1
|
Leroy T, Faux P, Basso B, Eynard S, Wragg D, Vignal A. Inferring Long-Term and Short-Term Determinants of Genetic Diversity in Honey Bees: Beekeeping Impact and Conservation Strategies. Mol Biol Evol 2024; 41:msae249. [PMID: 39692632 DOI: 10.1093/molbev/msae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024] Open
Abstract
Bees are vital pollinators in natural and agricultural landscapes around the globe, playing a key role in maintaining flowering plant biodiversity and ensuring food security. Among the honey bee species, the Western honey bee (Apis mellifera) is particularly significant, not only for its extensive crop pollination services but also for producing economically valuable products such as honey. Here, we analyzed whole-genome sequence data from four Apis species to explore how honey bee evolution has shaped current diversity patterns. Using Approximate Bayesian Computation, we first reconstructed the demographic history of A. mellifera in Europe, finding support for postglacial secondary contacts, therefore predating human-mediated transfers linked to modern beekeeping. However, our analysis of recent demographic changes reveals significant bottlenecks due to beekeeping practices, which have notably affected genetic diversity. Black honey bee populations from conservatories, particularly those on islands, exhibit considerable genetic loss, highlighting the need to evaluate the long-term effectiveness of current conservation strategies. Additionally, we observed a high degree of conservation in the genomic landscapes of nucleotide diversity across the four species, despite a divergence gradient spanning over 15 million years, consistent with a long-term conservation of the recombination landscapes. Taken together, our results provide the most comprehensive assessment of diversity patterns in honey bees to date and offer insights into the optimal management of resources to ensure the long-term persistence of honey bees and their invaluable pollination services.
Collapse
Affiliation(s)
- Thibault Leroy
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan 31326, France
| | - Pierre Faux
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan 31326, France
| | | | - Sonia Eynard
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan 31326, France
| | - David Wragg
- Beebytes Analytics CIC, Roslin Innovation Centre, Easter Bush Campus, Midlothian, UK
| | - Alain Vignal
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan 31326, France
| |
Collapse
|
2
|
Dogantzis KA, Patel H, Rose S, Conflitti IM, Dey A, Tiwari T, Chapman NC, Kadri SM, Patch HM, Muli EM, Alqarni AS, Allsopp MH, Zayed A. Accurate Detection of scutellata-Hybrids (Africanized Bees) Using a SNP-Based Diagnostic Assay. Ecol Evol 2024; 14:e70554. [PMID: 39554880 PMCID: PMC11569865 DOI: 10.1002/ece3.70554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/22/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024] Open
Abstract
Hybrid populations of Africanized honey bees (scutellata-hybrids), notable for their defensive behaviour, have spread rapidly throughout South and North America since their unintentional introduction. Although their migration has slowed, the large-scale trade and movement of honey bee queens and colonies raise concern over the accidental importation of scutellata-hybrids to previously unoccupied areas. Therefore, developing an accurate and robust assay to detect scutellata-hybrids is an important first step toward mitigating risk. Here, we used an extensive population genomic dataset to assess the genomic composition of Apis mellifera native populations and patterns of genetic admixture in North and South American commercial honey bees. We used this dataset to develop a SNP assay, where 80 markers, combined with machine learning classification, can accurately differentiate between scutellata-hybrids and non-scutellata-hybrid commercial colonies. The assay was validated on 1263 individuals from colonies located in Canada, the United States, Australia and Brazil. Notably, we demonstrate that using a reduced SNP set of as few as 10 loci can still provide accurate results.
Collapse
Affiliation(s)
| | | | - Stephen Rose
- Department of BiologyYork UniversityTorontoOntarioCanada
| | | | - Alivia Dey
- Department of BiologyYork UniversityTorontoOntarioCanada
| | | | - Nadine C. Chapman
- Behaviour, Ecology and Evolution Laboratory, School of Life and Environmental SciencesUniversity of SydneySydneyAustralia
| | - Samir M. Kadri
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal ScienceSão Paulo State University (UNESP)BotucatuSão PauloBrazil
| | - Harland M. Patch
- Department of EntomologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Elliud M. Muli
- Department of Life ScienceSouth Eastern Kenya University (SEKU)KituiKenya
| | - Abdulaziz S. Alqarni
- Department of Plant Protection, College of Food and Agriculture SciencesKing Saud UniversityRiyadhSaudi Arabia
| | - Michael H. Allsopp
- Plant Protection & HealthAgricultural Research CouncilStellenboschSouth Africa
| | - Amro Zayed
- Department of BiologyYork UniversityTorontoOntarioCanada
| |
Collapse
|
3
|
Rodríguez-León DS, Uzunov A, Costa C, Elen D, Charistos L, Galea T, Gabel M, Scheiner R, Pinto MA, Schmitt T. Deciphering the variation in cuticular hydrocarbon profiles of six European honey bee subspecies. BMC Ecol Evol 2024; 24:131. [PMID: 39468449 PMCID: PMC11520070 DOI: 10.1186/s12862-024-02325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
The Western honey bee (Apis mellifera) subspecies exhibit local adaptive traits that evolved in response to the different environments that characterize their native distribution ranges. An important trait is the cuticular hydrocarbon (CHC) profile, which helps to prevent desiccation and mediate communication. We compared the CHC profiles of six European subspecies (A. m. mellifera, A. m. carnica, A. m. ligustica, A. m. macedonica, A. m. iberiensis, and A. m. ruttneri) and investigated potential factors shaping their composition. We did not find evidence of adaptation of the CHC profiles of the subspecies to the climatic conditions in their distribution range. Subspecies-specific differences in CHC composition might be explained by phylogenetic constraints or genetic drift. The CHC profiles of foragers were more subspecies-specific than those of nurse bees, while the latter showed more variation in their CHC profiles, likely due to the lower desiccation stress exerted by the controlled environment inside the hive. The strongest profile differences appeared between nurse bees and foragers among all subspecies, suggesting an adaptation to social task and a role in communication. Foragers also showed an increase in the relative amount of alkanes in their profiles compared to nurses, indicating adaptation to climatic conditions.
Collapse
Affiliation(s)
| | - Aleksandar Uzunov
- Faculty for Agricultural Science and Food, Ss. Cyril and Methodius University in Skopje, Skopje, 1000, Republic of Macedonia
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cecilia Costa
- CREA Research Centre for Agriculture and Environment, Via di Corticella 133, Bologna, 40128, Italy
| | - Dylan Elen
- School of Natural Sciences, Department of Molecular Ecology & Evolution, Bangor University, Bangor, LL57 2DG, UK
- ZwarteBij.org vzw, Taskforce Research, Gavere, 9890, Belgium
| | - Leonidas Charistos
- Hellenic Agricultural Organization DIMITRA, Institute of Animal Science, Department of Apiculture, Nea, 63200, Moudania, Greece
| | - Thomas Galea
- Breeds of Origin Conservancy, Ħaż - Żebbuġ, Malta
| | - Martin Gabel
- LLH Bee Institute Kirchhain, Erlenstraße 9, 35274, Kirchhain, Germany
| | - Ricarda Scheiner
- Department of Behavioral Physiology and Sociobiology, University of Würzburg, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - M Alice Pinto
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, 5300- 253, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, 5300-253, Portugal
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Biocenter, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
4
|
Donthu R, Marcelino JAP, Giordano R, Tao Y, Weber E, Avalos A, Band M, Akraiko T, Chen SC, Reyes MP, Hao H, Ortiz-Alvarado Y, Cuff CA, Claudio EP, Soto-Adames F, Smith-Pardo AH, Meikle WG, Evans JD, Giray T, Abdelkader FB, Allsopp M, Ball D, Morgado SB, Barjadze S, Correa-Benitez A, Chakir A, Báez DR, Chavez NHM, Dalmon A, Douglas AB, Fraccica C, Fernández-Marín H, Galindo-Cardona A, Guzman-Novoa E, Horsburgh R, Kence M, Kilonzo J, Kükrer M, Le Conte Y, Mazzeo G, Mota F, Muli E, Oskay D, Ruiz-Martínez JA, Oliveri E, Pichkhaia I, Romane A, Sanchez CG, Sikombwa E, Satta A, Scannapieco AA, Stanford B, Soroker V, Velarde RA, Vercelli M, Huang Z. HBeeID: a molecular tool that identifies honey bee subspecies from different geographic populations. BMC Bioinformatics 2024; 25:278. [PMID: 39192185 DOI: 10.1186/s12859-024-05776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 04/10/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Honey bees are the principal commercial pollinators. Along with other arthropods, they are increasingly under threat from anthropogenic factors such as the incursion of invasive honey bee subspecies, pathogens and parasites. Better tools are needed to identify bee subspecies. Genomic data for economic and ecologically important organisms is increasing, but in its basic form its practical application to address ecological problems is limited. RESULTS We introduce HBeeID a means to identify honey bees. The tool utilizes a knowledge-based network and diagnostic SNPs identified by discriminant analysis of principle components and hierarchical agglomerative clustering. Tests of HBeeID showed that it identifies African, Americas-Africanized, Asian, and European honey bees with a high degree of certainty even when samples lack the full 272 SNPs of HBeeID. Its prediction capacity decreases with highly admixed samples. CONCLUSION HBeeID is a high-resolution genomic, SNP based tool, that can be used to identify honey bees and screen species that are invasive. Its flexible design allows for future improvements via sample data additions from other localities.
Collapse
Affiliation(s)
- Ravikiran Donthu
- Puerto Rico Science, Technology and Research Trust, San Juan, PR, 00927, USA
- Centre for Life Sciences, Mahindra University, Bahadurpally, Hyderabad, 500043, India
| | - Jose A P Marcelino
- Puerto Rico Science, Technology and Research Trust, San Juan, PR, 00927, USA
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, FL, 32608, USA
| | - Rosanna Giordano
- Puerto Rico Science, Technology and Research Trust, San Juan, PR, 00927, USA.
- Institute of Environment, Florida International University, Miami, FL, 33199, USA.
| | - Yudong Tao
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, 33146, USA
| | - Everett Weber
- Office of Institutional Research, Dartmouth College, Hanover, NH, 03755, USA
| | - Arian Avalos
- USDA-ARS, Honey Bee Breeding, Genetics and Physiology Research, Baton Rouge, LA, 70820, USA
| | - Mark Band
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana-Champaign, IL, 61801, USA
| | - Tatsiana Akraiko
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana-Champaign, IL, 61801, USA
| | - Shu-Ching Chen
- Data Science and Analytics Innovation Center (dSAIC), University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Maria P Reyes
- Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, FL, 33199, USA
| | - Haiping Hao
- Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | | | - Charles A Cuff
- Department of Biology, University of Puerto Rico, San Juan, PR, 00931, USA
| | - Eddie Pérez Claudio
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15206, USA
| | - Felipe Soto-Adames
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, FL, 32608, USA
| | | | - William G Meikle
- USDA-ARS, Carl Hayden Bee Research Center, Tucson, AZ, 85719, USA
| | - Jay D Evans
- USDA-ARS, Bee Research Laboratory, Beltsville, MD, 20705, USA.
| | - Tugrul Giray
- Department of Biology, University of Puerto Rico, San Juan, PR, 00931, USA.
| | - Faten B Abdelkader
- University of Carthage, National Agronomic Institute of Tunisia, 1082, Tunis, Tunisia
| | - Mike Allsopp
- Honey Bee Research Section, ARC-Plant Protection & Health, P/Bag X5017, Stellenbosch, 7599, South Africa
| | | | - Susana B Morgado
- Meltagus, Associação de Apicultores do Parque Natural do Tejo Internacional, 6000-790, Castelo Branco, Portugal
| | - Shalva Barjadze
- Institute of Zoology, Ilia State University, 3 Giorgi Tsereteli Street, 0162, Tbilisi, Georgia
| | - Adriana Correa-Benitez
- Facultad de MedicinaVeterinaria y Zootecnia, Departamento de Medicina y Zootecnia de Abejas, Conejos y Organismos Aquáticos (DMZ:ACyOA), Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, CP, Mexico
| | - Amina Chakir
- Applied Chemistry Laboratory, Semlalia Faculty of Sciences, University Cadi Ayyad, Marrakech, Morocco
| | | | - Nabor H M Chavez
- Cochabamba Beekeepers Federation (FEDAC), Aniceto Padilla, 493, Cochabamba, Bolivia
| | - Anne Dalmon
- INRAE, French National Research Institute for Agriculture, Food and Environment. UR Abeilles et Environment, 84914, Avignon, France
| | - Adrian B Douglas
- Institute of Earth Systems, Rural Sciences Farmhouse, University of Malta, Msida, 2080, MSD, Malta
| | - Carmen Fraccica
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, FL, 32608, USA
| | - Hermógenes Fernández-Marín
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton Panama, 0843-01103, Panama
| | - Alberto Galindo-Cardona
- Instituto de Ecología Regional (IER), Universidad Nacional de Tucumán (UNT) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Yerba Buena, CC 34, CP 4107, Tucumán, Argentina
| | - Ernesto Guzman-Novoa
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Robert Horsburgh
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, FL, 32608, USA
| | - Meral Kence
- Biology Department, Middle East Technical University, 06530, Ankara, Turkey
| | - Joseph Kilonzo
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Mert Kükrer
- Biology Department, Middle East Technical University, 06530, Ankara, Turkey
- Molecular Biology and Genetics Department, Kilis 7 Aralık University, Kilis, Turkey
| | - Yves Le Conte
- INRAE, French National Research Institute for Agriculture, Food and Environment. UR Abeilles et Environment, 84914, Avignon, France
| | - Gaetana Mazzeo
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università Degli Studi Di Catania, Catania, Italy
| | - Fernando Mota
- Independent Beekeeper, 6000, Castelo Branco, Portugal
| | - Elliud Muli
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- South Eastern Kenya University (SEKU), JXFW+X3C, Kitui, Kenya
| | - Devrim Oskay
- Department of Agricultural Biotechnology, Tekirdağ Namık Kemal University, 59030, Tekirdağ, Turkey
| | - José A Ruiz-Martínez
- Professional Training in Livestock and Animal Health, High School Lope de Vega, Fuente Obejuna, Córdoba, Spain
| | - Eugenia Oliveri
- Istituto Zooprofilattico Sperimentale della Sicilia, 90129, Palermo, Italy
| | - Igor Pichkhaia
- Chkhorotsku Local Historical Museum, David Aghmashenebeli St., 5000, Chkhorotsku, Georgia
| | - Abderrahmane Romane
- Applied Chemistry Laboratory, Semlalia Faculty of Sciences, University Cadi Ayyad, Marrakech, Morocco
| | - Cesar Guillen Sanchez
- Escuela de Agronomía, Sede del Atlántico, University of Costa Rica, Turrialba, 30501, Costa Rica
| | | | - Alberto Satta
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39A, 07100, Sassari, Italy
| | | | - Brandi Stanford
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, FL, 32608, USA
| | - Victoria Soroker
- Agricultural Research Organization, The Volcani Center, Institute of Plant Protection, Department of Entomology, Bet-Dagan, Israel
| | - Rodrigo A Velarde
- Bolivian Apiculture Institute (IAB), PROMIEL-SEDEM, Jaimes Freyre No 2344, La Paz, Bolivia
| | | | - Zachary Huang
- Department of Entomology, MSU Apiculture Lab, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
5
|
Knoll A, Langová L, Přidal A, Urban T. Haplotype Diversity in mtDNA of Honeybee in the Czech Republic Confirms Complete Replacement of Autochthonous Population with the C Lineage. INSECTS 2024; 15:495. [PMID: 39057228 PMCID: PMC11276638 DOI: 10.3390/insects15070495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
The study aimed to analyze the genetic diversity in the Czech population of Apis mellifera using mitochondrial DNA markers, tRNAleu-cox2 intergenic region and cox1 gene. A total of 308 samples of bees were collected from the entire Czech Republic (from colonies and flowers in 13 different regions). Following sequencing, several polymorphisms and haplotypes were identified. Analysis of tRNAleu-cox2 sequences revealed three DraI haplotypes (C, A1, and A4). The tRNAleu-cox2 region yielded 10 C lineage haplotypes, one of which is a newly described variant. Three A lineage haplotypes were identified, two of which were novel. A similar analysis of cox1 sequences yielded 16 distinct haplotypes (7 new) within the population. The most prevalent tRNAleu-cox2 haplotype identified was C1a, followed by C2a, C2c, C2l, and C2d. For the cox1 locus, the most frequent haplotypes were HpB02, HpB01, HpB03, and HpB04. The haplotype and nucleotide diversity indices were high in both loci, in tRNAleu-cox2 with values of 0.682 and 0.00172, respectively, and in cox1 0.789 and 0.00203, respectively. The Tajima's D values were negative and lower in tRNAleu-cox2 than in cox1. The most frequent haplotypes were uniformly distributed across all regions of the Czech Republic. No haplotype of the indigenous M lineage was identified. High diversity and the occurrence of rare haplotypes indicate population expansion and continuous import of tribal material of the C lineage.
Collapse
Affiliation(s)
- Aleš Knoll
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Lucie Langová
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Antonín Přidal
- Department of Zoology, Fishery, Hydrobiology and Apidology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Tomáš Urban
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| |
Collapse
|
6
|
A. K. BK, George EA, Brockmann A. Tropical and montane Apis cerana show distinct dance-distance calibration curves. J Exp Biol 2024; 227:jeb247510. [PMID: 38853597 PMCID: PMC11418176 DOI: 10.1242/jeb.247510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Social bees have evolved sophisticated communication systems to recruit nestmates to newly found food sources. As foraging ranges can vary from a few hundred meters to several kilometers depending on the environment or season, populations of social bee species living in different climate zones likely show specific adaptations in their recruitment communication. Accordingly, studies in the western honey bee, Apis mellifera, demonstrated that temperate populations exhibit shallower dance-calibration curves compared with tropical populations. Here, we report the first comparison of calibration curves for three Indian Apis cerana lineages: the tropical Apis indica, and the two montane Himalayan populations Apis cerana cerana (Himachal Pradesh) and Apis cerana kashmirensis (Jammu and Kashmir). We found that the colonies of the two montane A. cerana populations show dance-distance calibration curves with significantly shallower slopes than those of the tropical A. indica. Next, we transferred A. c. cerana colonies to Bangalore (∼ 2600 km away) to obtain calibration curves in the same location as A. indica. The common garden experiment confirmed this difference in slopes, implying that the lineages exhibit genetically fixed differences in dance-distance coding. However, the slopes of the calibration curves of the transferred A. c. cerana colonies were also significantly higher than those of the colonies tested in their original habitat, indicating an important effect of the environment. The differences in dance-distance coding between temperate and tropical A. cerana lineages resemble those described for Apis mellifera, suggesting that populations of both species independently evolved similar adaptations.
Collapse
Affiliation(s)
- Bharath Kumar A. K.
- National Centre for Biological Sciences - Tata Institute of Fundamental Research, Bengaluru 560065, India
- Department of Apiculture, University of Agricultural Sciences - GKVK, Bengaluru 560065, India
| | - Ebi Antony George
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| | - Axel Brockmann
- National Centre for Biological Sciences - Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
7
|
Eynard SE, Klopp C, Canale-Tabet K, Marande W, Vandecasteele C, Roques C, Donnadieu C, Boone Q, Servin B, Vignal A. The black honey bee genome: insights on specific structural elements and a first step towards pangenomes. Genet Sel Evol 2024; 56:51. [PMID: 38943059 PMCID: PMC11212449 DOI: 10.1186/s12711-024-00917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 06/04/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND The honey bee reference genome, HAv3.1, was produced from a commercial line sample that was thought to have a largely dominant Apis mellifera ligustica genetic background. Apis mellifera mellifera, often referred to as the black bee, has a separate evolutionary history and is the original type in western and northern Europe. Growing interest in this subspecies for conservation and non-professional apicultural practices, together with the necessity of deciphering genome backgrounds in hybrids, triggered the necessity for a specific genome assembly. Moreover, having several high-quality genomes is becoming key for taking structural variations into account in pangenome analyses. RESULTS Pacific Bioscience technology long reads were produced from a single haploid black bee drone. Scaffolding contigs into chromosomes was done using a high-density genetic map. This allowed for re-estimation of the recombination rate, which was over-estimated in some previous studies due to mis-assemblies, which resulted in spurious inversions in the older reference genomes. The sequence continuity obtained was very high and the only limit towards continuous chromosome-wide sequences seemed to be due to tandem repeat arrays that were usually longer than 10 kb and that belonged to two main families, the 371 and 91 bp repeats, causing problems in the assembly process due to high internal sequence similarity. Our assembly was used together with the reference genome to genotype two structural variants by a pangenome graph approach with Graphtyper2. Genotypes obtained were either correct or missing, when compared to an approach based on sequencing depth analysis, and genotyping rates were 89 and 76% for the two variants. CONCLUSIONS Our new assembly for the Apis mellifera mellifera honey bee subspecies demonstrates the utility of multiple high-quality genomes for the genotyping of structural variants, with a test case on two insertions and deletions. It will therefore be an invaluable resource for future studies, for instance by including structural variants in GWAS. Having used a single haploid drone for sequencing allowed a refined analysis of very large tandem repeat arrays, raising the question of their function in the genome. High quality genome assemblies for multiple subspecies such as presented here, are crucial for emerging projects using pangenomes.
Collapse
Affiliation(s)
- Sonia E Eynard
- GenPhySE, Université de Toulouse, INRAE, INPT, INP-ENVT, Castanet Tolosan, France
| | | | - Kamila Canale-Tabet
- GenPhySE, Université de Toulouse, INRAE, INPT, INP-ENVT, Castanet Tolosan, France
| | | | | | - Céline Roques
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | - Quentin Boone
- GenPhySE, Université de Toulouse, INRAE, INPT, INP-ENVT, Castanet Tolosan, France
- Sigenae, MIAT, INRAE, Castanet Tolosan, France
| | - Bertrand Servin
- GenPhySE, Université de Toulouse, INRAE, INPT, INP-ENVT, Castanet Tolosan, France
| | - Alain Vignal
- GenPhySE, Université de Toulouse, INRAE, INPT, INP-ENVT, Castanet Tolosan, France.
| |
Collapse
|
8
|
Kaur H, Nedić N, Tofilski A. Influence of honey bee ( Apis mellifera) breeding on wing venation in Serbia and neighbouring countries. PeerJ 2024; 12:e17247. [PMID: 38685938 PMCID: PMC11057427 DOI: 10.7717/peerj.17247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/25/2024] [Indexed: 05/02/2024] Open
Abstract
In order to improve the productivity of honey bees (Apis mellifera), some of their traits are selected by breeding. On one hand, breeding is mainly based on the natural geographical variation of this species; on the other hand, mass production and distribution of artificially selected queens can significantly affect the natural geographic variation of honey bees. In this study, we have compared honey bee wings originating from breeding and non-breeding populations in Serbia. In the comparison, we have also used data from a large area of south-eastern Europe. The wings were measured using the 19 landmarks indicated on the wing images. The coordinates were analysed using the methodology of geometric morphometrics. We found that honey bees obtained from honey bee queen breeder differed in wing venation from surrounding populations, which are under natural selection. Therefore, we argue against including populations under artificial selection in the analysis of the natural geographical variation of honey bees. In our analysis of non-breeding samples, we found that in south-eastern Europe there is continuous variation in wing venation and no clear boundaries between A. m. carnica, A. m. cecropia, and A. m. macedonica.
Collapse
Affiliation(s)
- Hardeep Kaur
- Department of Zoology and Animal Welfare, University of Agriculture in Krakow, Krakow, Poland
| | - Nebojša Nedić
- Institute for Zootechnics, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Adam Tofilski
- Department of Zoology and Animal Welfare, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
9
|
Dogantzis KA, Raffiudin R, Putra RE, Shaleh I, Conflitti IM, Pepinelli M, Roberts J, Holmes M, Oldroyd BP, Zayed A, Gloag R. Post-invasion selection acts on standing genetic variation despite a severe founding bottleneck. Curr Biol 2024; 34:1349-1356.e4. [PMID: 38428415 DOI: 10.1016/j.cub.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/12/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Invasive populations often have lower genetic diversity relative to the native-range populations from which they derive.1,2 Despite this, many biological invaders succeed in their new environments, in part due to rapid adaptation.3,4,5,6 Therefore, the role of genetic bottlenecks in constraining the adaptation of invaders is debated.7,8,9,10 Here, we use whole-genome resequencing of samples from a 10-year time-series dataset, representing the natural invasion of the Asian honey bee (Apis cerana) in Australia, to investigate natural selection occurring in the aftermath of a founding event. We find that Australia's A. cerana population was founded by as few as one colony, whose arrival was followed by a period of rapid population expansion associated with an increase of rare variants.11 The bottleneck resulted in a steep loss of overall genetic diversity, yet we nevertheless detected loci with signatures of positive selection during the first years post-invasion. When we investigated the origin of alleles under selection, we found that selection acted primarily on the variation introduced by founders and not on the variants that arose post-invasion by mutation. In all, our data highlight that selection on standing genetic variation can occur in the early years post-invasion, even where founding bottlenecks are severe.
Collapse
Affiliation(s)
- Kathleen A Dogantzis
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Rika Raffiudin
- IPB University, Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor 16680, Indonesia
| | - Ramadhani Eka Putra
- Bandung Institute of Technology, School of Life Sciences and Technology, Bandung 40132, West Java, Indonesia
| | - Ismail Shaleh
- IPB University, Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor 16680, Indonesia
| | - Ida M Conflitti
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Mateus Pepinelli
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - John Roberts
- Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia
| | - Michael Holmes
- University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - Benjamin P Oldroyd
- University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - Amro Zayed
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Rosalyn Gloag
- University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia.
| |
Collapse
|
10
|
Frazier M, Muli E, Patch H. Ecology and Management of African Honey Bees ( Apis mellifera L.). ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:439-453. [PMID: 38270983 DOI: 10.1146/annurev-ento-020823-095359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
In Africa, humans evolved as honey hunters of honey bee subspecies adapted to diverse geographical regions. Beekeeping today is practiced much as it was when Africans moved from honey hunting to beekeeping nearly 5,000 years ago, with beekeepers relying on seasonally available wild bees. Research suggests that populations are resilient, able to resist diseases and novel parasites. Distinct biomes, as well as environmental pressures, shaped the behavior and biology of these bees and in turn influenced how indigenous beekeeping developed. It appears that passive beekeeping practices that enabled free-living populations contributed to the overall resilience and health of the bee. There is clearly a need for research aimed at a deeper understanding of bee biology and the ecosystems from which they benefit and on which humans depend, as well as a growing realization that the management of these bees requires an indigenous approach that reflects a broader knowledge base and the economics of local communities and markets.
Collapse
Affiliation(s)
- Maryann Frazier
- Department of Entomology and Center for Pollinator Research, Pennsylvania State University, University Park, Pennsylvania, USA;
| | - Elliud Muli
- Department of Life Sciences, South Eastern Kenya University, Kitui, Kenya
| | - Harland Patch
- Department of Entomology and Center for Pollinator Research, Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
11
|
Alghamdi AA, Alattal YZ. Alterations in Histone Methylation States Increased Profusion of Lethal(2)-Essential-for-Life-Like (l(2)elf), Trithorax and Polycomb Genes in Apis mellifera under Heat Stress. INSECTS 2024; 15:33. [PMID: 38249039 PMCID: PMC10816215 DOI: 10.3390/insects15010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Histone post-translational modifications (PTMs) represent a key mechanism in the thermal adaptation of the honeybee Apis mellifera. In this study, a chromatin immunoprecipitation assay and qPCR were employed to explore the changes in the methylation states of H3K4m2, H3K4m3, H3K27m2 and H3K27m3 associated with l2efl (ID: 72474, 724405, 724488), histone methyltransferases (HMTs) ((trx) and PR-set7) and Polycomb (Pc) and (Su(z)12) genes in A. m. jemenitica (tolerant subspecies) and A. m. carnica (susceptible subspecies) in response to heat treatment (42 °C for 1 h). The results revealed significant enrichment fold changes in the methylation/demethylation of most H3K4 and H3K27 marks at all targeted genes. These changes increased the profusion of l2efl (ID: 72474, 724405, 724488), histone methyltransferases (HMTs) (trx) and Polycomb (Pc) and Su(z)12 and decreased the profusion of HMT (PR-set7) in both honeybee subspecies. The changes in the methylation enrichment folds of histone methyltransferases (HMTs) ((trx), PR-set) and Polycomb (Pc), Su(z)12 genes demonstrate the well-harmonized coordination of epigenetic gene regulation in response to heat treatment. Compared to the control, the changes in the methylation enrichment folds of H3K4m3 at Polycomb Su(z)12 were about 30× and 100× higher in treated A. m. jemenitica and A.m. carnica, respectively. Similarly, changes in the methylation/demethylation enrichment folds of HMT (trx) and Polycomb (Pc) and Su(z)12 were 2-3× higher in A. m. carnica than in A. m. jemenitica after treatment (42 °C). It is evident that post-translational chromatin modification in both honeybee subspecies can diminish heat stress impact by (I) increasing the transcriptional provision of l2efl associated with survival and (II) increasing the silencing of genes associated with general cellular activities.
Collapse
Affiliation(s)
| | - Yehya Z. Alattal
- Department of Plant Protection, Chair of Engineer Abdullah Ahmad Bagshan for Bee Research, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
12
|
Cook SE, Niño BD, Rivera L, Alex CE, Seshadri A, Niño EL. A practical approach to the sampling, fixation, softening, and sectioning of whole honey bees for histologic evaluation. J Vet Diagn Invest 2023; 35:630-638. [PMID: 37587755 PMCID: PMC10621542 DOI: 10.1177/10406387231191732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
The Western honey bee (Apis mellifera) is economically important as the primary managed pollinator of many agricultural crops and for the production of various hive-related commodities. Honey bees are not classically or thoroughly covered in veterinary pathology training programs. Given their unique anatomic and biological differences from the other species more traditionally evaluated by veterinary pathologists, establishing routine and consistent methods for processing samples for histology ensures accurate diagnostic and research conclusions. We developed and tested several field protocols for the sampling of honey bees. We compared the tissue-quality outcomes for worker bees fixed, collected, and/or softened under the following protocols: 1) routine formalin fixation; 2) softening chitin via exposure to Nair for 2 d or 3) 5 d; 4) shortened times between formalin submersion and trimming of body segments to enhance penetration of formalin into internal tissues; 5) ethanol submersion of specimen prior to formalin fixation; 6) indirect dry ice exposure; and 7) prolonged -80°C storage. Routine formalin fixation, exposure to Nair for 2 d, indirect dry ice exposure, and trimming body segments within 2 h of formalin submersion resulted in the highest quality histologic tissue sections. The poorest quality sections resulted from softening of chitin by exposure to Nair for 5 d, submersion in ethanol for 3 d before formalin fixation, and prolonged storage at -80°C. Our results indicate that routine formalin fixation is adequate, and that immobilizing bees with indirect dry ice exposure aids in sample collection without negatively impacting the quality of histologic sections.
Collapse
Affiliation(s)
- Sarah E. Cook
- Departments of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
- SpecialtyVETPATH, Seattle, WA, USA
| | - Bernardo D. Niño
- USDA/ARS/WRRC, Invasive Species and Pollinator Health Research Unit, Davis, CA, USA
| | - Laura Rivera
- USDA/ARS/WRRC, Invasive Species and Pollinator Health Research Unit, Davis, CA, USA
| | - Charles E. Alex
- Departments of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
- Wildlife Conservation Society, Zoological Health Program, Bronx, NY, USA
| | - Arathi Seshadri
- USDA/ARS/WRRC, Invasive Species and Pollinator Health Research Unit, Davis, CA, USA
| | - Elina L. Niño
- Entomology and Nematology, University of California–Davis, Davis, CA, USA
| |
Collapse
|
13
|
Carr SM. Multiple mitogenomes indicate Things Fall Apart with Out of Africa or Asia hypotheses for the phylogeographic evolution of Honey Bees (Apis mellifera). Sci Rep 2023; 13:9386. [PMID: 37296293 PMCID: PMC10256785 DOI: 10.1038/s41598-023-35937-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Previous morpho-molecular studies of evolutionary relationships within the economically important genus of honey bees (Apis), including the Western Honey Bee (A. mellifera L.), have suggested Out of Africa or Asia origins and subsequent spread to Europe. I test these hypotheses by a meta-analysis of complete mitochondrial DNA coding regions (11.0 kbp) from 22 nominal subspecies represented by 78 individual sequences in A. mellifera. Parsimony, distance, and likelihood analyses identify six nested clades: Things Fall Apart with Out of Africa or Asia hypotheses. Molecular clock-calibrated phylogeographic analysis shows instead a basal origin of A. m. mellifera in Europe ~ 780 Kya, and expansion to Southeast Europe and Asia Minor ~ 720 Kya. Eurasian bees spread southward via a Levantine/Nilotic/Arabian corridor into Africa ~ 540 Kya. An African clade re-established in Iberia ~ 100 Kya spread thereafter to westerly Mediterranean islands and back into North Africa. Nominal subspecies within the Asia Minor and Mediterranean clades are less differentiated than are individuals within other subspecies. Names matter: paraphyletic anomalies are artefacts of mis-referral in GenBank of sequences to the wrong subspecies, or use of faulty sequences, which are clarified by inclusion of multiple sequences from available subspecies.
Collapse
Affiliation(s)
- Steven M Carr
- Genetics, Evolution, and Molecular Systematics Laboratory, Department of Biology, Memorial University of Newfoundland, St John's, NL, A1C 5S9, Canada.
| |
Collapse
|
14
|
Qiu L, Dong J, Li X, Parey SH, Tan K, Orr M, Majeed A, Zhang X, Luo S, Zhou X, Zhu C, Ji T, Niu Q, Liu S, Zhou X. Defining honeybee subspecies in an evolutionary context warrants strategized conservation. Zool Res 2023; 44:483-493. [PMID: 36994538 PMCID: PMC10236295 DOI: 10.24272/j.issn.2095-8137.2022.414] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/13/2023] [Indexed: 03/16/2023] Open
Abstract
Despite the urgent need for conservation consideration, strategic action plans for the preservation of the Asian honeybee, Apis cerana Fabricius, 1793, remain lacking. Both the convergent and divergent adaptations of this widespread insect have led to confusing phenotypical traits and inconsistent infraspecific taxonomy. Unclear subspecies boundaries pose a significant challenge to honeybee conservation efforts, as it is difficult to effectively prioritize conservation targets without a clear understanding of subspecies identities. Here, we investigated genome variations in 362 worker bees representing almost all populations of mainland A. cerana to understand how evolution has shaped its population structure. Whole-genome single nucleotide polymorphisms (SNPs) based on nuclear sequences revealed eight putative subspecies, with all seven peripheral subspecies exhibiting mutually exclusive monophyly and distinct genetic divergence from the widespread central subspecies. Our results demonstrated that most classic morphological traits, including body size, were related to the climatic variables of the local habitats and did not reflect the true evolutionary history of the organism. Thus, such morphological traits were not suitable for subspecific delineation. Conversely, wing vein characters showed relative independence to the environment and supported the subspecies boundaries inferred from nuclear genomes. Mitochondrial phylogeny further indicated that the present subspecies structure was a result of multiple waves of population divergence from a common ancestor. Based on our findings, we propose that criteria for subspecies delineation should be based on evolutionary independence, trait distinction, and geographic isolation. We formally defined and described eight subspecies of mainland A. cerana. Elucidation of the evolutionary history and subspecies boundaries enables a customized conservation strategy for both widespread and endemic honeybee conservation units, guiding colony introduction and breeding.
Collapse
Affiliation(s)
- Lifei Qiu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jiangxing Dong
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xingan Li
- Key Laboratory for Bee Genetics and Breeding, Jilin Provincial Institute of Apicultural Sciences, Jilin, Jilin 132108, China
| | - Sajad H Parey
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri (Jammu and Kashmir) 185234, India
| | - Ken Tan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, Yunnan 650000, China
| | - Michael Orr
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Aquib Majeed
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri (Jammu and Kashmir) 185234, India
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shiqi Luo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Chaodong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Ji
- Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qingsheng Niu
- Key Laboratory for Bee Genetics and Breeding, Jilin Provincial Institute of Apicultural Sciences, Jilin, Jilin 132108, China
| | - Shanlin Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China. E-mail:
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China. E-mail:
| |
Collapse
|
15
|
Obšteter J, Strachan LK, Bubnič J, Prešern J, Gorjanc G. SIMplyBee: an R package to simulate honeybee populations and breeding programs. Genet Sel Evol 2023; 55:31. [PMID: 37161307 PMCID: PMC10169377 DOI: 10.1186/s12711-023-00798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/31/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND The Western honeybee is an economically important species globally, but has been experiencing colony losses that lead to economical damage and decreased genetic variability. This situation is spurring additional interest in honeybee breeding and conservation programs. Stochastic simulators are essential tools for rapid and low-cost testing of breeding programs and methods, yet no existing simulator allows for a detailed simulation of honeybee populations. Here we describe SIMplyBee, a holistic simulator of honeybee populations and breeding programs. SIMplyBee is an R package and hence freely available for installation from CRAN http://cran.r-project.org/package=SIMplyBee . IMPLEMENTATION SIMplyBee builds upon the stochastic simulator AlphaSimR that simulates individuals with their corresponding genomes and quantitative genetic values. To enable honeybee-specific simulations, we extended AlphaSimR by developing classes for global simulation parameters, SimParamBee, for a honeybee colony, Colony, and multiple colonies, MultiColony. We also developed functions to address major honeybee specificities: honeybee genome, haplodiploid inheritance, social organisation, complementary sex determination, polyandry, colony events, and quantitative genetics at the individual- and colony-levels. RESULTS We describe its implementation for simulating a honeybee genome, creating a honeybee colony and its members, addressing haplodiploid inheritance and complementary sex determination, simulating colony events, creating and managing multiple colonies at the same time, and obtaining genomic data and honeybee quantitative genetics. Further documentation, available at http://www.SIMplyBee.info , provides details on these operations and describes additional operations related to genomics, quantitative genetics, and other functionalities. DISCUSSION SIMplyBee is a holistic simulator of honeybee populations and breeding programs. It simulates individual honeybees with their genomes, colonies with colony events, and individual- and colony-level genetic and breeding values. Regarding the latter, SIMplyBee takes a user-defined function to combine individual- into colony-level values and hence allows for modeling any type of interaction within a colony. SIMplyBee provides a research platform for testing breeding and conservation strategies and their effect on future genetic gain and genetic variability. Future developments of SIMplyBee will focus on improving the simulation of honeybee genomes, optimizing the simulator's performance, and including spatial awareness in mating functions and phenotype simulation. We invite the honeybee genetics and breeding community to join us in the future development of SIMplyBee.
Collapse
Affiliation(s)
- Jana Obšteter
- Department of Animal Science, The Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | - Laura K. Strachan
- The Roslin Institute and Royal (Dick) School of Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Jernej Bubnič
- Department of Animal Science, The Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | - Janez Prešern
- Department of Animal Science, The Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | - Gregor Gorjanc
- The Roslin Institute and Royal (Dick) School of Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
- Biotechnical Faculty, Department of Animal Science, The University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
16
|
Lin Z, Zhu Z, Zhuang M, Wang Z, Zhang Y, Gao F, Niu Q, Ji T. Effects of local domestication warrant attention in honey bee population genetics. SCIENCE ADVANCES 2023; 9:eade7917. [PMID: 37134176 PMCID: PMC10156114 DOI: 10.1126/sciadv.ade7917] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Honey bees, Apis mellifera, have for millennia been managed and exploited by humans and introduced into most suitable regions worldwide. However, given the lack of records for many introduction events, treating A. mellifera populations as native would predictably bias genetic studies regarding origin and evolution. Here, we used the Dongbei bee, a well-documented population, introduced beyond the natural distribution range approximately 100 years ago, to elucidate the effects of local domestication on animal population genetic analyses. Strong domestication pressure was detected in this population, and the genetic divergence between Dongbei bee and its ancestral subspecies was found to have occurred at the lineage level. Results of phylogenetic and time divergence analyses could consequently be misinterpreted. Proposing new subspecies or lineages and performing analyses of origin should thus strive to eliminate anthropogenic effects. We highlight the need for definitions of landrace and breed in honey bee sciences and make preliminary suggestions.
Collapse
Affiliation(s)
- Zheguang Lin
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhongxu Zhu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Mingliang Zhuang
- Apiculture Science Institute of Jilin Province, Jilin 132108, China
| | - Zhi Wang
- Apiculture Science Institute of Jilin Province, Jilin 132108, China
| | - Yi Zhang
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Fuchao Gao
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157043, China
| | - Qingsheng Niu
- Apiculture Science Institute of Jilin Province, Jilin 132108, China
| | - Ting Ji
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
17
|
Alghamdi AA, Alattal YZ. Expression Levels of Heat-Shock Proteins in Apis mellifera jemenetica and Apis mellifera carnica Foragers in the Desert Climate of Saudi Arabia. INSECTS 2023; 14:insects14050432. [PMID: 37233060 DOI: 10.3390/insects14050432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/25/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
A. m. jemenetica is the indigenous honeybee of the Arabian Peninsula. It is highly adapted to extreme temperatures exceeding 40 °C, yet important molecular aspects of its adaptation are not well documented. In this study we quantify relative expression levels of small- and large-molecular-weight heat-shock proteins (hsp10, hsp28, hsp70, hsp83, hsp90 and hsc70 (mRNAs)) in the thermos-tolerant A. m. jemenetica and thermosusceptible A. m. carnica forager honeybee subspecies under desert (Riyadh) and semi-arid (Baha) summer conditions. The results showed significant day-long higher expression levels of hsp mRNAs in A. m. jemenetica compared to A. m. carnica under the same conditions. In Baha, the expression levels were very modest in both subspecies compared those in Riyadh though the expression levels were higher in A. m. jemenetica. The results also revealed a significant interaction between subspecies, which indicated milder stress conditions in Baha. In conclusion, the higher expression levels of hsp10, hsp28, hsp70ab, hsp83 and hsp90 mRNAs in A. m. jemenetica are key elements in the adaptive nature of A. m. jemenetica to local conditions that enhance its survival and fitness in high summer temperatures.
Collapse
Affiliation(s)
- Ahmad A Alghamdi
- Department of Plant Protection, Chair of Engineer Abdullah Ahmad Bagshan for Bee Research, College of Food and Agriculture Sciences, King Saud University, Riyadh 11587, Saudi Arabia
| | - Yehya Z Alattal
- Department of Plant Protection, Chair of Engineer Abdullah Ahmad Bagshan for Bee Research, College of Food and Agriculture Sciences, King Saud University, Riyadh 11587, Saudi Arabia
| |
Collapse
|
18
|
Buswell VG, Ellis JS, Huml JV, Wragg D, Barnett MW, Brown A, Knight ME. When One's Not Enough: Colony Pool-Seq Outperforms Individual-Based Methods for Assessing Introgression in Apis mellifera mellifera. INSECTS 2023; 14:insects14050421. [PMID: 37233049 DOI: 10.3390/insects14050421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
The human management of honey bees (Apis mellifera) has resulted in the widespread introduction of subspecies outside of their native ranges. One well known example of this is Apis mellifera mellifera, native to Northern Europe, which has now been significantly introgressed by the introduction of C lineage honey bees. Introgression has consequences for species in terms of future adaptive potential and long-term viability. However, estimating introgression in colony-living haplodiploid species is challenging. Previous studies have estimated introgression using individual workers, individual drones, multiple drones, and pooled workers. Here, we compare introgression estimates via three genetic approaches: SNP array, individual RAD-seq, and pooled colony RAD-seq. We also compare two statistical approaches: a maximum likelihood cluster program (ADMIXTURE) and an incomplete lineage sorting model (ABBA BABA). Overall, individual approaches resulted in lower introgression estimates than pooled colonies when using ADMIXTURE. However, the pooled colony ABBA BABA approach resulted in generally lower introgression estimates than all three ADMIXTURE estimates. These results highlight that sometimes one individual is not enough to assess colony-level introgression, and future studies that do use colony pools should not be solely dependent on clustering programs for introgression estimates.
Collapse
Affiliation(s)
- Victoria G Buswell
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
- Information and Computational Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| | - Jonathan S Ellis
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - J Vanessa Huml
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - David Wragg
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
- Beebytes Analytics CIC, Roslin Innovation Centre, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Mark W Barnett
- Beebytes Analytics CIC, Roslin Innovation Centre, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Andrew Brown
- B4, Newton Farm Metherell, Cornwall, Callington PL17 8DQ, UK
| | - Mairi E Knight
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| |
Collapse
|
19
|
Parejo M, Talenti A, Richardson M, Vignal A, Barnett M, Wragg D. AmelHap: Leveraging drone whole-genome sequence data to create a honey bee HapMap. Sci Data 2023; 10:198. [PMID: 37037860 PMCID: PMC10086014 DOI: 10.1038/s41597-023-02097-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/22/2023] [Indexed: 04/12/2023] Open
Abstract
Honey bee, Apis mellifera, drones are typically haploid, developing from an unfertilized egg, inheriting only their queen's alleles and none from the many drones she mated with. Thus the ordered combination or 'phase' of alleles is known, making drones a valuable haplotype resource. We collated whole-genome sequence data for 1,407 drones, including 45 newly sequenced Scottish drones, collectively representing 19 countries, 8 subspecies and various hybrids. Following alignment to Amel_HAv3.1, variant calling and quality filtering, we retained 17.4 M high quality variants across 1,328 samples with a genotyping rate of 98.7%. We demonstrate the utility of this haplotype resource, AmelHap, for genotype imputation, returning >95% concordance when up to 61% of data is missing in haploids and up to 12% of data is missing in diploids. AmelHap will serve as a useful resource for the community for imputation from low-depth sequencing or SNP chip data, accurate phasing of diploids for association studies, and as a comprehensive reference panel for population genetic and evolutionary analyses.
Collapse
Affiliation(s)
- M Parejo
- Applied Genomics and Bioinformatics, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - A Talenti
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - M Richardson
- University of Edinburgh, King's Buildings Campus, Edinburgh, UK
- Beebytes Analytics CIC, Roslin Innovation Centre, Easter Bush Campus, Midlothian, UK
| | - A Vignal
- GenPhySE, Université de Toulouse, INRAE, INPT, INP-ENVT, 31326, Castanet Tolosan, France
| | - M Barnett
- Beebytes Analytics CIC, Roslin Innovation Centre, Easter Bush Campus, Midlothian, UK
| | - D Wragg
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK.
- Beebytes Analytics CIC, Roslin Innovation Centre, Easter Bush Campus, Midlothian, UK.
| |
Collapse
|
20
|
Oleksa A, Căuia E, Siceanu A, Puškadija Z, Kovačić M, Pinto MA, Rodrigues PJ, Hatjina F, Charistos L, Bouga M, Prešern J, Kandemir İ, Rašić S, Kusza S, Tofilski A. Honey bee (Apis mellifera) wing images: a tool for identification and conservation. Gigascience 2023; 12:giad019. [PMID: 36971293 PMCID: PMC10041535 DOI: 10.1093/gigascience/giad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/02/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND The honey bee (Apis mellifera) is an ecologically and economically important species that provides pollination services to natural and agricultural systems. The biodiversity of the honey bee in parts of its native range is endangered by migratory beekeeping and commercial breeding. In consequence, some honey bee populations that are well adapted to the local environment are threatened with extinction. A crucial step for the protection of honey bee biodiversity is reliable differentiation between native and nonnative bees. One of the methods that can be used for this is the geometric morphometrics of wings. This method is fast, is low cost, and does not require expensive equipment. Therefore, it can be easily used by both scientists and beekeepers. However, wing geometric morphometrics is challenging due to the lack of reference data that can be reliably used for comparisons between different geographic regions. FINDINGS Here, we provide an unprecedented collection of 26,481 honey bee wing images representing 1,725 samples from 13 European countries. The wing images are accompanied by the coordinates of 19 landmarks and the geographic coordinates of the sampling locations. We present an R script that describes the workflow for analyzing the data and identifying an unknown sample. We compared the data with available reference samples for lineage and found general agreement with them. CONCLUSIONS The extensive collection of wing images available on the Zenodo website can be used to identify the geographic origin of unknown samples and therefore assist in the monitoring and conservation of honey bee biodiversity in Europe.
Collapse
Affiliation(s)
- Andrzej Oleksa
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz 85-090, Poland
| | - Eliza Căuia
- Honeybee Genetics and Breeding Laboratory, Institute for Beekeeping Research and Development, Bucharest 013975, Romania
| | - Adrian Siceanu
- Honeybee Genetics and Breeding Laboratory, Institute for Beekeeping Research and Development, Bucharest 013975, Romania
| | - Zlatko Puškadija
- Faculty of Agrobiotechnical Sciences, Josip Juraj Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Marin Kovačić
- Faculty of Agrobiotechnical Sciences, Josip Juraj Strossmayer University of Osijek, Osijek 31000, Croatia
| | - M Alice Pinto
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal
| | - Pedro João Rodrigues
- Centre in Digitalization and Intelligent Robotics, Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal
| | - Fani Hatjina
- Department of Apiculture, Institute of Animal Science–Ellinikos Georgikos Organismos ‘DIMITRA’, Nea Moudania 63200, Greece
| | - Leonidas Charistos
- Department of Apiculture, Institute of Animal Science–Ellinikos Georgikos Organismos ‘DIMITRA’, Nea Moudania 63200, Greece
| | - Maria Bouga
- Lab of Agricultural Zoology and Entomology, Agricultural University of Athens, Athens 11855, Greece
| | - Janez Prešern
- Agricultural Institute of Slovenia, Ljubljana SI-1000, Slovenia
| | - İrfan Kandemir
- Ankara University, Department of Biology, Faculty of Science, Ankara University, Beşevler-Ankara 06100, Turkey
| | - Slađan Rašić
- Faculty of Ecological Agriculture, EDUCONS University, Sremska Kamenica 21208, Serbia
| | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen 4032, Hungary
| | - Adam Tofilski
- Department of Zoology and Animal Welfare, University of Agriculture in Krakow, Krakow 31-425, Poland
| |
Collapse
|
21
|
Tsvetkov N, Bahia S, Calla B, Berenbaum MR, Zayed A. Genetics of tolerance in honeybees to the neonicotinoid clothianidin. iScience 2023; 26:106084. [PMID: 36843853 PMCID: PMC9947305 DOI: 10.1016/j.isci.2023.106084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
The effects of neonicotinoid insecticides (NNIs) on honeybee health are intensely debated, with numerous studies showing negative effects of exposure, while others report no such effects. We carried out experiments to study the genetic and molecular basis of NNI tolerance in honeybees, which may underlie the discrepancies observed in the literature. We discovered that worker survival post-exposure to an acute oral dose of clothianidin is heritable (H 2 = 37.8%). Tolerance to clothianidin was not associated with differences in the expression of detoxification enzymes in our experiments. Instead, mutations in the primary neonicotinoid detoxification genes CYP9Q1 and CYP9Q3 were strongly associated with worker survival post-clothianidin exposure. In some instances, the strong association between CYP9Q haplotypes and worker survival was associated with the protein's predicted binding affinity for clothianidin. Our findings have implications regarding future toxicological studies utilizing honeybees as a model pollinator.
Collapse
Affiliation(s)
- Nadejda Tsvetkov
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Simran Bahia
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Bernarda Calla
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - May R. Berenbaum
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Amro Zayed
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
22
|
Cao L, Dai Z, Tan H, Zheng H, Wang Y, Chen J, Kuang H, Chong RA, Han M, Hu F, Sun W, Sun C, Zhang Z. Population Structure, Demographic History, and Adaptation of Giant Honeybees in China Revealed by Population Genomic Data. Genome Biol Evol 2023; 15:7044694. [PMID: 36799935 PMCID: PMC9991589 DOI: 10.1093/gbe/evad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
There have been many population-based genomic studies on human-managed honeybees (Apis mellifera and Apis cerana), but there has been a notable lack of analysis with regard to wild honeybees, particularly in relation to their evolutionary history. Nevertheless, giant honeybees have been found to occupy distinct habitats and display remarkable characteristics, which are attracting an increased amount of attention. In this study, we de novo sequenced and then assembled the draft genome sequence of the Himalayan giant honeybee, Apis laboriosa. Phylogenetic analysis based on genomic information indicated that A. laboriosa and its tropical sister species Apis dorsata diverged ∼2.61 Ma, which supports the speciation hypothesis that links A. laboriosa to geological changes throughout history. Furthermore, we re-sequenced A. laboriosa and A. dorsata samples from five and six regions, respectively, across their population ranges in China. These analyses highlighted major genetic differences for Tibetan A. laboriosa as well as the Hainan Island A. dorsata. The demographic history of most giant honeybee populations has mirrored glacial cycles. More importantly, contrary to what has occurred among human-managed honeybees, the demographic history of these two wild honeybee species indicates a rapid decline in effective population size in the recent past, reflecting their differences in evolutionary histories. Several genes were found to be subject to selection, which may help giant honeybees to adapt to specific local conditions. In summary, our study sheds light on the evolutionary and adaptational characteristics of two wild giant honeybee species, which was useful for giant honeybee conservation.
Collapse
Affiliation(s)
- Lianfei Cao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhijun Dai
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Hongwei Tan
- School of Life Sciences, Chongqing University, Chongqing, China.,Chongqing General Station of Animal Husbandry Technology Extension, Chongqing, China
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yun Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jie Chen
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Haiou Kuang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Rebecca A Chong
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Minjin Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wei Sun
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Cheng Sun
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Ze Zhang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
23
|
Wragg D, Eynard SE, Basso B, Canale‐Tabet K, Labarthe E, Bouchez O, Bienefeld K, Bieńkowska M, Costa C, Gregorc A, Kryger P, Parejo M, Pinto MA, Bidanel J, Servin B, Le Conte Y, Vignal A. Complex population structure and haplotype patterns in the Western European honey bee from sequencing a large panel of haploid drones. Mol Ecol Resour 2022; 22:3068-3086. [PMID: 35689802 PMCID: PMC9796960 DOI: 10.1111/1755-0998.13665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 01/07/2023]
Abstract
Honey bee subspecies originate from specific geographical areas in Africa, Europe and the Middle East, and beekeepers interested in specific phenotypes have imported genetic material to regions outside of the bees' original range for use either in pure lines or controlled crosses. Moreover, imported drones are present in the environment and mate naturally with queens from the local subspecies. The resulting admixture complicates population genetics analyses, and population stratification can be a major problem for association studies. To better understand Western European honey bee populations, we produced a whole genome sequence and single nucleotide polymorphism (SNP) genotype data set from 870 haploid drones and demonstrate its utility for the identification of nine genetic backgrounds and various degrees of admixture in a subset of 629 samples. Five backgrounds identified correspond to subspecies, two to isolated populations on islands and two to managed populations. We also highlight several large haplotype blocks, some of which coincide with the position of centromeres. The largest is 3.6 Mb long and represents 21% of chromosome 11, with two major haplotypes corresponding to the two dominant genetic backgrounds identified. This large naturally phased data set is available as a single vcf file that can now serve as a reference for subsequent populations genomics studies in the honey bee, such as (i) selecting individuals of verified homogeneous genetic backgrounds as references, (ii) imputing genotypes from a lower-density data set generated by an SNP-chip or by low-pass sequencing, or (iii) selecting SNPs compatible with the requirements of genotyping chips.
Collapse
Affiliation(s)
- David Wragg
- GenPhySEUniversité de Toulouse, INRAE, INPT, INP‐ENVTCastanet TolosanFrance
- Roslin InstituteUniversity of EdinburghMidlothianUK
| | - Sonia E. Eynard
- GenPhySEUniversité de Toulouse, INRAE, INPT, INP‐ENVTCastanet TolosanFrance
| | - Benjamin Basso
- Institut de l'abeille (ITSAP), UMT PrADEAvignonFrance
- INRAE, UR 406 Abeilles et Environment, UMT PrADEAvignonFrance
| | | | | | | | | | | | - Cecilia Costa
- CREA Research Centre for Agriculture and EnvironmentBolognaItaly
| | - Aleš Gregorc
- Faculty of Agriculture and Life SciencesUniversity of MariborPivolaSlovenia
| | - Per Kryger
- Department of Agroecology, Science and TechnologyAarhus UniversitySlagelseDenmark
| | - Melanie Parejo
- Agroscope, Swiss Bee Research CentreBernSwitzerland
- Applied Genomics and Bioinformatics, Department of Genetics, Physical Anthropology and Animal PhysiologyUniversity of the Basque CountryLeioaSpain
| | - M. Alice Pinto
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de BragançaBragançaPortugal
| | | | - Bertrand Servin
- GenPhySEUniversité de Toulouse, INRAE, INPT, INP‐ENVTCastanet TolosanFrance
| | - Yves Le Conte
- INRAE, UR 406 Abeilles et Environment, UMT PrADEAvignonFrance
| | - Alain Vignal
- GenPhySEUniversité de Toulouse, INRAE, INPT, INP‐ENVTCastanet TolosanFrance
| |
Collapse
|
24
|
Kohl PL, Rutschmann B, Steffan-Dewenter I. Population demography of feral honeybee colonies in central European forests. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220565. [PMID: 35950195 PMCID: PMC9346370 DOI: 10.1098/rsos.220565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
European honeybee populations are considered to consist only of managed colonies, but recent censuses have revealed that wild/feral colonies still occur in various countries. To gauge the ecological and evolutionary relevance of wild-living honeybees, information is needed on their population demography. We monitored feral honeybee colonies in German forests for up to 4 years through regular inspections of woodpecker cavity trees and microsatellite genotyping. Each summer, about 10% of the trees were occupied, corresponding to average densities of 0.23 feral colonies km-2 (an estimated 5% of the regional honeybee populations). Populations decreased moderately until autumn but dropped massively during winter, so that their densities were only about 0.02 colonies km-2 in early spring. During the reproductive (swarming) season, in May and June, populations recovered, with new swarms preferring nest sites that had been occupied in the previous year. The annual survival rate and the estimated lifespan of feral colonies (n = 112) were 10.6% and 0.6 years, respectively. We conclude that managed forests in Germany do not harbour self-sustaining feral honeybee populations, but they are recolonized every year by swarms escaping from apiaries.
Collapse
Affiliation(s)
- Patrick L. Kohl
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Benjamin Rutschmann
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
25
|
Moškrič A, Marinč A, Ferk P, Leskošek B, Mosbech MB, Bunikis I, Pettersson OV, Soler L, Prešern J. The Carniolan Honeybee from Slovenia—A Complete and Annotated Mitochondrial Genome with Comparisons to Closely Related Apis mellifera Subspecies. INSECTS 2022; 13:insects13050403. [PMID: 35621738 PMCID: PMC9146700 DOI: 10.3390/insects13050403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The western honeybee, Apis mellifera, is a globally distributed bee species with many recognised subspecies, one of which is Apis mellifera carnica, the Carniolan honeybee. Apis m. carnica is native to southern Central Europe and parts of the Balkans, with the locus classicus in Slovenia. It is also widely popular with beekeepers in parts of Central and Northern Europe and other parts of the world, including the USA, Canada, and even New Zealand. In Slovenia, A. m. carnica is protected, with measures to conserve the subspecies’ autochthonous domestic population in place. Such efforts depend heavily upon genomic and phylogenetic information. In this study, we sequenced and annotated the mitochondrial genome of a specimen from Slovenia and compared the obtained data with a previously published sample of the A. m. carnica from Austria and the closely related Italian honeybee A. m. ligustica. We found several features unique to the new mitochondrial genome. We also phylogenetically analyzed the relationship between our sequence and the selected available A. mellifera mitochondrial sequences. The acquired position of the sequenced A. m. carnica from Slovenia on the phylogenetic tree brings new evidence for close relationships among C and O lineages and reflects their recent historical matrilinear ancestry. Abstract The complete mitochondrial genome of the Carniolan honeybee (Apis mellifera carnica) from Slovenia, a homeland of this subspecies, was acquired in two contigs from WGS data and annotated. The newly obtained mitochondrial genome is a circular closed loop of 16,447 bp. It comprises 37 genes (13 protein coding genes, 22 tRNA genes, and 2 rRNA genes) and an AT-rich control region. The order of the tRNA genes resembles the order characteristic of A. mellifera. The mitogenomic sequence of A. m. carnica from Slovenia contains 44 uniquely coded sites in comparison to the closely related subspecies A. m. ligustica and to A. m. carnica from Austria. Furthermore, 24 differences were recognised in comparison between A. m. carnica and A. m. ligustica subspecies. Among them, there are three SNPs that affect translation in the nd2, nd4, and cox2 genes, respectively. The phylogenetic placement of A. m. carnica from Slovenia within C lineage deviates from the expected position and changes the perspective on relationship between C and O lineages. The results of this study represent a valuable addition to the information available in the phylogenomic studies of A. mellifera—a pollinator species of worldwide importance. Such genomic information is essential for this local subspecies’ conservation and preservation as well as its breeding and selection.
Collapse
Affiliation(s)
- Ajda Moškrič
- Animal Production Department, Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia; (A.M.); (J.P.)
- Correspondence:
| | - Andraž Marinč
- Animal Production Department, Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia; (A.M.); (J.P.)
| | - Polonca Ferk
- Faculty of Medicine, Institute for Biostatistics and Medical Informatics/Centre ELIXIR-SI, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia; (P.F.); (B.L.)
| | - Brane Leskošek
- Faculty of Medicine, Institute for Biostatistics and Medical Informatics/Centre ELIXIR-SI, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia; (P.F.); (B.L.)
| | - Mai-Britt Mosbech
- Uppsala Genome Center, Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, BMC, Box 815, 752 37 Uppsala, Sweden; (M.-B.M.); (I.B.); (O.V.P.)
| | - Ignas Bunikis
- Uppsala Genome Center, Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, BMC, Box 815, 752 37 Uppsala, Sweden; (M.-B.M.); (I.B.); (O.V.P.)
| | - Olga Vinnere Pettersson
- Uppsala Genome Center, Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, BMC, Box 815, 752 37 Uppsala, Sweden; (M.-B.M.); (I.B.); (O.V.P.)
| | - Lucile Soler
- Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, 751 24 Uppsala, Sweden;
| | - Janez Prešern
- Animal Production Department, Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia; (A.M.); (J.P.)
| |
Collapse
|
26
|
Alattal Y, Algamdi A. Assessment of genetic variation in Apis mellifera jemenitica (Hymenoptera: Apidae) based on mitochondrial Cytochrome Oxidase Subunit II and III. PLoS One 2022; 17:e0265454. [PMID: 35358229 PMCID: PMC8970473 DOI: 10.1371/journal.pone.0265454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/02/2022] [Indexed: 11/24/2022] Open
Abstract
Morphometric and genetic characterization of many Apis mellifera subspecies are well-documented. A. m. jemenetica occurs naturally in Africa and Asia. In this study, genetic variation of mitochondrial Cytochrome Oxidase II (COII) and III (COIII) were analysed in 133 specimens of the endemic honeybee colonies within Saudi Arabia. The COII gene sequence length was 684 bp comprising nine synonymous (1.3%) and two non-synonymous single nucleotide polymorphisms (SNPs) (0.87%). Five variants of COII were not previously documented, one variant (MT755968) showed an extra restriction site when subjected to type II restriction endonuclease from Arthrobacter protophormiae (Apol) or to Haemophilus influenzae Rf (Hinf1). Changes in COII sequence separated samples into three haplogroups. Whereas, COIII gene sequence length was 780 bp, including 18 synonymous and five non-synonymous SNPs. Furthermore, variation in COII sequence was more informative based on restriction profiles and on amino acid changes compared with COIII gene sequence. Variants of COIII showed identical restriction sites when subjected to type II restriction endonuclease from Deinococcus radiophilus (DraI), and revealed high similarity to African subspecies. Results of this study are very useful in understanding genetic diversity and characterization of A. mellifera subspecies.
Collapse
Affiliation(s)
- Yehya Alattal
- Department of Plant Protection, Chair of Engineer Abdullah Ahmad Bagshan for Bee Research, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- * E-mail:
| | - Ahmad Algamdi
- Department of Plant Protection, Chair of Engineer Abdullah Ahmad Bagshan for Bee Research, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Tanasković M, Erić P, Patenković A, Erić K, Mihajlović M, Tanasić V, Kusza S, Oleksa A, Stanisavljević L, Davidović S. Further Evidence of Population Admixture in the Serbian Honey Bee Population. INSECTS 2022; 13:180. [PMID: 35206752 PMCID: PMC8879341 DOI: 10.3390/insects13020180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/05/2023]
Abstract
Socioeconomic interests and beekeeper preferences have often taken precedence over the conservation of locally native honey bee subspecies, leading to the predominance of admixture populations in human-dominated areas. To assess the genetic diversity of contemporary managed Serbian honey bee colonies, we used 14 microsatellite loci and analyzed 237 worker bees from 46 apiaries in eight localities of northern and southern Serbia. Furthermore, we compared data for nine microsatellite loci with 338 individuals from Italy, Hungary, Poland, and Spain. The standard parameters of genetic diversity in Serbian honey bee populations were in line with other analyses, although somewhat smaller. STRUCTURE analysis showed the existence of two equally distributed genetic clusters and Analysis of molecular variances could not confirm the presence of a geographically discrete population but showed local differences. Discriminant analysis of principal components showed overlapping of worker bees from different parts of Serbia. Clear genetic differentiation can be observed when comparing all populations between geographical regions and their corresponding subspecies. The absence of the A. m. macedonica subspecies from its historical distribution range in southern Serbia as well as the lack of distinctive geographical groups suggest that selective breeding, queen import, and migratory beekeeping practices strongly influence the genetic structure and diversity of honey bees, leading to the genetic uniformization and creation of the admixture population.
Collapse
Affiliation(s)
- Marija Tanasković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (P.E.); (A.P.); (K.E.); (S.D.)
| | - Pavle Erić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (P.E.); (A.P.); (K.E.); (S.D.)
| | - Aleksandra Patenković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (P.E.); (A.P.); (K.E.); (S.D.)
| | - Katarina Erić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (P.E.); (A.P.); (K.E.); (S.D.)
| | - Milica Mihajlović
- Center for Forensic and Applied Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.M.); (V.T.)
| | - Vanja Tanasić
- Center for Forensic and Applied Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.M.); (V.T.)
| | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary;
| | - Andrzej Oleksa
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Powstanców Wielkopolskich 10, 85-090 Bydgoszcz, Poland;
| | | | - Slobodan Davidović
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (P.E.); (A.P.); (K.E.); (S.D.)
| |
Collapse
|