1
|
Liu C, Yang Y, Chen H, Spanopoulos I, Bati ASR, Gilley IW, Chen J, Maxwell A, Vishal B, Reynolds RP, Wiggins TE, Wang Z, Huang C, Fletcher J, Liu Y, Chen LX, De Wolf S, Chen B, Zheng D, Marks TJ, Facchetti A, Sargent EH, Kanatzidis MG. Two-dimensional perovskitoids enhance stability in perovskite solar cells. Nature 2024; 633:359-364. [PMID: 38977018 DOI: 10.1038/s41586-024-07764-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
Two-dimensional (2D) and three-dimensional (3D) perovskite heterostructures have played a key role in advancing the performance of perovskite solar cells1,2. However, the migration of cations between 2D and 3D layers results in the disruption of octahedral networks, leading to degradation in performance over time3,4. We hypothesized that perovskitoids, with robust organic-inorganic networks enabled by edge- and face-sharing, could impede ion migration. We explored a set of perovskitoids of varying dimensionality and found that cation migration within perovskitoid-perovskite heterostructures was suppressed compared with the 2D-3D perovskite case. Increasing the dimensionality of perovskitoids improves charge transport when they are interfaced with 3D perovskite surfaces-this is the result of enhanced octahedral connectivity and out-of-plane orientation. The 2D perovskitoid (A6BfP)8Pb7I22 (A6BfP: N-aminohexyl-benz[f]-phthalimide) provides efficient passivation of perovskite surfaces and enables uniform large-area perovskite films. Devices based on perovskitoid-perovskite heterostructures achieve a certified quasi-steady-state power conversion efficiency of 24.6% for centimetre-area perovskite solar cells. We removed the fragile hole transport layers and showed stable operation of the underlying perovskitoid-perovskite heterostructure at 85 °C for 1,250 h for encapsulated large-area devices in ambient air.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Yi Yang
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Hao Chen
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Ioannis Spanopoulos
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | | | - Isaiah W Gilley
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Jianhua Chen
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Aidan Maxwell
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Badri Vishal
- KAUST Solar Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | | | - Taylor E Wiggins
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Zaiwei Wang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Chuying Huang
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Jared Fletcher
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Yuan Liu
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
| | - Lin X Chen
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Stefaan De Wolf
- KAUST Solar Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Bin Chen
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Ding Zheng
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Tobin J Marks
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Antonio Facchetti
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Edward H Sargent
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
| | | |
Collapse
|
2
|
Ma Y, Chen R, Tao Y, Zhang L, Xu D, Wang H, Zhao Q, You J, Jen AKY, Liu S. Enhanced Interfacial Modification by Ordered Discotic Liquid Crystals for Thermotolerance Perovskite Solar Cells. Angew Chem Int Ed Engl 2024:e202411121. [PMID: 39218793 DOI: 10.1002/anie.202411121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Traditionally used phenylethylamine iodide (PEAI) and its derivatives, such as ortho-fluorine o-F-PEAI, in interfacial modification, are beneficial for perovskite solar cell (PSC) efficiency but vulnerable to heat stability above 85 °C due to ion migration. To address this issue, we propose a composite interface modification layer incorporating the discotic liquid crystal 2,3,6,7,10,11-hexa(pentoxy)triphenylene (HAT5) into o-F-PEAI. The triphenyl core in HAT5 promotes π-π stacking self-assembly and enhances its interaction with o-F-PEAI, forming an oriented columnar phase that improves hole extraction along the one-dimensional direction. HAT5 repairs structural defects in the interfacial layer and retains the layered structure to inhibit ion migration under heating. Ultimately, our approach increases the efficiency of solar cells from 23.36 % to 25.02 %. The thermal stability of the devices retains 80.1 % of their initial efficiency after aging at 85 °C for 1008 hours without encapsulation. Moreover, the optimized PSCs maintained 82.4 % of the initial efficiency after aging under one sunlight exposure for 1008 hours. This work provides a simple yet effective strategy using composite materials for interface modification to enhance the thermal and light stability of semiconductor devices.
Collapse
Affiliation(s)
- Yabin Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Ran Chen
- School of Materials Science and Engineering, Xi'an University of Science and Technology, No. 67, Xiaozhai East Road, Xi'an, Shaanxi, 710054, PR China
| | - Yiran Tao
- Department of Physics, The Chinese University of Hong Kong, Shatin, 999077, Hong Kong, China
| | - Lu Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Di Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Qing Zhao
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Jiaxue You
- Department of Materials Science and Engineering, Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong SAR, China
| | - Alex K Y Jen
- Department of Materials Science and Engineering, Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong SAR, China
| | - Shengzhong Liu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Heo JH, Park JK, Lee HJ, Shin EH, Hong SY, Hong KH, Zhang F, Im SH. Inorganic-Derived 0D Perovskite Induced Surface Lattice Arrangement for Efficient and Stable All-Inorganic Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408387. [PMID: 39152921 DOI: 10.1002/adma.202408387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Indexed: 08/19/2024]
Abstract
The inverted inorganic CsPbI3 perovskite solar cells (PSCs) are prospective candidates for next-generation photovoltaics owing to inherent robust thermal/photo-stability and compatibility for tandems. However, the performance and stability of the inverted CsPbI3 PSCs fall behind the n-i-p counterparts due to poor energetic alignment and abundant interfacial defect states. Here, an inorganic 0D Cs4PbBr6 with a good lattice strain arrangement is implemented as the surface anchoring capping layer on CsPbI3. The Cs4PbBr6 perovskite induces enhanced electron-selective junction and thus facilitates efficient charge extraction and effectively inhibits non-radiative recombination. Consequently, the CsPbI3 PSCs with Cs4PbBr6 demonstrate the highest power conversion efficiency (PCE) of CsPbI3-based inverted PSCs, reaching 21.03% PCE from a unit cell and 17.39% PCE from a module with a 64 cm2 aperture area. Furthermore, the resulting devices retain 92.48% after 1000 h under simultaneous 1-sun and damp heat (85 °C / 85% relative humidity) environment.
Collapse
Affiliation(s)
- Jin Hyuck Heo
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jin Kyoung Park
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyong Joon Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Eun Ha Shin
- Department of Materials Science and Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Seok Yeong Hong
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ki-Ha Hong
- Department of Materials Science and Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Fei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Sang Hyuk Im
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
4
|
Asada T, Raifuku I, Murata F, Hayashi K, Sugiyama H, Ishikawa Y. Influence of the Electron Transport Layer on the Performance of Perovskite Solar Cells under Low Illuminance Conditions. ACS OMEGA 2024; 9:32893-32900. [PMID: 39100319 PMCID: PMC11292622 DOI: 10.1021/acsomega.4c03643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024]
Abstract
Owing to the tunable band gap of metal-halide perovskite compounds, perovskite solar cells (PSCs) are promising energy-harvesting devices for indoor applications. Since the electron transport layer (ETL) plays a critical role in the performance of PSCs, selecting a suitable ETL is important for improving the performance of PSCs. Here, we compared the characteristics of PSCs employing TiO2 and SnO2, which are widely used as ETLs in PSCs, under low illuminance conditions. Electrochemical impedance spectroscopy revealed that PSCs employing SnO2 as the ETL exhibited lower charge transfer resistance than those employing TiO2 in low light intensity environments. Consequently, SnO2-based PSCs showed a higher power conversion efficiency of 27.7% than that of TiO2-based PSCs (22.5%) under 1000 lx white LED illumination. Space-charge-limited current measurements have shown that the defect density of ETLs strongly affects the performance of PSCs, especially under low illuminance conditions. We believe that this report provides an effective strategy for selecting appropriate ETLs for indoor applications of PSCs.
Collapse
Affiliation(s)
- Tomoki Asada
- Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5258, Japan
| | - Itaru Raifuku
- Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5258, Japan
| | - Fumihiro Murata
- Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5258, Japan
| | - Kazuya Hayashi
- Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5258, Japan
| | - Hiroaki Sugiyama
- Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5258, Japan
| | - Yasuaki Ishikawa
- Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5258, Japan
| |
Collapse
|
5
|
Zhu Z, Lu L, Li C, Xiao Q, Wu T, Tang J, Gu Y, Bao K, Zhang Y, Jiang L, Liu Y, Zhang W, Zhou S, Qin W. GIWAXS experimental methods at the NFPS-BL17B beamline at Shanghai Synchrotron Radiation Facility. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:968-978. [PMID: 38917022 PMCID: PMC11226147 DOI: 10.1107/s1600577524004764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
The BL17B beamline at the Shanghai Synchrotron Radiation Facility was first designed as a versatile high-throughput protein crystallography beamline and one of five beamlines affiliated to the National Facility for Protein Science in Shanghai. It was officially opened to users in July 2015. As a bending magnet beamline, BL17B has the advantages of high photon flux, brightness, energy resolution and continuous adjustable energy between 5 and 23 keV. The experimental station excels in crystal screening and structure determination, providing cost-effective routine experimental services to numerous users. Given the interdisciplinary and green energy research demands, BL17B beamline has undergone optimization, expanded its range of experimental methods and enhanced sample environments for a more user-friendly testing mode. These methods include single-crystal X-ray diffraction, powder crystal X-ray diffraction, wide-angle X-ray scattering, grazing-incidence wide-angle X-ray scattering (GIWAXS), and fully scattered atom pair distribution function analysis, covering structure detection from crystalline to amorphous states. This paper primarily presents the performance of the BL17B beamline and the application of the GIWAXS methodology at the beamline in the field of perovskite materials.
Collapse
Affiliation(s)
- Zhongjie Zhu
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| | - Lanlu Lu
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| | - Chunyu Li
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| | - Qingjie Xiao
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| | - Tingting Wu
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| | - Jianchao Tang
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| | - Yijun Gu
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| | - Kangwen Bao
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| | - Yupu Zhang
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| | - Luozhen Jiang
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| | - Yang Liu
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| | - Weizhe Zhang
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| | - Shuyu Zhou
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| | - Wenming Qin
- National Facility for Protein Science in ShanghaiShanghai Advanced Research Institute, Chinese Academy of SciencesPudong DistrictPeople’s Republic of China
| |
Collapse
|
6
|
Liu Y, Guo J, Zhou H, Li C, Guo X. Correlating π-π Stacking of Aromatic Diammoniums with Stability and Dimensional Reduction of Dion-Jacobson 2D Perovskites. J Am Chem Soc 2024; 146:8198-8205. [PMID: 38478884 DOI: 10.1021/jacs.3c12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Dion-Jacobson (DJ) phase 2D perovskites with various aromatic diammonium cations, potentially possessing high stability, have been developed for optoelectronics. However, their stability does not meet initial expectations, and some of them even easily degrade into lower-dimensional structures. Underlying the stability mechanism and dimensional reduction of these DJ 2D perovskites remains elusive. Herein, we report that π-π stacking intensity between aromatic cations determines structural stability and dimensional variation of DJ 2D perovskites by investigating nine benzene diammoniums (BDAs)-derived low-dimensional perovskites. The BDAs without intermolecular π-π stacking form stable DJ 2D perovskites, while those showing strong π-π stacking tend to generate 1D and 0D architectures. Furthermore, the π-π stacking intensity highly relies on molecular symmetry and electrostatic potential of BDAs; namely, asymmetry and small dipole moment facilitate alleviating the π-π stacking, leading to the formation of DJ 2D perovskites and vice versa. Our findings establish the relationship of aromatic diammonium structure-π-π stacking interaction-perovskite dimensionality, which can guide the design of stable DJ 2D perovskites and the manipulation of perovskite dimensionality for various optoelectronic applications.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian 116023, China
| | - Junxue Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian 116023, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Hongpeng Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Choi M, Munley C, Fröch JE, Chen R, Majumdar A. Nonlocal, Flat-Band Meta-Optics for Monolithic, High-Efficiency, Compact Photodetectors. NANO LETTERS 2024; 24:3150-3156. [PMID: 38477059 DOI: 10.1021/acs.nanolett.3c05139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Miniaturized photodetectors are becoming increasingly sought-after components for next-generation technologies, such as autonomous vehicles, integrated wearable devices, or gadgets embedded on the Internet of Things. A major challenge, however, lies in shrinking the device footprint while maintaining high efficiency. This conundrum can be solved by realizing a nontrivial relation between the energy and momentum of photons, such as dispersion-free devices, known as flat bands. Here, we leverage flat-band meta-optics to simultaneously achieve critical absorption over a wide range of incidence angles. For a monolithic silicon meta-optical photodiode, we achieved an ∼10-fold enhancement in the photon-to-electron conversion efficiency. Such enhancement over a large angular range of ∼36° allows incoming light to be collected via a large-aperture lens and focused on a compact photodiode, potentially enabling high-speed and low-light operation. Our research unveils new possibilities for creating compact and efficient optoelectronic devices with far-reaching impact on various applications, including augmented reality and light detection and ranging.
Collapse
Affiliation(s)
- Minho Choi
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Christopher Munley
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Johannes E Fröch
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Rui Chen
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Arka Majumdar
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
8
|
Yu B, Sun Y, Zhang J, Wang K, Yu H. Synergetic Regulation of Interface Defects and Carriers Dynamics for High-Performance Lead-Free Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307025. [PMID: 37941475 DOI: 10.1002/smll.202307025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/14/2023] [Indexed: 11/10/2023]
Abstract
Severe nonradiative recombination and open-circuit voltage loss triggered by high-density interface defects greatly restrict the continuous improvement of Sn-based perovskite solar cells (Sn-PVSCs). Herein, a novel amphoteric semiconductor, O-pivaloylhydroxylammonium trifluoromethanesulfonate (PHAAT), is developed to manage interface defects and carrier dynamics of Sn-PVSCs. The amphiphilic ionic modulators containing multiple Lewis-base functional groups can synergistically passivate anionic and cationic defects while coordinating with uncoordinated Sn2+ to compensate for surface charge and alleviate the Sn2+ oxidation. Especially, the sulfonate anions raise the energy barrier of surface oxidation, relieve lattice distortion, and inhibit nonradiative recombination by passivating Sn-related and I-related deep-level defects. Furthermore, the strong coupling between PHAAT and Sn perovskite induces the transition of the surface electronic state from p-type to n-type, thus creating an extra back-surface field to accelerate electron extraction. Consequently, the PHAAT-treated device exhibits a champion efficiency of 13.94% with negligible hysteresis. The device without any encapsulation maintains 94.7% of its initial PCE after 2000 h of storage and 91.6% of its initial PCE after 1000 h of continuous illumination. This work provides a reliable strategy to passivate interface defects and construct p-n homojunction to realize efficient and stable Sn-based perovskite photovoltaic devices.
Collapse
Affiliation(s)
- Bo Yu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Yapeng Sun
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Jiankai Zhang
- International School of Microelectronics, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Kai Wang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Huangzhong Yu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong, 510640, China
| |
Collapse
|
9
|
Uddin MA, Rana PJS, Ni Z, Yang G, Li M, Wang M, Gu H, Zhang H, Dou BD, Huang J. Iodide manipulation using zinc additives for efficient perovskite solar minimodules. Nat Commun 2024; 15:1355. [PMID: 38355596 PMCID: PMC10867015 DOI: 10.1038/s41467-024-45649-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Interstitial iodides are the most critical type of defects in perovskite solar cells that limits efficiency and stability. They can be generated during solution, film, and device processing, further accelerating degradation. Herein, we find that introducing a small amount of a zinc salt- zinc trifluoromethane sulfonate (Zn(OOSCF3)2) in the perovskite solution can control the iodide defects in resultant perovskites ink and films. CF3SOO̶ vigorously suppresses molecular iodine formation in the perovskites by reducing it to iodide. At the same time, zinc cations can precipitate excess iodide by forming a Zn-Amine complex so that the iodide interstitials in the resultant perovskite films can be suppressed. The perovskite films using these additives show improved photoluminescence quantum efficiency and reduce deep trap density, despite zinc cations reducing the perovskite grain size and iodide interstitials. The zinc additives facilitate the formation of more uniform perovskite films on large-area substrates (78-108 cm2) in the blade-coating process. Fabricated minimodules show power conversion efficiencies of 19.60% and 19.21% with aperture areas of 84 and 108 cm2, respectively, as certified by National Renewable Energy Laboratory (NREL), the highest efficiency certified for minimodules of these sizes.
Collapse
Affiliation(s)
- Md Aslam Uddin
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Prem Jyoti Singh Rana
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zhenyi Ni
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Guang Yang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mingze Li
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mengru Wang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hangyu Gu
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hengkai Zhang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Jinsong Huang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
10
|
Xu R, Pan F, Chen J, Li J, Yang Y, Sun Y, Zhu X, Li P, Cao X, Xi J, Xu J, Yuan F, Dai J, Zuo C, Ding L, Dong H, Jen AKY, Wu Z. Optimizing the Buried Interface in Flexible Perovskite Solar Cells to Achieve Over 24% Efficiency and Long-Term Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308039. [PMID: 37802505 DOI: 10.1002/adma.202308039] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/22/2023] [Indexed: 10/10/2023]
Abstract
The buried interface of the perovskite layer has a profound influence on its film morphology, defect formation, and aging resistance from the outset, therefore, significantly affects the film quality and device performance of derived perovskite solar cells. Especially for FAPbI3 , although it has excellent optoelectronic properties, the spontaneous transition from the black perovskite phase to nonperovskite phase tends to start from the buried interface at the early stage of film formation then further propagate to degrade the whole perovskite. In this work, by introducing ─NH3 + rich proline hydrochloride (PF) with a conjugated rigid structure as a versatile medium for buried interface, it not only provides a solid α-phase FAPbI3 template, but also prevents the phase transition induced degradation. PF also acts as an effective interfacial stress reliever to enhance both efficiency and stability of flexible solar cells. Consequently, a champion efficiency of 24.61% (certified 23.51%) can be achieved, which is the highest efficiency among all reported values for flexible perovskite solar cells. Besides, devices demonstrate excellent shelf-life/light soaking stability (advanced level of ISOS stability protocols) and mechanical stability.
Collapse
Affiliation(s)
- Ruoyao Xu
- Key Laboratory for Physical Electronics and Devices (MoE) & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fang Pan
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jinyu Chen
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jingrui Li
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yingguo Yang
- School of Microelectronics, Fudan University, Shanghai, 200433, China
- Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Lab, Shanghai Advanced Research Institute, Shanghai Institute of Applied Physics (CAS), Shanghai, 201204, China
| | - Yulu Sun
- Key Laboratory for Physical Electronics and Devices (MoE) & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xinyi Zhu
- Key Laboratory for Physical Electronics and Devices (MoE) & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Peizhou Li
- Key Laboratory for Physical Electronics and Devices (MoE) & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiangrong Cao
- Key Laboratory for Physical Electronics and Devices (MoE) & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jun Xi
- Key Laboratory for Physical Electronics and Devices (MoE) & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jie Xu
- Key Laboratory for Physical Electronics and Devices (MoE) & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fang Yuan
- Key Laboratory for Physical Electronics and Devices (MoE) & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jinfei Dai
- Key Laboratory for Physical Electronics and Devices (MoE) & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chuantian Zuo
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hua Dong
- Key Laboratory for Physical Electronics and Devices (MoE) & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Zhaoxin Wu
- Key Laboratory for Physical Electronics and Devices (MoE) & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
11
|
Dávid A, Morát J, Chen M, Gao F, Fahlman M, Liu X. Mapping Uncharted Lead-Free Halide Perovskites and Related Low-Dimensional Structures. MATERIALS (BASEL, SWITZERLAND) 2024; 17:491. [PMID: 38276430 PMCID: PMC10819976 DOI: 10.3390/ma17020491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Research on perovskites has grown exponentially in the past decade due to the potential of methyl ammonium lead iodide in photovoltaics. Although these devices have achieved remarkable and competitive power conversion efficiency, concerns have been raised regarding the toxicity of lead and its impact on scaling up the technology. Eliminating lead while conserving the performance of photovoltaic devices is a great challenge. To achieve this goal, the research has been expanded to thousands of compounds with similar or loosely related crystal structures and compositions. Some materials are "re-discovered", and some are yet unexplored, but predictions suggest that their potential applications may go beyond photovoltaics, for example, spintronics, photodetection, photocatalysis, and many other areas. This short review aims to present the classification, some current mapping strategies, and advances of lead-free halide double perovskites, their derivatives, lead-free perovskitoid, and low-dimensional related crystals.
Collapse
Affiliation(s)
- Anna Dávid
- Laboratory of Organic Electronics (LOE), Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden;
| | - Julia Morát
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden; (J.M.); (M.C.); (F.G.)
| | - Mengyun Chen
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden; (J.M.); (M.C.); (F.G.)
| | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden; (J.M.); (M.C.); (F.G.)
| | - Mats Fahlman
- Laboratory of Organic Electronics (LOE), Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden;
| | - Xianjie Liu
- Laboratory of Organic Electronics (LOE), Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden;
| |
Collapse
|
12
|
He J, Sheng W, Yang J, Zhong Y, Cai Q, Liu Y, Guo Z, Tan L, Chen Y. Synchronous Elimination of Excess Photoinstable PbI 2 and Interfacial Band Mismatch for Efficient and Stable Perovskite Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202315233. [PMID: 37990773 DOI: 10.1002/anie.202315233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Eliminating the undesired photoinstability of excess lead iodide (PbI2 ) in the perovskite film and reducing the energy mismatch between the perovskite layer and heterogeneous interfaces are urgent issues to be addressed in the preparation of perovskite solar cells (PVSCs) by two-step sequential deposition method. Here, the 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4 ) is employed to convert superfluous PbI2 to more robust 1D EMIMPbI3 which can withstand lattice strain, while forming an interfacial dipole layer at the SnO2 /perovskite interface to reconfigure the interfacial energy band structure and accelerate the charge extraction. Consequently, the unencapsulated PVSCs device attains a champion efficiency of 24.28 % with one of the highest open-circuit voltage (1.19 V). Moreover, the unencapsulated devices showcase significantly improved thermal stability, enhanced environmental stability and remarkable operational stability accompanied by 85 % of primitive efficiency retained over 1500 h at maximum power point tracking under continuous illumination.
Collapse
Affiliation(s)
- Jiacheng He
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Wangping Sheng
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jia Yang
- National Engineering Research Center for Carbohydrate Synthesis/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Yang Zhong
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Qianqian Cai
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yikun Liu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Zhao Guo
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Licheng Tan
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Peking University Yangtze Delta Insititute of Optoelectronics, 60 Chongzhou Avenue, Nantong, 226010, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- National Engineering Research Center for Carbohydrate Synthesis/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
- Peking University Yangtze Delta Insititute of Optoelectronics, 60 Chongzhou Avenue, Nantong, 226010, China
| |
Collapse
|
13
|
Wang Y, Ye J, Song J, Chu L, Zang Y, Li G, Zhou Q, Yang G, Tu Y, Jin Y, Li Z, Yan W. Modulation of Buried Interface by 1-(3-aminopropyl)-Imidazole for Efficient Inverted Formamidinium-Cesium Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304273. [PMID: 37705459 DOI: 10.1002/smll.202304273] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/14/2023] [Indexed: 09/15/2023]
Abstract
Considering the direct influence of substrate surface nature on perovskite (PVK) film growth, buried interfacial engineering is crucial to obtain ideal perovskite solar cells (PSCs). Herein, 1-(3-aminopropyl)-imidazole (API) is introduced at polytriarylamine (PTAA)/PVK interface to modulate the bottom property of PVK. First, the introduction of API improves the growth of PVK grains and reduces the Pb2+ defects and residual PbI2 present at the bottom of the film, contributing to the acquisition of high-quality PVK film. Besides, the presence of API can optimize the energy structure between PVK and PTAA, which facilitates the interfacial charge transfer. Density functional theory (DFT) reveals that the electron donor unit (R-C ═ N) of the API prefers to bind with Pb2+ traps at the PVK interface, while the formation of hydrogen bonds between the R-NH2 of API and I- strengthens the above binding ability. Consequently, the optimum API-treated inverted formamidinium-cesium (FA/Cs) PSCs yields a champion power conversion efficiency (PCE) of 22.02% and exhibited favorable stability.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
| | - Jingchuan Ye
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
| | - Jiaxing Song
- China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing, Zhejiang, 314001, China
- R&D Centre, JinkoSolar, Haining, Zhejiang, 314416, China
| | - Liang Chu
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
| | - Yue Zang
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
| | - Guodong Li
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
| | - Qin Zhou
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
| | - Gaoyuan Yang
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
| | - Yibo Tu
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
| | - Yingzhi Jin
- China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing, Zhejiang, 314001, China
| | - Zaifang Li
- China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing, Zhejiang, 314001, China
| | - Wensheng Yan
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
14
|
Zhong Y, Yang J, Wang X, Liu Y, Cai Q, Tan L, Chen Y. Inhibition of Ion Migration for Highly Efficient and Stable Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302552. [PMID: 37067957 DOI: 10.1002/adma.202302552] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
In recent years, organic-inorganic halide perovskites are now emerging as the most attractive alternatives for next-generation photovoltaic devices, due to their excellent optoelectronic characteristics and low manufacturing cost. However, the resultant perovskite solar cells (PVSCs) are intrinsically unstable owing to ion migration, which severely impedes performance enhancement, even with device encapsulation. There is no doubt that the investigation of ion migration and the summarization of recent advances in inhibition strategies are necessary to develop "state-of-the-art" PVSCs with high intrinsic stability for accelerated commercialization. This review systematically elaborates on the generation and fundamental mechanisms of ion migration in PVSCs, the impact of ion migration on hysteresis, phase segregation, and operational stability, and the characterizations for ion migration in PVSCs. Then, many related works on the strategies for inhibiting ion migration toward highly efficient and stable PVSCs are summarized. Finally, the perspectives on the current obstacles and prospective strategies for inhibition of ion migration in PVSCs to boost operational stability and meet all of the requirements for commercialization success are summarized.
Collapse
Affiliation(s)
- Yang Zhong
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jia Yang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xueying Wang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yikun Liu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Qianqian Cai
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Licheng Tan
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
| |
Collapse
|
15
|
Zhang H, Pfeifer L, Zakeeruddin SM, Chu J, Grätzel M. Tailoring passivators for highly efficient and stable perovskite solar cells. Nat Rev Chem 2023; 7:632-652. [PMID: 37464018 DOI: 10.1038/s41570-023-00510-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/20/2023]
Abstract
There is an ongoing global effort to advance emerging perovskite solar cells (PSCs), and many of these endeavours are focused on developing new compositions, processing methods and passivation strategies. In particular, the use of passivators to reduce the defects in perovskite materials has been demonstrated to be an effective approach for enhancing the photovoltaic performance and long-term stability of PSCs. Organic passivators have received increasing attention since the late 2010s as their structures and properties can readily be modified. First, this Review discusses the main types of defect in perovskite materials and reviews their properties. We examine the deleterious impact of defects on device efficiency and stability and highlight how defects facilitate extrinsic degradation pathways. Second, the proven use of different passivator designs to mitigate these negative effects is discussed, and possible defect passivation mechanisms are presented. Finally, we propose four specific directions for future research, which, in our opinion, will be crucial for unlocking the full potential of PSCs using the concept of defect passivation.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, P. R. China.
- Department of Materials Science, Fudan University, Shanghai, P. R. China.
| | - Lukas Pfeifer
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Shaik M Zakeeruddin
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Junhao Chu
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, P. R. China
- Department of Materials Science, Fudan University, Shanghai, P. R. China
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
16
|
Tian C, Sun A, Liang J, Zhang Z, Zheng Y, Wu X, Liu Y, Tang C, Chen CC. Inhibiting Interfacial Diffusion in Heterojunction Perovskite Solar Cells by Replacing Low-Dimensional Perovskite with Uniformly Anchored Quaternized Polystyrene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301091. [PMID: 37069780 DOI: 10.1002/smll.202301091] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Surface heterojunction has been regarded as an effective method to improve the device efficiency of perovskite solar cells. Nevertheless, the durability of different heterojunction under thermal stress is rarely investigated and compared. In this work, benzylammonium chloride and benzyltrimethylammonium chloride are utilized to construct 3D/2D and 3D/1D heterojunctions, respectively. A quaternized polystyrene is synthesized to construct a three-dimensional perovskite/amorphous ionic polymer (3D/AIP) heterojunction. Due to the migration and volatility of organic cations, severe interfacial diffusion is found among 3D/2D and 3D/1D heterojunctions, in which the quaternary ammonium cations in the 1D structure are less volatile and mobile than the primary ammonium cations in the 2D structure. 3D/AIP heterojunction remains intact under thermal stress due to the strong ionic bond anchoring at the interface and the ultra-high molecular weight of AIP. Furthermore, the dipole layer formed by AIP can further reduce the voltage loss caused by nonradiative recombination at the interface by 0.088 V. Therefore, the devices based on the 3D/AIP heterojunction achieve a champion power conversion efficiency of 24.27% and maintain 90% of its initial efficiency after either thermal aging for 400 h or wet aging for 3000 h, showing a great promise for polymer/perovskite heterojunction towards real applications.
Collapse
Affiliation(s)
- Congcong Tian
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Anxin Sun
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Jianghu Liang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Zhanfei Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Yiting Zheng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Xueyun Wu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Yuan Liu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Chen Tang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Chun-Chao Chen
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| |
Collapse
|
17
|
Zhu H, Fan L, Wang K, Liu H, Zhang J, Yan S. Progress in the Synthesis and Application of Tellurium Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2057. [PMID: 37513066 PMCID: PMC10384241 DOI: 10.3390/nano13142057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
In recent decades, low-dimensional nanodevices have shown great potential to extend Moore's Law. The n-type semiconductors already have several candidate materials for semiconductors with high carrier transport and device performance, but the development of their p-type counterparts remains a challenge. As a p-type narrow bandgap semiconductor, tellurium nanostructure has outstanding electrical properties, controllable bandgap, and good environmental stability. With the addition of methods for synthesizing various emerging tellurium nanostructures with controllable size, shape, and structure, tellurium nanomaterials show great application prospects in next-generation electronics and optoelectronic devices. For tellurium-based nanomaterials, scanning electron microscopy and transmission electron microscopy are the main characterization methods for their morphology. In this paper, the controllable synthesis methods of different tellurium nanostructures are reviewed, and the latest progress in the application of tellurium nanostructures is summarized. The applications of tellurium nanostructures in electronics and optoelectronics, including field-effect transistors, photodetectors, and sensors, are highlighted. Finally, the future challenges, opportunities, and development directions of tellurium nanomaterials are prospected.
Collapse
Affiliation(s)
- Hongliang Zhu
- School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Li Fan
- School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Kaili Wang
- School of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Hao Liu
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jiawei Zhang
- School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Shancheng Yan
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
18
|
Prabhakaran A, Dhanabalan B, Andrusenko I, Pianetti A, Lauciello S, Prato M, Marras S, Solokha P, Gemmi M, Brovelli S, Manna L, Arciniegas MP. Stable Sn-Based Hybrid Perovskite-Related Structures with Tunable Color Coordinates via Organic Cations in Low-Temperature Synthesis. ACS ENERGY LETTERS 2023; 8:2630-2640. [PMID: 37324542 PMCID: PMC10262684 DOI: 10.1021/acsenergylett.3c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023]
Abstract
Organic-inorganic Pb-free layered perovskites are efficient broadband emitters and thus are promising materials for lighting applications. However, their synthetic protocols require a controlled atmosphere, high temperature, and long preparation time. This hinders the potential tunability of their emission through organic cations, as is instead common practice in Pb-based structures. Here, we present a set of Sn-Br layered perovskite-related structures that display different chromaticity coordinates and photoluminescence quantum yield (PLQY) up to 80%, depending on the choice of the organic monocation. We first develop a synthetic protocol that is performed under air and at 4 °C, requiring only a few steps. X-ray and 3D electron diffraction analyses show that the structures exhibit diverse octahedra connectivity (disconnected and face-sharing) and thus optical properties, while preserving the organic-inorganic layer intercalation. These results provide key insight into a previously underexplored strategy to tune the color coordinates of Pb-free layered perovskites through organic cations with complex molecular configurations.
Collapse
Affiliation(s)
- Aarya Prabhakaran
- Center
for Convergent Technologies, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso, 31, 16146 Genova, Italy
| | - Balaji Dhanabalan
- Center
for Convergent Technologies, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Iryna Andrusenko
- Electron
Crystallography, Center for Materials Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Andrea Pianetti
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Simone Lauciello
- Center
for Convergent Technologies, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Mirko Prato
- Center
for Convergent Technologies, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Sergio Marras
- Center
for Convergent Technologies, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Pavlo Solokha
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso, 31, 16146 Genova, Italy
| | - Mauro Gemmi
- Electron
Crystallography, Center for Materials Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Sergio Brovelli
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Liberato Manna
- Center
for Convergent Technologies, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Milena P. Arciniegas
- Center
for Convergent Technologies, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
19
|
Hooper RW, Lin K, Veinot JGC, Michaelis VK. 3D to 0D cesium lead bromide: A 79/81Br NMR, NQR and theoretical investigation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 352:107472. [PMID: 37186965 DOI: 10.1016/j.jmr.2023.107472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/17/2023]
Abstract
Inorganic metal halides offer unprecedented tunability through elemental variation of simple three-element compositions, but can exhibit complicated phase behaviour, degradation, and microscopic phenomena (disorder/dynamics) that play an integral role for the bulk-level chemical and physical properties of these materials. Understanding the halogen chemical environment in such materials is crucial to addressing many of the concerns regarding implementing these materials in commercial applications. In this study, a combined solid-state nuclear magnetic resonance, nuclear quadrupole resonance and quantum chemical computation approach is used to interrogate the Br chemical environment in a series of related inorganic lead bromide materials: CsPbBr3, CsPb2Br5, and Cs4PbBr6. The quadrupole coupling constants (CQ) were determined to range from 61 to 114 MHz for 81Br, with CsPbBr3 exhibiting the largest measured CQ and Cs4PbBr6 the smallest. GIPAW DFT was shown to be an excellent pre-screening tool for estimating the EFG of Br materials and can increase experimental efficiency by providing good starting estimates for acquisition. Finally, the combination of theory and experiment to inform the best methods for expanding further to the other quadrupolar halogens is discussed.
Collapse
Affiliation(s)
- Riley W Hooper
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Katherine Lin
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Jonathan G C Veinot
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Vladimir K Michaelis
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| |
Collapse
|
20
|
Wu S, Zhang J, Qin M, Li F, Deng X, Lu X, Li WJ, Jen AKY. Manipulating Crystallographic Orientation via Cross-Linkable Ligand for Efficient and Stable Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207189. [PMID: 36760026 DOI: 10.1002/smll.202207189] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/16/2023] [Indexed: 05/11/2023]
Abstract
The crystallographic orientation of polycrystalline perovskites is found to be strongly correlated with their intrinsic properties; therefore, it can be used to effectively enhance the performance of perovskite-based devices. Here, a facile way of manipulating the facet orientation of polycrystalline perovskite films in a controllable manner is reported. By incorporating a cross-linkable organic ligand into the perovskite precursor solution, the crystal orientation disorder can be reduced in the resultant perovskite films to exhibit the prominent (001) orientation with a preferred stacking mode. Moreover, the as-formed low-dimensional perovskites (LDPs) between the organic ligand and the excess lead iodide can passivate the defects around the grain boundaries. Consequently, highly efficient p-i-n structured perovskite solar cells (PSCs) can be made in both rigid and flexible forms from modified perovskites to show high power conversion efficiencies (PCE) of 24.12% and 23.23%, respectively. The devices also exhibit superior long-term stability in a humid environment (with T90 > 1000 h) and under thermal stress (retaining 87% of its initial PCE after 1000 h). More importantly, the ligand enables the derived LDPs to be crosslinked (under 254 nm UV illumination) to demonstrate excellent mechanical bending durability in flexible devices.
Collapse
Affiliation(s)
- Shengfan Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Jie Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Minchao Qin
- Department of Physics, The Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong
| | - Fengzhu Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Xiang Deng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong
| | - Wen-Jung Li
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| |
Collapse
|
21
|
Chen Z, Cheng Q, Chen H, Wu Y, Ding J, Wu X, Yang H, Liu H, Chen W, Tang X, Lu X, Li Y, Li Y. Perovskite Grain-Boundary Manipulation Using Room-Temperature Dynamic Self-Healing "Ligaments" for Developing Highly Stable Flexible Perovskite Solar Cells with 23.8% Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300513. [PMID: 36796414 DOI: 10.1002/adma.202300513] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/07/2023] [Indexed: 05/05/2023]
Abstract
Flexible perovskite solar cells (pero-SCs) are the best candidates to complement traditional silicon SCs in portable power applications. However, their mechanical, operational, and ambient stabilities are still unable to meet the practical demands because of the natural brittleness, residual tensile strain, and high defect density along the perovskite grain boundaries. To overcome these issues, a cross-linkable monomer TA-NI with dynamic covalent disulfide bonds, H-bonds, and ammonium is carefully developed. The cross-linking acts as "ligaments" attached on the perovskite grain boundaries. These "ligaments" consisting of elastomers and 1D perovskites can not only passivate the grain boundaries and enhance moisture resistance but also release the residual tensile strain and mechanical stress in 3D perovskite films. More importantly, the elastomer can repair bending-induced mechanical cracks in the perovskite film because of dynamic self-healing characteristics. The resultant flexible pero-SCs exhibit promising improvements in efficiency, and record values (23.84% and 21.66%) are obtained for 0.062 and 1.004 cm2 devices; the flexible devices also show overall improved stabilities with T90 >20 000 bending cycles, operational stability with T90 >1248 h, and ambient stability (relative humidity = 30%) with T90 >3000 h. This strategy paves a new way for the industrial-scale development of high-performance flexible pero-SCs.
Collapse
Affiliation(s)
- Ziyuan Chen
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qinrong Cheng
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Haiyang Chen
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yeyong Wu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Junyuan Ding
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaoxiao Wu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Heyi Yang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Heng Liu
- Department of Physics, Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Weijie Chen
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaohua Tang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xinhui Lu
- Department of Physics, Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Yaowen Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
22
|
Wu P, Wang S, Heo JH, Liu H, Chen X, Li X, Zhang F. Mixed Cations Enabled Combined Bulk and Interfacial Passivation for Efficient and Stable Perovskite Solar Cells. NANO-MICRO LETTERS 2023; 15:114. [PMID: 37121936 PMCID: PMC10149427 DOI: 10.1007/s40820-023-01085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Here, we report a mixed GAI and MAI (MGM) treatment method by forming a 2D alternating-cation-interlayer (ACI) phase (n = 2) perovskite layer on the 3D perovskite, modulating the bulk and interfacial defects in the perovskite films simultaneously, leading to the suppressed nonradiative recombination, longer lifetime, higher mobility, and reduced trap density. Consequently, the devices' performance is enhanced to 24.5% and 18.7% for 0.12 and 64 cm2, respectively. In addition, the MGM treatment can be applied to a wide range of perovskite compositions, including MA-, FA-, MAFA-, and CsFAMA-based lead halide perovskites, making it a general method for preparing efficient perovskite solar cells. Without encapsulation, the treated devices show improved stabilities.
Collapse
Affiliation(s)
- Pengfei Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Shirong Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China.
| | - Jin Hyuck Heo
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 17104, Republic of Korea.
| | - Hongli Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Xihan Chen
- SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, People's Republic of China
| | - Xianggao Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Fei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China.
| |
Collapse
|
23
|
Zhu X, Xu J, Cen H, Wu Z, Dong H, Xi J. Perspectives for the conversion of perovskite indoor photovoltaics into IoT reality. NANOSCALE 2023; 15:5167-5180. [PMID: 36846869 DOI: 10.1039/d2nr07022g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As a competitive candidate for powering low-power terminals in Internet of Things (IoT) systems, indoor photovoltaic (IPV) technology has attracted much attention due to its effective power output under indoor light illumination. One such emerging photovoltaic technology, perovskite cell, has become a hot topic in the field of IPVs due to its outstanding theoretical performance limits and low manufacturing costs. However, several elusive issues remain limiting their applications. In this review, the challenges for perovskite IPVs are discussed in view of the bandgap tailoring to match indoor light spectra and the defect trapping regulation throughout the devices. Then, we summarize up-to-date perovskite cells, highlighting advanced strategies such as bandgap engineering, film engineering and interface engineering to enhance indoor performance. The investigation of indoor applications of large and flexible perovskite cells and integrated devices powered by perovskite cells is exhibited. Finally, the perspectives for the perovskite IPV field are provided to help facilitate the further improvement of indoor performance.
Collapse
Affiliation(s)
- Xinyi Zhu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 710049, China.
| | - Jie Xu
- School of Science, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Hanlin Cen
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 710049, China.
| | - Zhaoxin Wu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 710049, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Hua Dong
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 710049, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Jun Xi
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 710049, China.
| |
Collapse
|
24
|
Panda DP, Swain D, Rohj RK, Sarma DD, Sundaresan A. Elucidating Structure-Property Correlation in Perovskitoid and Antiperovskite Piperidinium Manganese Chloride. Inorg Chem 2023; 62:3202-3211. [PMID: 36744767 DOI: 10.1021/acs.inorgchem.2c04173] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the world of semiconductors, organic-inorganic hybrid (OIH) halide perovskite is a new paradigm. Recently, a zealous effort has been made to design new lead-free perovskite-like OIH halides, such as perovskitoids and antiperovskites, for optoelectronic applications. In this context, we have synthesized a perovskitoid compound (Piperidinium)MnCl3 (compound 1) crystallizing in an orthorhombic structure with infinite one-dimensional (1D) chains of MnCl6 octahedra. Interestingly, this compound shows switchable dielectric property governed by an order-disorder structural transition. By controlling the stoichiometry of piperidine, we have synthesized an antiperovskite (Piperidinium)3Cl[MnCl4] (compound 2), the inverse analogue of a perovskite, consisting of zero-dimensional (0D) MnCl4 tetrahedra. This type of organic-inorganic hybrid antiperovskite halide is unique and scarce. Such a dissimilarity in lattice dimensionality and Mn2+ ion coordination ensues fascinating photophysical and magnetic properties. Compound 1 exhibits red emission with a photoluminescence quantum yield (PLQY) of ∼28%. On the other hand, the 0D antiperovskite compound 2 displays green emission with a higher PLQY of 54.5%, thanks to the confinement effect. In addition, the dimensionality of the compounds plays a vital role in the exchange interaction. As a result, compound 1 shows an antiferromagnetic ground state, whereas compound 2 is paramagnetic down to 1.8 K. This emerging structure-property relationship in OIH manganese halides will set the platform for designing new perovskites and antiperovskites.
Collapse
Affiliation(s)
- Debendra Prasad Panda
- School of Advanced Materials, and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560064, India
| | - Diptikanta Swain
- Institute of Chemical Technology-IndianOil Odisha Campus, Bhubaneswar751013, India
| | - Rohit Kumar Rohj
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru560012, India
| | - D D Sarma
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru560012, India
| | - A Sundaresan
- School of Advanced Materials, and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560064, India
| |
Collapse
|
25
|
Zhou X, Ge C, Liang X, Wang F, Duan D, Lin H, Zhu Q, Hu H. Dimethylammonium Cation-Induced 1D/3D Heterostructure for Efficient and Stable Perovskite Solar Cells. Molecules 2022; 27:molecules27217566. [PMID: 36364394 PMCID: PMC9656943 DOI: 10.3390/molecules27217566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Mixed-dimensional perovskite engineering has been demonstrated as a simple and useful approach to achieving highly efficient and more-durable perovskite solar cells (PSCs), which have attracted increasing research interests worldwide. In this work, 1D/3D mixed-dimensional perovskite has been successfully obtained by introducing DMAI via a two-step deposition method. The additive DMA+ can facilitate the crystalline growth and form 1D DMAPbI3 at grain boundaries of 3D perovskite, leading to improved morphology, longer charge carrier lifetime, and remarkably reduced bulk trap density for perovskite films. Meanwhile, the presence of low-dimension perovskite is able to prevent the intrusion of moisture, resulting in enhanced long-term stability. As a result, the PSCs incorporated with 1D DMAPbI3 exhibited a first-class power conversion efficiency (PCE) of 21.43% and maintained 85% of their initial efficiency after storage under ambient conditions with ~45% RH for 1000 h.
Collapse
Affiliation(s)
- Xianfang Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Nanshan District, Shenzhen 518055, China
| | - Chuangye Ge
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Nanshan District, Shenzhen 518055, China
| | - Xiao Liang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Nanshan District, Shenzhen 518055, China
| | - Fei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Nanshan District, Shenzhen 518055, China
| | - Dawei Duan
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Nanshan District, Shenzhen 518055, China
| | - Haoran Lin
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Nanshan District, Shenzhen 518055, China
| | - Quanyao Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Correspondence: (Q.Z.); (H.H.)
| | - Hanlin Hu
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Nanshan District, Shenzhen 518055, China
- Correspondence: (Q.Z.); (H.H.)
| |
Collapse
|
26
|
Dai M, Zhou B, Fang X, Yan D. Two-Dimensional Hybrid Perovskitoid Micro/nanosheets: Colorful Ultralong Phosphorescence, Delayed Fluorescence, and Anisotropic Optical Waveguide. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40223-40231. [PMID: 35998354 DOI: 10.1021/acsami.2c11164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular persistent luminescence, such as room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF), have attracted broad attention in the fields of biological imaging, information security, and optoelectronic devices. However, the development of molecular micro/nanostructures combining both RTP and TADF properties is still in an early stage. Herein, a new type of organic metal hybrid perovskitoid (OMHP) two-dimensional (2D) microcrystal has been fabricated through a facile solution method. The long-lived TADF-RTP dual emission can be highly tuned by changing the excitation wavelength, temperature, and decayed time. Moreover, the 2D OMHP microsheet exhibits an asymmetric and anisotropic optical waveguide with low optical loss coefficient, together with extremely high linearly polarized fluorescence-phosphorescence emission (anisotropy = 0.96), which is promising for the development of polarization-sensitive luminescent materials. Therefore, this work not only demonstrates new OMHP showing colorful persistent luminescence under different modes (such as excitation wavelength, temperature, polarization, lifetime, and dimension) but also takes advantage of the 2D micro/nanostructure to provide potential applications as optical logic gates and for delicate multiple information encryption.
Collapse
Affiliation(s)
- Meiqi Dai
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Bo Zhou
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals Ministry of Education, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
27
|
Liu YC, Lin JT, Lee YL, Hung CM, Chou TC, Chao WC, Huang ZX, Chiang TH, Chiu CW, Chuang WT, Chou PT. Recognizing the Importance of Fast Nonisothermal Crystallization for High-Performance Two-Dimensional Dion-Jacobson Perovskite Solar Cells with High Fill Factors: A Comprehensive Mechanistic Study. J Am Chem Soc 2022; 144:14897-14906. [PMID: 35924834 DOI: 10.1021/jacs.2c06342] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two-dimensional (2D) Dion-Jacobson (DJ) perovskite solar cells (PSCs), despite their advantage in versatility of n-layer variation, are subject to poor photovoltaic efficiency, particularly in the fill factor (FF), compared to their three-dimensional counterparts. To enhance the performance of DJ PSCs, the process of growing crystals and hence the corresponding morphology of DJ perovskites are of prime importance. Herein, we report the fast nonisothermal (NIT) crystallization protocol that is previously unrecognized for 2D perovskites to significantly improve the morphology, orientation, and charge transport of the DJ perovskite films. Comprehensive mechanistic studies reveal that the NIT effect leads to the secondary crystallization stage, forming network-like channels that play a vital role in the FF's leap-forward improvement and hence the DJ PSC's performance. As a whole, the NIT crystallized PSCs demonstrate a high power conversion efficiency and an FF of up to 19.87 and 86.16%, respectively. This research thus provides new perspectives to achieve highly efficient DJ PSCs.
Collapse
Affiliation(s)
- Yi-Chun Liu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Jin-Tai Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yao-Lin Lee
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chieh-Ming Hung
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Tai-Che Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Chih Chao
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Zhi-Xuan Huang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Hsuan Chiang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ching-Wen Chiu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Tsung Chuang
- National Synchrotron Radiation Research Centre, Hsinchu 30076, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
28
|
Cai Q, Lin Z, Zhang W, Xu X, Dong H, Yuan S, Liang C, Mu C. Efficient and Stable Perovskite Solar Cells via CsPF 6 Passivation of Perovskite Film Defects. J Phys Chem Lett 2022; 13:4598-4604. [PMID: 35584450 DOI: 10.1021/acs.jpclett.2c01030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polycrystalline perovskite films have many fatal defects; defect passivation can improve the performance of perovskite solar cells (PSCs). In this study, the defects in perovskite films are passivated by introducing the pseudohalide salt CsPF6 into the films. Because the ionic radii of Cs+ and PF6- are close to those of FA+ and I-, respectively, they can be uniformly doped into perovskite films to passivate the bulk, surface, and grain boundary defects. The photovoltaic performance of the PSCs significantly improved after passivation. Moreover, the photoelectric conversion efficiency increased significantly from 21.36% to 23.15% after passivation. Because of defect passivation, PSCs also exhibit good environmental stability. This study introduces a scheme for improving the photovoltaic performance of PSCs via passivation.
Collapse
Affiliation(s)
- Qingbin Cai
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Zhichao Lin
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Wenqi Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Xiangning Xu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Hongye Dong
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Shuai Yuan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Chao Liang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Cheng Mu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
29
|
Zhou T, Xu Z, Wang R, Dong X, Fu Q, Liu Y. Crystal Growth Regulation of 2D/3D Perovskite Films for Solar Cells with Both High Efficiency and Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200705. [PMID: 35233866 DOI: 10.1002/adma.202200705] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Reducing the electronic defects in perovskite films has become a substantial challenge to further boost the photovoltaic performance of perovskite solar cells. Here, 2D (NpMA)2 PbI4 perovskite and 1-naphthalenemethylammonium iodide (NpMAI) are separately introduced into the PbI2 precursor solutions to regulate the crystal growth in a 2D/3D perovskite film using a two-step deposition method. The (NpMA)2 PbI4 modulated perovskite film shows a significantly improved film quality with enlarged grain size from ≈500 nm to over 1000 nm, which greatly reduces the grain-boundary defects, improves the charge carrier lifetime, and hinders ionic diffusion. As a result, the best-performing device shows a high power conversion efficiency (PCE) of 24.37% for a small-area (0.10 cm-2 ) device and a superior PCE of 22.26% for a large-area (1.01 cm-2 ) device. Importantly, the unencapsulated device shows a dramatically improved operational stability with maintains over 98% of its initial efficiency after 1500 h by maximum power point (MPP) tracking under continuous light irradiation.
Collapse
Affiliation(s)
- Tong Zhou
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhiyuan Xu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Rui Wang
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiyue Dong
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qiang Fu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yongsheng Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| |
Collapse
|