clayton, VIC, 3168, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Luke J Sutherland
- Flexible Electronics Laboratory, CSIRO Manufacturing, Clayton, VIC, 3168, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Dechan Angmo
- Flexible Electronics Laboratory, CSIRO Manufacturing, Clayton, VIC, 3168, Australia
| | - Leonard W T Ng
- Flexible Electronics Laboratory, CSIRO Manufacturing, Clayton, VIC, 3168, Australia
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), 50 Nanyang Ave, Block N4.1, Singapore, 639798, Singapore
| | - Andrew D Scully
- Flexible Electronics Laboratory, CSIRO Manufacturing, Clayton, VIC, 3168, Australia
| | - Fiona Glenn
- Flexible Electronics Laboratory, CSIRO Manufacturing, Clayton, VIC, 3168, Australia
| | - Regine Chantler
- Flexible Electronics Laboratory, CSIRO Manufacturing, Clayton, VIC, 3168, Australia
| | - Nathan L Chang
- School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mohammad Dehghanimadvar
- School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Lei Shi
- School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan, China
| | - Anita W Y Ho-Baillie
- School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Sydney Nano and School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Renate Egan
- School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Anthony S R Chesman
- Flexible Electronics Laboratory, CSIRO Manufacturing, Clayton, VIC, 3168, Australia
| | - Mei Gao
- Flexible Electronics Laboratory, CSIRO Manufacturing, Clayton, VIC, 3168, Australia
| | - Jacek J Jasieniak
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia.
| | - Tawfique Hasan
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK.
| | - Doojin Vak
- Flexible Electronics Laboratory, CSIRO Manufacturing, Clayton, VIC, 3168, Australia.
| |
Collapse
|
10
|
Yu B, Sun Y, Zhang J, Wang K, Yu H. Synergetic Regulation of Interface Defects and Carriers Dynamics for High-Performance Lead-Free Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307025. [PMID: 37941475 DOI: 10.1002/smll.202307025] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/14/2023] [Indexed: 11/10/2023]
Abstract
Severe nonradiative recombination and open-circuit voltage loss triggered by high-density interface defects greatly restrict the continuous improvement of Sn-based perovskite solar cells (Sn-PVSCs). Herein, a novel amphoteric semiconductor, O-pivaloylhydroxylammonium trifluoromethanesulfonate (PHAAT), is developed to manage interface defects and carrier dynamics of Sn-PVSCs. The amphiphilic ionic modulators containing multiple Lewis-base functional groups can synergistically passivate anionic and cationic defects while coordinating with uncoordinated Sn2+ to compensate for surface charge and alleviate the Sn2+ oxidation. Especially, the sulfonate anions raise the energy barrier of surface oxidation, relieve lattice distortion, and inhibit nonradiative recombination by passivating Sn-related and I-related deep-level defects. Furthermore, the strong coupling between PHAAT and Sn perovskite induces the transition of the surface electronic state from p-type to n-type, thus creating an extra back-surface field to accelerate electron extraction. Consequently, the PHAAT-treated device exhibits a champion efficiency of 13.94% with negligible hysteresis. The device without any encapsulation maintains 94.7% of its initial PCE after 2000 h of storage and 91.6% of its initial PCE after 1000 h of continuous illumination. This work provides a reliable strategy to passivate interface defects and construct p-n homojunction to realize efficient and stable Sn-based perovskite photovoltaic devices.
Collapse
Affiliation(s)
- Bo Yu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Yapeng Sun
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Jiankai Zhang
- International School of Microelectronics, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Kai Wang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Huangzhong Yu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong, 510640, China
| |
Collapse
|
11
|
Song C, Du H, Xu M, Yang J, Zhang X, Wang J, Zhang Y, Gu C, Li R, Hong T, Zhang J, Wang J, Ye Y. Improving the performance of perovskite solar cells using a dual-hole transport layer. Dalton Trans 2024; 53:484-492. [PMID: 38084054 DOI: 10.1039/d3dt03501h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The energy loss (Eloss) caused by inefficient charge transfer and large energy level offset at the buried interface can easily restrict the performance of p-i-n perovskite solar cells (PVSCs). In this study, the utilization of poly-TPD and P3CT-N as a dual-hole transporting layer (HTLs) was implemented in a sequential manner. This approach aimed to improve the charge transfer efficiency of the HTL and mitigate charge recombination at the interface between the HTL and PVK. The results showed that this strategy also could achieve more suitable energy levels, improve the quality of the perovskite film layer, and ultimately enhance the device's stability. IPVSCs employing the dual-HTLs approach exhibited the highest power conversion efficiency of 19.85%, and the open-circuit voltage increased to 1.09 V from 1.00 V. This study offers a straightforward and efficient approach to boost the device performance by minimizing Eloss and reducing the buried interfacial defects. The findings underscore the potential of employing a dual-HTL strategy as a promising pathway for further advancements in PVSCs.
Collapse
Affiliation(s)
- Chenghao Song
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, Zhejiang, China.
| | - Huiwei Du
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, Zhejiang, China.
| | - Menglei Xu
- JinkoSolar, Haining, 314400, Zhejiang, China.
| | - Jie Yang
- JinkoSolar, Haining, 314400, Zhejiang, China.
| | - Xinyu Zhang
- JinkoSolar, Haining, 314400, Zhejiang, China.
| | - Jungan Wang
- JinkoSolar, Haining, 314400, Zhejiang, China.
| | | | - Chengjun Gu
- JinkoSolar, Haining, 314400, Zhejiang, China.
| | - Rui Li
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, Zhejiang, China.
| | - Tao Hong
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, Zhejiang, China.
| | - Jingji Zhang
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, Zhejiang, China.
| | - Jiangying Wang
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, Zhejiang, China.
| | - Yongchun Ye
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
12
|
Ye Y, Yu L, Lizundia E, Zhu Y, Chen C, Jiang F. Cellulose-Based Ionic Conductor: An Emerging Material toward Sustainable Devices. Chem Rev 2023; 123:9204-9264. [PMID: 37419504 DOI: 10.1021/acs.chemrev.2c00618] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Ionic conductors (ICs) find widespread applications across different fields, such as smart electronic, ionotronic, sensor, biomedical, and energy harvesting/storage devices, and largely determine the function and performance of these devices. In the pursuit of developing ICs required for better performing and sustainable devices, cellulose appears as an attractive and promising building block due to its high abundance, renewability, striking mechanical strength, and other functional features. In this review, we provide a comprehensive summary regarding ICs fabricated from cellulose and cellulose-derived materials in terms of fundamental structural features of cellulose, the materials design and fabrication techniques for engineering, main properties and characterization, and diverse applications. Next, the potential of cellulose-based ICs to relieve the increasing concern about electronic waste within the frame of circularity and environmental sustainability and the future directions to be explored for advancing this field are discussed. Overall, we hope this review can provide a comprehensive summary and unique perspectives on the design and application of advanced cellulose-based ICs and thereby encourage the utilization of cellulosic materials toward sustainable devices.
Collapse
Affiliation(s)
- Yuhang Ye
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Le Yu
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao University of the Basque Country (UPV/EHU), Bilbao 48013, Spain
- BCMaterials Lab, Basque Center for Materials, Applications and Nanostructures, Leioa 48940, Spain
| | - Yeling Zhu
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Chaoji Chen
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China
| | - Feng Jiang
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
13
|
Dong Y, Zhang J, Wang W, Hu B, Xia D, Lin K, Geng L, Yang Y. Regulating Crystallization and Lead Leakage of Perovskite Solar Cell Via Novel Polyoxometalate-Based Metal-Organic Framework. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301824. [PMID: 37183295 DOI: 10.1002/smll.202301824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/16/2023] [Indexed: 05/16/2023]
Abstract
Despite the unprecedented progress in lead-based perovskite solar cells (PSCs), the toxicity and leakage of lead from degraded PSCs triggered by deep-level defects and poor crystallization quality increase environmental risk and become a critical challenge for eco-friendly PSCs. Here, a novel 2D polyoxometalate (POM)-based metal-organic framework (MOF) (C5 NH5 )4 (C3 N2 H5 )2 Zn3 (H8 P4 Mo6 O31 )2 ·2H2 O (POMOF) is ingeniously devised to address these issues. Note that the integration of POM endows POMOF with great advantages of electrical conductivity and charge mobility. Ordered POMOF induces the crystallization of high-quality perovskite film and eliminates lead-based defects to improve internal stability. The resultant PSCs achieve a superior power conversion efficiency (23.3%) accompanied by improved stability that maintains ≈90% of its original efficiency after 1600 h. Meanwhile, POMOF with phosphate groups effectively prevents lead leakage through in situ chemical anchoring and adsorption methods to reduce environmental risk. This work provides an effective strategy to minimize lead-based defects and leakage in sustainable PSCs through multi-functional POM-based MOF material.
Collapse
Affiliation(s)
- Yayu Dong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Jian Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Wei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Boyuan Hu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Debin Xia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Kaifeng Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Lin Geng
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| |
Collapse
|
14
|
Zhang H, Lee JW, Nasti G, Handy R, Abate A, Grätzel M, Park NG. Lead immobilization for environmentally sustainable perovskite solar cells. Nature 2023; 617:687-695. [PMID: 37225881 DOI: 10.1038/s41586-023-05938-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 03/10/2023] [Indexed: 05/26/2023]
Abstract
Lead halide perovskites are promising semiconducting materials for solar energy harvesting. However, the presence of heavy-metal lead ions is problematic when considering potential harmful leakage into the environment from broken cells and also from a public acceptance point of view. Moreover, strict legislation on the use of lead around the world has driven innovation in the development of strategies for recycling end-of-life products by means of environmentally friendly and cost-effective routes. Lead immobilization is a strategy to transform water-soluble lead ions into insoluble, nonbioavailable and nontransportable forms over large pH and temperature ranges and to suppress lead leakage if the devices are damaged. An ideal methodology should ensure sufficient lead-chelating capability without substantially influencing the device performance, production cost and recycling. Here we analyse chemical approaches to immobilize Pb2+ from perovskite solar cells, such as grain isolation, lead complexation, structure integration and adsorption of leaked lead, based on their feasibility to suppress lead leakage to a minimal level. We highlight the need for a standard lead-leakage test and related mathematical model to be established for the reliable evaluation of the potential environmental risk of perovskite optoelectronics.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, China
- School of Chemical Engineering and Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jin-Wook Lee
- Department of Nano Engineering and Department of Nano Science and Technology, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, Republic of Korea
| | - Giuseppe Nasti
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
| | | | - Antonio Abate
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy.
| | - Michael Grätzel
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, Republic of Korea.
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Nam-Gyu Park
- School of Chemical Engineering and Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon, Republic of Korea.
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
15
|
Chen H, Zhang GH, Zhu QH, Fu J, Qin S, He L, Tao GH. Lead Sequestration in Perovskite Photovoltaic Device Encapsulated with Water-Proof and Adhesive Poly(ionic liquid). ACS APPLIED MATERIALS & INTERFACES 2023; 15:13637-13643. [PMID: 36877534 DOI: 10.1021/acsami.2c22957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The inevitable usage of toxic lead impedes the commercialization of lead halide perovskite solar cells, especially considering lead ions potentially unseals from the discarded and damaged devices and consequently contaminates the environment. In this work, we proposed a poly(ionic liquid) (PIL) cohered sandwich structure (PCSS) to realize lead sequestration in perovskite solar cells by a water-proof and adhesive poly([1-(3-propionic acid)-3-vinylimidazolium] bis(trifluoromethanesulphonyl)imide (PPVI-TFSI). A transparent ambidextrous protective shield manufactured from PPVI-TFSI was achieved and applied in lead sequestration for perovskite solar cells. PCSS provides robustness and water-resistance, which improves device stability toward water erosion and extreme situations (such as acid, base, salty water, and hot water). PPVI-TFSI exhibited excellent affinity toward lead with adsorption capacity of 516 mg·g-1, which assisted to prevent lead leakage in abandoned devices as proved in the test of wheat germination vividly. PCSS provides a promising solution for complex lead sequestration and management issues, which contribute to the commercialization of perovskite solar cells.
Collapse
Affiliation(s)
- Hao Chen
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Guo-Hao Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qiu-Hong Zhu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jie Fu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Song Qin
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ling He
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Guo-Hong Tao
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
16
|
Wang T, Yang J, Cao Q, Pu X, Li Y, Chen H, Zhao J, Zhang Y, Chen X, Li X. Room temperature nondestructive encapsulation via self-crosslinked fluorosilicone polymer enables damp heat-stable sustainable perovskite solar cells. Nat Commun 2023; 14:1342. [PMID: 36906625 PMCID: PMC10008636 DOI: 10.1038/s41467-023-36918-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/23/2023] [Indexed: 03/13/2023] Open
Abstract
Encapsulation engineering is an effective strategy to improve the stability of perovskite solar cells. However, current encapsulation materials are not suitable for lead-based devices because of their complex encapsulation processes, poor thermal management, and inefficient lead leakage suppression. In this work, we design a self-crosslinked fluorosilicone polymer gel, achieving nondestructive encapsulation at room temperature. Moreover, the proposed encapsulation strategy effectively promotes heat transfer and mitigates the potential impact of heat accumulation. As a result, the encapsulated devices maintain 98% of the normalized power conversion efficiency after 1000 h in the damp heat test and retain 95% of the normalized efficiency after 220 cycles in the thermal cycling test, satisfying the requirements of the International Electrotechnical Commission 61215 standard. The encapsulated devices also exhibit excellent lead leakage inhibition rates, 99% in the rain test and 98% in the immersion test, owing to excellent glass protection and strong coordination interaction. Our strategy provides a universal and integrated solution for achieving efficient, stable, and sustainable perovskite photovoltaics.
Collapse
Affiliation(s)
- Tong Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072, Xi´an, China
| | - Jiabao Yang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072, Xi´an, China
| | - Qi Cao
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072, Xi´an, China
| | - Xingyu Pu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072, Xi´an, China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hui Chen
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072, Xi´an, China
| | - Junsong Zhao
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072, Xi´an, China
| | - Yixin Zhang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072, Xi´an, China
| | - Xingyuan Chen
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072, Xi´an, China
| | - Xuanhua Li
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072, Xi´an, China.
| |
Collapse
|
17
|
Masawa SM, Bakari R, Xu J, Yao J. Progress and challenges in the fabrication of lead-free all-inorganic perovskites solar cells using solvent and compositional engineering Techniques-A review. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Park JM, Lim S, Sun JY. Materials development in stretchable iontronics. SOFT MATTER 2022; 18:6487-6510. [PMID: 36000330 DOI: 10.1039/d2sm00733a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stretchable iontronics have recently been developed as an ideal interface to promote the interaction between humans and devices. Since the materials that use ions as charge carriers are typically transparent and stretchable, they have been used to fabricate devices with diverse functions with intrinsic transparency and stretchability. With the development of device design, material design has also been investigated to mitigate the issues associated with ionic materials, such as their weak mechanical properties, poor electrical properties, or poor environmental stabilities. In this review, we describe the recent progress on the design of materials in stretchable iontronics. By classifying stretchable ionic materials into three types of components (ionic conductors, ionic semiconductors, and ionic insulators), the issues each component has and the strategies to solve them are introduced, specifically in terms of molecular interactions. We then discuss the existing hurdles and challenges to be handled and shine light on the possibilities and opportunities from the insight of molecular interactions.
Collapse
Affiliation(s)
- Jae-Man Park
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sungsoo Lim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jeong-Yun Sun
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
19
|
Fu K, Zhang Y, Liu H, Lv C, Guo J, Luo J, Yin K, Luo S. Construction of metal-organic framework/polymer beads for efficient lead ions removal from water: Experiment studies and full-scale performance prediction. CHEMOSPHERE 2022; 303:135084. [PMID: 35618066 DOI: 10.1016/j.chemosphere.2022.135084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) show great promise in heavy metal removal; however, their applications are restricted by the poor separability and water instability. Herein, granular Zr-based MOF-polymer composite beads (MPCB(Zr)) (mean diameter ∼ 1.74 mm) were synthesized using a facile dropping method, and applied on efficient lead ions (Pb(II)) removal. The as-prepared MPCB(Zr) demonstrated deep Pb(II) removal capability by reducing its concentration to ∼ 0.002 mg L-1 after adsorption equilibrium at 360 min. The distribution coefficient for Pb(II) reached 8.0 × 106 mL g-1, and the theoretical adsorption capacity for Pb(II) was 144.5 mg g-1 (0.70 mmol g-1, 30 °C). The resulting MPCB(Zr) was highly selective for Pb(II), with the selectivity coefficient up to ∼ 1.0-3.6 × 103 for the background cations (Na(I), K(I), Ca(II), and Mg(II)). Moreover, the MPCB(Zr) exhibited a broad working pH range (3.0-6.0) and satisfactory anti-interference to dissolved organic matters (humic acid and fuvic acid). Notably, the MPCB(Zr) also demonstrated excellent reusability with the Pb(II) removal efficiency over 99.0% after 20 cycles. Combined physicochemical characterizations unveiled that the thiol and oxygen-containing groups (e.g., hydroxyl, carboxylate) were responsible for the effective Pb(II) removal. To provide guidance for engineering application, the full-scale performance of the MPCB(Zr) under varying operation conditions was systematically evaluated via the validated pore surface diffusion model. This work provides an effective methodology to construct macroscopic MOF-polymer beads for effective Pb(II) removal, and promote the actual application of MOFs in water treatment.
Collapse
Affiliation(s)
- Kaixing Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan Province, 410082, PR China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Youqin Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan Province, 410082, PR China
| | - Hengzhi Liu
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan Province, 411105, PR China
| | - Chunyu Lv
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jing Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan Province, 410082, PR China; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan Province, 410082, PR China
| | - Jinming Luo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Kai Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan Province, 410082, PR China; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan Province, 410082, PR China.
| | - Shenglian Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan Province, 410082, PR China; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan Province, 410082, PR China.
| |
Collapse
|
20
|
Wei X, Xiao M, Wang B, Wang C, Li Y, Dou J, Cui Z, Dou J, Wang H, Ma S, Zhu C, Yuan G, Yang N, Song T, Zhou H, Chen H, Bai Y, Chen Q. Avoiding Structural Collapse to Reduce Lead Leakage in Perovskite Photovoltaics. Angew Chem Int Ed Engl 2022; 61:e202204314. [PMID: 35412681 DOI: 10.1002/anie.202204314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 11/06/2022]
Abstract
Perovskite solar cells (PSCs) have become a promising candidate for the next-generation photovoltaic technologies. As an essential element for high-efficiency PSCs however, the heavy metal Pb is soluble in water, causing a serious threat to the environment and human health. Due to the weak ionic bonding in three-dimensional (3D) perovskites, drastic structure decomposition occurs when immersing the perovskite film in water, which accelerates the Pb leakage. By introducing the chemically stable Dion-Jacobson (DJ) 2D perovskite at the 3D perovskite surface, the film dissolution is significantly slowed down, which retards lead leakage. As a result, the Pb contamination is dramatically reduced under various extreme conditions. In addition, the PSCs device deliver a power conversion efficiency (PCE) of 23.6 % and retain over 95 % of their initial PCE after the maximum power point tracking for over 1100 h.
Collapse
Affiliation(s)
- Xueyuan Wei
- Experimental Centre for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Mengqi Xiao
- Experimental Centre for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Boyu Wang
- Experimental Centre for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chenyue Wang
- Experimental Centre for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Yuekang Li
- Experimental Centre for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jing Dou
- Experimental Centre for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhenhua Cui
- Experimental Centre for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jie Dou
- Experimental Centre for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hailiang Wang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Sai Ma
- Experimental Centre for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Cheng Zhu
- Experimental Centre for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Guizhou Yuan
- Experimental Centre for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ning Yang
- Experimental Centre for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Tinglu Song
- Experimental Centre for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Huanping Zhou
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Haining Chen
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Yang Bai
- Experimental Centre for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Qi Chen
- Experimental Centre for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
21
|
Li W, Li L, Zheng S, Liu Z, Zou X, Sun Z, Guo J, Yan F. Recyclable, Healable, and Tough Ionogels Insensitive to Crack Propagation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203049. [PMID: 35522456 DOI: 10.1002/adma.202203049] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Most gels and elastomers introduce sacrificial bonds in the covalent network to dissipate energy. However, long-term cyclic loading caused irreversible fatigue damage and crack propagation cannot be prevented. Furthermore, because of the irreversible covalent crosslinked networks, it is a huge challenge to implement reversible mechanical interlocking and reorganize the polymer segments to realize the recycling and reuse of ionogels. Here, covalent crosslinking of host materials is replaced with entanglement. The entangled microdomains are used as physical crosslinking while introducing reversible bond interactions. The interpenetrating, entangled, and elastic microdomains of linear segments and covalent-network microspheres provide mechanical stability, eliminate stress concentration at the crack tip under load, and achieve unprecedented tear and fatigue resistance of ionogels in any load direction. Moreover, reversible entanglements and noncovalent interactions can be disentangled and recombined to achieve recycling and mechanical regeneration, and the recyclability of covalent-network microdomains is realized.
Collapse
Affiliation(s)
- Weizheng Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Lingling Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Sijie Zheng
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Ziyang Liu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Xiuyang Zou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Zhe Sun
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jiangna Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
22
|
Wei X, Xiao M, Wang B, Wang C, Li Y, Dou J, Cui Z, Dou J, Wang H, Ma S, Zhu C, Yuan G, Yang N, Song T, Zhou H, Chen H, Bai Y, Chen Q. Avoiding Structural Collapse to Reduce Lead Leakage in Perovskite Photovoltaics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xueyuan Wei
- Experimental Centre for Advanced Materials School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Mengqi Xiao
- Experimental Centre for Advanced Materials School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Boyu Wang
- Experimental Centre for Advanced Materials School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Chenyue Wang
- Experimental Centre for Advanced Materials School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
- Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 P. R. China
| | - Yuekang Li
- Experimental Centre for Advanced Materials School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Jing Dou
- Experimental Centre for Advanced Materials School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Zhenhua Cui
- Experimental Centre for Advanced Materials School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Jie Dou
- Experimental Centre for Advanced Materials School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Hailiang Wang
- School of Materials Science and Engineering Beihang University Beijing 100191 P. R. China
| | - Sai Ma
- Experimental Centre for Advanced Materials School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Cheng Zhu
- Experimental Centre for Advanced Materials School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Guizhou Yuan
- Experimental Centre for Advanced Materials School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Ning Yang
- Experimental Centre for Advanced Materials School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Tinglu Song
- Experimental Centre for Advanced Materials School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Huanping Zhou
- School of Materials Science and Engineering Peking University Beijing 100871 P. R. China
| | - Haining Chen
- School of Materials Science and Engineering Beihang University Beijing 100191 P. R. China
| | - Yang Bai
- Experimental Centre for Advanced Materials School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Qi Chen
- Experimental Centre for Advanced Materials School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|
23
|
Chen L, Wang H, Zhang W, Li F, Wang Z, Wang X, Shao Y, Shao J. Surface Passivation of MAPbBr 3 Perovskite Single Crystals to Suppress Ion Migration and Enhance Photoelectronic Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10917-10926. [PMID: 35089711 DOI: 10.1021/acsami.1c21948] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recently, organometal halide perovskites (OHPs) have achieved significant advancement in photovoltaics, light-emitting diodes, X-ray detectors, and transistors. However, commercialization and practical applications were hindered by the notorious ion migration issue of OHPs. Here, we report a simple solvent-based surface passivation strategy with organic halide salts (methylammonium bromide (MABr) and phenylethylammonium bromide (PEABr)) to suppress the ion migration of MAPbBr3 single crystals. The surface passivation effect is evidenced by the stronger photoluminescence (PL) intensity and extended PL lifetime. Using the pulse voltage and continuous voltage current-voltage measurements, we found that single crystals with surface passivation showed negligible hysteresis on the surface due to the suppression of ion migration. As a result, the dark current stability of coplanar structure devices was significantly improved. Moreover, the vertical structure X-ray detectors with PEABr treatment exhibited a high sensitivity of 15 280 μC Gyair-1 cm-2 and a low detection limit of 87 nGyair s-1 under 5 V bias. The proposed technology would be a versatile tool to improve the performance of perovskite photoelectronic devices.
Collapse
Affiliation(s)
- Luoran Chen
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Materials for High Power Laser, Chinese Academy of Sciences, Shanghai 201800, China
| | - Hu Wang
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Key Laboratory of Materials for High Power Laser, Chinese Academy of Sciences, Shanghai 201800, China
| | - Wenqing Zhang
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Materials for High Power Laser, Chinese Academy of Sciences, Shanghai 201800, China
| | - Fenghua Li
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Key Laboratory of Materials for High Power Laser, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zhiyuan Wang
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Materials for High Power Laser, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xueyan Wang
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Key Laboratory of Materials for High Power Laser, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yuchuan Shao
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Materials for High Power Laser, Chinese Academy of Sciences, Shanghai 201800, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianda Shao
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Materials for High Power Laser, Chinese Academy of Sciences, Shanghai 201800, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
24
|
Cheng X, Han Y, Cui BB. Hetero-perovskite engineering for stable and efficient perovskite solar cells. SUSTAINABLE ENERGY & FUELS 2022; 6:3304-3323. [DOI: 10.1039/d2se00398h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This review summarizes and discusses the HPSC engineering and optimization mechanism, and provides systematic knowledge and prospects of their development in the photovoltaic field.
Collapse
Affiliation(s)
- Xiaohua Cheng
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology (BIT), Beijing 100081, P. R. China
- School of Chemistry and Chemical Engineering, BIT, Beijing 100081, P. R. China
| | - Ying Han
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology (BIT), Beijing 100081, P. R. China
- School of Chemistry and Chemical Engineering, BIT, Beijing 100081, P. R. China
| | - Bin-Bin Cui
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology (BIT), Beijing 100081, P. R. China
- School of Chemistry and Chemical Engineering, BIT, Beijing 100081, P. R. China
- School of Materials Science & Engineering, BIT, Beijing 100081, P. R. China
| |
Collapse
|
25
|
Torres ETR, Emens LA. Emerging combination immunotherapy strategies for breast cancer: dual immune checkpoint modulation, antibody-drug conjugates and bispecific antibodies. Breast Cancer Res Treat 2021; 191:291-302. [PMID: 34716871 DOI: 10.1007/s10549-021-06423-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer has historically been considered a non-immunogenic tumor. Multiple studies over the last 10-15 years have demonstrated that a small subset of breast cancers is immune-activated, with PD-L1 expression and/or TILs in the tumor microenvironment. The PD-1 inhibitor pembrolizumab in combination with chemotherapy is now approved by the US FDA for the first-line treatment of metastatic PD-L1 + triple negative breast cancer, and the PD-L1 inhibitor atezolizumab has also demonstrated clinical activity. The median progression-free survival for pembrolizumab or atezolizumab combined with chemotherapy increased with the addition of immunotherapy by 4.1 months and 2.5 months, respectively. Despite this success, there is major room for improvement. Clinical benefit is modest. Only about 40% of triple negative breast cancers are PD-L1 + , not all PD-L1 + patients with advanced triple negative breast cancer respond, and immunotherapy is not yet approved for advanced PD-L1-negative triple negative breast cancer, HER2 + breast cancer, or ER + breast cancer. It is likely that redundant pathways of immune suppression are active in breast cancer, or that important pathways of immune activation are silent. In this review, we discuss emerging strategies for targeting multiple pathways of immunoregulation in advanced breast cancer with dual immune checkpoint inhibition, bispecific antibodies, and novel antibody drug conjugates. We also discuss the potential of nanotechnology to improve the delivery of immunotherapeutics to the breast tumor microenvironment to enhance their antitumor activity.
Collapse
Affiliation(s)
- Evanthia T Roussos Torres
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA. .,Department of Medicine-Oncology, Norris Comprehensive Cancer Center, 1441 Eastlake Ave, Suite 6412, Los Angeles, CA, 90033, USA.
| | - Leisha A Emens
- UPMC Hillman Cancer Center, 5117 Centre Avenue, Room 1.46e, Pittsburgh, PA, 15213, USA. .,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|