1
|
Lim CJ, Seo HJ, Yin H, Cho NH, Yang HW, Park TH, Kim YJ, Kim WT, Seo DH. MpPUB9, a U-box E3 ubiquitin ligase, acts as a positive regulator by promoting the turnover of MpEXO70.1 under high salinity in Marchantia polymorpha. THE NEW PHYTOLOGIST 2024. [PMID: 39387122 DOI: 10.1111/nph.20169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
Marchantia polymorpha, occupying a basal position in the monophyletic assemblage of land plants, displays a notable expansion of plant U-box (PUB) proteins compared with those in animals. We elucidated the roles of MpPUB9 in regulating salt stress tolerance in M. polymorpha. MpPUB9 expression was rapidly induced by high salinity and dehydration. MpPUB9 possessed an intact U-box domain in the N-terminus. MpPUB9-Citrine localized to punctate structures and was peripherally associated with microsomal membranes. Phenotypic analyses demonstrate that the hyponastic and epinastic thallus growth phenotypes, which were induced by the overexpression and suppression of MpPUB9, may provoke salt stress-resistant and -susceptible phenotypes, respectively. MpPUB9 was also found to directly interact with the exocyst protein MpEXO70.1, leading to its ubiquitination. Under high-salinity conditions, though the stability of MpPUB9 was dramatically increased, MpEXO70.1 showed slightly faster turnover rates. Transcriptome analyses showed that salt treatment and the overexpression of MpPUB9 co-upregulated the genes related to the modulation of H2O2 and cell wall organization. Overall, our results suggest that MpPUB9 plays a crucial role in the positive regulation of salt stress tolerance, resulting from its interaction with MpEXO70.1 and modulating turnover of the protein under high-salt conditions via the coordination of UPS with autophagy.
Collapse
Affiliation(s)
- Cheol Jin Lim
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Hyeon Ji Seo
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Haijing Yin
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Na Hyun Cho
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Hee Woong Yang
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Tae Hyeon Park
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Yun Ju Kim
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Woo Taek Kim
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Dong Hye Seo
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| |
Collapse
|
2
|
Eckstein PE, Griffith LJ, Zhang XM, Turkington TK, Colin MG, Holden S, Walkowiak S, Brar GS, Beattie AD. An island of receptor-like genes at the Rrs13 locus on barley chromosome 6HS co-locate with three novel sources of scald resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:249. [PMID: 39382663 PMCID: PMC11481673 DOI: 10.1007/s00122-024-04746-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/15/2024] [Indexed: 10/10/2024]
Abstract
Three Hordeum spontaneum-derived resistances (referred to as 145L2, 41T1 and 40Y5) have demonstrated long-term effectiveness against barley scald, caused by Rhynchosporium commune, in western Canada. Genetic mapping of these resistances in three populations, and the use of five barley genome assemblies, revealed they co-located to a narrowly defined 0.58-1.2 Mbp region of chromosome 6HS containing the Rrs13 scald resistance gene. Differential disease reactions among the three resistances and a Rrs13 carrier (AB6) to a panel of 24 scald isolates indicated that the four resistances were unique from one another. A marker created to target the 6HS scald locus was screened across a panel of barley germplasm that included H. vulgare, H. spontaneum and H. bulbosum lines. The marker showed specificity to H. vulgare lines known to carry the 6HS scald resistances and to two H. spontaneum lines that trace their origins to Jordan. Within the 0.58-1.2 Mbp region were 2-7 tandemly repeated leucine-rich repeat receptor-like proteins (LRR-RLP) and one lectin receptor-like kinase (Lec-RLK) genes with abundant sequence variation between them. The well-defined role that RLP and RLK genes play in plant defense responses make them logical candidate resistance genes, with one possible hypothesis being that each unique scald resistance may be encoded by a different RLP that interacts with a common RLK. It is suggested the three scald resistances be temporarily named Rrs13145L2, Rrs1341T1 and Rrs1340Y5 to recognize their co-location to the Rrs13 locus until it is determined whether these resistances represent unique genes or alleles of the same gene.
Collapse
Affiliation(s)
- Peter E Eckstein
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lindsay J Griffith
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiang M Zhang
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - T Kelly Turkington
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB, Canada
| | - Mark G Colin
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Samuel Holden
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | - Sean Walkowiak
- Grain Research Laboratory, Canadian Grain Commission, Winnipeg, MB, Canada
| | - Gurcharn S Brar
- Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Aaron D Beattie
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
3
|
Szőke-Pázsi K, Kruppa K, Tulpová Z, Kalapos B, Türkösi E, Gaál E, Darkó É, Said M, Farkas A, Kovács P, Ivanizs L, Doležel J, Rabanus-Wallace MT, Molnár I, Szakács É. DArTseq genotyping facilitates the transfer of "exotic" chromatin from a Secale cereale × S. strictum hybrid into wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1407840. [PMID: 39309182 PMCID: PMC11412823 DOI: 10.3389/fpls.2024.1407840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 09/25/2024]
Abstract
Cultivated and wild species of the genus rye (Secale) are important but underexploited gene sources for increasing the genetic diversity of bread wheat. Gene transfer is possible via bridge genetic materials derived from intergeneric hybrids. During this process, it is essential to precisely identify the rye chromatin in the wheat genetic background. In the present study, backcross generation BC2F8 from a cross between Triticum aestivum (Mv9kr1) and S. cereanum ('Kriszta,' a cultivar from the artificial hybrid of S. cereale and S. strictum) was screened using in-situ hybridization (GISH and FISH) and analyzed by DArTseq genotyping in order to select potentially agronomically useful genotypes for prebreeding purposes. Of the 329,267 high-quality short sequence reads generated, 27,822 SilicoDArT and 8,842 SNP markers specific to S. cereanum 1R-7R chromosomes were identified. Heatmaps of the marker densities along the 'Lo7' rye reference pseudomolecules revealed subtle differences between the FISH- and DArTseq-based results. This study demonstrates that the "exotic" rye chromatin of S. cereanum introgressed into wheat can be reliably identified by high-throughput DArTseq genotyping. The Mv9kr1-'Kriszta' addition and translocation lines presented here may serve as valuable prebreeding genetic materials for the development of stress-tolerant or disease-resistant wheat varieties.
Collapse
Affiliation(s)
- Kitti Szőke-Pázsi
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Klaudia Kruppa
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Zuzana Tulpová
- Institute of Experimental Botany, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Balázs Kalapos
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Edina Türkösi
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Eszter Gaál
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Éva Darkó
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Mahmoud Said
- Institute of Experimental Botany, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
- Field Crops Research Institute, Agricultural Research Centre, Giza, Cairo, Egypt
| | - András Farkas
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Péter Kovács
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - László Ivanizs
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - M. Timothy Rabanus-Wallace
- School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Research Group Genomics of Genetic Resources, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - István Molnár
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
- Institute of Experimental Botany, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Éva Szakács
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| |
Collapse
|
4
|
De la Concepcion JC, Langner T, Fujisaki K, Yan X, Were V, Lam AHC, Saado I, Brabham HJ, Win J, Yoshida K, Talbot NJ, Terauchi R, Kamoun S, Banfield MJ. Zinc-finger (ZiF) fold secreted effectors form a functionally diverse family across lineages of the blast fungus Magnaporthe oryzae. PLoS Pathog 2024; 20:e1012277. [PMID: 38885263 PMCID: PMC11213319 DOI: 10.1371/journal.ppat.1012277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 06/28/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Filamentous plant pathogens deliver effector proteins into host cells to suppress host defence responses and manipulate metabolic processes to support colonization. Understanding the evolution and molecular function of these effectors provides knowledge about pathogenesis and can suggest novel strategies to reduce damage caused by pathogens. However, effector proteins are highly variable, share weak sequence similarity and, although they can be grouped according to their structure, only a few structurally conserved effector families have been functionally characterized to date. Here, we demonstrate that Zinc-finger fold (ZiF) secreted proteins form a functionally diverse effector family in the blast fungus Magnaporthe oryzae. This family relies on the Zinc-finger motif for protein stability and is ubiquitously present in blast fungus lineages infecting 13 different host species, forming different effector tribes. Homologs of the canonical ZiF effector, AVR-Pii, from rice infecting isolates are present in multiple M. oryzae lineages. Wheat infecting strains of the fungus also possess an AVR-Pii like allele that binds host Exo70 proteins and activates the immune receptor Pii. Furthermore, ZiF tribes may vary in the proteins they bind to, indicating functional diversification and an intricate effector/host interactome. Altogether, we uncovered a new effector family with a common protein fold that has functionally diversified in lineages of M. oryzae. This work expands our understanding of the diversity of M. oryzae effectors, the molecular basis of plant pathogenesis and may ultimately facilitate the development of new sources for pathogen resistance.
Collapse
Affiliation(s)
- Juan Carlos De la Concepcion
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Koki Fujisaki
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, Japan
| | - Xia Yan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Vincent Were
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Anson Ho Ching Lam
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Indira Saado
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Helen J. Brabham
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Kentaro Yoshida
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Nicholas J. Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Mark J. Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
5
|
Huebbers JW, Caldarescu GA, Kubátová Z, Sabol P, Levecque SCJ, Kuhn H, Kulich I, Reinstädler A, Büttgen K, Manga-Robles A, Mélida H, Pauly M, Panstruga R, Žárský V. Interplay of EXO70 and MLO proteins modulates trichome cell wall composition and susceptibility to powdery mildew. THE PLANT CELL 2024; 36:1007-1035. [PMID: 38124479 PMCID: PMC10980356 DOI: 10.1093/plcell/koad319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Exocyst component of 70-kDa (EXO70) proteins are constituents of the exocyst complex implicated in vesicle tethering during exocytosis. MILDEW RESISTANCE LOCUS O (MLO) proteins are plant-specific calcium channels and some MLO isoforms enable fungal powdery mildew pathogenesis. We here detected an unexpected phenotypic overlap of Arabidopsis thaliana exo70H4 and mlo2 mlo6 mlo12 triple mutant plants regarding the biogenesis of leaf trichome secondary cell walls. Biochemical and Fourier transform infrared spectroscopic analyses corroborated deficiencies in the composition of trichome cell walls in these mutants. Transgenic lines expressing fluorophore-tagged EXO70H4 and MLO exhibited extensive colocalization of these proteins. Furthermore, mCherry-EXO70H4 mislocalized in trichomes of the mlo triple mutant and, vice versa, MLO6-GFP mislocalized in trichomes of the exo70H4 mutant. Expression of GFP-marked PMR4 callose synthase, a known cargo of EXO70H4-dependent exocytosis, revealed reduced cell wall delivery of GFP-PMR4 in trichomes of mlo triple mutant plants. In vivo protein-protein interaction assays in plant and yeast cells uncovered isoform-preferential interactions between EXO70.2 subfamily members and MLO proteins. Finally, exo70H4 and mlo6 mutants, when combined, showed synergistically enhanced resistance to powdery mildew attack. Taken together, our data point to an isoform-specific interplay of EXO70 and MLO proteins in the modulation of trichome cell wall biogenesis and powdery mildew susceptibility.
Collapse
Affiliation(s)
- Jan W Huebbers
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - George A Caldarescu
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Zdeňka Kubátová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Peter Sabol
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Sophie C J Levecque
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Hannah Kuhn
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Ivan Kulich
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Anja Reinstädler
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Kim Büttgen
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Alba Manga-Robles
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, 24071 León, Spain
| | - Hugo Mélida
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, 24071 León, Spain
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
- Institute of Experimental Botany of the Czech Academy of Sciences, Laboratory of Cell Biology, Rozvojová 263, 165 02 Prague 6 Lysolaje, Czech Republic
| |
Collapse
|
6
|
Türkösi E, Szakács É, Ivanizs L, Farkas A, Gaál E, Said M, Darkó É, Cséplő M, Mikó P, Doležel J, Molnár-Láng M, Molnár I, Kruppa K. A chromosome arm from Thinopyrum intermedium × Thinopyrum ponticum hybrid confers increased tillering and yield potential in wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:7. [PMID: 38263978 PMCID: PMC10803699 DOI: 10.1007/s11032-024-01439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/25/2023] [Indexed: 01/25/2024]
Abstract
Tiller number is a key component of wheat plant architecture having a direct impact on grain yield. Because of their viability, biotic resistance, and abiotic stress tolerance, wild relative species are a valuable gene source for increasing wheat genetic diversity, including yield potential. Agropyron glael, a perennial hybrid of Thinopyrum intermedium and Th. ponticum, was created in the 1930s. Recent genome analyses identified five evolutionarily distinct subgenomes (J, Jst, Jvs, Jr, and St), making A. glael an important gene source for transferring useful agronomical traits into wheat. During a bread wheat × A. glael crossing program, a genetically stable translocation line, WT153397, was developed. Sequential in situ hybridizations (McGISH) with J-, St-, and D-genomic DNA probes and pSc119.2, Afa family, pTa71, and (GAA)7 DNA repeats, as well as molecular markers specific for the wheat 6D chromosome, revealed the presence of a 6DS.6Jvs Robertsonian translocation in the genetic line. Field trials in low-input and high-input breeding nurseries over four growing seasons demonstrated the Agropyron chromosome arm's high compensating ability for the missing 6DL, as spike morphology and fertility of WT153397 did not differ significantly from those of wheat parents, Mv9kr1 and 'Mv Karizma.' Moreover, the introgressed 6Jvs chromosome arm significantly increased the number of productive tillers, resulting in a significantly higher grain yield potential compared to the parental wheat cultivars. The translocated chromosome could be highly purified by flow cytometric sorting due to the intense fluorescent labeling of (GAA)7 clusters on the Thinopyrum chromosome arm, providing an opportunity to use chromosome genomics to identify Agropyron gene variant(s) responsible for the tillering capacity. The translocation line WT153397 is an important genetic stock for functional genetic studies of tiller formation and useful breeding material for increasing wheat yield potential. The study also discusses the use of the translocation line in wheat breeding. Supplementary information The online version contains supplementary material available at 10.1007/s11032-024-01439-y.
Collapse
Affiliation(s)
- Edina Türkösi
- Centre for Agricultural Research, Hungarian Research Network (HUN-REN), 2462 Martonvásár, Hungary
| | - Éva Szakács
- Centre for Agricultural Research, Hungarian Research Network (HUN-REN), 2462 Martonvásár, Hungary
| | - László Ivanizs
- Centre for Agricultural Research, Hungarian Research Network (HUN-REN), 2462 Martonvásár, Hungary
| | - András Farkas
- Centre for Agricultural Research, Hungarian Research Network (HUN-REN), 2462 Martonvásár, Hungary
| | - Eszter Gaál
- Centre for Agricultural Research, Hungarian Research Network (HUN-REN), 2462 Martonvásár, Hungary
| | - Mahmoud Said
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, 779 00 Olomouc, Czechia
- Agricultural Research Centre, Field Crops Research Institute, Cairo, Egypt
| | - Éva Darkó
- Centre for Agricultural Research, Hungarian Research Network (HUN-REN), 2462 Martonvásár, Hungary
| | - Mónika Cséplő
- Centre for Agricultural Research, Hungarian Research Network (HUN-REN), 2462 Martonvásár, Hungary
| | - Péter Mikó
- Centre for Agricultural Research, Hungarian Research Network (HUN-REN), 2462 Martonvásár, Hungary
| | - Jaroslav Doležel
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, 779 00 Olomouc, Czechia
| | - Márta Molnár-Láng
- Centre for Agricultural Research, Hungarian Research Network (HUN-REN), 2462 Martonvásár, Hungary
| | - István Molnár
- Centre for Agricultural Research, Hungarian Research Network (HUN-REN), 2462 Martonvásár, Hungary
| | - Klaudia Kruppa
- Centre for Agricultural Research, Hungarian Research Network (HUN-REN), 2462 Martonvásár, Hungary
| |
Collapse
|
7
|
Brabham HJ, Gómez De La Cruz D, Were V, Shimizu M, Saitoh H, Hernández-Pinzón I, Green P, Lorang J, Fujisaki K, Sato K, Molnár I, Šimková H, Doležel J, Russell J, Taylor J, Smoker M, Gupta YK, Wolpert T, Talbot NJ, Terauchi R, Moscou MJ. Barley MLA3 recognizes the host-specificity effector Pwl2 from Magnaporthe oryzae. THE PLANT CELL 2024; 36:447-470. [PMID: 37820736 PMCID: PMC10827324 DOI: 10.1093/plcell/koad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Plant nucleotide-binding leucine-rich repeat (NLRs) immune receptors directly or indirectly recognize pathogen-secreted effector molecules to initiate plant defense. Recognition of multiple pathogens by a single NLR is rare and usually occurs via monitoring for changes to host proteins; few characterized NLRs have been shown to recognize multiple effectors. The barley (Hordeum vulgare) NLR gene Mildew locus a (Mla) has undergone functional diversification, and the proteins encoded by different Mla alleles recognize host-adapted isolates of barley powdery mildew (Blumeria graminis f. sp. hordei [Bgh]). Here, we show that Mla3 also confers resistance to the rice blast fungus Magnaporthe oryzae in a dosage-dependent manner. Using a forward genetic screen, we discovered that the recognized effector from M. oryzae is Pathogenicity toward Weeping Lovegrass 2 (Pwl2), a host range determinant factor that prevents M. oryzae from infecting weeping lovegrass (Eragrostis curvula). Mla3 has therefore convergently evolved the capacity to recognize effectors from diverse pathogens.
Collapse
Affiliation(s)
- Helen J Brabham
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- 2Blades, Evanston, IL 60201, USA
| | - Diana Gómez De La Cruz
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Vincent Were
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Motoki Shimizu
- Iwate Biotechnology Research Centre, Kitakami 024-0003, Japan
| | - Hiromasa Saitoh
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | | | - Phon Green
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jennifer Lorang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Koki Fujisaki
- Iwate Biotechnology Research Centre, Kitakami 024-0003, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, 779 00 Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, 779 00 Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, 779 00 Olomouc, Czech Republic
| | - James Russell
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jodie Taylor
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Matthew Smoker
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yogesh Kumar Gupta
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- 2Blades, Evanston, IL 60201, USA
| | - Tom Wolpert
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ryohei Terauchi
- Iwate Biotechnology Research Centre, Kitakami 024-0003, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto 617-0001, Japan
| | - Matthew J Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
8
|
Ding N, Cai J, Xiao S, Jiang L. Heterologous expression of rice OsEXO70FX1 confers tolerance to cadmium in Arabidopsis thaliana and fission yeast. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108268. [PMID: 38091933 DOI: 10.1016/j.plaphy.2023.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 02/15/2024]
Abstract
Cadmium (Cd) is an environmental toxicant that accumulates in grains, which greatly increases the risk of human exposure to Cd via food chain. The exocytosis of Cd is one of the essential detoxification mechanisms in plants. OsEXO70s, which facilitate the fusion of secretory vesicles and target membranes, has undergone significant expansion in rice. Here, we uncovered 40 OsEXO70 genes characterized by genome-wide profiling and focused on the potential functions of OsEXO70s, especially OsEXO70FX1, in Cd stress. Overexpression of OsEXO70FX1 enhanced both diamide and Cd tolerances in Schizosaccharomyces pombe (S. pombe), and in Arabidopsis resulted in 11% more seedlings survival rate and about 70% longer primary roots under Cd treatment compared with WT (empty vector). Meanwhile, Cd treatment upregulated the expression levels of some exocyst subunits in overexpression lines. Trichomes isolated from overexpression lines were observed to accumulate more Cd. Also, reactive oxygen species (ROS) induced by Cd stress reflected less sensitivity of OsEXO70FX1 overexpression lines to Cd stress, which was evidenced in the Cd determination assay. These results provide the fundament to future research on rice EXO70 family and suggest that it may have evolved a specialized role in response to Cd stress.
Collapse
Affiliation(s)
- Ning Ding
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Jiajia Cai
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shimin Xiao
- Shanwei Marine Industry Institute, Shanwei Institute of Technology, Shanwei, 516600, China
| | - Li Jiang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
9
|
De la Concepcion JC. The exocyst complex is an evolutionary battleground in plant-microbe interactions. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102482. [PMID: 37924562 DOI: 10.1016/j.pbi.2023.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 11/06/2023]
Abstract
Exocytosis is a conserved trafficking pathway that transports secretory vesicles to the extracellular space, replenishes the plasma membrane and is essential for establishing cell polarity. Its spatiotemporal regulation is mediated by an evolutionary conserved octameric tethering complex, the exocyst. In plants, certain subunits of this complex have diversified and acquired multiple functions, including a central role in defense against pathogens and pests. Here, I review the latest evidence suggesting the dramatic expansion and functional diversification of the exocyst subunit Exo70 is likely driven by a coevolutionary arms race, in which Exo70 proteins are repeatedly targeted by effectors from multiple pathogens and, in turn, are monitored by plant immune receptors for pathogen perception.
Collapse
|
10
|
Dracatos PM, Lu J, Sánchez‐Martín J, Wulff BB. Resistance that stacks up: engineering rust and mildew disease control in the cereal crops wheat and barley. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1938-1951. [PMID: 37494504 PMCID: PMC10502761 DOI: 10.1111/pbi.14106] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 07/28/2023]
Abstract
Staying ahead of the arms race against rust and mildew diseases in cereal crops is essential to maintain and preserve food security. The methodological challenges associated with conventional resistance breeding are major bottlenecks for deploying resistance (R) genes in high-yielding crop varieties. Advancements in our knowledge of plant genomes, structural mechanisms, innovations in bioinformatics, and improved plant transformation techniques have alleviated this bottleneck by permitting rapid gene isolation, functional studies, directed engineering of synthetic resistance and precise genome manipulation in elite crop cultivars. Most cloned cereal R genes encode canonical immune receptors which, on their own, are prone to being overcome through selection for resistance-evading pathogenic strains. However, the increasingly large repertoire of cloned R genes permits multi-gene stacking that, in principle, should provide longer-lasting resistance. This review discusses how these genomics-enabled developments are leading to new breeding and biotechnological opportunities to achieve durable rust and powdery mildew control in cereals.
Collapse
Affiliation(s)
- Peter M. Dracatos
- La Trobe Institute for Sustainable Agriculture & Food (LISAF)Department of Animal, Plant and Soil SciencesLa Trobe UniversityVIC 3086Australia
| | - Jing Lu
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- Center for Desert AgricultureKAUSTThuwalSaudi Arabia
- College of Life SciencesSichuan UniversityChengduChina
- Chengdu Institute of Biology, Chinese Academy of SciencesChengduChina
| | - Javier Sánchez‐Martín
- Department of Microbiology and Genetics, Spanish‐Portuguese Agricultural Research Center (CIALE)University of SalamancaSalamancaSpain
| | - Brande B.H. Wulff
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- Center for Desert AgricultureKAUSTThuwalSaudi Arabia
| |
Collapse
|
11
|
Yuen ELH, Shepherd S, Bozkurt TO. Traffic Control: Subversion of Plant Membrane Trafficking by Pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:325-350. [PMID: 37186899 DOI: 10.1146/annurev-phyto-021622-123232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Membrane trafficking pathways play a prominent role in plant immunity. The endomembrane transport system coordinates membrane-bound cellular organelles to ensure that immunological components are utilized effectively during pathogen resistance. Adapted pathogens and pests have evolved to interfere with aspects of membrane transport systems to subvert plant immunity. To do this, they secrete virulence factors known as effectors, many of which converge on host membrane trafficking routes. The emerging paradigm is that effectors redundantly target every step of membrane trafficking from vesicle budding to trafficking and membrane fusion. In this review, we focus on the mechanisms adopted by plant pathogens to reprogram host plant vesicle trafficking, providing examples of effector-targeted transport pathways and highlighting key questions for the field to answer moving forward.
Collapse
Affiliation(s)
- Enoch Lok Him Yuen
- Department of Life Sciences, Imperial College, London, United Kingdom; , ,
| | - Samuel Shepherd
- Department of Life Sciences, Imperial College, London, United Kingdom; , ,
| | - Tolga O Bozkurt
- Department of Life Sciences, Imperial College, London, United Kingdom; , ,
| |
Collapse
|
12
|
De la Concepcion JC, Fujisaki K, Bentham AR, Cruz Mireles N, Sanchez de Medina Hernandez V, Shimizu M, Lawson DM, Kamoun S, Terauchi R, Banfield MJ. A blast fungus zinc-finger fold effector binds to a hydrophobic pocket in host Exo70 proteins to modulate immune recognition in rice. Proc Natl Acad Sci U S A 2022; 119:e2210559119. [PMID: 36252011 PMCID: PMC9618136 DOI: 10.1073/pnas.2210559119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Exocytosis plays an important role in plant-microbe interactions, in both pathogenesis and symbiosis. Exo70 proteins are integral components of the exocyst, an octameric complex that mediates tethering of vesicles to membranes in eukaryotes. Although plant Exo70s are known to be targeted by pathogen effectors, the underpinning molecular mechanisms and the impact of this interaction on infection are poorly understood. Here, we show the molecular basis of the association between the effector AVR-Pii of the blast fungus Maganaporthe oryzae and rice Exo70 alleles OsExo70F2 and OsExo70F3, which is sensed by the immune receptor pair Pii via an integrated RIN4/NOI domain. The crystal structure of AVR-Pii in complex with OsExo70F2 reveals that the effector binds to a conserved hydrophobic pocket in Exo70, defining an effector/target binding interface. Structure-guided and random mutagenesis validates the importance of AVR-Pii residues at the Exo70 binding interface to sustain protein association and disease resistance in rice when challenged with fungal strains expressing effector mutants. Furthermore, the structure of AVR-Pii defines a zinc-finger effector fold (ZiF) distinct from the MAX (Magnaporthe Avrs and ToxB-like) fold previously described for a majority of characterized M. oryzae effectors. Our data suggest that blast fungus ZiF effectors bind a conserved Exo70 interface to manipulate plant exocytosis and that these effectors are also baited by plant immune receptors, pointing to new opportunities for engineering disease resistance.
Collapse
Affiliation(s)
| | - Koki Fujisaki
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, 024-0003, Japan
| | - Adam R. Bentham
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Neftaly Cruz Mireles
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, NR4 7UH, United Kingdom
- The Sainsbury Laboratory, University of East Anglia, Norwich, NR4 7UH, United Kingdom
| | | | - Motoki Shimizu
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, 024-0003, Japan
| | - David M. Lawson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich, NR4 7UH, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, 024-0003, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8501, Japan
| | - Mark J. Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|