1
|
Nguyen TNH, Horowitz LF, Krilov T, Lockhart E, Kenerson HL, Gujral TS, Yeung RS, Arroyo-Currás N, Folch A. Label-free, real-time monitoring of cytochrome C drug responses in microdissected tumor biopsies with a multi-well aptasensor platform. SCIENCE ADVANCES 2024; 10:eadn5875. [PMID: 39241078 PMCID: PMC11378948 DOI: 10.1126/sciadv.adn5875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/31/2024] [Indexed: 09/08/2024]
Abstract
Functional assays on intact tumor biopsies can complement genomics-based approaches for precision oncology, drug testing, and organs-on-chips cancer disease models by capturing key therapeutic response determinants, such as tissue architecture, tumor heterogeneity, and the tumor microenvironment. Most of these assays rely on fluorescent labeling, a semiquantitative method best suited for single-time-point assays or labor-intensive immunostaining analysis. Here, we report integrated aptamer electrochemical sensors for on-chip, real-time monitoring of cytochrome C, a cell death indicator, from intact microdissected tissues with high affinity and specificity. The platform features a multi-well sensor layout and a multiplexed electronic setup. The aptasensors measure increases in cytochrome C in the supernatant of mouse or human microdissected tumors after exposure to various drug treatments. Because of the sensor's high affinity, it primarily tracks rising concentrations of cytochrome C, capturing dynamic changes during apoptosis. This approach could help develop more advanced cancer disease models and apply to other complex in vitro disease models, such as organs-on-chips and organoids.
Collapse
Affiliation(s)
- Tran N H Nguyen
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Lisa F Horowitz
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Timothy Krilov
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Ethan Lockhart
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Heidi L Kenerson
- Department of Surgery, University of Washington, Seattle, WA 98105, USA
| | - Taranjit S Gujral
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98105, USA
| | - Raymond S Yeung
- Department of Surgery, University of Washington, Seattle, WA 98105, USA
| | | | - Albert Folch
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
2
|
Hemdan M, Ali MA, Doghish AS, Mageed SSA, Elazab IM, Khalil MM, Mabrouk M, Das DB, Amin AS. Innovations in Biosensor Technologies for Healthcare Diagnostics and Therapeutic Drug Monitoring: Applications, Recent Progress, and Future Research Challenges. SENSORS (BASEL, SWITZERLAND) 2024; 24:5143. [PMID: 39204840 PMCID: PMC11360123 DOI: 10.3390/s24165143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
This comprehensive review delves into the forefront of biosensor technologies and their critical roles in disease biomarker detection and therapeutic drug monitoring. It provides an in-depth analysis of various biosensor types and applications, including enzymatic sensors, immunosensors, and DNA sensors, elucidating their mechanisms and specific healthcare applications. The review highlights recent innovations such as integrating nanotechnology, developing wearable devices, and trends in miniaturisation, showcasing their transformative potential in healthcare. In addition, it addresses significant sensitivity, specificity, reproducibility, and data security challenges, proposing strategic solutions to overcome these obstacles. It is envisaged that it will inform strategic decision-making, drive technological innovation, and enhance global healthcare outcomes by synthesising multidisciplinary insights.
Collapse
Affiliation(s)
- Mohamed Hemdan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City 11829, Egypt; (M.H.); (M.A.A.)
| | - Mohamed A. Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City 11829, Egypt; (M.H.); (M.A.A.)
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt;
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Egypt
| | - Sherif S. Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt;
| | - Ibrahim M. Elazab
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Magdy M. Khalil
- Medical Biophysics, Department of Physics, Faculty of Science, Helwan University, Cairo 11795, Egypt;
- School of Applied Health Sciences, Badr University in Cairo (BUC), Badr City 11829, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Giza 12622, Egypt;
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| | - Alaa S. Amin
- Chemistry Department, Faculty of Science, Benha University, Benha 13511, Egypt;
| |
Collapse
|
3
|
Ye C, Lukas H, Wang M, Lee Y, Gao W. Nucleic acid-based wearable and implantable electrochemical sensors. Chem Soc Rev 2024; 53:7960-7982. [PMID: 38985007 PMCID: PMC11308452 DOI: 10.1039/d4cs00001c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The rapid advancements in nucleic acid-based electrochemical sensors for implantable and wearable applications have marked a significant leap forward in the domain of personal healthcare over the last decade. This technology promises to revolutionize personalized healthcare by facilitating the early diagnosis of diseases, monitoring of disease progression, and tailoring of individual treatment plans. This review navigates through the latest developments in this field, focusing on the strategies for nucleic acid sensing that enable real-time and continuous biomarker analysis directly in various biofluids, such as blood, interstitial fluid, sweat, and saliva. The review delves into various nucleic acid sensing strategies, emphasizing the innovative designs of biorecognition elements and signal transduction mechanisms that enable implantable and wearable applications. Special perspective is given to enhance nucleic acid-based sensor selectivity and sensitivity, which are crucial for the accurate detection of low-level biomarkers. The integration of such sensors into implantable and wearable platforms, including microneedle arrays and flexible electronic systems, actualizes their use in on-body devices for health monitoring. We also tackle the technical challenges encountered in the development of these sensors, such as ensuring long-term stability, managing the complexity of biofluid dynamics, and fulfilling the need for real-time, continuous, and reagentless detection. In conclusion, the review highlights the importance of these sensors in the future of medical engineering, offering insights into design considerations and future research directions to overcome existing limitations and fully realize the potential of nucleic acid-based electrochemical sensors for healthcare applications.
Collapse
Affiliation(s)
- Cui Ye
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Minqiang Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Yerim Lee
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
4
|
Verrinder E, Gerson J, Leung K, Kippin TE, Plaxco KW. Dual-Frequency, Ratiometric Approaches to EAB Sensor Interrogation Support the Calibration-Free Measurement of Specific Molecules In Vivo. ACS Sens 2024; 9:3205-3211. [PMID: 38775190 DOI: 10.1021/acssensors.4c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Electrochemical aptamer-based (EAB) sensors represent the first molecular measurement technology that is both (1) independent of the chemical reactivity of the target, and thus generalizable to many targets and (2) able to function in an accurate, drift-corrected manner in situ in the living body. Signaling in EAB sensors is generated when an electrode-bound aptamer binds to its target ligand, altering the rate of electron transfer from an attached redox reporter and producing an easily detectable change in peak current when the sensor is interrogated using square wave voltammetry. Due to differences in the microscopic surface area of the interrogating electrodes, the baseline peak currents obtained from EAB sensors, however, can be highly variable. To overcome this, we have historically performed single-point calibration using measurements performed in a single sample of known target concentration. Here, however, we explore approaches to EAB sensor operation that negate the need to perform even single-point calibration of individual sensors. These are a ratiometric approach employing the ratio of the peak currents observed at two distinct square wave frequencies, and a kinetic differential measurement approach that employs the difference between peak currents seen at the two frequencies. Using in vivo measurements of vancomycin and phenylalanine as our test bed, we compared the output of these methods with that of the same sensor when single-point calibration was employed. Doing so we find that both methods support accurately drift-corrected measurements in vivo in live rats, even when employing rather crudely handmade devices. By removing the need to calibrate each individual sensor in a sample of known target concentration, these interrogation methods should significantly simplify the use of EAB sensors for in vivo applications.
Collapse
Affiliation(s)
- Elsi Verrinder
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Julian Gerson
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Kaylyn Leung
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Biological Engineering Graduate Program, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
5
|
Wan J, Nie Z, Xu J, Zhang Z, Yao S, Xiang Z, Lin X, Lu Y, Xu C, Zhao P, Wang Y, Zhang J, Wang Y, Zhang S, Wang J, Man W, Zhang M, Han M. Millimeter-scale magnetic implants paired with a fully integrated wearable device for wireless biophysical and biochemical sensing. SCIENCE ADVANCES 2024; 10:eadm9314. [PMID: 38507494 PMCID: PMC10954204 DOI: 10.1126/sciadv.adm9314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024]
Abstract
Implantable sensors can directly interface with various organs for precise evaluation of health status. However, extracting signals from such sensors mainly requires transcutaneous wires, integrated circuit chips, or cumbersome readout equipment, which increases the risks of infection, reduces biocompatibility, or limits portability. Here, we develop a set of millimeter-scale, chip-less, and battery-less magnetic implants paired with a fully integrated wearable device for measuring biophysical and biochemical signals. The wearable device can induce a large amplitude damped vibration of the magnetic implants and capture their subsequent motions wirelessly. These motions reflect the biophysical conditions surrounding the implants and the concentration of a specific biochemical depending on the surface modification. Experiments in rat models demonstrate the capabilities of measuring cerebrospinal fluid (CSF) viscosity, intracranial pressure, and CSF glucose levels. This miniaturized system opens the possibility for continuous, wireless monitoring of a wide range of biophysical and biochemical conditions within the living organism.
Collapse
Affiliation(s)
- Ji Wan
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- School of Integrated Circuits, Peking University, Beijing, China
| | - Zhongyi Nie
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Jie Xu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Zixuan Zhang
- School of Electronic and Computer Engineering, Peking University, Shenzhen, China
| | - Shenglian Yao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Zehua Xiang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- School of Integrated Circuits, Peking University, Beijing, China
| | - Xiang Lin
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Yuxing Lu
- Department of Bigdata and Biomedical AI, College of Future Technology, Peking University, Beijing, China
| | - Chen Xu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Pengcheng Zhao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- School of Integrated Circuits, Peking University, Beijing, China
| | - Yiran Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Jingyan Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Yaozheng Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- School of Integrated Circuits, Peking University, Beijing, China
| | | | - Jinzhuo Wang
- Department of Bigdata and Biomedical AI, College of Future Technology, Peking University, Beijing, China
| | - Weitao Man
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Min Zhang
- School of Electronic and Computer Engineering, Peking University, Shenzhen, China
| | - Mengdi Han
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| |
Collapse
|
6
|
Schultz L, Gondim A, Ruan S. Gompertz models with periodical treatment and applications to prostate cancer. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:4104-4116. [PMID: 38549320 DOI: 10.3934/mbe.2024181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
In this paper, Gompertz type models are proposed to understand the temporal tumor volume behavior of prostate cancer when a periodical treatment is provided. Existence, uniqueness, and stability of periodic solutions are established. The models are used to fit the data and to forecast the tumor growth behavior based on prostate cancer treatments using capsaicin and docetaxel anticancer drugs. Numerical simulations show that the combination of capsaicin and docetaxel is the most efficient treatment of prostate cancer.
Collapse
Affiliation(s)
- Leonardo Schultz
- Department of Mathematics, University of Miami, 1365 Memorial Drive, Coral Gables, FL 33146, USA
| | - Antonio Gondim
- Department of Mathematics, University of Miami, 1365 Memorial Drive, Coral Gables, FL 33146, USA
| | - Shigui Ruan
- Department of Mathematics, University of Miami, 1365 Memorial Drive, Coral Gables, FL 33146, USA
| |
Collapse
|
7
|
Ogata G, Yoneda M, Ogawa R, Hanawa A, Asai K, Yamagishi R, Honjo M, Aihara M, Einaga Y. Real-Time Measurement of Antiglaucoma Drugs in Porcine Eyes Using Boron-Doped Diamond Microelectrodes. ACS Sens 2024; 9:781-788. [PMID: 38244038 DOI: 10.1021/acssensors.3c02088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
The primary treatment for glaucoma, the most common cause of intermediate vision impairment, involves administering ocular hypotensive drugs in the form of topical eye drops. Observing real-time changes in the drugs that pass through the cornea and reach the anterior chamber of the eye is crucial for improving and developing safe, reliable, and effective medical treatments. Traditional methods for measuring temporal changes in drug concentrations in the aqueous humor employ separation analyzers such as LC-MS/MS. However, this technique requires multiple measurements on the eyes of various test subjects to track changes over time with a high temporal resolution. To address this issue, we have developed a measurement method that employs boron-doped diamond (BDD) microelectrodes to monitor real-time drug concentrations in the anterior chamber of the eye. First, we confirmed the electrochemical reactivity of 13 antiglaucoma drugs in a phosphate buffer solution with a pH of 7.4. Next, we optimized the method for continuous measurement of timolol maleate (TIM), a sympathetic beta-receptor antagonist, and generated calibration curves for each BDD microelectrode using aqueous humor collected from enucleated porcine eyes. We successfully demonstrated the continuous ex vivo monitoring of TIM concentrations in the anterior chambers of these enucleated porcine eyes. The results indicate that changes in intracameral TIM concentrations can be monitored through electrochemical measurements using BDD microelectrodes. This technique holds promise for future advancements in optimizing glaucoma treatment and drug administration strategies.
Collapse
Affiliation(s)
- Genki Ogata
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Mao Yoneda
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Risa Ogawa
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Ai Hanawa
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Kai Asai
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Reiko Yamagishi
- Department of Ophthalmology, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Megumi Honjo
- Department of Ophthalmology, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Makoto Aihara
- Department of Ophthalmology, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| |
Collapse
|
8
|
Shen X, Pan D, Gong Q, Gu Z, Luo K. Enhancing drug penetration in solid tumors via nanomedicine: Evaluation models, strategies and perspectives. Bioact Mater 2024; 32:445-472. [PMID: 37965242 PMCID: PMC10641097 DOI: 10.1016/j.bioactmat.2023.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Effective tumor treatment depends on optimizing drug penetration and accumulation in tumor tissue while minimizing systemic toxicity. Nanomedicine has emerged as a key solution that addresses the rapid clearance of free drugs, but achieving deep drug penetration into solid tumors remains elusive. This review discusses various strategies to enhance drug penetration, including manipulation of the tumor microenvironment, exploitation of both external and internal stimuli, pioneering nanocarrier surface engineering, and development of innovative tactics for active tumor penetration. One outstanding strategy is organelle-affinitive transfer, which exploits the unique properties of specific tumor cell organelles and heralds a potentially transformative approach to active transcellular transfer for deep tumor penetration. Rigorous models are essential to evaluate the efficacy of these strategies. The patient-derived xenograft (PDX) model is gaining traction as a bridge between laboratory discovery and clinical application. However, the journey from bench to bedside for nanomedicines is fraught with challenges. Future efforts should prioritize deepening our understanding of nanoparticle-tumor interactions, re-evaluating the EPR effect, and exploring novel nanoparticle transport mechanisms.
Collapse
Affiliation(s)
- Xiaoding Shen
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Dayi Pan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361021, China
| | - Zhongwei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
9
|
Baghdasaryan A, Liu H, Ren F, Hsu R, Jiang Y, Wang F, Zhang M, Grigoryan L, Dai H. Intratumor injected gold molecular clusters for NIR-II imaging and cancer therapy. Proc Natl Acad Sci U S A 2024; 121:e2318265121. [PMID: 38261618 PMCID: PMC10835035 DOI: 10.1073/pnas.2318265121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Surgical resections of solid tumors guided by visual inspection of tumor margins have been performed for over a century to treat cancer. Near-infrared (NIR) fluorescence labeling/imaging of tumor in the NIR-I (800 to 900 nm) range with systemically administrated fluorophore/tumor-targeting antibody conjugates have been introduced to improve tumor margin delineation, tumor removal accuracy, and patient survival. Here, we show Au25 molecular clusters functionalized with phosphorylcholine ligands (AuPC, ~2 nm in size) as a preclinical intratumorally injectable agent for NIR-II/SWIR (1,000 to 3,000 nm) fluorescence imaging-guided tumor resection. The AuPC clusters were found to be uniformly distributed in the 4T1 murine breast cancer tumor upon intratumor (i.t.) injection. The phosphocholine coating afforded highly stealth clusters, allowing a high percentage of AuPC to fill the tumor interstitial fluid space homogeneously. Intra-operative surgical navigation guided by imaging of the NIR-II fluorescence of AuPC allowed for complete and non-excessive tumor resection. The AuPC in tumors were also employed as a photothermal therapy (PTT) agent to uniformly heat up and eradicate tumors. Further, we performed in vivo NIR-IIb (1,500 to 1,700 nm) molecular imaging of the treated tumor using a quantum dot-Annexin V (QD-P3-Anx V) conjugate, revealing cancer cell apoptosis following PTT. The therapeutic functionalities of AuPC clusters combined with rapid renal excretion, high biocompatibility, and safety make them promising for clinical translation.
Collapse
Affiliation(s)
- Ani Baghdasaryan
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Haoran Liu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Fuqiang Ren
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - RuSiou Hsu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Yingying Jiang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Feifei Wang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Mengzhen Zhang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Lilit Grigoryan
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA94305
| | - Hongjie Dai
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| |
Collapse
|
10
|
Wu Z, Huang D, Wang J, Zhao Y, Sun W, Shen X. Engineering Heterogeneous Tumor Models for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304160. [PMID: 37946674 PMCID: PMC10767453 DOI: 10.1002/advs.202304160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Tumor tissue engineering holds great promise for replicating the physiological and behavioral characteristics of tumors in vitro. Advances in this field have led to new opportunities for studying the tumor microenvironment and exploring potential anti-cancer therapeutics. However, the main obstacle to the widespread adoption of tumor models is the poor understanding and insufficient reconstruction of tumor heterogeneity. In this review, the current progress of engineering heterogeneous tumor models is discussed. First, the major components of tumor heterogeneity are summarized, which encompasses various signaling pathways, cell proliferations, and spatial configurations. Then, contemporary approaches are elucidated in tumor engineering that are guided by fundamental principles of tumor biology, and the potential of a bottom-up approach in tumor engineering is highlighted. Additionally, the characterization approaches and biomedical applications of tumor models are discussed, emphasizing the significant role of engineered tumor models in scientific research and clinical trials. Lastly, the challenges of heterogeneous tumor models in promoting oncology research and tumor therapy are described and key directions for future research are provided.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Danqing Huang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jinglin Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| | - Weijian Sun
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Xian Shen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| |
Collapse
|
11
|
Liu J, Ren Z, Sun Y, Xu L, Wei D, Tan W, Ding D. Investigation of the Relationship between Aptamers' Targeting Functions and Human Plasma Proteins. ACS NANO 2023; 17:24329-24342. [PMID: 38044589 DOI: 10.1021/acsnano.3c10238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Aptamers are single-stranded DNA or RNA molecules capable of recognizing targets via specific three-dimensional structures. Taking advantage of this unique targeting function, aptamers have been extensively applied to bioanalysis and disease theranostics. However, the targeting functionality of aptamers in the physiological milieu is greatly impeded compared with their in vitro applications. To investigate the physiological factors that adversely affect the in vivo targeting ability of aptamers, we herein systematically studied the interactions between human plasma proteins and aptamers and the specific effects of plasma proteins on aptamer targeting. Microscale thermophoresis and flow cytometry analysis showed that plasma interacted with aptamers, restricting their affinity toward targeted tumor cells. Further pull-down assay and proteomic identification verified that the interactions between aptamers and plasma proteins were mainly involved in complement activation and immune response as well as showed structure-selective and sequence-specific features. Particularly, the fibronectin 1 (FN1) protein showed dramatically specific interactions with nucleolin (NCL) targeting aptamer AS1411. The competitive binding between FN1 and NCL almost deprived the AS1411 aptamer's targeting ability in vivo. In order to maintain the targeting function in the physiological milieu, a series of optimizations were performed via the chemical modifications of AS1411 aptamer, and 3'-terminal pegylation was demonstrated to be resistant to the interaction with FN1, leading to improved tumor-targeting effects. This work emphasizes the physiological environment influences on aptamers targeting functionality and suggests that rational design and modification of aptamers to minimize the nonspecific interaction with plasma proteins might be effective to maintain aptamer functionality in future clinical uses.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhiqiang Ren
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Yang Sun
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Liujun Xu
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Dali Wei
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Ding Ding
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
12
|
Thompson IA, Saunders J, Zheng L, Hariri AA, Maganzini N, Cartwright AP, Pan J, Yee S, Dory C, Eisenstein M, Vuckovic J, Soh HT. An antibody-based molecular switch for continuous small-molecule biosensing. SCIENCE ADVANCES 2023; 9:eadh4978. [PMID: 37738337 PMCID: PMC10516488 DOI: 10.1126/sciadv.adh4978] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/22/2023] [Indexed: 09/24/2023]
Abstract
We present a generalizable approach for designing biosensors that can continuously detect small-molecule biomarkers in real time and without sample preparation. This is achieved by converting existing antibodies into target-responsive "antibody-switches" that enable continuous optical biosensing. To engineer these switches, antibodies are linked to a molecular competitor through a DNA scaffold, such that competitive target binding induces scaffold switching and fluorescent signaling of changing target concentrations. As a demonstration, we designed antibody-switches that achieve rapid, sample preparation-free sensing of digoxigenin and cortisol in undiluted plasma. We showed that, by substituting the molecular competitor, we can further modulate the sensitivity of our cortisol switch to achieve detection at concentrations spanning 3.3 nanomolar to 3.3 millimolar. Last, we integrated this switch with a fiber optic sensor to achieve continuous sensing of cortisol in a buffer and blood with <5-min time resolution. We believe that this modular sensor design can enable continuous biosensor development for many biomarkers.
Collapse
Affiliation(s)
- Ian A.P. Thompson
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jason Saunders
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Liwei Zheng
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Amani A. Hariri
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Nicolò Maganzini
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Alyssa P. Cartwright
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jing Pan
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Steven Yee
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Constantin Dory
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Michael Eisenstein
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Jelena Vuckovic
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Hyongsok Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Ghanim R, Kaushik A, Park J, Abramson A. Communication Protocols Integrating Wearables, Ingestibles, and Implantables for Closed-Loop Therapies. DEVICE 2023; 1:100092. [PMID: 38465200 PMCID: PMC10923538 DOI: 10.1016/j.device.2023.100092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Body-conformal sensors and tissue interfacing robotic therapeutics enable the real-time monitoring and treatment of diabetes, wound healing, and other critical conditions. By integrating sensors and drug delivery devices, scientists and engineers have developed closed-loop drug delivery systems with on-demand therapeutic capabilities to provide just-in-time treatments that correspond to chemical, electrical, and physical signals of a target morbidity. To enable closed-loop functionality in vivo, engineers utilize various low-power means of communication that reduce the size of implants by orders of magnitude, increase device lifetime from hours to months, and ensure the secure high-speed transfer of data. In this review, we highlight how communication protocols used to integrate sensors and drug delivery devices, such as radio frequency communication (e.g., Bluetooth, near-field communication), in-body communication, and ultrasound, enable improved treatment outcomes.
Collapse
Affiliation(s)
- Ramy Ghanim
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anika Kaushik
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jihoon Park
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alex Abramson
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Zhang Y, Chen J, Zhang J, Zhu J, Liu C, Sun H, Wang L. Super-Low-Dose Functional and Molecular Photoacoustic Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302486. [PMID: 37310419 PMCID: PMC10427362 DOI: 10.1002/advs.202302486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/21/2023] [Indexed: 06/14/2023]
Abstract
Photoacoustic microscopy can image many biological molecules and nano-agents in vivo via low-scattering ultrasonic sensing. Insufficient sensitivity is a long-standing obstacle for imaging low-absorbing chromophores with less photobleaching or toxicity, reduced perturbation to delicate organs, and more choices of low-power lasers. Here, the photoacoustic probe design is collaboratively optimized and a spectral-spatial filter is implemented. A multi-spectral super-low-dose photoacoustic microscopy (SLD-PAM) is presented that improves the sensitivity by ≈33 times. SLD-PAM can visualize microvessels and quantify oxygen saturation in vivo with ≈1% of the maximum permissible exposure, dramatically reducing potential phototoxicity or perturbation to normal tissue function, especially in imaging of delicate tissues, such as the eye and the brain. Capitalizing on the high sensitivity, direct imaging of deoxyhemoglobin concentration is achieved without spectral unmixing, avoiding wavelength-dependent errors and computational noises. With reduced laser power, SLD-PAM can reduce photobleaching by ≈85%. It is also demonstrated that SLD-PAM achieves similar molecular imaging quality using 80% fewer contrast agents. Therefore, SLD-PAM enables the use of a broader range of low-absorbing nano-agents, small molecules, and genetically encoded biomarkers, as well as more types of low-power light sources in wide spectra. It is believed that SLD-PAM offers a powerful tool for anatomical, functional, and molecular imaging.
Collapse
Affiliation(s)
- Yachao Zhang
- Department of Biomedical EngineeringCity University of Hong KongHong KongSAR999077China
| | - Jiangbo Chen
- Department of Biomedical EngineeringCity University of Hong KongHong KongSAR999077China
| | - Jie Zhang
- Department of Chemistry and COSADAF (Centre of Super‐Diamond and Advanced Films)City University of Hong KongHong KongSAR999077China
| | - Jingyi Zhu
- Department of Biomedical EngineeringCity University of Hong KongHong KongSAR999077China
| | - Chao Liu
- Department of Biomedical EngineeringCity University of Hong KongHong KongSAR999077China
| | - Hongyan Sun
- Department of Chemistry and COSADAF (Centre of Super‐Diamond and Advanced Films)City University of Hong KongHong KongSAR999077China
| | - Lidai Wang
- Department of Biomedical EngineeringCity University of Hong KongHong KongSAR999077China
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina518057
| |
Collapse
|
15
|
Flynn CD, Chang D, Mahmud A, Yousefi H, Das J, Riordan KT, Sargent EH, Kelley SO. Biomolecular sensors for advanced physiological monitoring. NATURE REVIEWS BIOENGINEERING 2023; 1:1-16. [PMID: 37359771 PMCID: PMC10173248 DOI: 10.1038/s44222-023-00067-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 06/28/2023]
Abstract
Body-based biomolecular sensing systems, including wearable, implantable and consumable sensors allow comprehensive health-related monitoring. Glucose sensors have long dominated wearable bioanalysis applications owing to their robust continuous detection of glucose, which has not yet been achieved for other biomarkers. However, access to diverse biological fluids and the development of reagentless sensing approaches may enable the design of body-based sensing systems for various analytes. Importantly, enhancing the selectivity and sensitivity of biomolecular sensors is essential for biomarker detection in complex physiological conditions. In this Review, we discuss approaches for the signal amplification of biomolecular sensors, including techniques to overcome Debye and mass transport limitations, and selectivity improvement, such as the integration of artificial affinity recognition elements. We highlight reagentless sensing approaches that can enable sequential real-time measurements, for example, the implementation of thin-film transistors in wearable devices. In addition to sensor construction, careful consideration of physical, psychological and security concerns related to body-based sensor integration is required to ensure that the transition from the laboratory to the human body is as seamless as possible.
Collapse
Affiliation(s)
- Connor D. Flynn
- Department of Chemistry, Faculty of Arts & Science, University of Toronto, Toronto, ON Canada
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
| | - Dingran Chang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON Canada
| | - Alam Mahmud
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON Canada
| | - Hanie Yousefi
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA
| | - Jagotamoy Das
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
| | - Kimberly T. Riordan
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
| | - Edward H. Sargent
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON Canada
- Department of Electrical and Computer Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA
| | - Shana O. Kelley
- Department of Chemistry, Faculty of Arts & Science, University of Toronto, Toronto, ON Canada
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON Canada
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Evanston, IL USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL USA
- Chan Zuckerberg Biohub Chicago, Chicago, IL USA
| |
Collapse
|
16
|
Abstract
With the emergence of multidrug-resistant bacteria, infection-related death toll is on the rise. Overuse of antibiotics and their leakage into waterways have transformed the environment into a sink, resulting in bacterial resistance permeating through all tiers of the food cycle. As one of the primary sources of food, fish and fish products such as fish eggs must be studied for their ability to accumulate relevant antibiotics. While the accumulation of these pharmaceuticals has previously been studied, there remains a need to analyze these processes in real time. Electrochemical aptamer-based sensor technology allows for selective, real-time monitoring of small molecules. Herein, we report the first use of miniaturized electrochemical aptamer-based sensors for the analysis of the passive uptake of the aminoglycoside antibiotic, kanamycin, in single salmon eggs. We use pulled platinum microelectrodes and increase the surface area at the electrode tip through dendritic gold deposition. These electrodes showed a 100-fold increase in DNA immobilization on the electrode surface as compared to bare microelectrodes. Additionally, the sensors showed improved stability in complex biological media over an extended period of time when compared to the more widely used macrosensors (r = 1 mm). The sensor range was determined to extend from nanomolar to micromolar concentrations of kanamycin in fish egg lysate and when used in a single salmon egg the μ-aptasensors were able to monitor the passive uptake of kanamycin over time. The accumulation kinetics were simulated using COMSOL Multiphysics software. This research presents the first reported record of passive uptake of a small molecule in a single cell in real-time using electrochemistry.
Collapse
Affiliation(s)
- Vanshika Gupta
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
17
|
Oh C, Park B, Sundaresan V, Schaefer JL, Bohn PW. Closed Bipolar Electrode-Enabled Electrochromic Sensing of Multiple Metabolites in Whole Blood. ACS Sens 2023; 8:270-279. [PMID: 36547518 DOI: 10.1021/acssensors.2c02140] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report a closed bipolar electrode (CBE)-based sensing platform for the detection of diagnostic metabolites in undiluted whole human blood. The sensor is enabled by electrode chemistry based on: (1) a mixed layer of blood-compatible adsorption-resistant phosphorylcholine (PPC) and phenylbutyric acid (PBA), (2) ferrocene (Fc) redox mediators, and (3) immobilized redox-active enzymes. This scheme is designed to overcome nonspecific protein adsorption and amplify sensing currents in whole human fluids. The scheme also incorporates a diffusing mediator to increase electronic communication between the immobilized redox enzyme and the working electrode. The use of both bound and freely diffusing mediators is synergistic in producing the electrochemical response. The sensor is realized by linking the analyte cell, containing the specific electrode surface architecture, through a CBE to a reporter cell containing the electrochromic reporter, methyl viologen (MV). The colorless-to-purple color change accompanying the 1e- reduction of MV2+ is captured using a smartphone camera. Subsequent red-green-blue analysis is performed on the acquired images to determine cholesterol, glucose, and lactate concentrations in whole blood. The CBE blood metabolite sensor produces a linear color change at clinically relevant concentration ranges for all metabolites with good reproducibility (∼5% or better) and with limits of detection of 79 μM for cholesterol, 59 μM for glucose, and 86 μM for lactate. Finally, metabolite concentration measurements from the CBE blood metabolite sensor are compared with results from commercially available FDA-approved blood cholesterol, glucose, and lactate meters, with an average difference of ∼3.5% across all three metabolites in the ranges studied.
Collapse
Affiliation(s)
- Christiana Oh
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Bumjun Park
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Vignesh Sundaresan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Jennifer L Schaefer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Paul W Bohn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States
| |
Collapse
|
18
|
Pan J, Xu W, Li W, Chen S, Dai Y, Yu S, Zhou Q, Xia F. Electrochemical Aptamer-Based Sensors with Tunable Detection Range. Anal Chem 2023; 95:420-432. [PMID: 36625123 DOI: 10.1021/acs.analchem.2c04498] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jing Pan
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wenxia Xu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wanlu Li
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shuwen Chen
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yu Dai
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shanwu Yu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Qitao Zhou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
19
|
Thimotheo Batista JP, Santos Marzano LA, Menezes Silva RA, de Sá Rodrigues KE, Simões E Silva AC. Chemotherapy and Anticancer Drugs Adjustment in Obesity: A Narrative Review. Curr Med Chem 2023; 30:1003-1028. [PMID: 35946096 DOI: 10.2174/0929867329666220806140204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Obese individuals have higher rates of cancer incidence and cancer- related mortality. The worse chemotherapy outcomes observed in this subset of patients are multifactorial, including the altered physiology in obesity and its impact on pharmacokinetics, the possible increased risk of underdosing, and treatment-related toxicity. AIMS The present review aimed to discuss recent data on physiology, providing just an overall perspective and pharmacokinetic alterations in obesity concerning chemotherapy. We also reviewed the controversies of dosing adjustment strategies in adult and pediatric patients, mainly addressing the use of actual total body weight and ideal body weight. METHODS This narrative review tried to provide the best evidence to support antineoplastic drug dosing strategies in children, adolescents, and adults. RESULTS Cardiovascular, hepatic, and renal alterations of obesity can affect the distribution, metabolism, and clearance of drugs. Anticancer drugs have a narrow therapeutic range, and variations in dosing may result in either toxicity or underdosing. Obese patients are underrepresented in clinical trials that focus on determining recommendations for chemotherapy dosing and administration in clinical practice. After considering associated comorbidities, the guidelines recommend that chemotherapy should be dosed according to body surface area (BSA) calculated with actual total body weight, not an estimate or ideal weight, especially when the intention of therapy is the cure. CONCLUSION The actual total body weight dosing appears to be a better approach to dosing anticancer drugs in both adults and children when aiming for curative results, showing no difference in toxicity and no limitation in treatment outcomes compared to adjusted doses.
Collapse
Affiliation(s)
- João Pedro Thimotheo Batista
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), CEP 30.130-100, Avenida Professor Alfredo Balena, nº190/sl 281, Santa Efigênia, Belo Horizonte, MG, Brazil
| | - Lucas Alexandre Santos Marzano
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), CEP 30.130-100, Avenida Professor Alfredo Balena, nº190/sl 281, Santa Efigênia, Belo Horizonte, MG, Brazil
| | - Renata Aguiar Menezes Silva
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), CEP 30.130-100, Avenida Professor Alfredo Balena, nº190/sl 281, Santa Efigênia, Belo Horizonte, MG, Brazil
| | - Karla Emília de Sá Rodrigues
- Departmento de Pediatria, Faculdade de Medicina, Universidade Federal de Minas Gerais, CEP 30.130-100, Avenida Professor Alfredo Balena, nº190/sl 281, Santa Efgênia, Belo Horizonte, MG, Brazil
| | - Ana Cristina Simões E Silva
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), CEP 30.130-100, Avenida Professor Alfredo Balena, nº190/sl 281, Santa Efigênia, Belo Horizonte, MG, Brazil.,Departmento de Pediatria, Faculdade de Medicina, Universidade Federal de Minas Gerais, CEP 30.130-100, Avenida Professor Alfredo Balena, nº190/sl 281, Santa Efgênia, Belo Horizonte, MG, Brazil
| |
Collapse
|
20
|
Pre-equilibrium biosensors as an approach towards rapid and continuous molecular measurements. Nat Commun 2022; 13:7072. [PMID: 36400792 PMCID: PMC9674706 DOI: 10.1038/s41467-022-34778-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 11/07/2022] [Indexed: 11/20/2022] Open
Abstract
Almost all biosensors that use ligand-receptor binding operate under equilibrium conditions. However, at low ligand concentrations, the equilibration with the receptor (e.g., antibodies and aptamers) becomes slow and thus equilibrium-based biosensors are inherently limited in making measurements that are both rapid and sensitive. In this work, we provide a theoretical foundation for a method through which biosensors can quantitatively measure ligand concentration before reaching equilibrium. Rather than only measuring receptor binding at a single time-point, the pre-equilibrium approach leverages the receptor's kinetic response to instantaneously quantify the changing ligand concentration. Importantly, by analyzing the biosensor output in frequency domain, rather than in the time domain, we show the degree to which noise in the biosensor affects the accuracy of the pre-equilibrium approach. Through this analysis, we provide the conditions under which the signal-to-noise ratio of the biosensor can be maximized for a given target concentration range and rate of change. As a model, we apply our theoretical analysis to continuous insulin measurement and show that with a properly selected antibody, the pre-equilibrium approach could make the continuous tracking of physiological insulin fluctuations possible.
Collapse
|
21
|
Lin S, Cheng X, Zhu J, Wang B, Jelinek D, Zhao Y, Wu TY, Horrillo A, Tan J, Yeung J, Yan W, Forman S, Coller HA, Milla C, Emaminejad S. Wearable microneedle-based electrochemical aptamer biosensing for precision dosing of drugs with narrow therapeutic windows. SCIENCE ADVANCES 2022; 8:eabq4539. [PMID: 36149955 PMCID: PMC9506728 DOI: 10.1126/sciadv.abq4539] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/09/2022] [Indexed: 05/31/2023]
Abstract
Therapeutic drug monitoring is essential for dosing pharmaceuticals with narrow therapeutic windows. Nevertheless, standard methods are imprecise and involve invasive/resource-intensive procedures with long turnaround times. Overcoming these limitations, we present a microneedle-based electrochemical aptamer biosensing patch (μNEAB-patch) that minimally invasively probes the interstitial fluid (ISF) and renders correlated, continuous, and real-time measurements of the circulating drugs' pharmacokinetics. The μNEAB-patch is created following an introduced low-cost fabrication scheme, which transforms a shortened clinical-grade needle into a high-quality gold nanoparticle-based substrate for robust aptamer immobilization and efficient electrochemical signal retrieval. This enables the reliable in vivo detection of a wide library of ISF analytes-especially those with nonexistent natural recognition elements. Accordingly, we developed μNEABs targeting various drugs, including antibiotics with narrow therapeutic windows (tobramycin and vancomycin). Through in vivo animal studies, we demonstrated the strong correlation between the ISF/circulating drug levels and the device's potential clinical use for timely prediction of total drug exposure.
Collapse
Affiliation(s)
- Shuyu Lin
- Interconnected and Integrated Bioelectronics Lab (IBL), University of California, Los Angeles, Los Angeles, CA, USA
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xuanbing Cheng
- Interconnected and Integrated Bioelectronics Lab (IBL), University of California, Los Angeles, Los Angeles, CA, USA
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jialun Zhu
- Interconnected and Integrated Bioelectronics Lab (IBL), University of California, Los Angeles, Los Angeles, CA, USA
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bo Wang
- Interconnected and Integrated Bioelectronics Lab (IBL), University of California, Los Angeles, Los Angeles, CA, USA
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - David Jelinek
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
- Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yichao Zhao
- Interconnected and Integrated Bioelectronics Lab (IBL), University of California, Los Angeles, Los Angeles, CA, USA
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tsung-Yu Wu
- Interconnected and Integrated Bioelectronics Lab (IBL), University of California, Los Angeles, Los Angeles, CA, USA
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Abraham Horrillo
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jiawei Tan
- Interconnected and Integrated Bioelectronics Lab (IBL), University of California, Los Angeles, Los Angeles, CA, USA
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Justin Yeung
- Interconnected and Integrated Bioelectronics Lab (IBL), University of California, Los Angeles, Los Angeles, CA, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wenzhong Yan
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah Forman
- Interconnected and Integrated Bioelectronics Lab (IBL), University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hilary A. Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Carlos Milla
- The Stanford Cystic Fibrosis Center, Center for Excellence in Pulmonary Biology, Stanford School of Medicine, Stanford, CA, USA
| | - Sam Emaminejad
- Interconnected and Integrated Bioelectronics Lab (IBL), University of California, Los Angeles, Los Angeles, CA, USA
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
22
|
Smartphone assisted portable biochip for non-invasive simultaneous monitoring of glucose and insulin towards precise diagnosis of prediabetes/diabetes. Biosens Bioelectron 2022; 209:114251. [DOI: 10.1016/j.bios.2022.114251] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022]
|
23
|
Chan D, Chien JC, Axpe E, Blankemeier L, Baker SW, Swaminathan S, Piunova VA, Zubarev DY, Maikawa CL, Grosskopf AK, Mann JL, Soh HT, Appel EA. Combinatorial Polyacrylamide Hydrogels for Preventing Biofouling on Implantable Biosensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022. [PMID: 35390209 DOI: 10.1101/2020.05.25.115675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Biofouling on the surface of implanted medical devices and biosensors severely hinders device functionality and drastically shortens device lifetime. Poly(ethylene glycol) and zwitterionic polymers are currently considered "gold-standard" device coatings to reduce biofouling. To discover novel anti-biofouling materials, a combinatorial library of polyacrylamide-based copolymer hydrogels is created, and their ability is screened to prevent fouling from serum and platelet-rich plasma in a high-throughput parallel assay. It is found that certain nonintuitive copolymer compositions exhibit superior anti-biofouling properties over current gold-standard materials, and machine learning is used to identify key molecular features underpinning their performance. For validation, the surfaces of electrochemical biosensors are coated with hydrogels and their anti-biofouling performance in vitro and in vivo in rodent models is evaluated. The copolymer hydrogels preserve device function and enable continuous measurements of a small-molecule drug in vivo better than gold-standard coatings. The novel methodology described enables the discovery of anti-biofouling materials that can extend the lifetime of real-time in vivo sensing devices.
Collapse
Affiliation(s)
- Doreen Chan
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Jun-Chau Chien
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Eneko Axpe
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Louis Blankemeier
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Samuel W Baker
- Department of Comparative Medicine, Stanford University, Stanford, CA, 94305, USA
| | | | | | | | - Caitlin L Maikawa
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Abigail K Grosskopf
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Joseph L Mann
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - H Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA, 94304, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Eric A Appel
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA, 94304, USA
- Department of Pediatrics - Endocrinology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
24
|
Chan D, Chien JC, Axpe E, Blankemeier L, Baker SW, Swaminathan S, Piunova VA, Zubarev DY, Maikawa CL, Grosskopf AK, Mann JL, Soh HT, Appel EA. Combinatorial Polyacrylamide Hydrogels for Preventing Biofouling on Implantable Biosensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109764. [PMID: 35390209 PMCID: PMC9793805 DOI: 10.1002/adma.202109764] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/04/2022] [Indexed: 05/29/2023]
Abstract
Biofouling on the surface of implanted medical devices and biosensors severely hinders device functionality and drastically shortens device lifetime. Poly(ethylene glycol) and zwitterionic polymers are currently considered "gold-standard" device coatings to reduce biofouling. To discover novel anti-biofouling materials, a combinatorial library of polyacrylamide-based copolymer hydrogels is created, and their ability is screened to prevent fouling from serum and platelet-rich plasma in a high-throughput parallel assay. It is found that certain nonintuitive copolymer compositions exhibit superior anti-biofouling properties over current gold-standard materials, and machine learning is used to identify key molecular features underpinning their performance. For validation, the surfaces of electrochemical biosensors are coated with hydrogels and their anti-biofouling performance in vitro and in vivo in rodent models is evaluated. The copolymer hydrogels preserve device function and enable continuous measurements of a small-molecule drug in vivo better than gold-standard coatings. The novel methodology described enables the discovery of anti-biofouling materials that can extend the lifetime of real-time in vivo sensing devices.
Collapse
Affiliation(s)
- Doreen Chan
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Jun-Chau Chien
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Eneko Axpe
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Louis Blankemeier
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Samuel W Baker
- Department of Comparative Medicine, Stanford University, Stanford, CA, 94305, USA
| | | | | | | | - Caitlin L Maikawa
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Abigail K Grosskopf
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Joseph L Mann
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - H Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA, 94304, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Eric A Appel
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA, 94304, USA
- Department of Pediatrics - Endocrinology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
25
|
Li Z, Ding Y, Liu J, Wang J, Mo F, Wang Y, Chen-Mayfield TJ, Sondel PM, Hong S, Hu Q. Depletion of tumor associated macrophages enhances local and systemic platelet-mediated anti-PD-1 delivery for post-surgery tumor recurrence treatment. Nat Commun 2022; 13:1845. [PMID: 35387972 PMCID: PMC8987059 DOI: 10.1038/s41467-022-29388-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
Immunosuppressive cells residing in the tumor microenvironment, especially tumor associated macrophages (TAMs), hinder the infiltration and activation of T cells, limiting the anti-cancer outcomes of immune checkpoint blockade. Here, we report a biocompatible alginate-based hydrogel loaded with Pexidartinib (PLX)-encapsulated nanoparticles that gradually release PLX at the tumor site to block colony-stimulating factor 1 receptors (CSF1R) for depleting TAMs. The controlled TAM depletion creates a favorable milieu for facilitating local and systemic delivery of anti-programmed cell death protein 1 (aPD-1) antibody-conjugated platelets to inhibit post-surgery tumor recurrence. The tumor immunosuppressive microenvironment is also reprogrammed by TAM elimination, further promoting the infiltration of T cells into tumor tissues. Moreover, the inflammatory environment after surgery could trigger the activation of platelets to facilitate the release of aPD-1 accompanied with platelet-derived microparticles binding to PD-1 receptors for re-activating T cells. All these results collectively indicate that the immunotherapeutic efficacy against tumor recurrence of both local and systemic administration of aPD-1 antibody-conjugated platelets could be strengthened by local depletion of TAMs through the hydrogel reservoir. Increased density of tumor associated macrophages has been correlated with tumor recurrence following surgery. Here the authors design an alginate-based hydrogel encapsulating anti-PD-1-conjugated platelets and nanoparticles loaded with the macrophage-depleting CSF-1R inhibitor pexidartinib, showing inhibition of post-surgery tumor recurrence in preclinical models.
Collapse
Affiliation(s)
- Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yingyue Ding
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jun Liu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jianxin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Fanyi Mo
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Ting-Jing Chen-Mayfield
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Paul M Sondel
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA. .,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|