1
|
Zhang R, Demiral SB, Tomasi D, Yan W, Manza P, Wang GJ, Volkow ND. Sleep Deprivation Effects on Brain State Dynamics Are Associated With Dopamine D 2 Receptor Availability Via Network Control Theory. Biol Psychiatry 2025; 97:89-96. [PMID: 39127232 DOI: 10.1016/j.biopsych.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Sleep deprivation (SD) negatively affects brain function. Most brain imaging studies have investigated the effects of SD on static brain function. SD effects on functional brain dynamics and their relationship with molecular changes remain relatively unexplored. METHODS We used functional magnetic resonance imaging to examine resting-brain state dynamics after one night of SD compared with rested wakefulness (N = 41) and assessed the association of brain state dynamics with striatal brain dopamine D2 receptor availability measured by positron emission tomography [11C]raclopride using network control theory. RESULTS SD reduced dwell time and persistence probabilities, with the strongest effects in two brain states, one characterized by high default mode network and low dorsal attention network activity and the other by high frontoparietal network and low somatomotor network activity. Using network control theory, we showed that after SD, there was an overall increase in the control energy required for brain state transitions, with effects varying for different brain state transitions. Control energy requirement was negatively associated with transition probabilities under SD and restful wakefulness and accounted for SD-induced changes in transition probabilities. Alteration in the energy landscape was associated with SD-induced changes in striatal D2 receptor distribution. CONCLUSIONS These findings demonstrate altered occurrence of internally and externally oriented brain states following acute SD and suggest an association with energy requirements for brain state transitions modulated by striatal D2 receptors.
Collapse
Affiliation(s)
- Rui Zhang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland.
| | - Sukru Baris Demiral
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Weizheng Yan
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
2
|
Parkes L, Kim JZ, Stiso J, Brynildsen JK, Cieslak M, Covitz S, Gur RE, Gur RC, Pasqualetti F, Shinohara RT, Zhou D, Satterthwaite TD, Bassett DS. A network control theory pipeline for studying the dynamics of the structural connectome. Nat Protoc 2024; 19:3721-3749. [PMID: 39075309 DOI: 10.1038/s41596-024-01023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/16/2024] [Indexed: 07/31/2024]
Abstract
Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other structure-function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that may alter the dynamics of a system in a desired way. An interesting development for NCT in the neuroscience field is its application to study behavior and mental health symptoms. To date, NCT has been validated to study different aspects of the human structural connectome. NCT outputs can be monitored throughout developmental stages to study the effects of connectome topology on neural dynamics and, separately, to test the coherence of empirical datasets with brain function and stimulation. Here, we provide a comprehensive pipeline for applying NCT to structural connectomes by following two procedures. The main procedure focuses on computing the control energy associated with the transitions between specific neural activity states. The second procedure focuses on computing average controllability, which indexes nodes' general capacity to control the dynamics of the system. We provide recommendations for comparing NCT outputs against null network models, and we further support this approach with a Python-based software package called 'network control theory for python'. The procedures in this protocol are appropriate for users with a background in network neuroscience and experience in dynamical systems theory.
Collapse
Affiliation(s)
- Linden Parkes
- Department of Psychiatry, Rutgers University, Piscataway, NJ, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jason Z Kim
- Department of Physics, Cornell University, Ithaca, NY, USA
| | - Jennifer Stiso
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia K Brynildsen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Cieslak
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney Covitz
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Raquel E Gur
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben C Gur
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fabio Pasqualetti
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, Philadelphia, PA, USA
- Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dale Zhou
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D Satterthwaite
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
3
|
Broeders TAA, van Dam M, Pontillo G, Rauh V, Douw L, van der Werf YD, Killestein J, Barkhof F, Vinkers CH, Schoonheim MM. Energy Associated With Dynamic Network Changes in Patients With Multiple Sclerosis and Cognitive Impairment. Neurology 2024; 103:e209952. [PMID: 39393029 PMCID: PMC11469683 DOI: 10.1212/wnl.0000000000209952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/22/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Patients with multiple sclerosis (MS) often experience cognitive impairment, and this is related to structural disconnection and subsequent functional reorganization. It is unclear how specific patterns of functional reorganization might make it harder for cognitively impaired (CI) patients with MS to dynamically adapt how brain regions communicate, which is crucial for normal cognition. We aimed to identify dynamic functional network patterns that are relevant to cognitive impairment in MS and investigate whether these patterns can be explained by altered energy costs. METHODS Resting-state functional and diffusion MRI was acquired in a cross-sectional design, as part of the Amsterdam MS cohort. Patients with clinically definitive MS (relapse-free) were classified as CI (≥2/7 domains Z < -2), mildly CI (MCI) (≥2/7 domains Z < -1.5), or cognitively preserved (CP) based on an expanded Brief Repeatable Battery of Neuropsychological Tests. Functional connectivity states were determined using k-means clustering of moment-to-moment cofluctuations (i.e., edge time series), and the resulting state sequence was used to characterize the frequency of transitions. Control energy of the state transitions was calculated using the structural network with network control theory. RESULTS Imaging and cognitive data were available for 95 controls and 330 patients (disease duration: 15 years; 179 CP, 65 MCI, and 86 CI). We identified a "visual network state," "sensorimotor network state," "ventral attention network state," and "default mode network state." CI patients transitioned less frequently between connectivity states compared with CP (β = -5.78; p = 0.038). Relative to the time spent in a state, CI patients transitioned less from a "default mode network state" to a "visual network state" (β = -0.02; p = 0.004). The CI patients required more control energy to transition between states (β = 0.32; p = 0.007), particularly for the same transition (β = 0.34; p = 0.049). DISCUSSION This study showed that it costs more energy for MS patients with cognitive impairment to dynamically change the functional network, possibly explaining why these transitions occur less frequently. In particular, transitions from a default mode network state to a visual network state were relevant for cognition in these patients. To further study the order of events leading to these network disturbances, future work should include longitudinal data across different disease stages.
Collapse
Affiliation(s)
- Tommy A A Broeders
- From the MS Center Amsterdam (T.A.A.B., M.v.D., V.R., L.D., Y.D.v.d.W., C.H.V., M.M.S.), Anatomy & Neurosciences, and MS Center Amsterdam (G.P., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (G.P., F.B.), University College London, United Kingdom; Departments of Advanced Biomedical Sciences and Electrical Engineering and Information Technology (G.P.), University of Naples "Federico II," Italy; MS Center Amsterdam (J.K.), Neurology, and MS Center Amsterdam (C.H.V.), Psychiatry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc; Amsterdam Public Health (C.H.V.), Mental Health Program; and GGZ inGeest Mental Health Care (C.H.V.), Amsterdam, the Netherlands
| | - Maureen van Dam
- From the MS Center Amsterdam (T.A.A.B., M.v.D., V.R., L.D., Y.D.v.d.W., C.H.V., M.M.S.), Anatomy & Neurosciences, and MS Center Amsterdam (G.P., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (G.P., F.B.), University College London, United Kingdom; Departments of Advanced Biomedical Sciences and Electrical Engineering and Information Technology (G.P.), University of Naples "Federico II," Italy; MS Center Amsterdam (J.K.), Neurology, and MS Center Amsterdam (C.H.V.), Psychiatry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc; Amsterdam Public Health (C.H.V.), Mental Health Program; and GGZ inGeest Mental Health Care (C.H.V.), Amsterdam, the Netherlands
| | - Giuseppe Pontillo
- From the MS Center Amsterdam (T.A.A.B., M.v.D., V.R., L.D., Y.D.v.d.W., C.H.V., M.M.S.), Anatomy & Neurosciences, and MS Center Amsterdam (G.P., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (G.P., F.B.), University College London, United Kingdom; Departments of Advanced Biomedical Sciences and Electrical Engineering and Information Technology (G.P.), University of Naples "Federico II," Italy; MS Center Amsterdam (J.K.), Neurology, and MS Center Amsterdam (C.H.V.), Psychiatry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc; Amsterdam Public Health (C.H.V.), Mental Health Program; and GGZ inGeest Mental Health Care (C.H.V.), Amsterdam, the Netherlands
| | - Vasco Rauh
- From the MS Center Amsterdam (T.A.A.B., M.v.D., V.R., L.D., Y.D.v.d.W., C.H.V., M.M.S.), Anatomy & Neurosciences, and MS Center Amsterdam (G.P., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (G.P., F.B.), University College London, United Kingdom; Departments of Advanced Biomedical Sciences and Electrical Engineering and Information Technology (G.P.), University of Naples "Federico II," Italy; MS Center Amsterdam (J.K.), Neurology, and MS Center Amsterdam (C.H.V.), Psychiatry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc; Amsterdam Public Health (C.H.V.), Mental Health Program; and GGZ inGeest Mental Health Care (C.H.V.), Amsterdam, the Netherlands
| | - Linda Douw
- From the MS Center Amsterdam (T.A.A.B., M.v.D., V.R., L.D., Y.D.v.d.W., C.H.V., M.M.S.), Anatomy & Neurosciences, and MS Center Amsterdam (G.P., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (G.P., F.B.), University College London, United Kingdom; Departments of Advanced Biomedical Sciences and Electrical Engineering and Information Technology (G.P.), University of Naples "Federico II," Italy; MS Center Amsterdam (J.K.), Neurology, and MS Center Amsterdam (C.H.V.), Psychiatry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc; Amsterdam Public Health (C.H.V.), Mental Health Program; and GGZ inGeest Mental Health Care (C.H.V.), Amsterdam, the Netherlands
| | - Ysbrand D van der Werf
- From the MS Center Amsterdam (T.A.A.B., M.v.D., V.R., L.D., Y.D.v.d.W., C.H.V., M.M.S.), Anatomy & Neurosciences, and MS Center Amsterdam (G.P., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (G.P., F.B.), University College London, United Kingdom; Departments of Advanced Biomedical Sciences and Electrical Engineering and Information Technology (G.P.), University of Naples "Federico II," Italy; MS Center Amsterdam (J.K.), Neurology, and MS Center Amsterdam (C.H.V.), Psychiatry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc; Amsterdam Public Health (C.H.V.), Mental Health Program; and GGZ inGeest Mental Health Care (C.H.V.), Amsterdam, the Netherlands
| | - Joep Killestein
- From the MS Center Amsterdam (T.A.A.B., M.v.D., V.R., L.D., Y.D.v.d.W., C.H.V., M.M.S.), Anatomy & Neurosciences, and MS Center Amsterdam (G.P., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (G.P., F.B.), University College London, United Kingdom; Departments of Advanced Biomedical Sciences and Electrical Engineering and Information Technology (G.P.), University of Naples "Federico II," Italy; MS Center Amsterdam (J.K.), Neurology, and MS Center Amsterdam (C.H.V.), Psychiatry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc; Amsterdam Public Health (C.H.V.), Mental Health Program; and GGZ inGeest Mental Health Care (C.H.V.), Amsterdam, the Netherlands
| | - Frederik Barkhof
- From the MS Center Amsterdam (T.A.A.B., M.v.D., V.R., L.D., Y.D.v.d.W., C.H.V., M.M.S.), Anatomy & Neurosciences, and MS Center Amsterdam (G.P., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (G.P., F.B.), University College London, United Kingdom; Departments of Advanced Biomedical Sciences and Electrical Engineering and Information Technology (G.P.), University of Naples "Federico II," Italy; MS Center Amsterdam (J.K.), Neurology, and MS Center Amsterdam (C.H.V.), Psychiatry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc; Amsterdam Public Health (C.H.V.), Mental Health Program; and GGZ inGeest Mental Health Care (C.H.V.), Amsterdam, the Netherlands
| | - Christiaan H Vinkers
- From the MS Center Amsterdam (T.A.A.B., M.v.D., V.R., L.D., Y.D.v.d.W., C.H.V., M.M.S.), Anatomy & Neurosciences, and MS Center Amsterdam (G.P., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (G.P., F.B.), University College London, United Kingdom; Departments of Advanced Biomedical Sciences and Electrical Engineering and Information Technology (G.P.), University of Naples "Federico II," Italy; MS Center Amsterdam (J.K.), Neurology, and MS Center Amsterdam (C.H.V.), Psychiatry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc; Amsterdam Public Health (C.H.V.), Mental Health Program; and GGZ inGeest Mental Health Care (C.H.V.), Amsterdam, the Netherlands
| | - Menno M Schoonheim
- From the MS Center Amsterdam (T.A.A.B., M.v.D., V.R., L.D., Y.D.v.d.W., C.H.V., M.M.S.), Anatomy & Neurosciences, and MS Center Amsterdam (G.P., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (G.P., F.B.), University College London, United Kingdom; Departments of Advanced Biomedical Sciences and Electrical Engineering and Information Technology (G.P.), University of Naples "Federico II," Italy; MS Center Amsterdam (J.K.), Neurology, and MS Center Amsterdam (C.H.V.), Psychiatry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc; Amsterdam Public Health (C.H.V.), Mental Health Program; and GGZ inGeest Mental Health Care (C.H.V.), Amsterdam, the Netherlands
| |
Collapse
|
4
|
Du Y, Zhang J, Cao D, Yang W, Li J, Li D, Song M, Yang Z, Zhang J, Jiang T, Liu J. Neuro-immune communication at the core of craving-associated brain structural network reconfiguration in methamphetamine users. Neuroimage 2024; 301:120883. [PMID: 39384079 DOI: 10.1016/j.neuroimage.2024.120883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/18/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024] Open
Abstract
Methamphetamine (MA) use disorder is a chronic neurotoxic brain disease characterized by a high risk of relapse driven by intense cravings. However, the neurobiological signatures of cravings remain unclear, limiting the effectiveness of various treatment methods. Diffusion MRI (dMRI) scans from 62 MA users and 57 healthy controls (HC) were used in this study. The MA users were longitudinally followed up during their period of long-term abstinence (duration of long-term abstinence: 347.52±99.25 days). We systematically quantified the control ability of each brain region for craving-associated state transitions using network control theory from a causal perspective. Craving-associated structural alterations (CSA) were investigated through multivariate group comparisons and biological relevance analysis. The neural mechanisms underlying CSA were elucidated using transcriptomic and neurochemical analyses. We observed that long-term abstinence-induced structural alterations significantly influenced the state transition energy involved in the cognitive control response to external information, which correlated with changes in craving scores (r ∼ 0.35, P <0.01). Our causal network analysis further supported the crucial role of the prefrontal cortex (PFC) in craving mechanisms. Notably, while the PFC is central to the craving, the CSAs were distributed widely across multiple brain regions (PFDR<0.05), with strong alterations in somatomotor regions (PFDR<0.05) and moderate alterations in high-level association networks (PFDR<0.05). Additionally, transcriptomic, chemical compounds, cell-type analyses, and molecular imaging collectively highlight the influence of neuro-immune communication on human craving modulation. Our results offer an integrative, multi-scale perspective on unraveling the neural underpinnings of craving and suggest that neuro-immune signaling may be a promising target for future human addiction therapeutics.
Collapse
Affiliation(s)
- Yanyao Du
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Jiaqi Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dan Cao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Wenhan Yang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Jin Li
- School of Psychology, Capital Normal University, Beijing 100048, PR China
| | - Deying Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ming Song
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zhengyi Yang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jun Zhang
- Hunan Judicial Police Academy, Changsha, Hunan 410138, PR China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, PR China; Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China; Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, Hunan Province, PR China.
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China; Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan 410011, China; Department of Radiology Quality Control Center, Changsha, Hunan 410011, China.
| |
Collapse
|
5
|
Zhang Q, Hudgins S, Struck AF, Ankeeta A, Javidi SS, Sperling MR, Hermann BP, Tracy JI. Association of Normative and Non-Normative Brain Networks With Cognitive Function in Patients With Temporal Lobe Epilepsy. Neurology 2024; 103:e209800. [PMID: 39250744 PMCID: PMC11385956 DOI: 10.1212/wnl.0000000000209800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Despite their temporal lobe pathology, a significant subgroup of patients with temporal lobe epilepsy (TLE) is able to maintain normative cognitive functioning. In this study, we identify patients with TLE with intact vs impaired neurocognitive profiles and interrogate for the presence of both normative and highly individual intrinsic connectivity networks (ICNs)-all toward understanding the transition from impaired to intact neurocognitive status. METHODS This retrospective cross-sectional study included patients with TLE and matched healthy controls (HCs) from the Thomas Jefferson Comprehensive Epilepsy Center. Functional MRI data were decomposed using independent component analysis to obtain individualized ICNs. In this article, we calculated the degree of match between individualized ICNs and canonical ICNs (e.g., 17 resting-state networks by Yeo et al.) and divided each participant's ICNs into normative or non-normative status based on the degree of match. RESULTS 100 patients with TLE (mean age 42.0 [SD: 13.7] years, 47 women) and 92 HCs were included in this study. We found that the individualized networks matched to the canonical networks less well in the cognitively impaired (n = 24) compared with the cognitively intact (n = 63) patients with TLE by 2-way mixed-measures analysis of variance (impaired vs intact mean difference [MD] -0.165 [-0.317, -0.013], p = 0.028). The cognitively impaired patients showed significant abnormalities in the profiles of both normative (impaired vs intact MD -0.537 [-0.998, -0.076], p = 0.017, intact vs HC MD -0.221 [-0.536, 0.924], p = 0.220, and impaired vs HC MD -0.759 [-1.200, -0.319], p < 0.001) and non-normative networks (impaired vs intact MD 0.484 [0.030, 0.937], p = 0.033, intact vs HC MD 0.369 [0.059, 0.678], p = 0.014, and impaired vs HC MD 0.853 [0.419, 1.286], p < 0.001) while the intact patients showed abnormalities only in non-normative networks. At the same time, we found that normative networks held a strong, positive association with the neuropsychological measures, with this association negative in non-normative networks. DISCUSSION Our data demonstrated that significant cognitive deficits are associated with the status of both canonical and highly individual ICNs, making clear that the transition from intact to impaired cognitive status is not simply the result of disruption to normative brain networks.
Collapse
Affiliation(s)
- Qirui Zhang
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Stacy Hudgins
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Aaron F Struck
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Ankeeta Ankeeta
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Sam S Javidi
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Michael R Sperling
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Bruce P Hermann
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Joseph I Tracy
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| |
Collapse
|
6
|
Schilling L, Singleton SP, Tozlu C, Hédo M, Zhao Q, Pohl KM, Jamison K, Kuceyeski A. Sex-specific differences in brain activity dynamics of youth with a family history of substance use disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.610959. [PMID: 39282344 PMCID: PMC11398379 DOI: 10.1101/2024.09.03.610959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
An individual's risk of substance use disorder (SUD) is shaped by a complex interplay of potent biosocial factors. Current neurodevelopmental models posit vulnerability to SUD in youth is due to an overreactive reward system and reduced inhibitory control. Having a family history of SUD is a particularly strong risk factor, yet few studies have explored its impact on brain function and structure prior to substance exposure. Herein, we utilized a network control theory approach to quantify sex-specific differences in brain activity dynamics in youth with and without a family history of SUD, drawn from a large cohort of substance-naïve youth from the Adolescent Brain Cognitive Development Study. We summarize brain dynamics by calculating transition energy, which probes the ease with which a whole brain, region or network drives the brain towards a specific spatial pattern of activation (i.e., brain state). Our findings reveal that a family history of SUD is associated with alterations in the brain's dynamics wherein: i) independent of sex, certain regions' transition energies are higher in those with a family history of SUD and ii) there exist sex-specific differences in SUD family history groups at multiple levels of transition energy (global, network, and regional). Family history-by-sex effects reveal that energetic demand is increased in females with a family history of SUD and decreased in males with a family history of SUD, compared to their same-sex counterparts with no SUD family history. Specifically, we localize these effects to higher energetic demands of the default mode network in females with a family history of SUD and lower energetic demands of attention networks in males with a family history of SUD. These results suggest a family history of SUD may increase reward saliency in males and decrease efficiency of top-down inhibitory control in females. This work could be used to inform personalized intervention strategies that may target differing cognitive mechanisms that predispose individuals to the development of SUD.
Collapse
Affiliation(s)
- Louisa Schilling
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Ceren Tozlu
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Marie Hédo
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Qingyu Zhao
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Kilian M Pohl
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Keith Jamison
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
7
|
Luppi AI, Singleton SP, Hansen JY, Jamison KW, Bzdok D, Kuceyeski A, Betzel RF, Misic B. Contributions of network structure, chemoarchitecture and diagnostic categories to transitions between cognitive topographies. Nat Biomed Eng 2024; 8:1142-1161. [PMID: 39103509 PMCID: PMC11410673 DOI: 10.1038/s41551-024-01242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/02/2024] [Indexed: 08/07/2024]
Abstract
The mechanisms linking the brain's network structure to cognitively relevant activation patterns remain largely unknown. Here, by leveraging principles of network control, we show how the architecture of the human connectome shapes transitions between 123 experimentally defined cognitive activation maps (cognitive topographies) from the NeuroSynth meta-analytic database. Specifically, we systematically integrated large-scale multimodal neuroimaging data from functional magnetic resonance imaging, diffusion tractography, cortical morphometry and positron emission tomography to simulate how anatomically guided transitions between cognitive states can be reshaped by neurotransmitter engagement or by changes in cortical thickness. Our model incorporates neurotransmitter-receptor density maps (18 receptors and transporters) and maps of cortical thickness pertaining to a wide range of mental health, neurodegenerative, psychiatric and neurodevelopmental diagnostic categories (17,000 patients and 22,000 controls). The results provide a comprehensive look-up table charting how brain network organization and chemoarchitecture interact to manifest different cognitive topographies, and establish a principled foundation for the systematic identification of ways to promote selective transitions between cognitive topographies.
Collapse
Affiliation(s)
- Andrea I Luppi
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| | - S Parker Singleton
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Justine Y Hansen
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Keith W Jamison
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Danilo Bzdok
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- MILA, Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Richard F Betzel
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Xie K, Royer J, Larivière S, Rodriguez-Cruces R, Frässle S, Cabalo DG, Ngo A, DeKraker J, Auer H, Tavakol S, Weng Y, Abdallah C, Arafat T, Horwood L, Frauscher B, Caciagli L, Bernasconi A, Bernasconi N, Zhang Z, Concha L, Bernhardt BC. Atypical connectome topography and signal flow in temporal lobe epilepsy. Prog Neurobiol 2024; 236:102604. [PMID: 38604584 DOI: 10.1016/j.pneurobio.2024.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/18/2023] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Temporal lobe epilepsy (TLE) is the most common pharmaco-resistant epilepsy in adults. While primarily associated with mesiotemporal pathology, recent evidence suggests that brain alterations in TLE extend beyond the paralimbic epicenter and impact macroscale function and cognitive functions, particularly memory. Using connectome-wide manifold learning and generative models of effective connectivity, we examined functional topography and directional signal flow patterns between large-scale neural circuits in TLE at rest. Studying a multisite cohort of 95 patients with TLE and 95 healthy controls, we observed atypical functional topographies in the former group, characterized by reduced differentiation between sensory and transmodal association cortices, with most marked effects in bilateral temporo-limbic and ventromedial prefrontal cortices. These findings were consistent across all study sites, present in left and right lateralized patients, and validated in a subgroup of patients with histopathological validation of mesiotemporal sclerosis and post-surgical seizure freedom. Moreover, they were replicated in an independent cohort of 30 TLE patients and 40 healthy controls. Further analyses demonstrated that reduced differentiation related to decreased functional signal flow into and out of temporolimbic cortical systems and other brain networks. Parallel analyses of structural and diffusion-weighted MRI data revealed that topographic alterations were independent of TLE-related cortical thinning but partially mediated by white matter microstructural changes that radiated away from paralimbic circuits. Finally, we found a strong association between the degree of functional alterations and behavioral markers of memory dysfunction. Our work illustrates the complex landscape of macroscale functional imbalances in TLE, which can serve as intermediate markers bridging microstructural changes and cognitive impairment.
Collapse
Affiliation(s)
- Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hans Auer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chifaou Abdallah
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Thaera Arafat
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Linda Horwood
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Department of Neurology, Duke University School of Medicine and Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, NC 27705, USA
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3 BG, United Kingdom
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de Mexico (UNAM), Queretaro, Mexico
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
9
|
Mosharov EV, Rosenberg AM, Monzel AS, Osto CA, Stiles L, Rosoklija GB, Dwork AJ, Bindra S, Zhang Y, Fujita M, Mariani MB, Bakalian M, Sulzer D, De Jager PL, Menon V, Shirihai OS, Mann JJ, Underwood M, Boldrini M, Thiebaut de Schotten M, Picard M. A Human Brain Map of Mitochondrial Respiratory Capacity and Diversity. RESEARCH SQUARE 2024:rs.3.rs-4047706. [PMID: 38562777 PMCID: PMC10984021 DOI: 10.21203/rs.3.rs-4047706/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity1,2, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders3,4, underscoring the need to define the brain's molecular energetic landscape5-10. To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities11, thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Eugene V. Mosharov
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Ayelet M Rosenberg
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna S Monzel
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Corey A. Osto
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Linsey Stiles
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Gorazd B. Rosoklija
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrew J. Dwork
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Snehal Bindra
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ya Zhang
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Masashi Fujita
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Madeline B Mariani
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mihran Bakalian
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - David Sulzer
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Departments of Neurology and Pharmacology, Columbia University Irving Medical Center, New York, NY, USA; Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - J. John Mann
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mark Underwood
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Maura Boldrini
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behavior Laboratory, Paris, France; Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, France
| | - Martin Picard
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
10
|
Mosharov EV, Rosenberg AM, Monzel AS, Osto CA, Stiles L, Rosoklija GB, Dwork AJ, Bindra S, Zhang Y, Fujita M, Mariani MB, Bakalian M, Sulzer D, De Jager PL, Menon V, Shirihai OS, Mann JJ, Underwood M, Boldrini M, de Schotten MT, Picard M. A Human Brain Map of Mitochondrial Respiratory Capacity and Diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583623. [PMID: 38496679 PMCID: PMC10942385 DOI: 10.1101/2024.03.05.583623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity1,2, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders3,4, underscoring the need to define the brain's molecular energetic landscape5-10. To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities11, thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Eugene V. Mosharov
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Ayelet M Rosenberg
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna S Monzel
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Corey A. Osto
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Linsey Stiles
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Gorazd B. Rosoklija
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrew J. Dwork
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Snehal Bindra
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ya Zhang
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Masashi Fujita
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Madeline B Mariani
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mihran Bakalian
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - David Sulzer
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Departments of Neurology and Pharmacology, Columbia University Irving Medical Center, New York, NY, USA; Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - J. John Mann
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mark Underwood
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Maura Boldrini
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behavior Laboratory, Paris, France; Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, France
| | - Martin Picard
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
11
|
Janson A, Sainburg L, Akbarian B, Johnson GW, Rogers BP, Chang C, Englot DJ, Morgan VL. Indirect structural changes and reduced controllability after temporal lobe epilepsy resection. Epilepsia 2024; 65:675-686. [PMID: 38240699 PMCID: PMC10948308 DOI: 10.1111/epi.17889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/08/2023] [Accepted: 01/08/2024] [Indexed: 03/06/2024]
Abstract
OBJECTIVE To understand the potential behavioral and cognitive effects of mesial temporal resection for temporal lobe epilepsy (TLE) a method is required to characterize network-wide functional alterations caused by a discrete structural disconnection. The objective of this study was to investigate network-wide alterations in brain dynamics of patients with TLE before and after surgical resection of the seizure focus using average regional controllability (ARC), a measure of the ability of a node to influence network dynamics. METHODS Diffusion-weighted imaging (DWI) data were acquired in 27 patients with drug-resistant unilateral mesial TLE who underwent selective amygdalohippocampectomy. Imaging data were acquired before and after surgery and a presurgical and postsurgical structural connectome was generated from whole-brain tractography. Edge-wise strength, node strength, and node ARC were compared before and after surgery. Direct and indirect edge-wise strength changes were identified using patient-specific simulated resections. Direct edges were defined as primary edges disconnected by the resection zone itself. Indirect edges were secondary measured edge strength changes. Changes in node strength and ARC were then related to both direct and indirect edge changes. RESULTS We found nodes with significant postsurgical changes in both node strength and ARC surrounding the resection zone (paired t tests, p < .05, Bonferroni corrected). ARC identified additional postsurgical changes in nodes outside of the resection zone within the ipsilateral occipital lobe, which were associated with indirect edge-wise strength changes of the postsurgical network (Fisher's exact test, p < .001). These indirect edge-wise changes were facilitated through the "hub" nodes including the thalamus, putamen, insula, and precuneus. SIGNIFICANCE Discrete network disconnection from TLE resection results in widespread structural and functional changes not predicted by disconnection alone. These can be well characterized by dynamic controllability measures such as ARC and may be useful for investigating changes in brain function that may contribute to seizure recurrence and behavioral or cognitive changes after surgery.
Collapse
Affiliation(s)
- Andrew Janson
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lucas Sainburg
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Behnaz Akbarian
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Graham W Johnson
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Baxter P Rogers
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Catie Chang
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Dario J Englot
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Victoria L Morgan
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
12
|
Betzel R, Puxeddu MG, Seguin C, Bazinet V, Luppi A, Podschun A, Singleton SP, Faskowitz J, Parakkattu V, Misic B, Markett S, Kuceyeski A, Parkes L. Controlling the human connectome with spatially diffuse input signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.581006. [PMID: 38463980 PMCID: PMC10925126 DOI: 10.1101/2024.02.27.581006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The human brain is never at "rest"; its activity is constantly fluctuating over time, transitioning from one brain state-a whole-brain pattern of activity-to another. Network control theory offers a framework for understanding the effort - energy - associated with these transitions. One branch of control theory that is especially useful in this context is "optimal control", in which input signals are used to selectively drive the brain into a target state. Typically, these inputs are introduced independently to the nodes of the network (each input signal is associated with exactly one node). Though convenient, this input strategy ignores the continuity of cerebral cortex - geometrically, each region is connected to its spatial neighbors, allowing control signals, both exogenous and endogenous, to spread from their foci to nearby regions. Additionally, the spatial specificity of brain stimulation techniques is limited, such that the effects of a perturbation are measurable in tissue surrounding the stimulation site. Here, we adapt the network control model so that input signals have a spatial extent that decays exponentially from the input site. We show that this more realistic strategy takes advantage of spatial dependencies in structural connectivity and activity to reduce the energy (effort) associated with brain state transitions. We further leverage these dependencies to explore near-optimal control strategies such that, on a per-transition basis, the number of input signals required for a given control task is reduced, in some cases by two orders of magnitude. This approximation yields network-wide maps of input site density, which we compare to an existing database of functional, metabolic, genetic, and neurochemical maps, finding a close correspondence. Ultimately, not only do we propose a more efficient framework that is also more adherent to well-established brain organizational principles, but we also posit neurobiologically grounded bases for optimal control.
Collapse
Affiliation(s)
- Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington IN 47401
- Cognitive Science Program, Indiana University, Bloomington IN 47401
- Program in Neuroscience, Indiana University, Bloomington IN 47401
| | - Maria Grazia Puxeddu
- Department of Psychological and Brain Sciences, Indiana University, Bloomington IN 47401
| | - Caio Seguin
- Department of Psychological and Brain Sciences, Indiana University, Bloomington IN 47401
| | - Vincent Bazinet
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Andrea Luppi
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | | | | | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington IN 47401
| | - Vibin Parakkattu
- Department of Psychological and Brain Sciences, Indiana University, Bloomington IN 47401
- Cognitive Science Program, Indiana University, Bloomington IN 47401
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | | | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY
- Department of Computational Biology, Cornell University, Ithaca, NY
| | - Linden Parkes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
13
|
Singleton SP, Velidi P, Schilling L, Luppi AI, Jamison K, Parkes L, Kuceyeski A. Altered structural connectivity and functional brain dynamics in individuals with heavy alcohol use. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.568762. [PMID: 38077021 PMCID: PMC10705230 DOI: 10.1101/2023.11.27.568762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Heavy alcohol use and its associated conditions, such as alcohol use disorder (AUD), impact millions of individuals worldwide. While our understanding of the neurobiological correlates of AUD has evolved substantially, we still lack models incorporating whole-brain neuroanatomical, functional, and pharmacological information under one framework. Here, we utilize diffusion and functional magnetic resonance imaging to investigate alterations to brain dynamics in N = 130 individuals with a high amount of current alcohol use. We compared these alcohol using individuals to N = 308 individuals with minimal use of any substances. We find that individuals with heavy alcohol use had less dynamic and complex brain activity, and through leveraging network control theory, had increased control energy to complete transitions between activation states. Further, using separately acquired positron emission tomography (PET) data, we deploy an in silico evaluation demonstrating that decreased D2 receptor levels, as found previously in individuals with AUD, may relate to our observed findings. This work demonstrates that whole-brain, multimodal imaging information can be combined under a network control framework to identify and evaluate neurobiological correlates and mechanisms of AUD.
Collapse
Affiliation(s)
- S Parker Singleton
- Department of Radiology, Weill Cornell Medicine, New York, New York, U.S.A
| | - Puneet Velidi
- Department of Statistics and Data Science, Cornell University, Ithaca, New York, U.S.A
| | - Louisa Schilling
- Montreal Neurological Institute, McGill Univeristy, Montreal, CA
| | - Andrea I Luppi
- Department of Radiology, Weill Cornell Medicine, New York, New York, U.S.A
| | - Keith Jamison
- Department of Radiology, Weill Cornell Medicine, New York, New York, U.S.A
| | - Linden Parkes
- Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, New York, U.S.A
| |
Collapse
|
14
|
Cao H, Wei P, Huang Y, Wang N, Guo LA, Fan X, Wang Z, Ren L, Piao Y, Lu J, Shan Y, He X, Zhao G. The alteration of cortical microstructure similarity in drug-resistant epilepsy correlated with mTOR pathway genes. EBioMedicine 2023; 97:104847. [PMID: 39492369 PMCID: PMC10628344 DOI: 10.1016/j.ebiom.2023.104847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Drug-resistant epilepsy (DRE) is associated with distributed laminar disruptions due to cytoarchitectonic pathologies, which may be characterized by multimodal MRI approaches such as morphometric similarity networks (MSNs). However, the genetic and histological underpinning of MSN alterations in DRE remains poorly understood, hampering its clinical application. METHODS We enrolled 60 patients with DRE and 23 controls, acquiring T1 and diffusion spectrum imaging data with a 3.0T GE SIGNA Premier scanner. Morphometric similarity networks (MSNs) were constructed and analyzed to identify microstructure similarity differences between patients and controls. Subsequently, patient-specific MSN alteration patterns were associated with gene expression using the GAMBA tool, and layer-specific neuronal signature mapping were also applied. During these analyses, sex and age were adjusted as covariates and multiple comparisons corrections were applied when appropriate. FINDINGS We observed widespread MSN changes in patients with DRE and identified five distinct MSN alteration patterns. Major patterns presented pattern-specific associations with expressions of epilepsy-related genes, particularly involving the mTOR pathway. Histological analysis confirmed the presence of cortical microstructure changes in areas with MSN alterations and revealed cellular abnormalities matching the aforementioned genetic risks. INTERPRETATION Our findings highlight the potential of quantifying laminar-related microstructure integrity using MSN to uncover the cytoarchitectonic changes in the pathophysiology of DRE. This approach may facilitate the identification of genetic and histological underpinnings of MSN alterations in DRE, ultimately aiding in the development of targeted therapeutic strategies. FUNDINGS The National Natural Science Foundation of China, the Ministry of Science and Technology of the People's Republic of China, and the Beijing Municipal Health Commission.
Collapse
Affiliation(s)
- Hang Cao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China; Clinical Research Center for Epilepsy, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China; Beijing Municipal Geriatric Medical Research Center, 45 Changchun St, Beijing, 100053, China
| | - Yuda Huang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Ningrui Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Lin-Ai Guo
- Department of Pathology, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Xiaotong Fan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Zhenming Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Liankun Ren
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Yueshan Piao
- Department of Pathology, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China; Clinical Research Center for Epilepsy, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China; National Medical Center for Neurological Diseases, 45 Changchun St, Beijing, 100053, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, 45 Changchun St, Beijing, 100053, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China.
| | - Xiaosong He
- Department of Psychology, University of Science and Technology of China, No 96 Jinzhai Rd, Hefei, 230026, China.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China; Clinical Research Center for Epilepsy, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China; Beijing Municipal Geriatric Medical Research Center, 45 Changchun St, Beijing, 100053, China.
| |
Collapse
|
15
|
Sun H, Jiang R, Dai W, Dufford AJ, Noble S, Spann MN, Gu S, Scheinost D. Network controllability of structural connectomes in the neonatal brain. Nat Commun 2023; 14:5820. [PMID: 37726267 PMCID: PMC10509217 DOI: 10.1038/s41467-023-41499-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023] Open
Abstract
White matter connectivity supports diverse cognitive demands by efficiently constraining dynamic brain activity. This efficiency can be inferred from network controllability, which represents the ease with which the brain moves between distinct mental states based on white matter connectivity. However, it remains unclear how brain networks support diverse functions at birth, a time of rapid changes in connectivity. Here, we investigate the development of network controllability during the perinatal period and the effect of preterm birth in 521 neonates. We provide evidence that elements of controllability are exhibited in the infant's brain as early as the third trimester and develop rapidly across the perinatal period. Preterm birth disrupts the development of brain networks and altered the energy required to drive state transitions at different levels. In addition, controllability at birth is associated with cognitive ability at 18 months. Our results suggest network controllability develops rapidly during the perinatal period to support cognitive demands but could be altered by environmental impacts like preterm birth.
Collapse
Affiliation(s)
- Huili Sun
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.
| | - Rongtao Jiang
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Wei Dai
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Alexander J Dufford
- Department of Psychiatry and Center for Mental Health Innovation, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Stephanie Noble
- Department of Psychology, Northeastern University, Boston, MA, 02115, USA
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
- Center for Cognitive and Brain Health, Northeastern University, Boston, USA
| | - Marisa N Spann
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Shi Gu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, China
| | - Dustin Scheinost
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06510, USA.
- Department of Statistics & Data Science, Yale University, New Haven, CT, 06520, USA.
- Child Study Center, Yale School of Medicine, New Haven, CT, 06510, USA.
- Wu Tsai Institute, Yale University, 100 College Street, New Haven, CT, 06510, USA.
| |
Collapse
|
16
|
Parkes L, Kim JZ, Stiso J, Brynildsen JK, Cieslak M, Covitz S, Gur RE, Gur RC, Pasqualetti F, Shinohara RT, Zhou D, Satterthwaite TD, Bassett DS. Using network control theory to study the dynamics of the structural connectome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554519. [PMID: 37662395 PMCID: PMC10473719 DOI: 10.1101/2023.08.23.554519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains dynamics. Compared to other structure-function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that may alter dynamics in a desired way. We have extensively developed and validated the application of NCT to the human structural connectome. Through these efforts, we have studied (i) how different aspects of connectome topology affect neural dynamics, (ii) whether NCT outputs cohere with empirical data on brain function and stimulation, and (iii) how NCT outputs vary across development and correlate with behavior and mental health symptoms. In this protocol, we introduce a framework for applying NCT to structural connectomes following two main pathways. Our primary pathway focuses on computing the control energy associated with transitioning between specific neural activity states. Our second pathway focuses on computing average controllability, which indexes nodes' general capacity to control dynamics. We also provide recommendations for comparing NCT outputs against null network models. Finally, we support this protocol with a Python-based software package called network control theory for python (nctpy).
Collapse
Affiliation(s)
- Linden Parkes
- Department of Bioengineering, University of Pennsylvania, PA 19104, USA
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA
| | - Jason Z Kim
- Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer Stiso
- Department of Bioengineering, University of Pennsylvania, PA 19104, USA
| | | | - Matthew Cieslak
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sydney Covitz
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raquel E Gur
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruben C Gur
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fabio Pasqualetti
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dale Zhou
- Department of Bioengineering, University of Pennsylvania, PA 19104, USA
| | - Theodore D Satterthwaite
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, PA 19104, USA
- Department of Physics and Astronomy, University of Pennsylvania, PA 19104, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
17
|
Wilmskoetter J, Busby N, He X, Caciagli L, Roth R, Kristinsson S, Davis KA, Rorden C, Bassett DS, Fridriksson J, Bonilha L. Dynamic network properties of the superior temporal gyrus mediate the impact of brain age gap on chronic aphasia severity. Commun Biol 2023; 6:727. [PMID: 37452209 PMCID: PMC10349039 DOI: 10.1038/s42003-023-05119-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Brain structure deteriorates with aging and predisposes an individual to more severe language impairments (aphasia) after a stroke. However, the underlying mechanisms of this relation are not well understood. Here we use an approach to model brain network properties outside the stroke lesion, network controllability, to investigate relations among individualized structural brain connections, brain age, and aphasia severity in 93 participants with chronic post-stroke aphasia. Controlling for the stroke lesion size, we observe that lower average controllability of the posterior superior temporal gyrus (STG) mediates the relation between advanced brain aging and aphasia severity. Lower controllability of the left posterior STG signifies that activity in the left posterior STG is less likely to yield a response in other brain regions due to the topological properties of the structural brain networks. These results indicate that advanced brain aging among individuals with post-stroke aphasia is associated with disruption of dynamic properties of a critical language-related area, the STG, which contributes to worse aphasic symptoms. Because brain aging is variable among individuals with aphasia, our results provide further insight into the mechanisms underlying the variance in clinical trajectories in post-stroke aphasia.
Collapse
Affiliation(s)
- Janina Wilmskoetter
- Department of Health and Rehabilitation Sciences, College of Health Professions, Medical University of South Carolina, Charleston, SC, USA.
| | - Natalie Busby
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Xiaosong He
- Department of Psychology, University of Science and Technology of China, Beijing, China
| | - Lorenzo Caciagli
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca Roth
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Sigfus Kristinsson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Kathryn A Davis
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Dani S Bassett
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical and Systems Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, New Mexico, NM, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | | |
Collapse
|
18
|
Singleton SP, Timmermann C, Luppi AI, Eckernäs E, Roseman L, Carhart-Harris RL, Kuceyeski A. Time-resolved network control analysis links reduced control energy under DMT with the serotonin 2a receptor, signal diversity, and subjective experience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540409. [PMID: 37214949 PMCID: PMC10197635 DOI: 10.1101/2023.05.11.540409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Psychedelics offer a profound window into the functioning of the human brain and mind through their robust acute effects on perception, subjective experience, and brain activity patterns. In recent work using a receptor-informed network control theory framework, we demonstrated that the serotonergic psychedelics lysergic acid diethylamide (LSD) and psilocybin flatten the brain's control energy landscape in a manner that covaries with more dynamic and entropic brain activity. Contrary to LSD and psilocybin, whose effects last for hours, the serotonergic psychedelic N,N-dimethyltryptamine (DMT) rapidly induces a profoundly immersive altered state of consciousness lasting less than 20 minutes, allowing for the entirety of the drug experience to be captured during a single resting-state fMRI scan. Using network control theory, which quantifies the amount of input necessary to drive transitions between functional brain states, we integrate brain structure and function to map the energy trajectories of 14 individuals undergoing fMRI during DMT and placebo. Consistent with previous work, we find that global control energy is reduced following injection with DMT compared to placebo. We additionally show longitudinal trajectories of global control energy correlate with longitudinal trajectories of EEG signal diversity (a measure of entropy) and subjective ratings of drug intensity. We interrogate these same relationships on a regional level and find that the spatial patterns of DMT's effects on these metrics are correlated with serotonin 2a receptor density (obtained from separately acquired PET data). Using receptor distribution and pharmacokinetic information, we were able to successfully recapitulate the effects of DMT on global control energy trajectories, demonstrating a proof-of-concept for the use of control models in predicting pharmacological intervention effects on brain dynamics.
Collapse
Affiliation(s)
| | - Christopher Timmermann
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London, United Kingdom
| | | | - Emma Eckernäs
- Unit for Pharmacokinetics and Drug Metabolism, Department of Pharmacology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Leor Roseman
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London, United Kingdom
| | - Robin L. Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London, United Kingdom
- Psychedelics Division, Neuroscape, University of California San Francisco, USA
| | - Amy Kuceyeski
- Department of Computational Biology, Cornell University, Ithaca, USA
- Department of Radiology, Weill Cornell Medicine, New York, USA
| |
Collapse
|
19
|
Luppi AI, Mediano PAM, Rosas FE, Allanson J, Pickard JD, Williams GB, Craig MM, Finoia P, Peattie ARD, Coppola P, Menon DK, Bor D, Stamatakis EA. Reduced emergent character of neural dynamics in patients with a disrupted connectome. Neuroimage 2023; 269:119926. [PMID: 36740030 PMCID: PMC9989666 DOI: 10.1016/j.neuroimage.2023.119926] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023] Open
Abstract
High-level brain functions are widely believed to emerge from the orchestrated activity of multiple neural systems. However, lacking a formal definition and practical quantification of emergence for experimental data, neuroscientists have been unable to empirically test this long-standing conjecture. Here we investigate this fundamental question by leveraging a recently proposed framework known as "Integrated Information Decomposition," which establishes a principled information-theoretic approach to operationalise and quantify emergence in dynamical systems - including the human brain. By analysing functional MRI data, our results show that the emergent and hierarchical character of neural dynamics is significantly diminished in chronically unresponsive patients suffering from severe brain injury. At a functional level, we demonstrate that emergence capacity is positively correlated with the extent of hierarchical organisation in brain activity. Furthermore, by combining computational approaches from network control theory and whole-brain biophysical modelling, we show that the reduced capacity for emergent and hierarchical dynamics in severely brain-injured patients can be mechanistically explained by disruptions in the patients' structural connectome. Overall, our results suggest that chronic unresponsiveness resulting from severe brain injury may be related to structural impairment of the fundamental neural infrastructures required for brain dynamics to support emergence.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Leverhulme Centre for the Future of Intelligence, Cambridge, UK; The Alan Turing Institute, London, UK.
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Fernando E Rosas
- Department of Brain Science, Center for Psychedelic Research, Imperial College London, London, UK; Data Science Institute, Imperial College London, London, UK; Centre for Complexity Science, Imperial College London, London, UK; Center for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK; Department of Informatics, University of Sussex, Brighton, UK
| | - Judith Allanson
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Department of Neurosciences, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation, Cambridge, UK
| | - John D Pickard
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Guy B Williams
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Michael M Craig
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Paola Finoia
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alexander R D Peattie
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Coppola
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, UK; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Daniel Bor
- Department of Psychology, University of Cambridge, Cambridge, UK; Department of Psychology, Queen Mary University of London, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Luppi AI, Singleton SP, Hansen JY, Bzdok D, Kuceyeski A, Betzel RF, Misic B. Transitions between cognitive topographies: contributions of network structure, neuromodulation, and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532981. [PMID: 36993597 PMCID: PMC10055141 DOI: 10.1101/2023.03.16.532981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Patterns of neural activity underlie human cognition. Transitions between these patterns are orchestrated by the brain's network architecture. What are the mechanisms linking network structure to cognitively relevant activation patterns? Here we implement principles of network control to investigate how the architecture of the human connectome shapes transitions between 123 experimentally defined cognitive activation maps (cognitive topographies) from the NeuroSynth meta-analytic engine. We also systematically incorporate neurotransmitter receptor density maps (18 receptors and transporters) and disease-related cortical abnormality maps (11 neurodegenerative, psychiatric and neurodevelopmental diseases; N = 17 000 patients, N = 22 000 controls). Integrating large-scale multimodal neuroimaging data from functional MRI, diffusion tractography, cortical morphometry, and positron emission tomography, we simulate how anatomically-guided transitions between cognitive states can be reshaped by pharmacological or pathological perturbation. Our results provide a comprehensive look-up table charting how brain network organisation and chemoarchitecture interact to manifest different cognitive topographies. This computational framework establishes a principled foundation for systematically identifying novel ways to promote selective transitions between desired cognitive topographies.
Collapse
Affiliation(s)
- Andrea I. Luppi
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | | | - Justine Y. Hansen
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Danilo Bzdok
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- MILA, Quebec Artificial Intelligence Institute, Montréal, QC, Canada
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY, U.S.A
| | - Richard F. Betzel
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, U.S.A
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
21
|
Hahn T, Winter NR, Ernsting J, Gruber M, Mauritz MJ, Fisch L, Leenings R, Sarink K, Blanke J, Holstein V, Emden D, Beisemann M, Opel N, Grotegerd D, Meinert S, Heindel W, Witt S, Rietschel M, Nöthen MM, Forstner AJ, Kircher T, Nenadic I, Jansen A, Müller-Myhsok B, Andlauer TFM, Walter M, van den Heuvel MP, Jamalabadi H, Dannlowski U, Repple J. Genetic, individual, and familial risk correlates of brain network controllability in major depressive disorder. Mol Psychiatry 2023; 28:1057-1063. [PMID: 36639510 PMCID: PMC10005934 DOI: 10.1038/s41380-022-01936-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023]
Abstract
Many therapeutic interventions in psychiatry can be viewed as attempts to influence the brain's large-scale, dynamic network state transitions. Building on connectome-based graph analysis and control theory, Network Control Theory is emerging as a powerful tool to quantify network controllability-i.e., the influence of one brain region over others regarding dynamic network state transitions. If and how network controllability is related to mental health remains elusive. Here, from Diffusion Tensor Imaging data, we inferred structural connectivity and inferred calculated network controllability parameters to investigate their association with genetic and familial risk in patients diagnosed with major depressive disorder (MDD, n = 692) and healthy controls (n = 820). First, we establish that controllability measures differ between healthy controls and MDD patients while not varying with current symptom severity or remission status. Second, we show that controllability in MDD patients is associated with polygenic scores for MDD and psychiatric cross-disorder risk. Finally, we provide evidence that controllability varies with familial risk of MDD and bipolar disorder as well as with body mass index. In summary, we show that network controllability is related to genetic, individual, and familial risk in MDD patients. We discuss how these insights into individual variation of network controllability may inform mechanistic models of treatment response prediction and personalized intervention-design in mental health.
Collapse
Affiliation(s)
- Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.
| | - Nils R Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jan Ernsting
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.,Faculty of Mathematics and Computer Science, University of Münster, Münster, Germany
| | - Marius Gruber
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Marco J Mauritz
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lukas Fisch
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Ramona Leenings
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.,Faculty of Mathematics and Computer Science, University of Münster, Münster, Germany
| | - Kelvin Sarink
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Julian Blanke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Vincent Holstein
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Daniel Emden
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Marie Beisemann
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.,Interdisciplinary Centre for Clinical Research IZKF, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.,Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Walter Heindel
- Institute of Clinical Radiology, University of Münster, Münster, Germany
| | - Stephanie Witt
- Department of Genetic Epidemiology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Phillips University Marburg, Marburg, Germany
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, Phillips University Marburg, Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Phillips University Marburg, Marburg, Germany.,Core-Facility Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | | | - Till F M Andlauer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Department of Child Psychiatry, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Hamidreza Jamalabadi
- Department of Psychiatry and Psychotherapy, Phillips University Marburg, Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.,Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
22
|
Stocker JE, Nozari E, van Vugt M, Jansen A, Jamalabadi H. Network controllability measures of subnetworks: implications for neurosciences. J Neural Eng 2023; 20. [PMID: 36633267 DOI: 10.1088/1741-2552/acb256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023]
Abstract
Objective:Recent progress in network sciences has made it possible to apply key findings from control theory to the study of networks. Referred to as network control theory, this framework describes how the interactions between interconnected system elements and external energy sources, potentially constrained by different optimality criteria, result in complex network behavior. A typical example is the quantification of the functional role certain brain regions or symptoms play in shaping the temporal dynamics of brain activity or the clinical course of a disease, a property that is quantified in terms of the so-called controllability metrics. Critically though, contrary to the engineering context in which control theory was originally developed, a mathematical understanding of the network nodes and connections in neurosciences cannot be assumed. For instance, in the case of psychological systems such as those studied to understand psychiatric disorders, a potentially large set of related variables are unknown. As such, while the measures offered by network control theory would be mathematically correct, in that they can be calculated with high precision, they could have little translational values with respect to their putative role suggested by controllability metrics. It is therefore critical to understand if and how the controllability metrics estimated over subnetworks would deviate, if access to the complete set of variables, as is common in neurosciences, cannot be taken for granted.Approach:In this paper, we use a host of simulations based on synthetic as well as structural magnetic resonance imaging (MRI) data to study the potential deviation of controllability metrics in sub- compared to the full networks. Specifically, we estimate average- and modal-controllability, two of the most widely used controllability measures in neurosciences, in a large number of settings where we systematically vary network type, network size, and edge density.Main results:We find out, across all network types we test, that average and modal controllability are systematically, over- or underestimated depending on the number of nodes in the sub- and full network and the edge density.Significance:Finally, we provide formal theoretical proof that our observations generalize to any network type and discuss the ramifications of this systematic bias and potential solutions to alleviate the problem.
Collapse
Affiliation(s)
- Julia Elina Stocker
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Erfan Nozari
- Department of Mechanical Engineering, University of California, Riverside, United States of America.,Department of Electrical and Computer Engineering, University of California, Riverside, United States of America.,Department of Bioengineering, University of California, Riverside, United States of America
| | - Marieke van Vugt
- Bernoulli Institute of Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, The Netherlands
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany.,Core-Facility Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Hamidreza Jamalabadi
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
23
|
Hahn T, Jamalabadi H, Nozari E, Winter NR, Ernsting J, Gruber M, Mauritz MJ, Grumbach P, Fisch L, Leenings R, Sarink K, Blanke J, Vennekate LK, Emden D, Opel N, Grotegerd D, Enneking V, Meinert S, Borgers T, Klug M, Leehr EJ, Dohm K, Heindel W, Gross J, Dannlowski U, Redlich R, Repple J. Towards a network control theory of electroconvulsive therapy response. PNAS NEXUS 2023; 2:pgad032. [PMID: 36874281 PMCID: PMC9982063 DOI: 10.1093/pnasnexus/pgad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/09/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023]
Abstract
Electroconvulsive Therapy (ECT) is arguably the most effective intervention for treatment-resistant depression. While large interindividual variability exists, a theory capable of explaining individual response to ECT remains elusive. To address this, we posit a quantitative, mechanistic framework of ECT response based on Network Control Theory (NCT). Then, we empirically test our approach and employ it to predict ECT treatment response. To this end, we derive a formal association between Postictal Suppression Index (PSI)-an ECT seizure quality index-and whole-brain modal and average controllability, NCT metrics based on white-matter brain network architecture, respectively. Exploiting the known association of ECT response and PSI, we then hypothesized an association between our controllability metrics and ECT response mediated by PSI. We formally tested this conjecture in N = 50 depressive patients undergoing ECT. We show that whole-brain controllability metrics based on pre-ECT structural connectome data predict ECT response in accordance with our hypotheses. In addition, we show the expected mediation effects via PSI. Importantly, our theoretically motivated metrics are at least on par with extensive machine learning models based on pre-ECT connectome data. In summary, we derived and tested a control-theoretic framework capable of predicting ECT response based on individual brain network architecture. It makes testable, quantitative predictions regarding individual therapeutic response, which are corroborated by strong empirical evidence. Our work might constitute a starting point for a comprehensive, quantitative theory of personalized ECT interventions rooted in control theory.
Collapse
Affiliation(s)
- Tim Hahn
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Hamidreza Jamalabadi
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Erfan Nozari
- Department of Mechanical Engineering, University of California, 92521 Riverside, USA
| | - Nils R Winter
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Jan Ernsting
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany.,Faculty of Mathematics and Computer Science, University of Münster, 48149 Münster, Germany
| | - Marius Gruber
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Marco J Mauritz
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Pascal Grumbach
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Lukas Fisch
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Ramona Leenings
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany.,Faculty of Mathematics and Computer Science, University of Münster, 48149 Münster, Germany
| | - Kelvin Sarink
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Julian Blanke
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Leon Kleine Vennekate
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Daniel Emden
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Verena Enneking
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany.,Institute for Translational Neuroscience, University of Münster, 48149 Münster, Germany
| | - Tiana Borgers
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Melissa Klug
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Walter Heindel
- Institute of Clinical Radiology, University of Münster, 48149 Münster, Germany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University Hospital Münster, 48149 Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Ronny Redlich
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany.,Department of Psychology, University of Halle, 06099 Halle (Saale), Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| |
Collapse
|