1
|
Liu Y, Weng H, Chen Z, Zong M, Fang S, Wang Z, He S, Wu Y, Lin J, Feng S, Lin D. Antibody screening-assisted multichannel nanoplasmonic sensing chip based on SERS for viral screening and variants identification. Biosens Bioelectron 2025; 271:117015. [PMID: 39662175 DOI: 10.1016/j.bios.2024.117015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
The Omicron variants of SARS-CoV-2 have been spreading globally and have never disappeared from our sight, indicating that their coexistence with humans has become a fact, and monitoring its evolution and spread remains a current task. Although polymerase chain reaction (PCR) is the most commonly used virus detection method, it requires labor-intensive and time-consuming procedures in a laboratory setting. Herein, a multichannel nanoplasmonic sensing chip based on surface enhanced Raman spectroscopy (SERS) was developed for detecting N and S proteins, as well as IgG and IgM, related to SARS-CoV-2 Omicron variants. Through a self-screening process, specific antibodies for on-site and rapid identification of important variants of concern (VoCs) were obtained, and their binding was confirmed by protein structure analysis. The use of these S protein specific antibodies can accurately identify Omicron VoCs (BA. 5, BF.7,XBB.1.5) with the detection limit (LoD) of 0.16 pg/mL. Then, the proposed SERS array chip was integrated with a hand-held Raman spectrometer to successfully detect the Omicron subvariants in real saliva samples within only 20 min, greatly reducing the detection time of PCR. This sensing technology will provide a powerful and rapid point-of-care testing (POCT) method for virus diagnosis, subtype identification, and post-infection antibody level monitoring.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Huanjiao Weng
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Zhiwei Chen
- Fuzhou Center for Disease Control and Prevention, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350000, China
| | - Ming Zong
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Shubin Fang
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Zili Wang
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Shaohua He
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Yangmin Wu
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Jizhen Lin
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China.
| | - Shangyuan Feng
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, China.
| | - Duo Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
2
|
Amoddeo A. In silico assessment of CAR macrophages activity against SARS-CoV-2 infection. Heliyon 2024; 10:e39689. [PMID: 39524874 PMCID: PMC11550025 DOI: 10.1016/j.heliyon.2024.e39689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Macrophage engineering with chimeric antigen receptor is a promising technique first applied to the treatment of tumours and recently suggested as a possible immunotherapeutic route against the COVID-19 disease. Four immunotherapies based on engineered macrophages have been tested in vitro revealing promising, with one of them acting without increasing the cytokines level. We present a mathematical model aimed at the evaluation of both the SARS-CoV-2 virions dynamics and the cytokines production induced, while such newly developed constructs interact with the immune system once administered. The importance of the study lies both in monitoring the dynamics of the infection and in evaluating the cytokine production, since clinical studies show that in critical COVID-19 patients an abnormal cytokines production occurs, a concern to be accounted for in designing appropriate therapeutic strategies. The mathematical model was built in the context of the continuum approach of the mass conservation, while the numerical simulations have been performed introducing parameters deduced from the experiments, using the finite element method. The model simulations allow to analyse and to compare the immune mechanisms underlying the virus dynamics, deepening the investigation for two selected immunotherapies, suggesting that a synergistic work of involved cytokines with phagocytic activity of macrophages occurs. The best SARS-CoV-2 clearance relies not only on the phagocytic capacity of the engineered macrophages, but also on the production of T-lymphocytes, pro- and anti-inflammatory cytokines which in the two cases examined in depth can decrease by 99.7 %, 99.6 % and 69 % respectively, passing from the most effective immunotherapy to the least effective one. This study is the first mathematical model that analyses the dynamics of macrophages engineered to fight the COVID-19, and paves the way for their possible exploitation against such a challenging disease, going beyond existing models involving other immune cells.
Collapse
Affiliation(s)
- Antonino Amoddeo
- Department of Civil, Energy, Environment and Materials Engineering, Università’Mediterranea’ di Reggio Calabria, Via R. Zehender 1, Feo di Vito, I-89122, Reggio Calabria, Italy
| |
Collapse
|
3
|
Verma SK, Ana-Sosa-Batiz F, Timis J, Shafee N, Maule E, Pinto PBA, Conner C, Valentine KM, Cowley DO, Miller R, Elong Ngono A, Tran L, Varghese K, Dos Santos Alves RP, Hastie KM, Saphire EO, Webb DR, Jarnagin K, Kim K, Shresta S. Influence of Th1 versus Th2 immune bias on viral, pathological, and immunological dynamics in SARS-CoV-2 variant-infected human ACE2 knock-in mice. EBioMedicine 2024; 108:105361. [PMID: 39353281 PMCID: PMC11472634 DOI: 10.1016/j.ebiom.2024.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Mouse models that recapitulate key features of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection are important tools for understanding complex interactions between host genetics, immune responses, and SARS-CoV-2 pathogenesis. Little is known about how predominantly cellular (Th1 type) versus humoral (Th2 type) immune responses influence SARS-CoV-2 dynamics, including infectivity and disease course. METHODS We generated knock-in (KI) mice expressing human ACE2 (hACE2) and/or human TMPRSS2 (hTMPRSS2) on Th1-biased (C57BL/6; B6) and Th2-biased (BALB/c) genetic backgrounds. Mice were infected intranasally with SARS-CoV-2 Delta (B.1.617.2) or Omicron BA.1 (B.1.1.529) variants, followed by assessment of disease course, respiratory tract infection, lung histopathology, and humoral and cellular immune responses. FINDINGS In both B6 and BALB/c mice, hACE2 expression was required for infection of the lungs with Delta, but not Omicron BA.1. Disease severity was greater in Omicron BA.1-infected hTMPRSS2-KI and double-KI BALB/c mice compared with B6 mice, and in Delta-infected double-KI B6 and BALB/c mice compared with hACE2-KI mice. hACE2-KI B6 mice developed more severe lung pathology and more robust SARS-CoV-2-specific splenic CD8 T cell responses compared with hACE2-KI BALB/c mice. There were no notable differences between the two genetic backgrounds in plasma cell, germinal center B cell, or antibody responses to SARS-CoV-2. INTERPRETATION SARS-CoV-2 Delta and Omicron BA.1 infection, disease course, and CD8 T cell response are influenced by the host genetic background. These humanized mice hold promise as important tools for investigating the mechanisms underlying the heterogeneity of SARS-CoV-2-induced pathogenesis and immune response. FUNDING This work was funded by NIH U19 AI142790-02S1, the GHR Foundation, the Arvin Gottleib Foundation, and the Overton family (to SS and EOS); Prebys Foundation (to SS); NIH R44 AI157900 (to KJ); and by an American Association of Immunologists Career Reentry Fellowship (FASB).
Collapse
Affiliation(s)
- Shailendra Kumar Verma
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Julia Timis
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Erin Maule
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Chris Conner
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Kristen M Valentine
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Dale O Cowley
- TransViragen Inc., 109 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Robyn Miller
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Annie Elong Ngono
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Linda Tran
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Krithik Varghese
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Kathryn M Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - David R Webb
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Kurt Jarnagin
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.
| | - Sujan Shresta
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, CA, 92037, USA.
| |
Collapse
|
4
|
Wang M, Zhang D, Lei T, Zhou Y, Qin H, Wu Y, Liu S, Zhang L, Jia K, Dong Y, Wang S, Li Y, Fan Y, Gui L, Dong Y, Zhang W, Li Z, Hou J. Interferon-responsive neutrophils and macrophages extricate SARS-CoV-2 Omicron critical patients from the nasty fate of sepsis. J Med Virol 2024; 96:e29889. [PMID: 39206862 DOI: 10.1002/jmv.29889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/24/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
The SARS-CoV-2 Omicron variant is characterized by its high transmissibility, which has caused a worldwide epidemiological event. Yet, it turns ominous once the disease progression degenerates into severe pneumonia and sepsis, presenting a horrendous lethality. To elucidate the alveolar immune or inflammatory landscapes of Omicron critical-ill patients, we performed single-cell RNA-sequencing (scRNA-seq) of bronchoalveolar lavage fluid (BALF) from the patients with critical pneumonia caused by Omicron infection, and analyzed the correlation between the clinical severity scores and different immune cell subpopulations. In the BALF of Omicron critical patients, the alveolar violent myeloid inflammatory environment was determined. ISG15+ neutrophils and CXCL10+ macrophages, both expressed the interferon-stimulated genes (ISGs), were negatively correlated with clinical pulmonary infection score, while septic CST7+ neutrophils and inflammatory VCAN+ macrophages were positively correlated with sequential organ failure assessment. The percentages of ISG15+ neutrophils were associated with more protective alveolar epithelial cells, and may reshape CD4+ T cells to the exhaustive phenotype, thus preventing immune injuries. The CXCL10+ macrophages may promote plasmablast/plasma cell survival and activation as well as the production of specific antibodies. As compared to the previous BALF scRNA-seq data from SARS-CoV-2 wild-type/Alpha critical patients, the subsets of neutrophils and macrophages with pro-inflammatory and immunoregulatory features presented obvious distinctions, suggesting an immune disparity in Omicron variants. Overall, this study provides a BALF single-cell atlas of Omicron critical patients, and suggests that alveolar interferon-responsive neutrophils and macrophages may extricate SARS-CoV-2 Omicron critical patients from the nasty fate of sepsis.
Collapse
Affiliation(s)
- Mu Wang
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Dingji Zhang
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Ting Lei
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Ye Zhou
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Hao Qin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Yanfeng Wu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Shuxun Liu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Liyuan Zhang
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Kaiwei Jia
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Yue Dong
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Suyuan Wang
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Yunhui Li
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Yiwen Fan
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Liangchen Gui
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Yuchao Dong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Zhixuan Li
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Jin Hou
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| |
Collapse
|
5
|
Subramaniam S, Kenney D, Jayaraman A, O’Connell AK, Walachowski S, Montanaro P, Reinhardt C, Colucci G, Crossland NA, Douam F, Bosmann M. Aging is associated with an insufficient early inflammatory response of lung endothelial cells in SARS-CoV-2 infection. Front Immunol 2024; 15:1397990. [PMID: 38911865 PMCID: PMC11190167 DOI: 10.3389/fimmu.2024.1397990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Advanced age is associated with an increased susceptibility to Coronavirus Disease (COVID)-19 and more severe outcomes, although the underlying mechanisms are understudied. The lung endothelium is located next to infected epithelial cells and bystander inflammation may contribute to thromboinflammation and COVID-19-associated coagulopathy. Here, we investigated age-associated SARS-CoV-2 pathogenesis and endothelial inflammatory responses using humanized K18-hACE2 mice. Survival was reduced to 20% in aged mice (85-112 weeks) versus 50% in young mice (12-15 weeks) at 10 days post infection (dpi). Bulk RNA-sequencing of endothelial cells from mock and infected mice at 2dpi of both age groups (aged: 72-85 weeks; young: 15 weeks) showed substantially lower significant differentially regulated genes in infected aged mice than in young mice (712 versus 2294 genes). Viral recognition and anti-viral pathways such as RIG-I-like receptor signaling, NOD-like receptor signaling and interferon signaling were regulated in response to SARS-CoV-2. Young mice showed several fold higher interferon responses (Ifitm3, Ifit1, Isg15, Stat1) and interferon-induced chemokines (Cxcl10 and Cxcl11) than aged mice. Endothelial cells from infected young mice displayed elevated expression of chemokines (Cxcl9, Ccl2) and leukocyte adhesion markers (Icam1) underscoring that inflammation of lung endothelium during infection could facilitate leukocyte adhesion and thromboinflammation. TREM1 and acute phase response signaling were particularly prominent in endothelial cells from infected young mice. Immunohistochemistry was unable to detect viral protein in pulmonary endothelium. In conclusion, our data demonstrate that the early host response of the endothelium to SARS-CoV-2 infection declines with aging, which could be a potential contributor to disease severity.
Collapse
Affiliation(s)
- Saravanan Subramaniam
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Devin Kenney
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, United States
- Department of Virology, Immunology and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Archana Jayaraman
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Aoife Kateri O’Connell
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, United States
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Sarah Walachowski
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Paige Montanaro
- Department of Virology, Immunology and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Giuseppe Colucci
- Outer Corelab, Viollier AG, Allschwil, Switzerland
- Department of Hematology, University of Basel, Basel, Switzerland
| | - Nicholas A. Crossland
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, United States
- Department of Virology, Immunology and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Florian Douam
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, United States
- Department of Virology, Immunology and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, United States
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
6
|
Martins M, Nooruzzaman M, Cunningham JL, Ye C, Caserta LC, Jackson N, Martinez-Sobrido L, Fang Y, Diel DG. The SARS-CoV-2 Spike is a virulence determinant and plays a major role on the attenuated phenotype of Omicron virus in a feline model of infection. J Virol 2024; 98:e0190223. [PMID: 38421180 PMCID: PMC10949471 DOI: 10.1128/jvi.01902-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
The role of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.1 Spike (S) on disease pathogenesis was investigated. For this, we generated recombinant viruses harboring the S D614G mutation (rWA1-D614G) and the Omicron BA.1 S gene (rWA1-Omi-S) in the backbone of the ancestral SARS-CoV-2 WA1 strain genome. The recombinant viruses were characterized in vitro and in vivo. Viral entry, cell-cell fusion, plaque size, and the replication kinetics of the rWA1-Omi-S virus were markedly impaired when compared to the rWA1-D614G virus, demonstrating a lower fusogenicity and ability to spread cell-to-cell of rWA1-Omi-S. To assess the contribution of the Omicron BA.1 S protein to SARS-CoV-2 pathogenesis, the pathogenicity of rWA1-D614G and rWA1-Omi-S viruses was compared in a feline model. While the rWA1-D614G-inoculated cats were lethargic and showed increased body temperatures on days 2 and 3 post-infection (pi), rWA1-Omi-S-inoculated cats remained subclinical and gained weight throughout the 14-day experimental period. Animals inoculated with rWA1-D614G presented higher infectious virus shedding in nasal secretions, when compared to rWA1-Omi-S-inoculated animals. In addition, tissue replication of the rWA1-Omi-S was markedly reduced compared to the rWA1-D614G, as evidenced by lower viral load in tissues on days 3 and 5 pi. Histologic examination of the nasal turbinate and lungs revealed intense inflammatory infiltration in rWA1-D614G-inoculated animals, whereas rWA1-Omi-S-inoculated cats presented only mild to modest inflammation. Together, these results demonstrate that the S protein is a major virulence determinant for SARS-CoV-2 playing a major role for the attenuated phenotype of the Omicron virus. IMPORTANCE We have demonstrated that the Omicron BA.1.1 variant presents lower pathogenicity when compared to D614G (B.1) lineage in a feline model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. There are over 50 mutations across the Omicron genome, of which more than two-thirds are present in the Spike (S) protein. To assess the role of the Omicron BA.1 S on virus pathogenesis, recombinant viruses harboring the S D614G mutation (rWA1-D614G) and the Omicron BA.1 Spike gene (rWA1-Omi-S) in the backbone of the ancestral SARS-CoV-2 WA1 were generated. While the Omicron BA.1 S promoted early entry into cells, it led to impaired fusogenic activity and cell-cell spread. Infection studies with the recombinant viruses in a relevant naturally susceptible feline model of SARS-CoV-2 infection here revealed an attenuated phenotype of rWA1-Omi-S, demonstrating that the Omi-S is a major determinant of the attenuated disease phenotype of Omicron strains.
Collapse
Affiliation(s)
- Mathias Martins
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Mohammed Nooruzzaman
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jessie Lee Cunningham
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Leonardo Cardia Caserta
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | | | | | - Ying Fang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|