1
|
Shin JC, Jeong JH, Kwon J, Kim YH, Kim B, Woo SJ, Woo KY, Cho M, Watanabe K, Taniguchi T, Kim YD, Cho YH, Lee TW, Hone J, Lee CH, Lee GH. Electrically Confined Electroluminescence of Neutral Excitons in WSe 2 Light-Emitting Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310498. [PMID: 38169481 DOI: 10.1002/adma.202310498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Monolayer transition metal dichalcogenides (TMDs) have drawn significant attention for their potential in optoelectronic applications due to their direct band gap and exceptional quantum yield. However, TMD-based light-emitting devices have shown low external quantum efficiencies as imbalanced free carrier injection often leads to the formation of non-radiative charged excitons, limiting practical applications. Here, electrically confined electroluminescence (EL) of neutral excitons in tungsten diselenide (WSe2) light-emitting transistors (LETs) based on the van der Waals heterostructure is demonstrated. The WSe2 channel is locally doped to simultaneously inject electrons and holes to the 1D region by a local graphene gate. At balanced concentrations of injected electrons and holes, the WSe2 LETs exhibit strong EL with a high external quantum efficiency (EQE) of ≈8.2 % at room temperature. These experimental and theoretical results consistently show that the enhanced EQE could be attributed to dominant exciton emission confined at the 1D region while expelling charged excitons from the active area by precise control of external electric fields. This work shows a promising approach to enhancing the EQE of 2D light-emitting transistors and modulating the recombination of exciton complexes for excitonic devices.
Collapse
Affiliation(s)
- June-Chul Shin
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Hwan Jeong
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junyoung Kwon
- Department of Material Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yeon Ho Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Bumho Kim
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Seung-Je Woo
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kie Young Woo
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Minhyun Cho
- Department of Physics and Department of Information Display, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Young Duck Kim
- Department of Physics and Department of Information Display, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yong-Hoon Cho
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - James Hone
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Chul-Ho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gwan-Hyoung Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
2
|
Lee H, Kim YB, Ryu JW, Kim S, Bae J, Koo Y, Jang D, Park KD. Recent progress of exciton transport in two-dimensional semiconductors. NANO CONVERGENCE 2023; 10:57. [PMID: 38102309 PMCID: PMC10724105 DOI: 10.1186/s40580-023-00404-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
Spatial manipulation of excitonic quasiparticles, such as neutral excitons, charged excitons, and interlayer excitons, in two-dimensional semiconductors offers unique capabilities for a broad range of optoelectronic applications, encompassing photovoltaics, exciton-integrated circuits, and quantum light-emitting systems. Nonetheless, their practical implementation is significantly restricted by the absence of electrical controllability for neutral excitons, short lifetime of charged excitons, and low exciton funneling efficiency at room temperature, which remain a challenge in exciton transport. In this comprehensive review, we present the latest advancements in controlling exciton currents by harnessing the advanced techniques and the unique properties of various excitonic quasiparticles. We primarily focus on four distinct control parameters inducing the exciton current: electric fields, strain gradients, surface plasmon polaritons, and photonic cavities. For each approach, the underlying principles are introduced in conjunction with its progression through recent studies, gradually expanding their accessibility, efficiency, and functionality. Finally, we outline the prevailing challenges to fully harness the potential of excitonic quasiparticles and implement practical exciton-based optoelectronic devices.
Collapse
Affiliation(s)
- Hyeongwoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yong Bin Kim
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jae Won Ryu
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sujeong Kim
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jinhyuk Bae
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yeonjeong Koo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Donghoon Jang
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kyoung-Duck Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
3
|
Lee S, Choi WH, Cho H, Lee SH, Choi W, Joo J, Lee D, Gong SH. Electric-Field-Driven Trion Drift and Funneling in MoSe 2 Monolayer. NANO LETTERS 2023; 23:4282-4289. [PMID: 37167152 PMCID: PMC10215787 DOI: 10.1021/acs.nanolett.3c00460] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Excitons, electron-hole pairs in semiconductors, can be utilized as information carriers with a spin or valley degree of freedom. However, manipulation of excitons' motion is challenging because of their charge-neutral characteristic and short recombination lifetimes. Here we demonstrate electric-field-driven drift and funneling of charged excitons (i.e., trions) toward the center of a MoSe2 monolayer. Using a simple bottom-gate device, we control the electric fields in the vicinity of the suspended monolayer, which increases the trion density and pulls down the layer. We observe that locally excited trions are subjected to electric force and, consequently, drift toward the center of the stretched layer. The exerting electric force on the trion is estimated to be 102-104 times stronger than the strain-induced force in the stretched monolayer, leading to the successful observation of trion drift under continuous-wave excitation. Our findings provide a new route for manipulating trions and achieving new types of optoelectronic devices.
Collapse
Affiliation(s)
- Seong
Won Lee
- Department
of Physics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- KU
Photonics Center, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Woo Hun Choi
- Department
of Physics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- KU
Photonics Center, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - HyunHee Cho
- Department
of Physics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang-hun Lee
- Department
of Physics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Wookyoung Choi
- Department
of Physics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jinsoo Joo
- Department
of Physics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Donghun Lee
- Department
of Physics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Su-Hyun Gong
- Department
of Physics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- KU
Photonics Center, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
4
|
Wagner K, Iakovlev ZA, Ziegler JD, Cuccu M, Taniguchi T, Watanabe K, Glazov MM, Chernikov A. Diffusion of Excitons in a Two-Dimensional Fermi Sea of Free Charges. NANO LETTERS 2023. [PMID: 37220259 DOI: 10.1021/acs.nanolett.2c03796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Propagation of light-emitting quasiparticles is of central importance across the fields of condensed matter physics and nanomaterials science. We experimentally demonstrate diffusion of excitons in the presence of a continuously tunable Fermi sea of free charge carriers in a monolayer semiconductor. Light emission from tightly bound exciton states in electrically gated WSe2 monolayer is detected using spatially and temporally resolved microscopy. The measurements reveal a nonmonotonic dependence of the exciton diffusion coefficient on the charge carrier density in both electron and hole doped regimes. Supported by analytical theory describing exciton-carrier interactions in a dissipative system, we identify distinct regimes of elastic scattering and quasiparticle formation determining exciton diffusion. The crossover region exhibits a highly unusual behavior of an increasing diffusion coefficient with increasing carrier densities. Temperature-dependent diffusion measurements further reveal characteristic signatures of freely propagating excitonic complexes dressed by free charges with effective mobilities up to 3 × 103 cm2/(V s).
Collapse
Affiliation(s)
- Koloman Wagner
- Institute of Applied Physics and Wüzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
- Department of Physics, University of Regensburg, 93053 Regensburg, Germany
| | | | - Jonas D Ziegler
- Institute of Applied Physics and Wüzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
- Department of Physics, University of Regensburg, 93053 Regensburg, Germany
| | - Marzia Cuccu
- Institute of Applied Physics and Wüzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-004, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-004, Japan
| | | | - Alexey Chernikov
- Institute of Applied Physics and Wüzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
- Department of Physics, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
5
|
Zou J, Zhu R, Wang J, Meng H, Wang Z, Chen H, Weng YX. Coherent Phonon-Mediated Many-Body Interaction in Monolayer WSe 2. J Phys Chem Lett 2023; 14:4657-4665. [PMID: 37167104 DOI: 10.1021/acs.jpclett.3c00870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Due to the strong Coulomb interaction, the optical and electrical properties of two-dimensional transition metal dichalcogenides (TMDCs) are greatly determined by the emergence of many-body complexes such as excitons or trions. To fully realize the potential functionalities of these atomically thin materials, a comprehensive understanding of their many-body interaction mechanism is essential. Here, using the advanced femtosecond two-dimensional electronic spectroscopy technique combined with broadband transient absorption spectroscopy, a strong electron-exciton coupling effect in monolayer WSe2 following the ultrafast photoexcitation is revealed. We demonstrate that such many-body complexes can be generated effectively through the band-edge optical excitation, with a ∼1.5 ps stabilization process. The coherent optical phonon plays a dominant role in this electron-exciton interaction, and the coherence of the electron (exciton)-phonon coupling can last for ∼4.5 ps. This finding offers new insight into the formation mechanism of photoinduced many-body complexes in TMDCs.
Collapse
Affiliation(s)
- Jiading Zou
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruidan Zhu
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiayu Wang
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanting Meng
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuan Wang
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hailong Chen
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yu-Xiang Weng
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Ziegler JD, Cho Y, Terres S, Menahem M, Taniguchi T, Watanabe K, Yaffe O, Berkelbach TC, Chernikov A. Mobile Trions in Electrically Tunable 2D Hybrid Perovskites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210221. [PMID: 36811916 DOI: 10.1002/adma.202210221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/27/2023] [Indexed: 05/05/2023]
Abstract
2D hybrid perovskites are currently in the spotlight of material research for light-harvesting and -emitting applications. It remains extremely challenging, however, to externally control their optical response due to the difficulties of introducing electrical doping. Here, an approach of interfacing ultrathin sheets of perovskites with few-layer graphene and hexagonal boron nitride into gate-tunable, hybrid heterostructures, is demonstrated. It allows for bipolar, continuous tuning of light emission and absorption in 2D perovskites by electrically injecting carriers to densities as high as 1012 cm-2 . This reveals the emergence of both negatively and positively charged excitons, or trions, with binding energies up to 46 meV, among the highest measured for 2D systems. Trions are shown to dominate light emission and propagate with mobilities reaching 200 cm2 V-1 s-1 at elevated temperatures. The findings introduce the physics of interacting mixtures of optical and electrical excitations to the broad family of 2D inorganic-organic nanostructures. The presented strategy to electrically control the optical response of 2D perovskites highlights it as a promising material platform toward electrically modulated light-emitters, externally guided charged exciton currents, and exciton transistors based on layered, hybrid semiconductors.
Collapse
Affiliation(s)
- Jonas D Ziegler
- Institute of Applied Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, TU Dresden, 01062, Dresden, Germany
| | - Yeongsu Cho
- Department of Chemistry, Columbia University, New York, New York, 10027, USA
| | - Sophia Terres
- Institute of Applied Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, TU Dresden, 01062, Dresden, Germany
| | - Matan Menahem
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, 305-0047, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, 305-0047, Japan
| | - Omer Yaffe
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Timothy C Berkelbach
- Center for Computational Quantum Physics, Flatiron Institute, New York, 10010, USA
- Department of Chemistry, Columbia University, New York, 10027, USA
| | - Alexey Chernikov
- Institute of Applied Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, TU Dresden, 01062, Dresden, Germany
| |
Collapse
|
7
|
Kim B, Luo Y, Rhodes D, Bai Y, Wang J, Liu S, Jordan A, Huang B, Li Z, Taniguchi T, Watanabe K, Owen J, Strauf S, Barmak K, Zhu X, Hone J. Free Trions with Near-Unity Quantum Yield in Monolayer MoSe 2. ACS NANO 2022; 16:140-147. [PMID: 34935357 DOI: 10.1021/acsnano.1c04331] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Trions, quasiparticles composed of an electron-hole pair bound to a second electron and/or hole, are many-body states with potential applications in optoelectronics. Trions in monolayer transition metal dichalcogenide (TMD) semiconductors have attracted recent interest due to their valley/spin polarization, strong binding energy, and tunability through external gate control. However, low materials quality (i.e., high defect density) has hindered efforts to understand the intrinsic properties of trions. The low photoluminescence (PL) quantum yield (QY) and short lifetime of trions have prevented harnessing them in device applications. Here, we study the behavior of trions in a series of MoSe2 monolayers, with atomic defect density varying by over 2 orders of magnitude. The QY increases with decreasing defect density and approaches unity in the cleanest material. Simultaneous measurement of the PL lifetime yields both the intrinsic radiative lifetime and the defect-dependent nonradiative lifetime. The long lifetime of ∼230 ps of trions allows direct observation of their diffusion.
Collapse
Affiliation(s)
- Bumho Kim
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Yue Luo
- Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
- Center for Nanoscale Systems, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Daniel Rhodes
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Yusong Bai
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jue Wang
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Song Liu
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Abraham Jordan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Baili Huang
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Zhaochen Li
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Jonathan Owen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Stefan Strauf
- Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Katayun Barmak
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Xiaoyang Zhu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - James Hone
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
8
|
Kim JM, Haque MF, Hsieh EY, Nahid SM, Zarin I, Jeong KY, So JP, Park HG, Nam S. Strain Engineering of Low-Dimensional Materials for Emerging Quantum Phenomena and Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021:e2107362. [PMID: 34866241 DOI: 10.1002/adma.202107362] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Recent discoveries of exotic physical phenomena, such as unconventional superconductivity in magic-angle twisted bilayer graphene, dissipationless Dirac fermions in topological insulators, and quantum spin liquids, have triggered tremendous interest in quantum materials. The macroscopic revelation of quantum mechanical effects in quantum materials is associated with strong electron-electron correlations in the lattice, particularly where materials have reduced dimensionality. Owing to the strong correlations and confined geometry, altering atomic spacing and crystal symmetry via strain has emerged as an effective and versatile pathway for perturbing the subtle equilibrium of quantum states. This review highlights recent advances in strain-tunable quantum phenomena and functionalities, with particular focus on low-dimensional quantum materials. Experimental strategies for strain engineering are first discussed in terms of heterogeneity and elastic reconfigurability of strain distribution. The nontrivial quantum properties of several strain-quantum coupled platforms, including 2D van der Waals materials and heterostructures, topological insulators, superconducting oxides, and metal halide perovskites, are next outlined, with current challenges and future opportunities in quantum straintronics followed. Overall, strain engineering of quantum phenomena and functionalities is a rich field for fundamental research of many-body interactions and holds substantial promise for next-generation electronics capable of ultrafast, dissipationless, and secure information processing and communications.
Collapse
Affiliation(s)
- Jin Myung Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Md Farhadul Haque
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ezekiel Y Hsieh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shahriar Muhammad Nahid
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ishrat Zarin
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kwang-Yong Jeong
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- Department of Physics, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jae-Pil So
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Hong-Gyu Park
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Republic of Korea
| | - SungWoo Nam
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
9
|
Lee EK, Abdullah H, Torricelli F, Lee DH, Ko JK, Kim HH, Yoo H, Oh JH. Boosting the Optoelectronic Properties of Molybdenum Diselenide by Combining Phase Transition Engineering with Organic Cationic Dye Doping. ACS NANO 2021; 15:17769-17779. [PMID: 34767355 DOI: 10.1021/acsnano.1c05936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional layered transition metal dichalcogenides (TMDs) have been investigated intensively as next-generation semiconducting materials. However, conventional TMD-based devices exhibit large contact resistance at the interface between the TMD and the metal electrode because of Fermi level pinning and the Schottky barrier, which results in poor charge injection. Here, we present enhanced charge transport characteristics in molybdenum diselenide (MoSe2) by means of a sequential engineering process called PESOD-2H/1T (i.e., phase transition engineering combined with surface transfer organic cationic dye doping; 2H and 1T represent the trigonal prismatic and octahedral phases, respectively). Substantial improvements are observed in PESOD-processed MoSe2 phototransistors, specifically, an approximately 40 000-fold increase in effective carrier mobility and a 100 000-fold increase in photoresponsivity, compared with the mobility and photoresponsivity of intact MoSe2 phototransistors. Moreover, the PESOD-processed MoSe2 phototransistor on a flexible substrate maintains its optoelectronic properties under tensile stress, with a bending radius of 5 mm.
Collapse
Affiliation(s)
- Eun Kwang Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- MLCC Development Team, Samsung Electro-Mechanics, 150, Maeyeong-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16674, Republic of Korea
| | - Hanum Abdullah
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Fabrizio Torricelli
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Dong Hyun Lee
- Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Republic of Korea
| | - Jae Kwon Ko
- Department of Energy Engineering Convergence & School of Materials Science and Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea
| | - Hyun Ho Kim
- Department of Energy Engineering Convergence & School of Materials Science and Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea
| | - Hocheon Yoo
- Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
10
|
Cheng G, Li B, Jin Z, Zhang M, Wang J. Observation of Diffusion and Drift of the Negative Trions in Monolayer WS 2. NANO LETTERS 2021; 21:6314-6320. [PMID: 34250802 DOI: 10.1021/acs.nanolett.1c02351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Monolayer transition metal dichalcogenides (ML-TMDCs) are a versatile platform to explore the transport dynamics of the tightly bound excitonic states. The diffusion of neutral excitons in various ML-TMDCs has been observed. However, the transport of charged excitons (trions), which can be driven by an in-plane electric field and facilitate the formation of an excitonic current, has yet been well investigated. Here, we report the direct observation of diffusion and drift of the trions in ML-WS2 through spatially and time-resolved photoluminescence. An effective diffusion coefficient of 0.47 cm2/s was extracted from the broadening of spatial profiles of the trion emission. When an in-plane electric field is applied, the spatial shift of the trion emission profiles indicated a drift velocity of 7400 cm/s. Both the diffusion caused broadening and the drift caused shift of the emission profiles saturate because of the Coulomb interactions between trions and the background charges.
Collapse
Affiliation(s)
- Guanghui Cheng
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Department of Physics and Astronomy, Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
- WPI Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Baikui Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zijing Jin
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Meng Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jiannong Wang
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
11
|
Rana F, Koksal O, Jung M, Shvets G, Vamivakas AN, Manolatou C. Exciton-Trion Polaritons in Doped Two-Dimensional Semiconductors. PHYSICAL REVIEW LETTERS 2021; 126:127402. [PMID: 33834815 DOI: 10.1103/physrevlett.126.127402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
We present a many-body theory of exciton-trion polaritons (ETPs) in doped two-dimensional semiconductor materials. ETPs are robust coherent hybrid excitations involving excitons, trions, and photons. In ETPs, the 2-body exciton states are coupled to the material ground state via exciton-photon interaction, and the 4-body trion states are coupled to the exciton states via Coulomb interaction. The trion states are not directly optically coupled to the material ground state. The energy-momentum dispersion of ETPs exhibit three bands. We calculate the energy band dispersions and the compositions of ETPs at different doping densities using Green's functions. The energy splittings between the polariton bands, as well as the spectral weights of the polariton bands, depend on the strength of the Coulomb coupling between the excitons and the trions, which in turn depends sensitively on the doping density. The doping density dependence of the ETP bands and the charged nature of the trion states could enable novel electrical and optical control of ETPs.
Collapse
Affiliation(s)
- Farhan Rana
- School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Okan Koksal
- School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Minwoo Jung
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - A Nick Vamivakas
- Institute of Optics, University of Rochester, Rochester, New York, USA
| | - Christina Manolatou
- School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
12
|
Singh S, Singh PK, Umar A, Lohia P, Albargi H, Castañeda L, Dwivedi DK. 2D Nanomaterial-Based Surface Plasmon Resonance Sensors for Biosensing Applications. MICROMACHINES 2020; 11:E779. [PMID: 32824184 PMCID: PMC7463818 DOI: 10.3390/mi11080779] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022]
Abstract
The absorption and binding energy of material plays an important role with a large surface area and conductivity for the development of any sensing device. The newly grown 2D nanomaterials like black phosphorus transition metal dichalcogenides (TMDCs) or graphene have excellent properties for sensing devices' fabrication. This paper summarizes the progress in the area of the 2D nanomaterial-based surface plasmon resonance (SPR) sensor during last decade. The paper also focuses on the structure of Kretschmann configuration, the sensing principle of SPR, its characteristic parameters, application in various fields, and some important recent works related to SPR sensors have also been discussed, based on the present and future scope of this field. The present paper provides a platform for researchers to work in the field of 2D nanomaterial-based SPR sensors.
Collapse
Affiliation(s)
- Sachin Singh
- Amorphous Semiconductor Research Lab, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, India; (S.S.); (P.K.S.)
| | - Pravin Kumar Singh
- Amorphous Semiconductor Research Lab, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, India; (S.S.); (P.K.S.)
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia
- Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Saudi Arabia;
| | - Pooja Lohia
- Department of Electronics and Communication Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, India;
| | - Hasan Albargi
- Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Saudi Arabia;
- Department of Physics, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - L. Castañeda
- Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón S/N, Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340 Cd. de México, Mexico;
| | - D. K. Dwivedi
- Amorphous Semiconductor Research Lab, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, India; (S.S.); (P.K.S.)
| |
Collapse
|
13
|
Wang J, Lin F, Verzhbitskiy I, Watanabe K, Taniguchi T, Martin J, Eda G. Polarity Tunable Trionic Electroluminescence in Monolayer WSe 2. NANO LETTERS 2019; 19:7470-7475. [PMID: 31517494 DOI: 10.1021/acs.nanolett.9b03215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Monolayer WSe2 exhibits luminescence arising from various types of exciton complexes due to strong many-body effects. Here, we demonstrate selective electrical excitation of positive and negative trions in van der Waals metal-insulator-semiconductor (MIS) heterostructure consisting of few-layer graphene (FLG), hexagonal boron nitride (hBN), and monolayer WSe2. Intentional unbalanced injection of electrons and holes is achieved via field-emission tunneling and electrostatic accumulation. The device exhibits planar electroluminescence from either positive trion X+ or negative trion X- depending on the bias conditions. We show that hBN serves as a tunneling barrier material allowing selective injection of electron or holes into WSe2 from FLG layer. Our observation offers prospects for hot carrier injection, trion manipulation, and on-chip excitonic devices based on two-dimensional semiconductors.
Collapse
Affiliation(s)
- Junyong Wang
- Department of Physics , National University of Singapore , 2 Science Drive 3 , Singapore 117542
- Centre for Advanced 2D Materials , National University of Singapore , 6 Science Drive 2 , Singapore 117546
| | - Fanrong Lin
- Department of Physics , National University of Singapore , 2 Science Drive 3 , Singapore 117542
- Centre for Advanced 2D Materials , National University of Singapore , 6 Science Drive 2 , Singapore 117546
| | - Ivan Verzhbitskiy
- Department of Physics , National University of Singapore , 2 Science Drive 3 , Singapore 117542
- Centre for Advanced 2D Materials , National University of Singapore , 6 Science Drive 2 , Singapore 117546
| | - Kenji Watanabe
- National Institute for Material Science , 1-1 Namiki , Tsukuba 305-0044 , Japan
| | - Takashi Taniguchi
- National Institute for Material Science , 1-1 Namiki , Tsukuba 305-0044 , Japan
| | - Jens Martin
- Department of Physics , National University of Singapore , 2 Science Drive 3 , Singapore 117542
- Centre for Advanced 2D Materials , National University of Singapore , 6 Science Drive 2 , Singapore 117546
| | - Goki Eda
- Department of Physics , National University of Singapore , 2 Science Drive 3 , Singapore 117542
- Centre for Advanced 2D Materials , National University of Singapore , 6 Science Drive 2 , Singapore 117546
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543
| |
Collapse
|
14
|
Liu E, van Baren J, Lu Z, Altaiary MM, Taniguchi T, Watanabe K, Smirnov D, Lui CH. Gate Tunable Dark Trions in Monolayer WSe_{2}. PHYSICAL REVIEW LETTERS 2019; 123:027401. [PMID: 31386514 DOI: 10.1103/physrevlett.123.027401] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Indexed: 06/10/2023]
Abstract
Monolayer WSe_{2} is an intriguing material to explore dark exciton physics. We have measured the photoluminescence from dark excitons and trions in ultraclean monolayer WSe_{2} devices encapsulated by boron nitride. The dark trions can be tuned continuously between negative and positive trions with electrostatic gating. We reveal their spin-triplet configuration and distinct valley optical emission by their characteristic Zeeman splitting under a magnetic field. The dark trion binding energies are 14-16 meV, slightly lower than the bright trion binding energies (21-35 meV). The dark trion lifetime (∼1.3 ns) is two orders of magnitude longer than the bright trion lifetime (∼10 ps) and can be tuned between 0.4 and 1.3 ns by gating. Such robust, optically detectable, and gate tunable dark trions may help us realize trion transport in two-dimensional materials.
Collapse
Affiliation(s)
- Erfu Liu
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Jeremiah van Baren
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Zhengguang Lu
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA
- Department of Physics, Florida State University, Tallahassee, Florida 32310, USA
| | - Mashael M Altaiary
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Takashi Taniguchi
- National Institute for Materials Science, Tsukuba, Ibaraki 305-004, Japan
| | - Kenji Watanabe
- National Institute for Materials Science, Tsukuba, Ibaraki 305-004, Japan
| | - Dmitry Smirnov
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA
| | - Chun Hung Lui
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| |
Collapse
|
15
|
Pei J, Yang J, Yildirim T, Zhang H, Lu Y. Many-Body Complexes in 2D Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1706945. [PMID: 30129218 DOI: 10.1002/adma.201706945] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 06/10/2018] [Indexed: 05/25/2023]
Abstract
2D semiconductors such as transition metal dichalcogenides (TMDs) and black phosphorus (BP) are currently attracting great attention due to their intrinsic bandgaps and strong excitonic emissions, making them potential candidates for novel optoelectronic applications. Optoelectronic devices fabricated from 2D semiconductors exhibit many-body complexes (exciton, trion, biexciton, etc.) which determine the materials optical and electrical properties. Characterization and manipulation of these complexes have become a reality due to their enhanced binding energies as a direct result from reduced dielectric screening and enhanced Coulomb interactions in the 2D regime. Furthermore, the atomic thickness and extremely large surface-to-volume ratio of 2D semiconductors allow the possibility of modulating their inherent optical, electrical, and optoelectronic properties using a variety of different environmental stimuli. To fully realize the potential functionalities of these many-body complexes in optoelectronics, a comprehensive understanding of their formation mechanism is essential. A topical and concise summary of the recent frontier research progress related to many-body complexes in 2D semiconductors is provided here. Moreover, detailed discussions covering the aspects of fundamental theory, experimental investigations, modulation of properties, and optoelectronic applications are given. Lastly, personal insights into the current challenges and future outlook of many-body complexes in 2D semiconducting materials are presented.
Collapse
Affiliation(s)
- Jiajie Pei
- Collaborative Innovation Center for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jiong Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tanju Yildirim
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yuerui Lu
- Research School of Engineering, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
16
|
Dynamics of charged excitons in electronically and morphologically homogeneous single-walled carbon nanotubes. Proc Natl Acad Sci U S A 2018; 115:674-679. [PMID: 29311334 DOI: 10.1073/pnas.1712971115] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The trion, a three-body charge-exciton bound state, offers unique opportunities to simultaneously manipulate charge, spin, and excitation in one-dimensional single-walled carbon nanotubes (SWNTs) at room temperature. Effective exploitation of trion quasi-particles requires fundamental insight into their creation and decay dynamics. Such knowledge, however, remains elusive for SWNT trion states, due to the electronic and morphological heterogeneity of commonly interrogated SWNT samples, and the fact that transient spectroscopic signals uniquely associated with the trion state have not been identified. Here, we prepare length-sorted SWNTs and precisely control charge-carrier-doping densities to determine trion dynamics using femtosecond pump-probe spectroscopy. Identification of the trion transient absorptive hallmark enables us to demonstrate that trions (i) derive from a precursor excitonic state, (ii) are produced via migration of excitons to stationary hole-polaron sites, and (iii) decay in a first-order manner. Importantly, under appropriate carrier-doping densities, exciton-to-trion conversion in SWNTs can approach 100% at ambient temperature. Our findings open up possibilities for exploiting trions in SWNT optoelectronics, ranging from photovoltaics and photodetectors to spintronics.
Collapse
|
17
|
Wang M, Li W, Scarabelli L, Rajeeva BB, Terrones M, Liz-Marzán LM, Akinwande D, Zheng Y. Plasmon-trion and plasmon-exciton resonance energy transfer from a single plasmonic nanoparticle to monolayer MoS 2. NANOSCALE 2017; 9:13947-13955. [PMID: 28782790 DOI: 10.1039/c7nr03909c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Resonance energy transfer (RET) from plasmonic metal nanoparticles (NPs) to two-dimensional (2D) materials enhances the performance of 2D optoelectronic devices and sensors. Herein, single-NP scattering spectroscopy is employed to investigate plasmon-trion and plasmon-exciton RET from single Au nanotriangles (AuNTs) to monolayer MoS2, at room temperature. The large quantum confinement and reduced dielectric screening in monolayer MoS2 facilitates efficient RET between single plasmonic metal NPs and the monolayer. Because of the large exciton binding energy of monolayer MoS2, charged excitons (i.e., trions) are observed at room temperature, which enable us to study the plasmon-trion interactions under ambient conditions. Tuning of plasmon-trion and plasmon-exciton RET is further achieved by controlling the dielectric constant of the medium surrounding the AuNT-MoS2 hybrids. Our observation of switchable plasmon-trion and plasmon-exciton RET inspires new applications of the hybrids of 2D materials and metal nanoparticles.
Collapse
Affiliation(s)
- Mingsong Wang
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Lee Y, Yun SJ, Kim Y, Kim MS, Han GH, Sood AK, Kim J. Near-field spectral mapping of individual exciton complexes of monolayer WS 2 correlated with local defects and charge population. NANOSCALE 2017; 9:2272-2278. [PMID: 28124703 DOI: 10.1039/c6nr08813a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Exciton transitions are mostly responsible for the optical properties of transition metal dichalcogenide monolayers (1L-TMDs). Extensive studies of optical and structural characterization indicated that the presence of local structural defects and charge population critically influence the exciton emissions of 1L-TMDs. However, due to large variations of sample and experimental conditions, the exact mechanism of the exciton emission influenced by local structural defects and charge population is not clearly understood. In this work by using near-field scanning optical imaging and spectroscopy, we directly visualized spatially- and spectrally-resolved emission profiles of excitons, trions and defect bound excitons in CVD-grown monolayer tungsten disulfide (1L-WS2) with ∼70 nm spatial resolution. We found that exciton emission is spatially uniform while emission of trions and defect bound excitons was strongly modulated by the presence of structural features such as defects and wrinkles. We also visually observe a strong correlation between local charge accumulation and the trion formation upon increased photo-excitation.
Collapse
Affiliation(s)
- Yongjun Lee
- IBS Center for Integrated Nanostructure Physics, Institute for Basic Science, Suwon 440-746, Republic of Korea and Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| | - Seok Joon Yun
- IBS Center for Integrated Nanostructure Physics, Institute for Basic Science, Suwon 440-746, Republic of Korea and Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| | - Youngbum Kim
- IBS Center for Integrated Nanostructure Physics, Institute for Basic Science, Suwon 440-746, Republic of Korea and Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| | - Min Su Kim
- Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| | - Gang Hee Han
- Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| | - A K Sood
- Department of Physics, Indian Institute of Science, Bangalore-560012, India
| | - Jeongyong Kim
- IBS Center for Integrated Nanostructure Physics, Institute for Basic Science, Suwon 440-746, Republic of Korea and Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
19
|
Abstract
![]()
The field of organic
photovoltaics has developed rapidly over the
last 2 decades, and small solar cells with power conversion efficiencies
of 13% have been demonstrated. Light absorbed in the organic layers
forms tightly bound excitons that are split into free electrons and
holes using heterojunctions of electron donor and acceptor materials,
which are then extracted at electrodes to give useful electrical power.
This review gives a concise description of the fundamental processes
in photovoltaic devices, with the main emphasis on the characterization
of energy transfer and its role in dictating device architecture,
including multilayer planar heterojunctions, and on the factors that
impact free carrier generation from dissociated excitons. We briefly
discuss harvesting of triplet excitons, which now attracts substantial
interest when used in conjunction with singlet fission. Finally, we
introduce the techniques used by researchers for characterization
and engineering of bulk heterojunctions to realize large photocurrents,
and examine the formed morphology in three prototypical blends.
Collapse
Affiliation(s)
- Gordon J Hedley
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews , North Haugh, St Andrews, Fife KY16 9SS, U.K
| | - Arvydas Ruseckas
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews , North Haugh, St Andrews, Fife KY16 9SS, U.K
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews , North Haugh, St Andrews, Fife KY16 9SS, U.K
| |
Collapse
|
20
|
Kato T, Kaneko T. Transport Dynamics of Neutral Excitons and Trions in Monolayer WS 2. ACS NANO 2016; 10:9687-9694. [PMID: 27666319 DOI: 10.1021/acsnano.6b05580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Understanding the spatial motion of excitons is of both fundamental interest and central importance for optoelectrical applications. Here, we have investigated the temperature (T) dependence of the transport dynamics of neutral excitons and charged excitons (trions) in atomically thin two-dimensional crystals of the transition-metal dichalcogenide WS2. The transport dynamics of neutral excitons can be divided into three temperature ranges, where the diffusion of neutral excitons is governed by thermal activation (≤∼75 K), ionized impurity scattering (∼75 K ≤ T ≤∼200 K), and LO phonon scattering (≥∼200 K). The trions have a diffusion length that is over 20 times longer than that of neutral excitons at very low temperatures (≤∼10 K), which may be related to theoretically predicted Pauli-blocking effects during the excitation process.
Collapse
Affiliation(s)
- Toshiaki Kato
- Department of Electronic Engineering, Tohoku University , 980-8579 Sendai, Japan
| | - Toshiro Kaneko
- Department of Electronic Engineering, Tohoku University , 980-8579 Sendai, Japan
| |
Collapse
|
21
|
Lui CH, Frenzel AJ, Pilon DV, Lee YH, Ling X, Akselrod GM, Kong J, Gedik N. Trion-induced negative photoconductivity in monolayer MoS2. PHYSICAL REVIEW LETTERS 2014; 113:166801. [PMID: 25361273 DOI: 10.1103/physrevlett.113.166801] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Indexed: 05/21/2023]
Abstract
Optical excitation typically enhances electrical conduction and low-frequency radiation absorption in semiconductors. We, however, observe a pronounced transient decrease of conductivity in doped monolayer molybdenum disulfide (MoS(2)), a two-dimensional (2D) semiconductor, using ultrafast optical-pump terahertz-probe spectroscopy. In particular, the conductivity is reduced to only 30% of its equilibrium value at high pump fluence. This anomalous phenomenon arises from the strong many-body interactions in the 2D system, where photoexcited electron-hole pairs join the doping-induced charges to form trions, bound states of two electrons and one hole. The resultant increase of the carrier effective mass substantially diminishes the conductivity.
Collapse
Affiliation(s)
- C H Lui
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - A J Frenzel
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA and Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - D V Pilon
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Y-H Lee
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA and Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - X Ling
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - G M Akselrod
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - J Kong
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - N Gedik
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
22
|
Visualization of exciton transport in ordered and disordered molecular solids. Nat Commun 2014; 5:3646. [DOI: 10.1038/ncomms4646] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 03/13/2014] [Indexed: 12/25/2022] Open
|
23
|
Koudinov AV, Kehl C, Rodina AV, Geurts J, Wolverson D, Karczewski G. Suris tetrons: possible spectroscopic evidence for four-particle optical excitations of a two-dimensional electron gas. PHYSICAL REVIEW LETTERS 2014; 112:147402. [PMID: 24766011 DOI: 10.1103/physrevlett.112.147402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Indexed: 06/03/2023]
Abstract
The excitations of a two-dimensional electron gas in quantum wells with intermediate carrier density (ne∼1011 cm-2), i.e., between the exciton-trion and the Fermi-sea range, are so far poorly understood. We report on an approach to bridge this gap by a magnetophotoluminescence study of modulation-doped (Cd,Mn)Te quantum well structures. Employing their enhanced spin splitting, we analyzed the characteristic magnetic-field behavior of the individual photoluminescence features. Based on these results and earlier findings by other authors, we present a new approach for understanding the optical transitions at intermediate densities in terms of four-particle excitations, the Suris tetrons, which were up to now only predicted theoretically. All characteristic photoluminescence features are attributed to emission from these quasiparticles when attaining different final states.
Collapse
Affiliation(s)
- A V Koudinov
- A. F. Ioffe Physico-Technical Institute of RAS, 194021 Saint Petersburg, Russia and Spin Optics Laboratory, Saint Petersburg State University, 198504 Saint Petersburg, Russia
| | - C Kehl
- Physikalisches Institut (EP3), Universität Würzburg, 97074 Würzburg, Germany
| | - A V Rodina
- A. F. Ioffe Physico-Technical Institute of RAS, 194021 Saint Petersburg, Russia
| | - J Geurts
- Physikalisches Institut (EP3), Universität Würzburg, 97074 Würzburg, Germany
| | - D Wolverson
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - G Karczewski
- Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
| |
Collapse
|
24
|
Irkhin P, Biaggio I. Direct imaging of anisotropic exciton diffusion and triplet diffusion length in rubrene single crystals. PHYSICAL REVIEW LETTERS 2011; 107:017402. [PMID: 21797572 DOI: 10.1103/physrevlett.107.017402] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Indexed: 05/31/2023]
Abstract
We visualize exciton diffusion in rubrene single crystals using localized photoexcitation and spatially resolved detection of excitonic luminescence. We show that the exciton mobility in this material is strongly anisotropic with long-range diffusion by several micrometers associated only with the direction of molecular stacking in the crystal, along the b axis. We determine a triplet exciton diffusion length of 4.0 ± 0.4 μm from the spatial exponential decay of the photoluminescence that originates from singlet excitons formed by triplet-triplet fusion.
Collapse
Affiliation(s)
- Pavel Irkhin
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | | |
Collapse
|
25
|
Portella-Oberli MT, Berney J, Kappei L, Morier-Genoud F, Szczytko J, Deveaud-Plédran B. Dynamics of Trion formation in InxGa1-xAs quantum wells. PHYSICAL REVIEW LETTERS 2009; 102:096402. [PMID: 19392539 DOI: 10.1103/physrevlett.102.096402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 01/23/2009] [Indexed: 05/27/2023]
Abstract
We show a double path mechanism for the formation of charged excitons (trions); they are formed through bi- and trimolecular processes. This directly implies that both negatively and positively charged excitons coexist in a quantum well, even in the absence of excess carriers. The model is substantiated by time-resolved photoluminescence experiments performed on a very high quality InxGa1-xAs quantum well sample, in which the photoluminescence contributions at the energy of the trion and exciton and at the band edge can be clearly separated and traced over a broad range of times and densities. The unresolved discrepancy between the theoretical and experimental radiative decay time of the exciton in a doped semiconductor quantum well is explained by the same model.
Collapse
Affiliation(s)
- M T Portella-Oberli
- Institut de Photonique et Electronique Quantiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH1015 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
26
|
Protasenko V, Gordeyev S, Kuno M. Spatial and Intensity Modulation of Nanowire Emission Induced by Mobile Charges. J Am Chem Soc 2007; 129:13160-71. [DOI: 10.1021/ja073642w] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vladimir Protasenko
- Contribution from the Department of Chemistry and Biochemistry, Notre Dame Radiation Laboratory and Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556
| | - Stanislav Gordeyev
- Contribution from the Department of Chemistry and Biochemistry, Notre Dame Radiation Laboratory and Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556
| | - Masaru Kuno
- Contribution from the Department of Chemistry and Biochemistry, Notre Dame Radiation Laboratory and Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
27
|
|
28
|
Płochocka P, Kossacki P, Maślana W, Cibert J, Tatarenko S, Radzewicz C, Gaj JA. Femtosecond study of the interplay between excitons, trions, and carriers in (Cd,Mn)Te quantum wells. PHYSICAL REVIEW LETTERS 2004; 92:177402. [PMID: 15169190 DOI: 10.1103/physrevlett.92.177402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Indexed: 05/24/2023]
Abstract
We study the absorption by neutral excitons and positively charged excitons (trions) following a femtosecond, circularly polarized, resonant pump pulse. Three populations are involved: free holes, excitons, and trions, all exhibiting transient spin polarization. In particular, a polarization of the gas of free holes is created by the formation of trions. The evolution of these populations is described, including spin flip and trion formation. We evaluate the contributions of phase space filling and spin-dependent screening. We propose a new explanation of the oscillator strength stealing phenomena observed in doped quantum wells, based on the screening of neutral excitons by charge carriers. We have also found that binding holes into charged excitons excludes them from the interaction with the rest of the system, so that oscillator strength stealing is partially blocked.
Collapse
Affiliation(s)
- P Płochocka
- Institute of Experimental Physics, Warsaw University, Hoza 69, 00-681 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
29
|
Sanvitto D, Whittaker DM, Shields AJ, Simmons MY, Ritchie DA, Pepper M. Origin of the oscillator strength of the triplet state of a trion in a magnetic field. PHYSICAL REVIEW LETTERS 2002; 89:246805. [PMID: 12484972 DOI: 10.1103/physrevlett.89.246805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2001] [Indexed: 05/24/2023]
Abstract
The dynamics of the spin-triplet trion state, under high magnetic field in a GaAs/AlGaAs quantum well, are studied using time resolved spectroscopy. The oscillator strength of the triplet transition is shown to rise with increasing electron density, in good agreement with a theoretical model where the trion interacts with excess electrons in the quantum well. This analysis suggests that the spin-triplet trion state, which is expected to be an optically "dark" state, is experimentally observable due to the interactions with the excess electrons, demonstrating that X- cannot be regarded as an isolated three particle complex.
Collapse
Affiliation(s)
- D Sanvitto
- Cavendish Laboratory, University of Cambridge, Madingley Road, United Kingdom
| | | | | | | | | | | |
Collapse
|
30
|
Zhao H, Moehl S, Kalt H. Coherence length of excitons in a semiconductor quantum well. PHYSICAL REVIEW LETTERS 2002; 89:097401. [PMID: 12190436 DOI: 10.1103/physrevlett.89.097401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2002] [Indexed: 05/23/2023]
Abstract
We report on the first experimental determination of the coherence length of excitons in semiconductors using the combination of spatially resolved photoluminescence with phonon sideband spectroscopy. The coherence length of excitons in ZnSe quantum wells is determined to be 300-400 nm, about 25-30 times the exciton de Broglie wavelength. With increasing exciton kinetic energy, the coherence length decreases slowly. The discrepancy between the coherence lengths measured and calculated by considering only the acoustic-phonon scattering suggests an important influence of static disorder.
Collapse
Affiliation(s)
- Hui Zhao
- Institut für Angewandte Physik, Universität Karlsruhe, D-76128 Karlsruhe, Germany
| | | | | |
Collapse
|