1
|
Colombo RP, Nascimento SQ, Crespilho FN. Conductance Channels in a Single-Entity Enzyme. J Phys Chem Lett 2024; 15:10795-10801. [PMID: 39432824 PMCID: PMC11533225 DOI: 10.1021/acs.jpclett.4c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/10/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
For a long time, the prevailing view in the scientific community was that proteins, being complex macromolecules composed of amino acid chains linked by peptide bonds, adopt folded structure with insulating or semiconducting properties, with high bandgaps. However, recent discoveries of unexpectedly high conductance levels, reaching values in the range of dozens of nanosiemens (nS) in proteins, have challenged this conventional understanding. In this study, we used scanning tunneling microscopy (STM) to explore the single-entity conductance properties of enzymatic channels, focusing on bilirubin oxidase (BOD) as a model metalloprotein. By immobilizing BOD on a conductive carbon surface, we discern its preferred orientation, facilitating the formation of electronic and ionic channels. These channels show efficient electron transport (ETp), with apparent conductance up to the 15 nS range. Notably, these conductance pathways are localized, minimizing electron transport barriers due to solvents and ions, underscoring BOD's redox versatility. Furthermore, electron transfer (ET) within the BOD occurs via preferential pathways. The alignment of the conductance channels with hydrophilicity maps, molecular vacancies, and regions accessible to electrolytes explains the observed conductance values. Additionally, BOD exhibits redox activity, with its active center playing a critical role in the ETp process. These findings significantly advance our understanding of the intricate mechanisms that govern ETp processes in proteins, offering new insights into the conductance of metalloproteins.
Collapse
Affiliation(s)
| | - Steffane Q. Nascimento
- 1 São Carlos Institute
of Chemistry, University of São Paulo
(USP), São Carlos, SP 13566-590, Brazil
| | - Frank Nelson Crespilho
- 1 São Carlos Institute
of Chemistry, University of São Paulo
(USP), São Carlos, SP 13566-590, Brazil
| |
Collapse
|
2
|
Yang Y, Li Y, Tang L, Li J. Single-Molecule Bioelectronic Sensors with AI-Aided Data Analysis: Convergence and Challenges. PRECISION CHEMISTRY 2024; 2:518-538. [PMID: 39483271 PMCID: PMC11523000 DOI: 10.1021/prechem.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 11/03/2024]
Abstract
Single-molecule bioelectronic sensing, a groundbreaking domain in biological research, has revolutionized our understanding of molecules by revealing deep insights into fundamental biological processes. The advent of emergent technologies, such as nanogapped electrodes and nanopores, has greatly enhanced this field, providing exceptional sensitivity, resolution, and integration capabilities. However, challenges persist, such as complex data sets with high noise levels and stochastic molecular dynamics. Artificial intelligence (AI) has stepped in to address these issues with its powerful data processing capabilities. AI algorithms effectively extract meaningful features, detect subtle changes, improve signal-to-noise ratios, and uncover hidden patterns in massive data. This review explores the synergy between AI and single-molecule bioelectronic sensing, focusing on how AI enhances signal processing and data analysis to boost accuracy and reliability. We also discuss current limitations and future directions for integrating AI, highlighting its potential to advance biological research and technological innovation.
Collapse
Affiliation(s)
- Yuxin Yang
- State
Key Laboratory of Extreme Photonics and Instrumentation, College of
Optical Science and Engineering, Zhejiang
University, Hangzhou 310027, China
- Nanhu
Brain-Computer Interface Institute, Hangzhou, Zhejiang 311100, China
| | - Yueqi Li
- Center
for BioAnalytical Chemistry, Hefei National Laboratory of Physical
Science at Microscale, University of Science
and Technology of China, Hefei 230026, China
| | - Longhua Tang
- State
Key Laboratory of Extreme Photonics and Instrumentation, College of
Optical Science and Engineering, Zhejiang
University, Hangzhou 310027, China
- Nanhu
Brain-Computer Interface Institute, Hangzhou, Zhejiang 311100, China
| | - Jinghong Li
- Department
of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of
Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- Beijing
Institute of Life Science and Technology, Beijing 102206, China
- New
Cornerstone Science Institute, Beijing 102206, China
- Center
for BioAnalytical Chemistry, Hefei National Laboratory of Physical
Science at Microscale, University of Science
and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Wei J, Hong H, Wang X, Lei X, Ye M, Liu Z. Nanopore-based sensors for DNA sequencing: a review. NANOSCALE 2024; 16:18732-18766. [PMID: 39295590 DOI: 10.1039/d4nr01325e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Nanopore sensors, owing to their distinctive structural properties, can be used to detect biomolecular translocation events. These sensors operate by monitoring variations in electric current amplitude and duration, thereby enabling the calibration and distinction of various biomolecules. As a result, nanopores emerge as a potentially powerful tool in the field of deoxyribonucleic acid (DNA) sequencing. However, the interplay between testing bandwidth and noise often leads to the loss of part of the critical translocation signals, presenting a substantial challenge for the precise measurement of biomolecules. In this context, innovative detection mechanisms have been developed, including optical detection, tunneling current detection, and nanopore field-effect transistor (FET) detection. These novel detection methods are based on but beyond traditional nanopore techniques and each of them has unique advantages. Notably, nanopore FET sensors stand out for their high signal-to-noise ratio (SNR) and high bandwidth measurement capabilities, overcoming the limitations typically associated with traditional solid-state nanopore (SSN) technologies and thus paving the way for new avenues to biomolecule detection. This review begins by elucidating the fundamental detection principles, development history, applications, and fabrication methods for traditional SSNs. It then introduces three novel detection mechanisms, with a particular emphasis on nanopore FET detection. Finally, a comprehensive analysis of the advantages and challenges associated with both SSNs and nanopore FET sensors is performed, and then insights into the future development trajectories for nanopore FET sensors in DNA sequencing are provided. This review has two main purposes: firstly, to provide researchers with a preliminary understanding of advancements in the nanopore field, and secondly, to offer a comprehensive analysis of the fabrication techniques, transverse current detection principles, challenges, and future development trends in the field of nanopore FET sensors. This comprehensive analysis aims to help give researchers in-depth insights into cutting-edge advancements in the field of nanopore FET sensors.
Collapse
Affiliation(s)
- Jiangtao Wei
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China.
| | - Hao Hong
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China.
- Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Xing Wang
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China.
| | - Xin Lei
- School of Chemistry, Beihang University, Beijing, 100084, China
| | - Minjie Ye
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Zewen Liu
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Raja SN, Jain S, Kipen J, Jaldén J, Stemme G, Herland A, Niklaus F. Electromigrated Gold Nanogap Tunnel Junction Arrays: Fabrication and Electrical Behavior in Liquid and Gaseous Media. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37131-37146. [PMID: 38954436 PMCID: PMC11261569 DOI: 10.1021/acsami.4c03282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Tunnel junctions have been suggested as high-throughput electronic single molecule sensors in liquids with several seminal experiments conducted using break junctions with reconfigurable gaps. For practical single molecule sensing applications, arrays of on-chip integrated fixed-gap tunnel junctions that can be built into compact systems are preferable. Fabricating nanogaps by electromigration is one of the most promising approaches to realize on-chip integrated tunnel junction sensors. However, the electrical behavior of fixed-gap tunnel junctions immersed in liquid media has not been systematically studied to date, and the formation of electromigrated nanogap tunnel junctions in liquid media has not yet been demonstrated. In this work, we perform a comparative study of the formation and electrical behavior of arrays of gold nanogap tunnel junctions made by feedback-controlled electromigration immersed in various liquid and gaseous media (deionized water, mesitylene, ethanol, nitrogen, and air). We demonstrate that tunnel junctions can be obtained from microfabricated gold nanoconstrictions inside liquid media. Electromigration of junctions in air produces the highest yield (61-67%), electromigration in deionized water and mesitylene results in a lower yield than in air (44-48%), whereas electromigration in ethanol fails to produce viable tunnel junctions due to interfering electrochemical processes. We map out the stability of the conductance characteristics of the resulting tunnel junctions and identify medium-specific operational conditions that have an impact on the yield of forming stable junctions. Furthermore, we highlight the unique challenges associated with working with arrays of large numbers of tunnel junctions in batches. Our findings will inform future efforts to build single molecule sensors using on-chip integrated tunnel junctions.
Collapse
Affiliation(s)
- Shyamprasad N. Raja
- Division
of Micro and Nanosystems (MST), School of Electrical Engineering and
Computer Science (EECS), KTH Royal Institute
of Technology, SE-10044 Stockholm, Sweden
| | - Saumey Jain
- Division
of Micro and Nanosystems (MST), School of Electrical Engineering and
Computer Science (EECS), KTH Royal Institute
of Technology, SE-10044 Stockholm, Sweden
- Division
of Nanobiotechnology, SciLifeLab, Department of Protein Science, School
of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Javier Kipen
- Division
of Information Science and Engineering (ISE), School of Electrical
Engineering and Computer Science (EECS), KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Joakim Jaldén
- Division
of Information Science and Engineering (ISE), School of Electrical
Engineering and Computer Science (EECS), KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Göran Stemme
- Division
of Micro and Nanosystems (MST), School of Electrical Engineering and
Computer Science (EECS), KTH Royal Institute
of Technology, SE-10044 Stockholm, Sweden
| | - Anna Herland
- Division
of Nanobiotechnology, SciLifeLab, Department of Protein Science, School
of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
- AIMES-Center
for the Advancement of Integrated Medical and Engineering Sciences,
Department of Neuroscience, Karolinska Institute, SE-17177 Solna, Sweden
| | - Frank Niklaus
- Division
of Micro and Nanosystems (MST), School of Electrical Engineering and
Computer Science (EECS), KTH Royal Institute
of Technology, SE-10044 Stockholm, Sweden
| |
Collapse
|
5
|
Guo J, Chen PK, Chang S. Molecular-Scale Electronics: From Individual Molecule Detection to the Application of Recognition Sensing. Anal Chem 2024; 96:9303-9316. [PMID: 38809941 DOI: 10.1021/acs.analchem.3c04656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
|
6
|
Liu B, Demir B, Gultakti CA, Marrs J, Gong Y, Li R, Oren EE, Hihath J. Self-Aligning Nanojunctions for Integrated Single-Molecule Circuits. ACS NANO 2024; 18:4972-4980. [PMID: 38214957 DOI: 10.1021/acsnano.3c10844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Robust, high-yield integration of nanoscale components such as graphene nanoribbons, nanoparticles, or single-molecules with conventional electronic circuits has proven to be challenging. This difficulty arises because the contacts to these nanoscale devices must be precisely fabricated with angstrom-level resolution to make reliable connections, and at manufacturing scales this cannot be achieved with even the highest-resolution lithographic tools. Here we introduce an approach that circumvents this issue by precisely creating nanometer-scale gaps between metallic carbon electrodes by using a self-aligning, solution-phase process, which allows facile integration with conventional electronic systems with yields approaching 50%. The electrode separation is controlled by covalently binding metallic single-walled carbon nanotube (mCNT) electrodes to individual DNA duplexes to create mCNT-DNA-mCNT nanojunctions, where the gap is precisely matched to the DNA length. These junctions are then integrated with top-down lithographic techniques to create single-molecule circuits that have electronic properties dominated by the DNA in the junction, have reproducible conductance values with low dispersion, and are stable and robust enough to be utilized as active, high-specificity electronic biosensors for dynamic single-molecule detection of specific oligonucleotides, such as those related to the SARS-CoV-2 genome. This scalable approach for high-yield integration of nanometer-scale devices will enable opportunities for manufacturing of hybrid electronic systems for a wide range of applications.
Collapse
Affiliation(s)
- Bo Liu
- Biodesign Center for Bioelectronics and Biosensors at Arizona State University, Tempe, Arizona 85287, United States
| | - Busra Demir
- Bionanodesign Laboratory, Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara 06560, Turkey
- Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara 06560, Tureky
| | - Caglanaz Akin Gultakti
- Bionanodesign Laboratory, Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara 06560, Turkey
- Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara 06560, Tureky
| | - Jonathan Marrs
- Department of Electrical and Computer Engineering, University of California, Davis, Davis, California 95616, United States
| | - Yichen Gong
- Biodesign Center for Bioelectronics and Biosensors at Arizona State University, Tempe, Arizona 85287, United States
| | - Ruihao Li
- Biodesign Center for Bioelectronics and Biosensors at Arizona State University, Tempe, Arizona 85287, United States
| | - Ersin Emre Oren
- Bionanodesign Laboratory, Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara 06560, Turkey
- Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara 06560, Tureky
| | - Joshua Hihath
- Biodesign Center for Bioelectronics and Biosensors at Arizona State University, Tempe, Arizona 85287, United States
- Department of Electrical and Computer Engineering, University of California, Davis, Davis, California 95616, United States
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
7
|
Wang HY, Wang B, Sun C, Zhang TY, Xu YT, Zhao WW, Chen HY, Xu JJ. θ-Nanopore Ratiometry. ACS NANO 2024; 18:4551-4558. [PMID: 38264998 DOI: 10.1021/acsnano.3c12238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Developing nanoscale ratiometric techniques capable of biochemical response should prove of significance for precise applications with stringent spatial and biological restrictions. Here we present and devise the concept of θ-nanopore ratiometry, which uses ratiometric signals that could well address the serious concerns about device deviation in fabrication and nonspecific adsorption in the detection. As exemplified by a 200 nm θ-nanopore toward miRNA detection, the ±20 nm aperture drift could be mitigated and the issue of nonspecific adsorption could be minimized in the complex cytosolic environment. Practical application of this θ-nanopore ratiometry realizes the measurements of cytosolic miRNA-10b. This work has not only established a nanoscopic ratiometric technique but also enriched the extant armory of nanotools for single-cell studies and beyond.
Collapse
Affiliation(s)
- Hai-Yan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bing Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chao Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tian-Yang Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Koo Y, Moon T, Kang M, Joo H, Lee C, Lee H, Kravtsov V, Park KD. Dynamical control of nanoscale light-matter interactions in low-dimensional quantum materials. LIGHT, SCIENCE & APPLICATIONS 2024; 13:30. [PMID: 38272869 PMCID: PMC10810844 DOI: 10.1038/s41377-024-01380-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/26/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Tip-enhanced nano-spectroscopy and -imaging have significantly advanced our understanding of low-dimensional quantum materials and their interactions with light, providing a rich insight into the underlying physics at their natural length scale. Recently, various functionalities of the plasmonic tip expand the capabilities of the nanoscopy, enabling dynamic manipulation of light-matter interactions at the nanoscale. In this review, we focus on a new paradigm of the nanoscopy, shifting from the conventional role of imaging and spectroscopy to the dynamical control approach of the tip-induced light-matter interactions. We present three different approaches of tip-induced control of light-matter interactions, such as cavity-gap control, pressure control, and near-field polarization control. Specifically, we discuss the nanoscale modifications of radiative emissions for various emitters from weak to strong coupling regime, achieved by the precise engineering of the cavity-gap. Furthermore, we introduce recent works on light-matter interactions controlled by tip-pressure and near-field polarization, especially tunability of the bandgap, crystal structure, photoluminescence quantum yield, exciton density, and energy transfer in a wide range of quantum materials. We envision that this comprehensive review not only contributes to a deeper understanding of the physics of nanoscale light-matter interactions but also offers a valuable resource to nanophotonics, plasmonics, and materials science for future technological advancements.
Collapse
Affiliation(s)
- Yeonjeong Koo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Taeyoung Moon
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Mingu Kang
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Huitae Joo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Changjoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyeongwoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Vasily Kravtsov
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia
| | - Kyoung-Duck Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
9
|
López-Ortiz M, Zamora RA, Giannotti MI, Gorostiza P. The Protein Matrix of Plastocyanin Supports Long-Distance Charge Transport with Photosystem I and the Copper Ion Regulates Its Spatial Span and Conductance. ACS NANO 2023; 17:20334-20344. [PMID: 37797170 DOI: 10.1021/acsnano.3c06390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Charge exchange is the fundamental process that sustains cellular respiration and photosynthesis by shuttling electrons in a cascade of electron transfer (ET) steps between redox cofactors. While intraprotein charge exchange is well characterized in protein complexes bearing multiple redox sites, interprotein processes are less understood due to the lack of suitable experimental approaches and the dynamic nature of the interactions. Proteins constrained between electrodes are known to support electron transport (ETp) through the protein matrix even without redox cofactors, as the charges housed by the redox sites in ET are furnished by the electrodes. However, it is unknown whether protein ETp mechanisms apply to the interprotein medium present under physiological conditions. We study interprotein charge exchange between plant photosystem I (PSI) and its soluble redox partner plastocyanin (Pc) and address the role of the Pc copper center. Using electrochemical scanning tunneling spectroscopy (ECSTS) current-distance and blinking measurements, we quantify the spatial span of charge exchange between individual Pc/PSI pairs and ETp through transient Pc/PSI complexes. Pc devoid of the redox center (Pcapo) can exchange charge with PSI at longer distances than with the copper ion (Pcholo). Conductance bursts associated with Pcapo/PSI complex formation are higher than in Pcholo/PSI. Thus, copper ions are not required for long-distance Pc/PSI ETp but regulate its spatial span and conductance. Our results suggest that the redox center that carries the charge in Pc is not necessary to exchange it in interprotein ET through the aqueous solution and question the canonical view of tight complex binding between redox protein partners.
Collapse
Affiliation(s)
- Manuel López-Ortiz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
| | - Ricardo A Zamora
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
- Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| |
Collapse
|
10
|
Afsari S, Mukherjee S, Halloran N, Ghirlanda G, Ryan E, Wang X, Lindsay S. Heavy Water Reduces the Electronic Conductance of Protein Wires via Deuteron Interactions with Aromatic Residues. NANO LETTERS 2023; 23:8907-8913. [PMID: 37772726 PMCID: PMC11177565 DOI: 10.1021/acs.nanolett.3c02263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Proteins are versatile, self-assembling nanoelectronic components, but their hopping conductivity is expected to be influenced by solvent fluctuations. The role of the solvent was investigated by measuring the single molecule conductance of several proteins in both H2O and D2O. The conductance of a homologous series of protein wires decreases more rapidly with length in D2O, indicating a 6-fold decrease in carrier diffusion constant relative to the same protein in H2O. The effect was found to depend on the specific aromatic amino acid composition. A tryptophan zipper protein showed a decrease in conductance similar to that of the protein wires, whereas a phenylalanine zipper protein was insensitive to solvent changes. Tryptophan contains an indole amine, whereas the phenylalanine aromatic ring has no exchangeable protons, so the effect of heavy water on conductance is a consequence of specific D- or H-interactions with the aromatic residues.
Collapse
Affiliation(s)
- Sepideh Afsari
- Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Sohini Mukherjee
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287
| | - Nicholas Halloran
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287
| | | | - Eathen Ryan
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287
| | - Xu Wang
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287
| | - Stuart Lindsay
- Biodesign Institute, Arizona State University, Tempe, AZ 85287
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287
- Department of Physics, Arizona State University, Tempe, AZ 85287
| |
Collapse
|
11
|
Kong N, He J, Yang W. Formation of Molecular Junctions by Single-Entity Collision Electrochemistry. J Phys Chem Lett 2023; 14:8513-8524. [PMID: 37722010 DOI: 10.1021/acs.jpclett.3c01955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Controlling and understanding the chemistry of molecular junctions is one of the major themes in various fields ranging from chemistry and nanotechnology to biotechnology and biology. Stochastic single-entity collision electrochemistry (SECE) provides powerful tools to study a single entity, such as single cells, single particles, and even single molecules, in a nanoconfined space. Molecular junctions formed by SECE collision show various potential applications in monitoring molecular dynamics with high spatial resolution and high temporal resolution and in feasible combination with hybrid techniques. This Perspective highlights the new breakthroughs, seminal studies, and trends in the area that have been most recently reported. In addition, future challenges for the study of molecular junction dynamics with SECE are discussed.
Collapse
Affiliation(s)
- Na Kong
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, Victoria 3216, Australia
| | - Jin He
- Physics Department, Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
12
|
Liu YL, Yu SY, An R, Miao Y, Jiang D, Ye D, Xu JJ, Zhao WW. A Fast and Reversible Responsive Bionic Transmembrane Nanochannel for Dynamic Single-Cell Quantification of Glutathione. ACS NANO 2023; 17:17468-17475. [PMID: 37602689 DOI: 10.1021/acsnano.3c05825] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Biological channels can rapidly and continuously modulate ion transport behaviors in response to external stimuli, which play essential roles in manipulating physiological and pathological processes in cells. Here, to mimic the biological channels, a bionic nanochannel is developed by synergizing a cationic silicon-substituted rhodamine (SiRh) with a glass nanopipette for transmembrane single-cell quantification. Taking the fast and reversible nucleophilic addition reaction between glutathione (GSH) and SiRh, the bionic nanochannel shows a fast and reversible response to GSH, with its inner-surface charges changing between positive and negative charges, leading to a distinct and reversible switch in ionic current rectification (ICR). With the bionic nanochannel, spatiotemporal-resolved operation is performed to quantify endogenous GSH in a single cell, allowing for monitoring of intracellular GSH fluctuation in tumor cells upon photodynamic therapy and ferroptosis. Our results demonstrate that it is a feasible tool for in situ quantification of the endogenous GSH in single cells, which may be adapted to addressing other endogenous biomolecules in single cells by usage of other stimuli-responsive probes.
Collapse
Affiliation(s)
- Yi-Li Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Si-Yuan Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ruibing An
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yinxing Miao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Jiang T, Zeng BF, Zhang B, Tang L. Single-molecular protein-based bioelectronics via electronic transport: fundamentals, devices and applications. Chem Soc Rev 2023; 52:5968-6002. [PMID: 37498342 DOI: 10.1039/d2cs00519k] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Biomolecular electronics is a rapidly growing multidisciplinary field that combines biology, nanoscience, and engineering to bridge the two important fields of life sciences and molecular electronics. Proteins are remarkable for their ability to recognize molecules and transport electrons, making the integration of proteins into electronic devices a long sought-after goal and leading to the emergence of the field of protein-based bioelectronics, also known as proteotronics. This field seeks to design and create new biomolecular electronic platforms that allow for the understanding and manipulation of protein-mediated electronic charge transport and related functional applications. In recent decades, there have been numerous reports on protein-based bioelectronics using a variety of nano-gapped electrical devices and techniques at the single molecular level, which are not achievable with conventional ensemble approaches. This review focuses on recent advances in physical electron transport mechanisms, device fabrication methodologies, and various applications in protein-based bioelectronics. We discuss the most recent progress of the single or few protein-bridged electrical junction fabrication strategies, summarise the work on fundamental and functional applications of protein bioelectronics that enable high and dynamic electron transport, and highlight future perspectives and challenges that still need to be addressed. We believe that this specific review will stimulate the interdisciplinary research of topics related to protein-related bioelectronics, and open up new possibilities for single-molecule biophysics and biomedicine.
Collapse
Affiliation(s)
- Tao Jiang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Biao-Feng Zeng
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Bintian Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Longhua Tang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Quantum Sensing, Interdisciplinary Centre for Quantum Information, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
14
|
Jiang T, Yi L, Liu X, Ivanov AP, Edel JB, Tang L. Fabrication of electron tunneling probes for measuring single-protein conductance. Nat Protoc 2023; 18:2579-2599. [PMID: 37420088 DOI: 10.1038/s41596-023-00846-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/21/2023] [Indexed: 07/09/2023]
Abstract
Studying the electrical properties of individual proteins is a prominent research area in the field of bioelectronics. Electron tunnelling or quantum mechanical tunnelling (QMT) probes can act as powerful tools for investigating the electrical properties of proteins. However, current fabrication methods for these probes often have limited reproducibility, unreliable contact or inadequate binding of proteins onto the electrodes, so better solutions are required. Here, we detail a generalizable and straightforward set of instructions for fabricating simple, nanopipette-based, tunnelling probes, suitable for measuring conductance in single proteins. Our QMT probe is based on a high-aspect-ratio dual-channel nanopipette that integrates a pair of gold tunneling electrodes with a gap of less than 5 nm, fabricated via the pyrolytic deposition of carbon followed by the electrochemical deposition of gold. The gold tunneling electrodes can be functionalized using an extensive library of available surface modifications to achieve single-protein-electrode contact. We use a biotinylated thiol modification, in which a biotin-streptavidin-biotin bridge is used to form the single-protein junction. The resulting protein-coupled QMT probes enable the stable electrical measurement of the same single protein in solution for up to several hours. We also describe the analysis method used to interpret time-dependent single-protein conductance measurements, which can provide essential information for understanding electron transport and exploring protein dynamics. The total time required to complete the protocol is ~33 h and it can be carried out by users trained in less than 24 h.
Collapse
Affiliation(s)
- Tao Jiang
- State Key Laboratory of Modern Optical Instrumentation, Institute of Quantum Sensing, Interdisciplinary Centre for Quantum Information, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Long Yi
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, London, UK
| | - Xu Liu
- State Key Laboratory of Modern Optical Instrumentation, Institute of Quantum Sensing, Interdisciplinary Centre for Quantum Information, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Aleksandar P Ivanov
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, London, UK
| | - Joshua B Edel
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, London, UK
| | - Longhua Tang
- State Key Laboratory of Modern Optical Instrumentation, Institute of Quantum Sensing, Interdisciplinary Centre for Quantum Information, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Wang M, Zhang J, Adijiang A, Zhao X, Tan M, Xu X, Zhang S, Zhang W, Zhang X, Wang H, Xiang D. Plasmon-Assisted Trapping of Single Molecules in Nanogap. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3230. [PMID: 37110065 PMCID: PMC10144347 DOI: 10.3390/ma16083230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
The manipulation of single molecules has attracted extensive attention because of their promising applications in chemical, biological, medical, and materials sciences. Optical trapping of single molecules at room temperature, a critical approach to manipulating the single molecule, still faces great challenges due to the Brownian motions of molecules, weak optical gradient forces of laser, and limited characterization approaches. Here, we put forward localized surface plasmon (LSP)-assisted trapping of single molecules by utilizing scanning tunneling microscope break junction (STM-BJ) techniques, which could provide adjustable plasmonic nanogap and characterize the formation of molecular junction due to plasmonic trapping. We find that the plasmon-assisted trapping of single molecules in the nanogap, revealed by the conductance measurement, strongly depends on the molecular length and the experimental environments, i.e., plasmon could obviously promote the trapping of longer alkane-based molecules but is almost incapable of acting on shorter molecules in solutions. In contrast, the plasmon-assisted trapping of molecules can be ignored when the molecules are self-assembled (SAM) on a substrate independent of the molecular length.
Collapse
Affiliation(s)
- Maoning Wang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| | - Jieyi Zhang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Adila Adijiang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Xueyan Zhao
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Min Tan
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Xiaona Xu
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Surong Zhang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Wei Zhang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Xinyue Zhang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Haoyu Wang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Dong Xiang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| |
Collapse
|
16
|
Bai X, Li P, Peng W, Chen N, Lin JL, Li Y. Ionogel-Electrode for the Study of Protein Tunnel Junctions under Physiologically Relevant Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300663. [PMID: 36965118 DOI: 10.1002/adma.202300663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/08/2023] [Indexed: 05/15/2023]
Abstract
The study of charge transport through proteins is essential for understanding complicated electrochemical processes in biological activities while the reasons for the coexistence of tunneling and hopping phenomena in protein junctions still remain unclear. In this work, a flexible and conductive ionogel electrode is synthesized and is used as a top contact to form highly reproducible protein junctions. The junctions of proteins, including human serum albumin, cytochrome C and hemoglobin, show temperature-independent electron tunneling characteristics when the junctions are in solid states while with a different mechanism of temperature-dependent electron hopping when junctions are hydrated under physiologically relevant conditions. It is demonstrated that the solvent reorganization energy plays an important role in the electron-hopping process and experimentally shown that it requires ≈100 meV for electron hopping through one heme group inside a hydrated protein molecule connected between two electrodes.
Collapse
Affiliation(s)
- Xiyue Bai
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Pengfei Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Wuxian Peng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Ningyue Chen
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Jin-Liang Lin
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yuan Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
17
|
Wang X, Thomas TM, Ren R, Zhou Y, Zhang P, Li J, Cai S, Liu K, Ivanov AP, Herrmann A, Edel JB. Nanopore Detection Using Supercharged Polypeptide Molecular Carriers. J Am Chem Soc 2023; 145:6371-6382. [PMID: 36897933 PMCID: PMC10037339 DOI: 10.1021/jacs.2c13465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The analysis at the single-molecule level of proteins and their interactions can provide critical information for understanding biological processes and diseases, particularly for proteins present in biological samples with low copy numbers. Nanopore sensing is an analytical technique that allows label-free detection of single proteins in solution and is ideally suited to applications, such as studying protein-protein interactions, biomarker screening, drug discovery, and even protein sequencing. However, given the current spatiotemporal limitations in protein nanopore sensing, challenges remain in controlling protein translocation through a nanopore and relating protein structures and functions with nanopore readouts. Here, we demonstrate that supercharged unstructured polypeptides (SUPs) can be genetically fused with proteins of interest and used as molecular carriers to facilitate nanopore detection of proteins. We show that cationic SUPs can substantially slow down the translocation of target proteins due to their electrostatic interactions with the nanopore surface. This approach enables the differentiation of individual proteins with different sizes and shapes via characteristic subpeaks in the nanopore current, thus facilitating a viable route to use polypeptide molecular carriers to control molecular transport and as a potential system to study protein-protein interactions at the single-molecule level.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, London W12 0BZ, U.K
| | - Tina-Marie Thomas
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Ren Ren
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, London W12 0BZ, U.K
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, U.K
| | - Yu Zhou
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Peng Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shenglin Cai
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, London W12 0BZ, U.K
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Aleksandar P Ivanov
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, London W12 0BZ, U.K
| | - Andreas Herrmann
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Joshua B Edel
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, London W12 0BZ, U.K
| |
Collapse
|
18
|
Fyta M. Functionalized electrodes embedded in nanopores: read-out enhancement? Chem Asian J 2023; 18:e202200916. [PMID: 36372991 PMCID: PMC10107472 DOI: 10.1002/asia.202200916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
Abstract
In this review, functionalized nanogaps embedded in nanopores are discussed in view of their high biosensitivity in detecting biomolecules, their length, type, and sequence. Specific focus is given on nanoelectrodes functionalized with tiny nanometer-sized diamond-like particles offering vast functionalization possibilities for gold junction electrodes. This choice of the functionalization, in turn, offers nucleotide-specific binding possibilities improving the detection signals arising from such functionalized electrodes potentially embedded in a nanopore. The review sheds light onto the use and enhancement of the tunnelling recognition in functionalized nanogaps towards sensing DNA nucleotides and mutation detection, providing important input for a practical realization.
Collapse
Affiliation(s)
- Maria Fyta
- Computational Biotechnology, RWTH-Aachen University, Worringerweg 3, 52072, Aachen, Germany
| |
Collapse
|