1
|
Feng W, Zhang B, Duan P, Bi YH, Jin Z, Li X, Zhao X, Zuo K. Risk of major depressive increases with increasing frequency of alcohol drinking: a bidirectional two-sample Mendelian randomization analysis. Front Public Health 2024; 12:1372758. [PMID: 38898891 PMCID: PMC11186411 DOI: 10.3389/fpubh.2024.1372758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction A growing body of evidence suggests that alcohol use disorders coexist with depression. However, the causal relationship between alcohol consumption and depression remains a topic of controversy. Methods We conducted a two-sample two-way Mendelian randomization analysis using genetic variants associated with alcohol use and major depressive disorder from a genome-wide association study. Results Our research indicates that drinking alcohol can reduce the risk of major depression (odds ratio: 0.71, 95% confidence interval: 0.54~0.93, p = 0.01), while increasing the frequency of drinking can increase the risk of major depression (odds ratio: 1.09, 95% confidence interval: 1.00~1.18, p = 0.04). Furthermore, our multivariate MR analysis demonstrated that even after accounting for different types of drinking, the promoting effect of drinking frequency on the likelihood of developing major depression still persists (odds ratio: 1.13, 95% confidence interval: 1.04~1.23, p = 0.005). Additionally, mediation analysis using a two-step MR approach revealed that this effect is partially mediated by the adiposity index, with a mediated proportion of 37.5% (95% confidence interval: 0.22 to 0.38). Discussion In this study, we found that alcohol consumption can alleviate major depression, while alcohol intake frequency can aggravate it.These findings have important implications for the development of prevention and intervention strategies targeting alcohol-related depression.
Collapse
Affiliation(s)
| | - Bing Zhang
- Department of Anesthesiology, The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | |
Collapse
|
2
|
Li H, Watkins LR, Wang X. Microglia in neuroimmunopharmacology and drug addiction. Mol Psychiatry 2024; 29:1912-1924. [PMID: 38302560 DOI: 10.1038/s41380-024-02443-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Drug addiction is a chronic and debilitating disease that is considered a global health problem. Various cell types in the brain are involved in the progression of drug addiction. Recently, the xenobiotic hypothesis has been proposed, which frames substances of abuse as exogenous molecules that are responded to by the immune system as foreign "invaders", thus triggering protective inflammatory responses. An emerging body of literature reveals that microglia, the primary resident immune cells in the brain, play an important role in the progression of addiction. Repeated cycles of drug administration cause a progressive, persistent induction of neuroinflammation by releasing microglial proinflammatory cytokines and their metabolic products. This contributes to drug addiction via modulation of neuronal function. In this review, we focus on the role of microglia in the etiology of drug addiction. Then, we discuss the dynamic states of microglia and the correlative and causal evidence linking microglia to drug addiction. Finally, possible mechanisms of how microglia sense drug-related stimuli and modulate the addiction state and how microglia-targeted anti-inflammation therapies affect addiction are reviewed. Understanding the role of microglia in drug addiction may help develop new treatment strategies to fight this devastating societal challenge.
Collapse
Affiliation(s)
- Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Linda R Watkins
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China.
| |
Collapse
|
3
|
Chen Z, Wu F, Shi Y, Guo Y, Xu J, Liang S, Huang Z, He G, Hu J, Zhu Q, Yu S, Yang S, Wu C, Tang W, Dong X, Ma W, Liu T. Association of Residential Greenness Exposure with Depression Incidence in Adults 50 Years of Age and Older: Findings from the Cohort Study on Global AGEing and Adult Health (SAGE) in China. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:67004. [PMID: 38885140 PMCID: PMC11218708 DOI: 10.1289/ehp13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/07/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Depression is a social and public health problem of great concern globally. Identifying and managing the factors influencing depression are crucial for preventing and decreasing the burden of depression. OBJECTIVES Our objectives are to explore the association between residential greenness and the incidence of depression in an older Chinese population and to calculate the disease burden of depression prevented by greenness exposure. METHODS This study was the Chinese part of the World Health Organization Study on Global AGEing and Adult Health (WHO SAGE). We collected the data of 8,481 residents ≥ 50 years of age in China for the period 2007-2018. Average follow-up duration was 7.00 (± 2.51 ) years. Each participant was matched to the yearly maximum normalized difference vegetation index (NDVI) at their residential address. Incidence of depression was assessed using the Composite International Diagnostic Interview (CIDI), self-reports of depression, and/or taking depression medication. Association between greenness and depression was examined using the time-dependent Cox regression model with stratified analysis by sex, age, urbanicity, annual family income, region, smoking, drinking, and household cooking fuels. Furthermore, the prevented fraction (PF) and attributable number (AN) of depression prevented by exposure to greenness were estimated. RESULTS Residential greenness was negatively associated with depression. Each interquartile range (IQR) increase in NDVI 500 -m buffer was associated with a 40% decrease [hazard ratio ( HR ) = 0.60 ; 95% confidence interval (CI): 0.37, 0.97] in the risk of depression incidence among the total participants. Subgroup analyses showed negative associations in urban residents (HR = 0.32 ; 95% CI: 0.12, 0.86) vs. rural residents, in high-income residents (HR = 0.28 ; 95% CI: 0.11, 0.71) vs. low-income residents, and in southern China (HR = 0.50 ; 95% CI: 0.26, 0.95) vs. northern China. Over 8.0% (PF = 8.69 % ; 95% CI: 1.38%, 15.40%) and 1,955,199 (95% CI: 310,492; 3,464,909) new cases of depression may be avoided by increasing greenness exposures annually across China. DISCUSSION The findings suggest protective effects of residential greenness exposure on depression incidence in the older population, particularly among urban residents, high-income residents, and participants living in southern China. The construction of residential greenness should be included in community planning. https://doi.org/10.1289/EHP13947.
Collapse
Affiliation(s)
- Zhiqing Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Fan Wu
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Shi
- Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Yanfei Guo
- Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Jiahong Xu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
| | - Shuru Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
| | - Zhongguo Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
| | - Guanhao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
| | - Jianxiong Hu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
| | - Qijiong Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
| | - Siwen Yu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
| | - Shangfeng Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
| | - Cuiling Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
| | - Weiling Tang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaomei Dong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| |
Collapse
|
4
|
Li Y, Zhan B, Zhuang X, Zhao M, Chen X, Wang Q, Liu Q, Zhang L. Microglial Pdcd4 deficiency mitigates neuroinflammation-associated depression via facilitating Daxx mediated PPARγ/IL-10 signaling. J Neuroinflammation 2024; 21:143. [PMID: 38822367 PMCID: PMC11141063 DOI: 10.1186/s12974-024-03142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024] Open
Abstract
The dysregulation of pro- and anti-inflammatory processes in the brain has been linked to the pathogenesis of major depressive disorder (MDD), although the precise mechanisms remain unclear. In this study, we discovered that microglial conditional knockout of Pdcd4 conferred protection against LPS-induced hyperactivation of microglia and depressive-like behavior in mice. Mechanically, microglial Pdcd4 plays a role in promoting neuroinflammatory responses triggered by LPS by inhibiting Daxx-mediated PPARγ nucleus translocation, leading to the suppression of anti-inflammatory cytokine IL-10 expression. Finally, the antidepressant effect of microglial Pdcd4 knockout under LPS-challenged conditions was abolished by intracerebroventricular injection of the IL-10 neutralizing antibody IL-10Rα. Our study elucidates the distinct involvement of microglial Pdcd4 in neuroinflammation, suggesting its potential as a therapeutic target for neuroinflammation-related depression.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, 250012, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bing Zhan
- Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xiao Zhuang
- Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Ming Zhao
- Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xiaotong Chen
- Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Qun Wang
- Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Qiji Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lining Zhang
- Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
5
|
Zhao M, Xu X, Xu H, Yang S, Li M, Wang W. The regulation of social factors on anxiety and microglial activity in nucleus accumbens of adolescent male mice: Influence of social interaction strategy. J Affect Disord 2024; 352:525-535. [PMID: 38403135 DOI: 10.1016/j.jad.2024.02.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Adolescence is a period characterized by a high vulnerability to emotional disorders, which are modulated by biological, psychological, and social factors. However, the underlying mechanisms remain poorly understood. METHODS Combining physical or emotional social defeat stress (PS and ES) and pair or isolation rearing conditions, we investigated the effects of stress type and social support on emotional behavior and central immune molecules in adolescent mice, including anxiety, social fear, and social interaction strategies, as well as changes in microglia-specific molecules (ionized calcium-binding adaptor molecule 1 (Iba1) and a cluster of differentiation molecule 11b (CD11b)) in the medial prefrontal cortex (mPFC), hippocampus (HIP), amygdala (AMY), and nucleus accumbens (NAc). RESULTS Mice exposed to both physical stress and isolated rearing condition exhibited the highest levels of anxiety, social fear, and microglial CD11b expression in the NAc. In terms of social support, pair-housing with siblings ameliorated social fear and NAc molecular changes in ES mice, but not in PS mice. The reason for the differential benefit from social support was attributed to the fact that ES mice exhibited more active and less passive social strategies in social environment compared to PS mice. Further, the levels of stress-induced social fear were positively associated with the expression of microglial CD11b in the NAc. CONCLUSION These findings offer extensive evidence regarding the intricate effects of multiple social factors on social anxiety and immune alteration in the NAc of adolescent mice. Additionally, they suggest potential behavioral and immune intervention strategies for anxiety-related disorders in adolescents.
Collapse
Affiliation(s)
- Mingyue Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xueping Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Beijing Key Laboratory of Learning and Cognition, College of Psychology, Capital Normal University, Beijing, China
| | - Hang Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Shuming Yang
- Division of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510062, China
| | - Man Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Faculty of Psychology, Tianjin Normal University, Tianjin, China.
| | - Weiwen Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Anmella G, Meehan A, Ashton M, Mohebbi M, Fico G, Ng CH, Maes M, Berk L, Prisco MD, Singh AB, Malhi GS, Berk M, Dodd S, Hidalgo-Mazzei D, Grande I, Pacchiarotti I, Murru A, Vieta E, Dean OM. Exploring Clinical Subgroups of Participants with Major Depressive Disorder that may Benefit from Adjunctive Minocycline Treatment. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:33-44. [PMID: 38247410 PMCID: PMC10811397 DOI: 10.9758/cpn.23.1098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 01/23/2024]
Abstract
Objective : To explore illness-related factors in patients with major depressive disorder (MDD) recipients of adjunctive minocycline (200 mg/day) treatment. The analysis included participants experiencing MDD from a 12-week, double blind, placebo-controlled, randomized clinical trial (RCT). Methods : This is a sub-analysis of a RCT of all 71 participants who took part in the trial. The impact of illness chronicity (illness duration and number of depressive episodes), systemic illness (endocrine, cardiovascular and obesity), adverse effects and minocycline were evaluated as change from baseline to endpoint (12-week) using ANCOVA. Results : There was a consistent but statistically non-significant trend on all outcomes in favour of the use of adjunctive minocycline for participants without systemic illness, less illness chronicity, and fewer adverse effects. Conclusion : Understanding the relationship between MDD and illness chronicity, comorbid systemic illness, and adverse effects, can potentially better characterise those individuals who are more likely to respond to adjunctive anti-inflammatory medications.
Collapse
Affiliation(s)
- Gerard Anmella
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
- Bipolar and Depressive Disorders Unit, Digital Innovation Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
- Institute of Neurosciences (UBNeuro), Barcelona, Spain
| | - Alcy Meehan
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia
| | - Melanie Ashton
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia
| | - Mohammadreza Mohebbi
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia
- Deakin University, Faculty of Health, Biostatistics Unit, Geelong, VIC, Australia
| | - Giovanna Fico
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
- Bipolar and Depressive Disorders Unit, Digital Innovation Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
- Institute of Neurosciences (UBNeuro), Barcelona, Spain
| | - Chee H. Ng
- The Melbourne Clinic, Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Michael Maes
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - Lesley Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia
| | - Michele De Prisco
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
- Bipolar and Depressive Disorders Unit, Digital Innovation Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
- Institute of Neurosciences (UBNeuro), Barcelona, Spain
| | - Ajeet B. Singh
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia
| | - Gin S. Malhi
- Department of Psychiatry, Northern Clinical School, The University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia
- Academic Department of Psychiatry, Northern Clinical School, The University of Sydney, Sydney, NSW, Australia
- CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Michael Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
- Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Seetal Dodd
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | - Diego Hidalgo-Mazzei
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
- Bipolar and Depressive Disorders Unit, Digital Innovation Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
- Institute of Neurosciences (UBNeuro), Barcelona, Spain
| | - Iria Grande
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
- Bipolar and Depressive Disorders Unit, Digital Innovation Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
- Institute of Neurosciences (UBNeuro), Barcelona, Spain
| | - Isabella Pacchiarotti
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
- Bipolar and Depressive Disorders Unit, Digital Innovation Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
- Institute of Neurosciences (UBNeuro), Barcelona, Spain
| | - Andrea Murru
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
- Bipolar and Depressive Disorders Unit, Digital Innovation Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
- Institute of Neurosciences (UBNeuro), Barcelona, Spain
| | - Eduard Vieta
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
- Bipolar and Depressive Disorders Unit, Digital Innovation Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
- Institute of Neurosciences (UBNeuro), Barcelona, Spain
| | - Olivia M. Dean
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia
- Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Su H, He Y, Li Y, Lin K, Xu G, Yuan T, Shi Z, Li C. A modified behavioral test protocol for simultaneously evaluating the incentive value of alcohol drinking and social interaction in mice. MethodsX 2023; 11:102267. [PMID: 38098776 PMCID: PMC10719506 DOI: 10.1016/j.mex.2023.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/19/2023] [Indexed: 12/17/2023] Open
Abstract
Individual sociability and alcohol drinking are interacted to escalate alcohol use. An impairment in perceiving and discriminating the difference in incentive values between social interaction and drinking behavior indicates a shift from moderate alcohol consumption to misuse. However, few studies have evaluated the incentive value of these two behaviors in the same scenario. Thus, we modified a behavioral test protocol to evaluate rodents' ability to perceive and discriminate the differences in incentive value between alcohol drinking and interaction with their social partners. The present protocol is simple and practicable. Only 2-3 days are required to complete the whole process. Compared with existing methods, our protocol is simple and practicable. Our findings suggested that subtle changes in the incentive value of distinct behaviors can be accurately and reliably assessed using the present protocol in mice with low or high levels of alcohol preference.•We described a modified behavioral test protocol to simultaneously evaluate the incentive value of alcohol drinking and social interaction.•The subtle changes in the incentive value of mice with different levels of alcohol preference can be accurately and reliably assessed in the present protocol.•Using our modified protocol, the differences of incentive value between distinct behaviors can be accurately and reliably assessed in mice with different risks to develop into AUD.
Collapse
Affiliation(s)
- Haodong Su
- School of Humanities and Social Sciences, Binzhou Medical University, Yantai, China
| | - Ye He
- The Affiliated Brain Hospital of Guangzhou Medical University, (Guangzhou Hu-iai Hospital), Guangzhou Medical University, Guangzhou, China
| | - Yuying Li
- The Affiliated Brain Hospital of Guangzhou Medical University, (Guangzhou Hu-iai Hospital), Guangzhou Medical University, Guangzhou, China
| | - Kangguang Lin
- The Affiliated Brain Hospital of Guangzhou Medical University, (Guangzhou Hu-iai Hospital), Guangzhou Medical University, Guangzhou, China
| | - Guiyun Xu
- The Affiliated Brain Hospital of Guangzhou Medical University, (Guangzhou Hu-iai Hospital), Guangzhou Medical University, Guangzhou, China
| | - Tifei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhe Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Chunlu Li
- School of Humanities and Social Sciences, Binzhou Medical University, Yantai, China
- Department of Psychology, School of Medical Humanitarians, Guizhou Medical University, Guiyang, China
| |
Collapse
|
8
|
Ayilara GO, Owoyele BV. Neuroinflammation and microglial expression in brains of social-isolation rearing model of schizophrenia. IBRO Neurosci Rep 2023; 15:31-41. [PMID: 37359498 PMCID: PMC10285239 DOI: 10.1016/j.ibneur.2023.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Schizophrenia is a psychiatric disorder with a global prevalence of approximately 0.45%. It is considered a mental illness, with negative symptoms, positive symptoms, and cognitive dysfunction. The outcomes of studies on the role of microglia and neuroinflammation have been conflicting. In addition, there is a poor understanding of the sex differences in microglial expression and neuroinflammation markers in the prefrontal cortex, hippocampus, and nucleus accumbens. Understanding the exact roles of neuroinflammation may guide the development of efficient therapeutic drugs that can address the negative, positive, and cognitive symptoms of the disease. We examined the effect of social isolation rearing on schizophrenia-related behaviours in male and female BALB/c mice. The social-isolation rearing protocol started on post-natal day (PND) 21, lasting for 35 days. Animals were assigned to four cohorts, consisting of five animals per group. On PND 56, animals were assessed for behavioural changes. We used enzyme-linked immunosorbent assays to investigate the expression of nuclear factor kappa B (NF-κB), tumour necrosis factor-α (TNF-α), and Interleukin-1β (IL-1β) in the hippocampus, nucleus accumbens, and prefrontal cortex. Immunohistochemistry was used to assess the expression of microglia in the three brain regions. Our study showed that isolation rearing led to increasing locomotion, heightened anxiety, depression, and a reduced percentage of prepulse inhibition. There was a significant increase (p < 0.05) in anxiety in the female isolation mice compared to male isolation mice. Furthermore, isolation rearing significantly increased microglia count (p < 0.05) in the hippocampus, nucleus accumbens, and prefrontal cortex, only in the male group. There was microglial hyper-activation as evident in the downregulation of CX3CR1 in both male and female social-isolation groups. Male social-isolation mice showed a significant increase (p < 0.05) in neuroinflammation markers only in the nucleus accumbens while the female social-isolation mice showed a significant increase (p < 0.05) in neuroinflammation markers in both the nucleus accumbens and hippocampus. The study showed that therapeutic interventions aimed at modulating CX3CR1 activity and reducing inflammation may be beneficial for patients with schizophrenia.
Collapse
|
9
|
Searles CT, Harder HJ, Vogt ME, Murphy AZ. Perigestational Opioid Exposure Alters Alcohol-Driven Reward Behaviors in Adolescent Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567041. [PMID: 38014019 PMCID: PMC10680700 DOI: 10.1101/2023.11.14.567041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Every fifteen minutes, a baby is born in the U.S. experiencing neonatal opioid withdrawal syndrome (NOWS). Since 2004, the rate of NOWS has increased 7-fold. Clinical studies have established intrauterine exposure to drugs of abuse as a risk factor for adverse health outcomes in adult life, including the propensity for future illicit drug use. Despite extensive knowledge about common mechanisms of action in the neural circuitry that drives opioid and alcohol reward, there is little data on the risks that those born with NOWS face regarding alcohol use later in life. Here, we investigate the impact of perigestational opioid exposure (POE) on the mesolimbic reward system of male and female Sprague Dawley rats at postnatal and adolescent ages. Our laboratory has developed a clinically relevant model for morphine exposure spanning pre-conception to the first week of life. Using this model, we found that POE increased alcohol consumption in female rats under noncontingent conditions, and inversely, reduced alcohol consumption in both male and female rats during operant conditioning sessions. Operant responding was also reduced for sucrose, suggesting that the impact of POE on reward-seeking behaviors is not limited to drugs of abuse. Expression of µ-opioid receptors was also significantly altered in the nucleus accumbens and medial habenula, regions previously shown to play a significant role in reward/aversion circuitry. Significance Statement Early life exposure to opioids is known to alter future drug behavior in rats. In the present study, female rats exposed to morphine via their mothers throughout and after pregnancy exhibited increased alcohol consumption when allowed to consume freely. During operant conditioning, however, male and female rats exposed to gestational morphine decreased consumption of alcohol as well as sucrose. We also observed that gestational morphine exposure altered µ-opioid receptor expression in reward-related brain regions. Our study provides the first evidence of changes in alcohol-directed reward behavior in a gestational opioid exposure rat model.
Collapse
|
10
|
Zhu H, Guan A, Liu J, Peng L, Zhang Z, Wang S. Noteworthy perspectives on microglia in neuropsychiatric disorders. J Neuroinflammation 2023; 20:223. [PMID: 37794488 PMCID: PMC10548593 DOI: 10.1186/s12974-023-02901-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
Microglia are so versatile that they not only provide immune surveillance for central nervous system, but participate in neural circuitry development, brain blood vessels formation, blood-brain barrier architecture, and intriguingly, the regulation of emotions and behaviors. Microglia have a profound impact on neuronal survival, brain wiring and synaptic plasticity. As professional phagocytic cells in the brain, they remove dead cell debris and neurotoxic agents via an elaborate mechanism. The functional profile of microglia varies considerately depending on age, gender, disease context and other internal or external environmental factors. Numerous studies have demonstrated a pivotal involvement of microglia in neuropsychiatric disorders, including negative affection, social deficit, compulsive behavior, fear memory, pain and other symptoms associated with major depression disorder, anxiety disorder, autism spectrum disorder and schizophrenia. In this review, we summarized the latest discoveries regarding microglial ontogeny, cell subtypes or state spectrum, biological functions and mechanistic underpinnings of emotional and behavioral disorders. Furthermore, we highlight the potential of microglia-targeted therapies of neuropsychiatric disorders, and propose outstanding questions to be addressed in future research of human microglia.
Collapse
Affiliation(s)
- Hongrui Zhu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Ao Guan
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jiayuan Liu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Li Peng
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Zhi Zhang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
11
|
Cruz B, Borgonetti V, Bajo M, Roberto M. Sex-dependent factors of alcohol and neuroimmune mechanisms. Neurobiol Stress 2023; 26:100562. [PMID: 37601537 PMCID: PMC10432974 DOI: 10.1016/j.ynstr.2023.100562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Excessive alcohol use disrupts neuroimmune signaling across various cell types, including neurons, microglia, and astrocytes. The present review focuses on recent, albeit limited, evidence of sex differences in biological factors that mediate neuroimmune responses to alcohol and underlying neuroimmune systems that may influence alcohol drinking behaviors. Females are more vulnerable than males to the neurotoxic and negative consequences of chronic alcohol drinking, reflected by elevations of pro-inflammatory cytokines and inflammatory mediators. Differences in cytokine, microglial, astrocytic, genomic, and transcriptomic evidence suggest females are more reactive than males to neuroinflammatory changes after chronic alcohol exposure. The growing body of evidence supports that innate immune factors modulate synaptic transmission, providing a mechanistic framework to examine sex differences across neurocircuitry. Targeting neuroimmune signaling may be a viable strategy for treating AUD, but more research is needed to understand sex-specific differences in alcohol drinking and neuroimmune mechanisms.
Collapse
Affiliation(s)
- Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| | - Vittoria Borgonetti
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| | - Michal Bajo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| |
Collapse
|
12
|
Vu AP, Lam D, Denney C, Lee KV, Plemel JR, Jackson J. Social isolation produces a sex- and brain region-specific alteration of microglia state. Eur J Neurosci 2023; 57:1481-1497. [PMID: 36918398 DOI: 10.1111/ejn.15966] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Social isolation is a profound form of psychological stress that impacts the mental health of a large proportion of society. Other experimental models of stress have demonstrated a microglia response that serves either a protective or pathological function. However, the effect of adult social isolation on microglia has not been thoroughly investigated. We measured microglia territory, branching, end points and phagocytic-lysosomal activity in group housed C57Bl/6 mice and mice that were socially isolated for 2 weeks. Our results show that the dorsomedial hypothalamus and hippocampal CA2 region of adult male mice undergo increased microglia volume, territory and endpoints following social isolation, whereas females exhibit this increase in the hypothalamus only. Males exhibited decreases in the phagocytic-lysosomal marker CD68 in microglia in these regions, whereas females showed an increase in CD68 in the hypothalamus suggesting sexually dimorphic and brain region-specific change in microglia state in response to social isolation. The prefrontal cortex, central amygdala, nucleus accumbens shell and visual cortex did not exhibit changes in microglia structure in either male or female mice. These data show that microglia in different brain regions undergo a distinct response to social isolation which may account for changes in cognition and behaviour associated with this prevalent form of psychological stress.
Collapse
Affiliation(s)
- Alex P Vu
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - David Lam
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Cayla Denney
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Kelly V Lee
- Department of Medicine, Division of Neurology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R Plemel
- Department of Medicine, Division of Neurology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jesse Jackson
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Ramos A, Joshi RS, Szabo G. Innate immune activation: Parallels in alcohol use disorder and Alzheimer’s disease. Front Mol Neurosci 2022; 15:910298. [PMID: 36157070 PMCID: PMC9505690 DOI: 10.3389/fnmol.2022.910298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Alcohol use disorder is associated with systemic inflammation and organ dysfunction especially in the liver and the brain. For more than a decade, studies have highlighted alcohol abuse-mediated impairment of brain function and acceleration of neurodegeneration through inflammatory mechanisms that directly involve innate immune cells. Furthermore, recent studies indicate overlapping genetic risk factors between alcohol use and neurodegenerative disorders, specifically regarding the role of innate immunity in the pathomechanisms of both areas. Considering the pressing need for a better understanding of the relevance of alcohol abuse in dementia progression, here we summarize the molecular mechanisms of neuroinflammation observed in alcohol abuse and Alzheimer’s disease, the most common cause of dementia. In addition, we highlight mechanisms that are already established in the field of Alzheimer’s disease that may be relevant to explore in alcoholism to better understand alcohol mediated neurodegeneration and dementia, including the relevance of the liver-brain axis.
Collapse
Affiliation(s)
- Adriana Ramos
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Radhika S. Joshi
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Gyongyi Szabo
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- *Correspondence: Gyongyi Szabo,
| |
Collapse
|
14
|
Mineur YS, Garcia-Rivas V, Thomas MA, Soares AR, McKee SA, Picciotto MR. Sex differences in stress-induced alcohol intake: a review of preclinical studies focused on amygdala and inflammatory pathways. Psychopharmacology (Berl) 2022; 239:2041-2061. [PMID: 35359158 PMCID: PMC9704113 DOI: 10.1007/s00213-022-06120-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023]
Abstract
Clinical studies suggest that women are more likely than men to relapse to alcohol drinking in response to stress; however, the mechanisms underlying this sex difference are not well understood. A number of preclinical behavioral models have been used to study stress-induced alcohol intake. Here, we review paradigms used to study effects of stress on alcohol intake in rodents, focusing on findings relevant to sex differences. To date, studies of sex differences in stress-induced alcohol drinking have been somewhat limited; however, there is evidence that amygdala-centered circuits contribute to effects of stress on alcohol seeking. In addition, we present an overview of inflammatory pathways leading to microglial activation that may contribute to alcohol-dependent behaviors. We propose that sex differences in neuronal function and inflammatory signaling in circuits centered on the amygdala are involved in sex-dependent effects on stress-induced alcohol seeking and suggest that this is an important area for future studies.
Collapse
Affiliation(s)
- Yann S Mineur
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA
| | - Vernon Garcia-Rivas
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA
| | - Merrilee A Thomas
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA
| | - Alexa R Soares
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA
- Yale Interdepartmental Neuroscience Program, New Haven, CT, USA
| | - Sherry A McKee
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA.
- Yale Interdepartmental Neuroscience Program, New Haven, CT, USA.
| |
Collapse
|
15
|
Dumont C, Li G, Castel J, Luquet S, Gangarossa G. Hindbrain catecholaminergic inputs to the paraventricular thalamus scale feeding and metabolic efficiency in stress-related contexts. J Physiol 2022; 600:2877-2895. [PMID: 35648134 DOI: 10.1113/jp282996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
The regulation of food intake and energy balance relies on the dynamic integration of exteroceptive and interoceptive signals monitoring nutritional, metabolic, cognitive, and emotional states. The paraventricular thalamus (PVT) is a central hub that, by integrating sensory, metabolic, and emotional states, may contribute to the regulation of feeding and homeostatic/allostatic processes. However, the underlying PVT circuits still remain elusive. Here, we aimed at unravelling the role of catecholaminergic (CA) inputs to the PVT in scaling feeding and metabolic efficiency. First, using region-specific retrograde disruption of CA projections, we show that PVT CA inputs mainly arise from the hindbrain, notably the locus coeruleus (LC) and the nucleus tractus solitarius. Second, taking advantage of integrative calorimetric measurements of metabolic efficiency, we reveal that CA inputs to the PVT scale adaptive feeding and metabolic responses in environmental, behavioural, physiological, and metabolic stress-like contexts. Third, we show that hindbrainTH →PVT inputs contribute to modulating the activity of PVT as well as lateral and dorsomedial hypothalamic neurons. In conclusion, the present study, by assessing the key role of CA inputs to the PVT in scaling homeostatic/allostatic regulations of feeding patterns, reveals the integrative and converging hindbrainTH →PVT paths that contribute to whole-body metabolic adaptations in stress-like contexts. KEY POINTS: The paraventricular thalamus (PVT) is known to receive projections from the hindbrain. Here, we confirm and further extend current knowledge on the existence of hindbrainTH →PVT catecholaminergic inputs, notably from the locus coeruleus and the nucleus tractus solitarius, with the nucleus tractus solitarius representing the main source. Disruption of hindbrainTH →PVT inputs contributes to the modulation of PVT neuron activity. HindbrainTH →PVT inputs scale feeding strategies in environmental, behavioural, physiological, and metabolic stress-like contexts. HindbrainTH →PVT inputs participate in regulating metabolic efficiency and nutrient partitioning in stress-like contexts. HindbrainTH →PVT inputs, directly and/or indirectly, contribute to modulating the downstream activity of lateral and dorsomedial hypothalamic neurons.
Collapse
Affiliation(s)
- Clarisse Dumont
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Guangping Li
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Julien Castel
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Serge Luquet
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| |
Collapse
|
16
|
Gonçalves de Andrade E, González Ibáñez F, Tremblay MÈ. Microglia as a Hub for Suicide Neuropathology: Future Investigation and Prevention Targets. Front Cell Neurosci 2022; 16:839396. [PMID: 35663424 PMCID: PMC9158339 DOI: 10.3389/fncel.2022.839396] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/22/2022] [Indexed: 12/27/2022] Open
Abstract
Suicide is a complex public health challenge associated worldwide with one death every 40 s. Research advances in the neuropathology of suicidal behaviors (SB) have defined discrete brain changes which may hold the key to suicide prevention. Physiological differences in microglia, the resident immune cells of the brain, are present in post-mortem tissue samples of individuals who died by suicide. Furthermore, microglia are mechanistically implicated in the outcomes of important risk factors for SB, including early-life adversity, stressful life events, and psychiatric disorders. SB risk factors result in inflammatory and oxidative stress activities which could converge to microglial synaptic remodeling affecting susceptibility or resistance to SB. To push further this perspective, in this Review we summarize current areas of opportunity that could untangle the functional participation of microglia in the context of suicide. Our discussion centers around microglial state diversity in respect to morphology, gene and protein expression, as well as function, depending on various factors, namely brain region, age, and sex.
Collapse
Affiliation(s)
- Elisa Gonçalves de Andrade
- Neuroscience Graduate Program, Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Fernando González Ibáñez
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- *Correspondence: Marie-Ève Tremblay,
| |
Collapse
|
17
|
Pomrenze MB, Paliarin F, Maiya R. Friend of the Devil: Negative Social Influences Driving Substance Use Disorders. Front Behav Neurosci 2022; 16:836996. [PMID: 35221948 PMCID: PMC8866771 DOI: 10.3389/fnbeh.2022.836996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
Abstract
Substance use disorders in humans have significant social influences, both positive and negative. While prosocial behaviors promote group cooperation and are naturally rewarding, distressing social encounters, such as aggression exhibited by a conspecific, are aversive and can enhance the sensitivity to rewarding substances, promote the acquisition of drug-taking, and reinstate drug-seeking. On the other hand, withdrawal and prolonged abstinence from drugs of abuse can promote social avoidance and suppress social motivation, accentuating drug cravings and facilitating relapse. Understanding how complex social states and experiences modulate drug-seeking behaviors as well as the underlying circuit dynamics, such as those interacting with mesolimbic reward systems, will greatly facilitate progress on understanding triggers of drug use, drug relapse and the chronicity of substance use disorders. Here we discuss some of the common circuit mechanisms underlying social and addictive behaviors that may underlie their antagonistic functions. We also highlight key neurochemicals involved in social influences over addiction that are frequently identified in comorbid psychiatric conditions. Finally, we integrate these data with recent findings on (±)3,4-methylenedioxymethamphetamine (MDMA) that suggest functional segregation and convergence of social and reward circuits that may be relevant to substance use disorder treatment through the competitive nature of these two types of reward. More studies focused on the relationship between social behavior and addictive behavior we hope will spur the development of treatment strategies aimed at breaking vicious addiction cycles.
Collapse
Affiliation(s)
- Matthew B. Pomrenze
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
- *Correspondence: Matthew B. Pomrenze Rajani Maiya
| | - Franciely Paliarin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Rajani Maiya
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- *Correspondence: Matthew B. Pomrenze Rajani Maiya
| |
Collapse
|