1
|
Xu D, Jin Y, He B, Fang X, Chen G, Qu W, Xu C, Chen J, Ma Z, Chen L, Tang X, Liu X, Wei G, Chen Y. Electronic communications between active sites on individual metallic nanoparticles in catalysis. Nat Commun 2024; 15:8614. [PMID: 39367040 PMCID: PMC11452661 DOI: 10.1038/s41467-024-52997-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Catalytic activity of metal particles is reported to originate from the appearance of nonmetallic states, but conductive metallic particles, as an electron reservoir, should render electron delivery between reactants more favorably so as to have higher activity. We present that metallic rhodium particle catalysts are highly active in the low-temperature oxidation of carbon monoxide, whereas nonmetallic rhodium clusters or monoatoms on alumina remain catalytically inert. Experimental and theoretical results evidence the presence of electronic communications in between vertex atom active sites of individual metallic particles in the reaction. The electronic communications dramatically lower apparent activation energies via coupling two electrochemical-like half-reactions occurring on different active sites, which enable the metallic particles to show turnover frequencies at least four orders of magnitude higher than the nonmetallic clusters or monoatoms. Similar results are found for other metallic particle catalysts, implying the importance of electronic communications between active sites in heterogeneous catalysis.
Collapse
Affiliation(s)
- Dongrun Xu
- Department of Environmental Science & Engineering, Fudan University, Shanghai, China
| | - Yaowei Jin
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Bowen He
- School of Chemistry and Chemical, In-situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Xue Fang
- Department of Environmental Science & Engineering, Fudan University, Shanghai, China
| | - Guokang Chen
- School of Chemistry and Chemical, In-situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Weiye Qu
- Department of Environmental Science & Engineering, Fudan University, Shanghai, China
| | - Chenxin Xu
- Department of Environmental Science & Engineering, Fudan University, Shanghai, China
| | - Junxiao Chen
- Department of Environmental Science & Engineering, Fudan University, Shanghai, China
| | - Zhen Ma
- Department of Environmental Science & Engineering, Fudan University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Liwei Chen
- School of Chemistry and Chemical, In-situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Xingfu Tang
- Department of Environmental Science & Engineering, Fudan University, Shanghai, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| | - Xi Liu
- School of Chemistry and Chemical, In-situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai, China.
- School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China.
| | - Guangfeng Wei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China.
| | - Yaxin Chen
- Department of Environmental Science & Engineering, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Heo J, Segalina A, Kim D, Ahn D, Oang KY, Park S, Kim H, Ihee H. Ultrafast Interfacial Charge Transfer Initiates Mechanical Stress and Heat Transport at the Au-TiO 2 Interface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400919. [PMID: 38976563 PMCID: PMC11425853 DOI: 10.1002/advs.202400919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Indexed: 07/10/2024]
Abstract
Metal-semiconductor interfaces are crucial components of optoelectronic and electrical devices, the performance of which hinges on intricate dynamics involving charge transport and mechanical interaction at the interface. Nevertheless, structural changes upon photoexcitation and subsequent carrier transportation at the interface, which crucially impact hot carrier stability and lifetime, remain elusive. To address this long-standing problem, they investigated the electron dynamics and resulting structural changes at the Au/TiO2 interface using ultrafast electron diffraction (UED). The analysis of the UED data reveals that interlayer electron transfer from metal to semiconductor generates a strong coupling between the two layers, offering a new way for ultrafast heat transfer through the interface and leading to a coherent structural vibration that plays a critical role in propagating mechanical stress. These findings provide insights into the relationship between electron transfer and interfacial mechanical and thermal properties.
Collapse
Affiliation(s)
- Jun Heo
- Center for Advanced Reaction Dynamics (CARD)Institute for Basic Science (IBS)Daejeon34141Republic of Korea
- Radiation Center for Ultrafast ScienceKorea Atomic Energy Research Institute (KAERI)Daejeon34057Republic of Korea
| | - Alekos Segalina
- Center for Advanced Reaction Dynamics (CARD)Institute for Basic Science (IBS)Daejeon34141Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Doyeong Kim
- Center for Advanced Reaction Dynamics (CARD)Institute for Basic Science (IBS)Daejeon34141Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Doo‐Sik Ahn
- Center for Advanced Reaction Dynamics (CARD)Institute for Basic Science (IBS)Daejeon34141Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Present address:
Samsung ElectronicsRepublic of Korea
| | - Key Young Oang
- Center for Advanced Reaction Dynamics (CARD)Institute for Basic Science (IBS)Daejeon34141Republic of Korea
- Radiation Center for Ultrafast ScienceKorea Atomic Energy Research Institute (KAERI)Daejeon34057Republic of Korea
| | - Sungjun Park
- Center for Advanced Reaction Dynamics (CARD)Institute for Basic Science (IBS)Daejeon34141Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Present address:
Samsung ElectronicsRepublic of Korea
| | - Hyungjun Kim
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Hyotcherl Ihee
- Center for Advanced Reaction Dynamics (CARD)Institute for Basic Science (IBS)Daejeon34141Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| |
Collapse
|
3
|
Meng G, Gardner J, Hertl N, Dou W, Maurer RJ, Jiang B. First-Principles Nonadiabatic Dynamics of Molecules at Metal Surfaces with Vibrationally Coupled Electron Transfer. PHYSICAL REVIEW LETTERS 2024; 133:036203. [PMID: 39094165 DOI: 10.1103/physrevlett.133.036203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/12/2024] [Indexed: 08/04/2024]
Abstract
Accurate description of nonadiabatic dynamics of molecules at metal surfaces involving electron transfer has been a long-standing challenge for theory. Here, we tackle this problem by first constructing high-dimensional neural network diabatic potentials including state crossings determined by constrained density functional theory, then applying mixed quantum-classical surface hopping simulations to evolve coupled electron-nuclear motion. Our approach accurately describes the nonadiabatic effects in CO scattering from Au(111) without empirical parameters and yields results agreeing well with experiments under various conditions for this benchmark system. We find that both adiabatic and nonadiabatic energy loss channels have important contributions to the vibrational relaxation of highly vibrationally excited CO(v_{i}=17), whereas relaxation of low vibrationally excited states of CO(v_{i}=2) is weak and dominated by nonadiabatic energy loss. The presented approach paves the way for accurate first-principles simulations of electron transfer mediated nonadiabatic dynamics at metal surfaces.
Collapse
|
4
|
Guo G, Mao L, Liu K, Tan X. Pd-Adsorbed SiN 3 Monolayer as a Promising Gas Scavenger for SF 6 Partial Discharge Decomposition Components: Insights from the First-Principles Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7669-7679. [PMID: 38548652 DOI: 10.1021/acs.langmuir.4c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Gas-insulated switchgear (GIS) equipment must be protected by detecting and eliminating the toxic SF6 partial discharge decomposition components. This study employs first-principles calculations to thoroughly investigate the interaction between a Pd-adsorbed SiN3 monolayer (Pd-SiN3) and four typical SF6 decomposition gases (H2S, SO2, SOF2, and SO2F2). The study also investigates the associated geometric, electrical, and optical characteristics along with the sensing sensitivity and desorption efficiency. The ab initio molecular dynamics (AIMD) simulations demonstrated the favorable stability of the Pd-SiN3 monolayer. Furthermore, the Pd-SiN3 monolayer exhibited strong chemisorption behavior toward H2S, SO2, SOF2, and SO2F2 gases because of the higher adsorption energies of -2.717, -2.917, -2.457, and -2.025 eV, respectively. Furthermore, significant changes occur in the electronic and optical characteristics of the Pd-SiN3 monolayer following the adsorption of these gases, resulting in remarkable sensitivity of the Pd-SiN3 monolayer in relation to electrical conductivity and optical absorption. Meanwhile, all of these gas adsorption systems exhibited extremely long recovery times. The aforementioned theoretical findings suggest that the Pd-SiN3 monolayer has the potential to be an effective gas scavenger for the storage or removal of the SF6 decomposition components. Additionally, it might function as a reliable one-time sensor for detecting these gases. The results potentially provide valuable theoretical guidance for maintaining the normal operation of the SF6 insulation devices.
Collapse
Affiliation(s)
- Gang Guo
- School of Science, Hunan Institute of Technology, Hengyang 421002, China
| | - Lingyun Mao
- School of Science, Hunan Institute of Technology, Hengyang 421002, China
| | - Kang Liu
- School of Physics, Central South University, Changsha 410083, China
| | - Xiaochao Tan
- School of Science, Hunan Institute of Technology, Hengyang 421002, China
| |
Collapse
|
5
|
Alizadeh M, Radevici I, Li S, Oksanen J. Chemovoltaic effect for renewable liquid and vapor fuels on semiconductor surfaces. CHEMSUSCHEM 2024; 17:e202301522. [PMID: 38305144 DOI: 10.1002/cssc.202301522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/07/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024]
Abstract
The chemovoltaic effect - generation of electronic excitation by exergonic redox reactions - has been observed on metallic surfaces of Schottky junctions and is proving to be pivotal in explaining in detail the momentum conservation relations of chemically active collisions. As shown in this work, it can hold keys for direct chemical energy harvesting by semiconductor solar cells. To study the possibilities of chemovoltaic energy conversion by semiconductors, we have modeled and designed an 'electrolyte-free fuel cell' formed by a GaAs diode that can host electrochemical fuel oxidation and oxidant reduction reactions on its conduction and valence bands and as a result convert renewable chemical energy (as well as light) into electricity. The experimental results show that exposing the surface of a suitably designed solar cell to methanol liquid or vapor in the presence of oxygen or hydrogen peroxide leads to the generation of electrical power.
Collapse
Affiliation(s)
- Mahdi Alizadeh
- Engineered Nanosystems Group, School of Science, Aalto University, Tietotie 1, Espoo, 02150, Finland
| | - Ivan Radevici
- Engineered Nanosystems Group, School of Science, Aalto University, Tietotie 1, Espoo, 02150, Finland
| | - Shengyang Li
- Engineered Nanosystems Group, School of Science, Aalto University, Tietotie 1, Espoo, 02150, Finland
| | - Jani Oksanen
- Engineered Nanosystems Group, School of Science, Aalto University, Tietotie 1, Espoo, 02150, Finland
| |
Collapse
|
6
|
Alaarage WK, Abo Nasria AH, Hussein TA, Abbood HI. Investigation of the electronic and optical properties of bilayer CdS as a gas sensor: first-principles calculations. RSC Adv 2024; 14:5994-6005. [PMID: 38362079 PMCID: PMC10867900 DOI: 10.1039/d3ra08741g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
We utilised first-principles computations based on density functional theory to investigate the optical and electronic properties of bilayer CdS before and after the adsorption of gas molecules. Initially, we examined four candidate adsorption sites to determine the best site for adsorbing CO, CO2, SO2, H2S, and SO. In order to achieve the optimal adsorption configurations, we analysed the adsorption energy, distance, and total charge. Our findings reveal that the CdS bilayer forms a unique connection between the O and Cd atoms, as well as the S and Cd atoms, which renders it sensitive to SO2, H2S, and SO through chemical adsorption, and CO and CO2 through strong physical adsorption. The adsorption of gas molecules enhances the optical properties of the CdS bilayer. Consequently, the CdS bilayer proves to be a highly efficient gas sensor for SO2, H2S, and SO gases.
Collapse
Affiliation(s)
| | - Abbas H Abo Nasria
- Department of Physics, Faculty of Science, University of Kufa Najaf Iraq
| | | | | |
Collapse
|
7
|
Wang Y, Guo S, Xu X, Pan J, Hu J, Zhang S. Adsorption and sensing performance of air pollutants on a β-TeO 2 monolayer: a first-principles study. Phys Chem Chem Phys 2023; 26:612-620. [PMID: 38086641 DOI: 10.1039/d3cp04400a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Two-dimensional (2D) β-TeO2 is a novel semiconductor with potential applications in electronic circuits due to its air-stability and ultra-high carrier mobility. In this study, we explore the possibility of using a 2D β-TeO2 monolayer for the detection of gaseous pollutants including SO2, NO2, H2S, CO2, CO, and NH3 gas molecules based on first-principles calculations. The adsorption properties including the adsorption energy, adsorption distance and charge transfer indicate that the interaction between 2D β-TeO2 and the six gases is via a physisorption mechanism. Among the six gas adsorption systems, the SO2 adsorption system has the most negative adsorption energy and the largest charge transfer. In addition, the adsorption of SO2 obviously changes the electrical conductivity of the β-TeO2 monolayer because the band gap decreases from 2.727 eV to 1.897 eV after adsorbing SO2. Our results suggest that the 2D β-TeO2 should be an eminently promising SO2 sensing material.
Collapse
Affiliation(s)
- Ying Wang
- College of Physics Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Shiying Guo
- College of Physics Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Xiaoyong Xu
- College of Physics Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Jing Pan
- College of Physics Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Jingguo Hu
- College of Physics Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Shengli Zhang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China.
| |
Collapse
|
8
|
Guo M, Cui W, Li Y, Fei S, Sun C, Tan M, Su W. Microfluidic fabrication of size-controlled nanocarriers with improved stability and biocompatibility for astaxanthin delivery. Food Res Int 2023; 170:112958. [PMID: 37316049 DOI: 10.1016/j.foodres.2023.112958] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/25/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
Improving the stability of astaxanthin (AST) is a vital way to enhance its oral bioavailability. In this study, a microfluidic strategy for the preparation of astaxanthin nano-encapsulation system was proposed. Thanks to the precise control of microfluidic and the rapid preparation ability of the Mannich reaction, the resulting astaxanthin nano-encapsulation system (AST-ACNs-NPs) was obtained with average sizes of 200 nm, uniform spherical shape and high encapsulation rate of 75%. AST was successfully doped into the nanocarriers, according to the findings of the DFT calculation, fluorescence spectrum, Fourier transform spectroscopy, and UV-vis absorption spectroscopy. Compared with free AST, AST-ACNs-NPs showed better stability under the conditions of high temperature, pH and UV light with<20% activity loss rate. The nano-encapsulation system containing AST could significantly reduce the hydrogen peroxide produced by reactive oxygen species, keep the potential of the mitochondrial membrane at a healthy level, and improve the antioxidant ability of H2O2-induced RAW 264.7 cells. These results indicated that microfluidics-based astaxanthin delivery system is an effective solution to improve the bioaccessibility of bioactive substances and has potential application value in food industry.
Collapse
Affiliation(s)
- Meng Guo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Weina Cui
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yuanchao Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| | - Siyuan Fei
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Chaofan Sun
- College of Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Mingqian Tan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
9
|
Dan X, Shi Q. Theoretical study of nonadiabatic hydrogen atom scattering dynamics on metal surfaces using the hierarchical equations of motion method. J Chem Phys 2023; 159:044101. [PMID: 37486050 DOI: 10.1063/5.0155172] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023] Open
Abstract
Hydrogen atom scattering on metal surfaces is investigated based on a simplified Newns-Anderson model. Both the nuclear and electronic degrees of freedom are treated quantum mechanically. By partitioning all the surface electronic states as the bath, the hierarchical equations of motion method for the fermionic bath is employed to simulate the scattering dynamics. It is found that, with a reasonable set of parameters, the main features of the recent experimental studies of hydrogen atom scattering on metal surfaces can be reproduced. Vibrational states on the chemisorption state whose energies are close to the incident energy are found to play an important role, and the scattering process is dominated by a single-pass electronic transition forth and back between the diabatic physisorption and chemisorption states. Further study on the effects of the atom-surface coupling strength reveals that, upon increasing the atom-surface coupling strength, the scattering mechanism changes from typical nonadiabatic transitions to dynamics in the electronic friction regime.
Collapse
Affiliation(s)
- Xiaohan Dan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Lee SW, Kim H, Park JY. How Hot Electron Generation at the Solid-Liquid Interface Is Different from the Solid-Gas Interface. NANO LETTERS 2023; 23:5373-5380. [PMID: 36930862 DOI: 10.1021/acs.nanolett.3c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Excitation of hot electrons by energy dissipation under exothermic chemical reactions on metal catalyst surfaces occurs at both solid-gas and solid-liquid interfaces. Despite extensive studies, a comparative operando study directly comparing electronic excitation by electronically nonadiabatic interactions at solid-gas and solid-liquid interfaces has not been reported. Herein, on the basis of our in situ techniques for monitoring energy dissipation as a chemicurrent using a Pt/n-Si nanodiode sensor, we observed the generation of hot electrons in both gas and liquid phases during H2O2 decomposition. As a result of comparing the current signal and oxygen evolution rate in the two phases, surprisingly, the efficiency of reaction-induced excitation of hot electrons increased by ∼100 times at the solid-liquid interface compared to the solid-gas interface. The boost of hot electron excitation in the liquid phase is due to the presence of an ionic layer lowering the potential barrier at the junction for transferring hot electrons.
Collapse
Affiliation(s)
- Si Woo Lee
- Department of Chemistry Education, Korea National University of Education (KNUE), Chungbuk 28173, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Heeyoung Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeong Young Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
11
|
Ma K, Wang Y, Zheng Y, Xiao J, Xu L, Dai X, Wang Z. Adsorption Mechanism and Optical Behaviors of Typical Volatile Organic Compounds on Pristine and Cu/Ni‐Modified C
3
N Monolayer: A First‐Principles Study. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kexin Ma
- College of Science Guilin University of Technology Guilin 541008 China
| | - Yanwen Wang
- College of Science Guilin University of Technology Guilin 541008 China
| | - Yunxin Zheng
- College of Science Guilin University of Technology Guilin 541008 China
| | - Jianrong Xiao
- College of Science Guilin University of Technology Guilin 541008 China
| | - Liang Xu
- Energy Materials Computing Center, School of Energy and Mechanical Engineering Jiangxi University of Science and Technology Nanchang 330013 China
| | - Xueqiong Dai
- College of Science Guilin University of Technology Guilin 541008 China
| | - Zhiyong Wang
- College of Science Guilin University of Technology Guilin 541008 China
| |
Collapse
|
12
|
Deng P, Cheng L, Jiang P, Zeng Z, Li A, Liao C. Sensing performance of CdPc monolayer toward the SF6 decomposition gases: A DFT study. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Lee SW, Jeon B, Lee H, Park JY. Hot Electron Phenomena at Solid-Liquid Interfaces. J Phys Chem Lett 2022; 13:9435-9448. [PMID: 36194546 DOI: 10.1021/acs.jpclett.2c02319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the role of energy dissipation and charge transfer under exothermic chemical reactions on metal catalyst surfaces is important for elucidating the fundamental phenomena at solid-gas and solid-liquid interfaces. Recently, many surface chemistry studies have been conducted on the solid-liquid interface, so correlating electronic excitation in the liquid-phase with the reaction mechanism plays a crucial role in heterogeneous catalysis. In this review, we introduce the detection principle of electron transfer at the solid-liquid interface by developing cutting-edge technologies with metal-semiconductor Schottky nanodiodes. The kinetics of hot electron excitation are well correlated with the reaction rates, demonstrating that the operando method for understanding nonadiabatic interactions is helpful in studying the reaction mechanism of surface molecular processes. In addition to the detection of hot electrons excited by a catalytic reaction, we highlight recent results on how the transfer of the hot electrons influences surface chemical and photoelectrochemical reactions.
Collapse
Affiliation(s)
- Si Woo Lee
- Department of Chemistry Education, Korea National University of Education (KNUE), Chungbuk28173, Republic of Korea
| | - Beomjoon Jeon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon34141, Republic of Korea
| | - Hyosun Lee
- Department of Materials Science and Engineering, University of Seoul, Seoul04066, Republic of Korea
| | - Jeong Young Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon34141, Republic of Korea
| |
Collapse
|
14
|
Liu Y, Guo L. Adsorption mechanisms of different toxic molecular gases on intrinsic C 2N and Ti-C 2N -V monolayer: a DFT study. J Mol Model 2022; 28:289. [PMID: 36057016 DOI: 10.1007/s00894-022-05273-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/12/2022] [Indexed: 10/14/2022]
Abstract
Recently, the excessive emission of chemical toxic gases such as nitrogen trifluoride (NF3), ammonia (NH3), phosgene (COCL2), and benzene (C6H6) has caused serious environmental problems. Adsorption of these chemical toxic gas molecules is a promising method to reduce environmental pollution. In this work, density functional theory (DFT) calculations are used to investigate the adsorption properties of these chemical toxic molecules on intrinsic C2N and Ti-C2N-V monolayer. The results show that NF3, NH3, C6H6, and COCL2 can all be adsorbed to the intrinsic C2N monolayer with weak adsorption energy, while the adsorption properties of these gas molecules were greatly improved after doping Ti atom. The adsorption energy of NH3, C6H6, COCL2, and NF3 increased from - 0.585, - 0.432, - 0.633, and - 0.362 eV to - 2.214, - 1.699, - 1.822, and - 0.799 eV, respectively, which increased by 2 ~ 4 times compared with that before doping. Besides, the results of the electron distribution, work function, the total density of states (TDOS), and the partial density of states (PDOS) analysis indicate that the doped Ti atom can be used as a bridge to connect the adsorbed molecules with the C2N-V monolayer, strengthen their interaction, and significantly improve the adsorption capacity. Therefore, Ti-doped C2N-V (Ti-C2N-V) monolayer is a promising adsorbent for the enrichment and utilization of harmful gases.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Lifen Guo
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, Sichuan, China. .,School of Electronic and Information, Zhongyuan University of Technology, Zhengzhou, 450007, Henan, China.
| |
Collapse
|
15
|
Koval NE, Sánchez-Portal D, Borisov AG, Díez Muiño R. Time-dependent density functional theory calculations of electronic friction in non-homogeneous media. Phys Chem Chem Phys 2022; 24:20239-20248. [PMID: 35996966 DOI: 10.1039/d2cp01972h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The excitation of low-energy electron-hole pairs is one of the most relevant processes in the gas-surface interaction. An efficient tool to account for these excitations in simulations of atomic and molecular dynamics at surfaces is the so-called local density friction approximation (LDFA). The LDFA is based on a strong approximation that simplifies the dynamics of the electronic system: a local friction coefficient is defined using the value of the electronic density for the unperturbed system at each point of the dynamics. In this work, we apply real-time time-dependent density functional theory to the problem of the electronic friction of a negative point charge colliding with spherical jellium metal clusters. Our non-adiabatic, parameter-free results provide a benchmark for the widely used LDFA approximation and allow the discussion of various processes relevant to the electronic response of the system in the presence of the projectile.
Collapse
Affiliation(s)
- Natalia E Koval
- Centro de Física de Materiales (CFM) CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain. .,Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain.,CIC Nanogune BRTA, Tolosa Hiribidea 76, E-20018 San Sebastián, Spain
| | - Daniel Sánchez-Portal
- Centro de Física de Materiales (CFM) CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain. .,Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| | - Andrei G Borisov
- Institut des Sciences Moléculaires d'Orsay (ISMO), UMR 8214, CNRS-Université Paris-Saclay, Bât. 520, F-91405 Orsay CEDEX, France
| | - Ricardo Díez Muiño
- Centro de Física de Materiales (CFM) CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain. .,Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| |
Collapse
|
16
|
Kim H, Park H, Kang M, Park JY. Plasmonic hot carrier-driven photoelectrochemical water splitting on antenna–reactor Pt/Ag/TiO 2 Schottky nanodiodes. J Chem Phys 2022; 157:084701. [DOI: 10.1063/5.0097713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plasmonic photoelectrochemical (PEC) water splitting has excited immense interest, as it can overcome the intrinsic limitations of semiconductors, in terms of light absorption, by the localized-surface plasmon resonances effect. Here, to get insight into the role of plasmonic hot carriers in plasmonic water splitting, a rational design of an antenna–reactor type Pt/Ag/TiO2 metal–semiconductor Schottky nanodiode was fabricated and used as a photoanode. Using the designed PEC cell system combined with the Pt/Ag/TiO2 nanodiode, we show that the plasmonic hot carriers excited from Ag were utilized for the oxygen (O2) evolution reaction and, consequently, had a decisive role in the enhancement of the photocatalytic efficiency. These results were supported by finite-difference time-domain simulations, and the faradaic efficiency was measured by the amount of actual gas produced. Therefore, this study provides a deep understanding of the dynamics and mechanisms of plasmonic hot carriers in plasmonic-assisted PEC water splitting.
Collapse
Affiliation(s)
- Heeyoung Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon 34141, Republic of Korea
| | - Hyewon Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon 34141, Republic of Korea
| | - Mincheol Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon 34141, Republic of Korea
| | - Jeong Young Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon 34141, Republic of Korea
| |
Collapse
|
17
|
Wang C, Wang Y, Guo Q, Dai E, Nie Z. Metal-Decorated Phthalocyanine Monolayer as a Potential Gas Sensing Material for Phosgene: A First-Principles Study. ACS OMEGA 2022; 7:21994-22002. [PMID: 35785291 PMCID: PMC9244902 DOI: 10.1021/acsomega.2c02548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Research into a gas sensing material with excellent performance to detect or remove toxic phosgene (COCl2) is of great significance to environmental and biological protection. In the present work, the adsorption performance of COCl2 on pristine phthalocyanine (Pc) and metal-decorated Pc (MePc, Me = Cu, Ga, and Ru) monolayers was studied by first-principles calculations. The results show that the absorption process of COCl2 on pristine Pc and CuPc both belong to physisorption, indicating that they are not suitable gas sensing materials for COCl2. When Pc sheets are decorated by Ga and Ru atoms, the adsorption of COCl2 is changed into chemisorption, and the corresponding adsorption energies are -0.57 and -0.50 eV for GaPc and RuPc, respectively. The microcosmic mechanism between COCl2 and adsorbents (GaPc, RuPc) was clarified by the analysis of the density of states, the charge density difference, and the Hirshfeld charge. In addition, the COCl2 adsorption results in a significant conductivity variation of the RuPc monolayer, demonstrating it exhibits a high sensitivity to the COCl2 molecule. Meanwhile, quick desorption processes were noticed at various temperatures for the COCl2/RuPc system. Consequently, the RuPc monolayer can be considered as a potential candidate for phosgene sensors because of the moderate adsorption strength, high sensitivity, and fast desorption speed.
Collapse
Affiliation(s)
- Chen Wang
- Yunnan
Key Laboratory of Metal−Organic Molecular Materials and Device, Kunming University, Kunming 650214, China
- School
of Physical Science and Technology, Kunming
University, Kunming 650214, China
| | - Yajun Wang
- Yunnan
Key Laboratory of Metal−Organic Molecular Materials and Device, Kunming University, Kunming 650214, China
- School
of Physical Science and Technology, Kunming
University, Kunming 650214, China
| | - Qijun Guo
- Yunnan
Key Laboratory of Metal−Organic Molecular Materials and Device, Kunming University, Kunming 650214, China
- School
of Chemistry and Chemical Engineering, Kunming
University, Kunming 650214, China
| | - Enrui Dai
- School
of Chemistry and Chemical Engineering, Kunming
University, Kunming 650214, China
| | - Zhifeng Nie
- Yunnan
Key Laboratory of Metal−Organic Molecular Materials and Device, Kunming University, Kunming 650214, China
| |
Collapse
|
18
|
Ostovan A, Papior N, Naghavi SS. Highly sensitive and low-power consumption metalloporphyrin-based junctions for CO x detection with excellent recovery. Phys Chem Chem Phys 2022; 24:14866-14876. [PMID: 35611660 DOI: 10.1039/d2cp00408a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The development of cost-effective and eco-friendly sensor materials is needed to realize the application of detectors in daily life-such as in the internet of things. In this regard, monitoring air pollutants such as carbon monoxide (CO) and carbon dioxide (CO2), mainly emitted by anthropogenic sources from daily human activities, is of great importance. In particular, developing a susceptible and portable CO2 sensor raises a dilemma because of the chemical inertness and non-polarity of CO2 molecules. We find that porphyrin-based materials, exploited by nature in biological systems, are a playground to search for such sensor materials. Using density functional non-equilibrium Green's function formalism, we fully screen all 3d metalloporphyrin (MPor) based devices to find efficient CO and CO2 gas sensors. Our detailed analysis of the adsorption energy, molecular orbitals, transmission spectra, sensitivity, and recovery time reveals that the nature of central M alters the efficiency of MPor gas detectors. We find that CO and CO2 can be monitored using, respectively, CoPor- and TiPor-based devices. The estimated sensitivity is around 100%, along with a fast recovery time at very low bias voltages (V ≥ 0.5 V), which turn metalloporphyrins into promising candidates for the widespread development of enhanced CO and CO2 sensors awaiting further experimental validations.
Collapse
Affiliation(s)
- Azar Ostovan
- Department of Physical and Computational Chemistry, Shahid Beheshti University, 1983969411 Tehran, Iran.
| | - Nick Papior
- DTU Computing Center, Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - S Shahab Naghavi
- Department of Physical and Computational Chemistry, Shahid Beheshti University, 1983969411 Tehran, Iran.
| |
Collapse
|
19
|
Yu L, Li F. Metal dimers embedded vertically in defect-graphene as gas sensors: a first-principles study. Phys Chem Chem Phys 2022; 24:9842-9847. [PMID: 35439807 DOI: 10.1039/d2cp00672c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly symmetric structure of metal dimers embedded in defect-graphene (M2⊥gra) in a perpendicular manner was designed. Five M2⊥gra (M = Co, Ni, Rh, Ir and Pt) monolayers were identified to be stable by density functional theory (DFT) calculations. To investigate the capability of those new structures as gas sensors, the adsorption behavior of ten gas molecules (O2, N2, CO, CO2, NO, NO2, NH3, H2O, H2S and SO2) on M2⊥gra was explored, and the charge transfer, magnetism changes, etc. of these adsorption systems were analyzed. The Ni2⊥gra can be used as a gas sensor for O2 at 500 K by the analysis of electronic and magnetic properties. At room temperature, the Pt2⊥gra is expected to be an excellent CO2 gas selector due to its high selectivity, sensitivity and short recovery time (1.04 × 10-12 s). The electronic and magnetic coupling between the metal atoms in the vertical metal dimers plays an important role in sensing gas molecules. Our work paves a new way to design metal-dimer-based nanomaterials.
Collapse
Affiliation(s)
- Linke Yu
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China.
| | - Fengyu Li
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
20
|
|
21
|
Ostovan A, Naghavi SS. Highly Sensitive, Selective and Low-Power Consumption Metalloporphyrin−Based Junctions for Nitrogen Monoxide Detection with Excellent Recovery. Phys Chem Chem Phys 2022; 24:15579-15587. [DOI: 10.1039/d2cp01553f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Research interest in chemical gas detection has been directed towards developing highly selective bio-inspired and eco-friendly materials that allow the integration of sensors in daily human life, such as the...
Collapse
|
22
|
Lecroart L, Hertl N, Dorenkamp Y, Jiang H, Kitsopoulos TN, Kandratsenka A, Bünermann O, Wodtke AM. Adsorbate modification of electronic nonadiabaticity: H atom scattering from p(2 × 2) O on Pt(111). J Chem Phys 2021; 155:034702. [PMID: 34293879 DOI: 10.1063/5.0058789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report inelastic differential scattering experiments for energetic H and D atoms colliding at a Pt(111) surface with and without adsorbed O atoms. Dramatically, more energy loss is seen for scattering from the Pt(111) surface compared to p(2 × 2) O on Pt(111), indicating that O adsorption reduces the probability of electron-hole pair (EHP) excitation. We produced a new full-dimensional potential energy surface for H interaction with O/Pt that reproduces density functional theory energies accurately. We then attempted to model the EHP excitation in H/D scattering with molecular dynamics simulations employing the electronic density information from the Pt(111) to calculate electronic friction at the level of the local density friction approximation (LDFA). This approach, which assumes that O atoms simply block the Pt atom from the approaching H atom, fails to reproduce experiment due to the fact that the effective collision cross section of the O atom is only 10% of the area of the surface unit cell. An empirical adiabatic sphere model that reduces electronic nonadiabaticity within an O-Pt bonding length scale of 2.8 Å reproduces experiment well, suggesting that the electronic structure changes induced by chemisorption of O atoms nearly remove the H atom's ability to excite EHPs in the Pt. Alternatives to LDFA friction are needed to account for this adsorbate effect.
Collapse
Affiliation(s)
- Loïc Lecroart
- Department of Dynamics at Surfaces, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Nils Hertl
- Department of Dynamics at Surfaces, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Yvonne Dorenkamp
- Institute for Physical Chemistry, Georg-August University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| | - Hongyan Jiang
- Department of Dynamics at Surfaces, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Theofanis N Kitsopoulos
- Institute for Physical Chemistry, Georg-August University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| | - Alexander Kandratsenka
- Department of Dynamics at Surfaces, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Oliver Bünermann
- Institute for Physical Chemistry, Georg-August University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| | - Alec M Wodtke
- Department of Dynamics at Surfaces, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| |
Collapse
|
23
|
Chen P, Huang Y, Shi Z, Chen X, Li N. Improving the Catalytic CO 2 Reduction on Cs 2AgBiBr 6 by Halide Defect Engineering: A DFT Study. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2469. [PMID: 34064582 PMCID: PMC8151533 DOI: 10.3390/ma14102469] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/23/2022]
Abstract
Pb-free double halide perovskites have drawn immense attention in the potential photocatalytic application, due to the regulatable bandgap energy and nontoxicity. Herein, we first present a study for CO2 conversion on Pb-free halide perovskite Cs2AgBiBr6 under state-of-the-art first-principles calculation with dispersion correction. Compared with the previous CsPbBr3, the cell parameter of Cs2AgBiBr6 underwent only a small decrease of 3.69%. By investigating the adsorption of CO, CO2, NO, NO2, and catalytic reduction of CO2, we found Cs2AgBiBr6 exhibits modest adsorption ability and unsatisfied potential determining step energy of 2.68 eV in catalysis. We adopted defect engineering (Cl doping, I doping and Br-vacancy) to regulate the adsorption and CO2 reduction behavior. It is found that CO2 molecule can be chemically and preferably adsorbed on Br-vacancy doped Cs2AgBiBr6 with a negative adsorption energy of -1.16 eV. Studying the CO2 reduction paths on pure and defect modified Cs2AgBiBr6, Br-vacancy is proved to play a critical role in decreasing the potential determining step energy to 1.25 eV. Finally, we probe into the electronic properties and demonstrate Br-vacancy will not obviously promote the process of catalysis deactivation, as there is no formation of deep-level electronic states acting as carrier recombination center. Our findings reveal the process of gas adsorption and CO2 reduction on novel Pb-free Cs2AgBiBr6, and propose a potential strategy to improve the efficiency of catalytic CO2 conversion towards practical implementation.
Collapse
Affiliation(s)
- Pengfei Chen
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; (P.C.); (Y.H.); (Z.S.); (X.C.)
- Center of Innovation and Entrepreneurship, Wuhan University of Technology, Wuhan 430070, China
| | - Yiao Huang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; (P.C.); (Y.H.); (Z.S.); (X.C.)
- Center of Innovation and Entrepreneurship, Wuhan University of Technology, Wuhan 430070, China
| | - Zuhao Shi
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; (P.C.); (Y.H.); (Z.S.); (X.C.)
- Center of Innovation and Entrepreneurship, Wuhan University of Technology, Wuhan 430070, China
- Shenzhen Research Institute, Wuhan University of Technology, Shenzhen 518000, China
| | - Xingzhu Chen
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; (P.C.); (Y.H.); (Z.S.); (X.C.)
- Shenzhen Research Institute, Wuhan University of Technology, Shenzhen 518000, China
| | - Neng Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; (P.C.); (Y.H.); (Z.S.); (X.C.)
- Shenzhen Research Institute, Wuhan University of Technology, Shenzhen 518000, China
- State Center for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
24
|
Bünermann O, Kandratsenka A, Wodtke AM. Inelastic Scattering of H Atoms from Surfaces. J Phys Chem A 2021; 125:3059-3076. [PMID: 33779163 PMCID: PMC8154602 DOI: 10.1021/acs.jpca.1c00361] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/09/2021] [Indexed: 11/29/2022]
Abstract
We have developed an instrument that uses photolysis of hydrogen halides to produce nearly monoenergetic hydrogen atom beams and Rydberg atom tagging to obtain accurate angle-resolved time-of-flight distributions of atoms scattered from surfaces. The surfaces are prepared under strict ultrahigh vacuum conditions. Data from these experiments can provide excellent benchmarks for theory, from which it is possible to obtain an atomic scale understanding of the underlying dynamical processes governing H atom adsorption. In this way, the mechanism of adsorption on metals is revealed, showing a penetration-resurfacing mechanism that relies on electronic excitation of the metal by the H atom to succeed. Contrasting this, when H atoms collide at graphene surfaces, the dynamics of bond formation involving at least four carbon atoms govern adsorption. Future perspectives of H atom scattering from surfaces are also outlined.
Collapse
Affiliation(s)
- Oliver Bünermann
- Institute
for Physical Chemistry, Georg-August-University
of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
- Department
of Dynamics at Surfaces, Max-Planck Institute
for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
- International
Center for Advanced Studies of Energy Conversion, Georg-August University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Alexander Kandratsenka
- Department
of Dynamics at Surfaces, Max-Planck Institute
for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Alec M. Wodtke
- Institute
for Physical Chemistry, Georg-August-University
of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
- Department
of Dynamics at Surfaces, Max-Planck Institute
for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
- International
Center for Advanced Studies of Energy Conversion, Georg-August University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| |
Collapse
|
25
|
Kroes GJ. Computational approaches to dissociative chemisorption on metals: towards chemical accuracy. Phys Chem Chem Phys 2021; 23:8962-9048. [PMID: 33885053 DOI: 10.1039/d1cp00044f] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review the state-of-the-art in the theory of dissociative chemisorption (DC) of small gas phase molecules on metal surfaces, which is important to modeling heterogeneous catalysis for practical reasons, and for achieving an understanding of the wealth of experimental information that exists for this topic, for fundamental reasons. We first give a quick overview of the experimental state of the field. Turning to the theory, we address the challenge that barrier heights (Eb, which are not observables) for DC on metals cannot yet be calculated with chemical accuracy, although embedded correlated wave function theory and diffusion Monte-Carlo are moving in this direction. For benchmarking, at present chemically accurate Eb can only be derived from dynamics calculations based on a semi-empirically derived density functional (DF), by computing a sticking curve and demonstrating that it is shifted from the curve measured in a supersonic beam experiment by no more than 1 kcal mol-1. The approach capable of delivering this accuracy is called the specific reaction parameter (SRP) approach to density functional theory (DFT). SRP-DFT relies on DFT and on dynamics calculations, which are most efficiently performed if a potential energy surface (PES) is available. We therefore present a brief review of the DFs that now exist, also considering their performance on databases for Eb for gas phase reactions and DC on metals, and for adsorption to metals. We also consider expressions for SRP-DFs and briefly discuss other electronic structure methods that have addressed the interaction of molecules with metal surfaces. An overview is presented of dynamical models, which make a distinction as to whether or not, and which dissipative channels are modeled, the dissipative channels being surface phonons and electronically non-adiabatic channels such as electron-hole pair excitation. We also discuss the dynamical methods that have been used, such as the quasi-classical trajectory method and quantum dynamical methods like the time-dependent wave packet method and the reaction path Hamiltonian method. Limits on the accuracy of these methods are discussed for DC of diatomic and polyatomic molecules on metal surfaces, paying particular attention to reduced dimensionality approximations that still have to be invoked in wave packet calculations on polyatomic molecules like CH4. We also address the accuracy of fitting methods, such as recent machine learning methods (like neural network methods) and the corrugation reducing procedure. In discussing the calculation of observables we emphasize the importance of modeling the properties of the supersonic beams in simulating the sticking probability curves measured in the associated experiments. We show that chemically accurate barrier heights have now been extracted for DC in 11 molecule-metal surface systems, some of which form the most accurate core of the only existing database of Eb for DC reactions on metal surfaces (SBH10). The SRP-DFs (or candidate SRP-DFs) that have been derived show transferability in many cases, i.e., they have been shown also to yield chemically accurate Eb for chemically related systems. This can in principle be exploited in simulating rates of catalyzed reactions on nano-particles containing facets and edges, as SRP-DFs may be transferable among systems in which a molecule dissociates on low index and stepped surfaces of the same metal. In many instances SRP-DFs have allowed important conclusions regarding the mechanisms underlying observed experimental trends. An important recent observation is that SRP-DFT based on semi-local exchange DFs has so far only been successful for systems for which the difference of the metal work function and the molecule's electron affinity exceeds 7 eV. A main challenge to SRP-DFT is to extend its applicability to the other systems, which involve a range of important DC reactions of e.g. O2, H2O, NH3, CO2, and CH3OH. Recent calculations employing a PES based on a screened hybrid exchange functional suggest that the road to success may be based on using exchange functionals of this category.
Collapse
Affiliation(s)
- Geert-Jan Kroes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
26
|
Jeon B, Lee C, Park JY. Electronic Control of Hot Electron Transport Using Modified Schottky Barriers in Metal-Semiconductor Nanodiodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9252-9259. [PMID: 33587596 DOI: 10.1021/acsami.0c22108] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Hot electron flux, generated by both incident light energy and the heat of the catalytic reaction, is a major element for energy conversion at the surface. Controlling hot electron flux in a reversible manner is extremely important for achieving high energy conversion efficiency. Here we demonstrate that hot electron flux can be controlled by tuning the Schottky barrier height. This phenomenon was monitored by using a Schottky nanodiode composed of a metal-semiconductor. The formation of a Schottky barrier at a nanometer scale inevitably accompanies an intrinsic image potential between the metal-semiconductor junction, which lowers the effective Schottky barrier height. When a reverse bias is applied to the nanodiode, an additional image potential participates in a secondary barrier lowering, leading to the increased hot electron flow. Besides, a decrease of tunneling width results in facile electron transport through the barrier. The increased hot electron flux by the chemical reaction (chemicurrent) and by the photon absorption (photocurrent) indicates hot electrons are captured more effectively by modifying the Schottky barrier. This study can shed light on a quantitative understanding and application of charge behavior at metal-semiconductor interfaces, in solar energy conversion, or in a catalytic reaction.
Collapse
Affiliation(s)
- Beomjoon Jeon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Changhwan Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Jeong Young Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
27
|
Box C, Zhang Y, Yin R, Jiang B, Maurer RJ. Determining the Effect of Hot Electron Dissipation on Molecular Scattering Experiments at Metal Surfaces. JACS AU 2021; 1:164-173. [PMID: 34467282 PMCID: PMC8395621 DOI: 10.1021/jacsau.0c00066] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Nonadiabatic effects that arise from the concerted motion of electrons and atoms at comparable energy and time scales are omnipresent in thermal and light-driven chemistry at metal surfaces. Excited (hot) electrons can measurably affect molecule-metal reactions by contributing to state-dependent reaction probabilities. Vibrational state-to-state scattering of NO on Au(111) has been one of the most studied examples in this regard, providing a testing ground for developing various nonadiabatic theories. This system is often cited as the prime example for the failure of electronic friction theory, a very efficient model accounting for dissipative forces on metal-adsorbed molecules due to the creation of hot electrons in the metal. However, the exact failings compared to experiment and their origin from theory are not established for any system because dynamic properties are affected by many compounding simulation errors of which the quality of nonadiabatic treatment is just one. We use a high-dimensional machine learning representation of electronic structure theory to minimize errors that arise from quantum chemistry. This allows us to perform a comprehensive quantitative analysis of the performance of nonadiabatic molecular dynamics in describing vibrational state-to-state scattering of NO on Au(111) and compare directly to adiabatic results. We find that electronic friction theory accurately predicts elastic and single-quantum energy loss but underestimates multiquantum energy loss and overestimates molecular trapping at high vibrational excitation. Our analysis reveals that multiquantum energy loss can potentially be remedied within friction theory whereas the overestimation of trapping constitutes a genuine breakdown of electronic friction theory. Addressing this overestimation for dynamic processes in catalysis and surface chemistry will likely require more sophisticated theories.
Collapse
Affiliation(s)
- Connor
L. Box
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Yaolong Zhang
- Hefei
National Laboratory for Physical Science at the Microscale, Department
of Chemical Physics, Key Laboratory of Surface and Interface Chemistry
and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rongrong Yin
- Hefei
National Laboratory for Physical Science at the Microscale, Department
of Chemical Physics, Key Laboratory of Surface and Interface Chemistry
and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bin Jiang
- Hefei
National Laboratory for Physical Science at the Microscale, Department
of Chemical Physics, Key Laboratory of Surface and Interface Chemistry
and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Reinhard J. Maurer
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
28
|
Jin Z, Subotnik JE. Nonadiabatic Dynamics at Metal Surfaces: Fewest Switches Surface Hopping with Electronic Relaxation. J Chem Theory Comput 2021; 17:614-626. [PMID: 33512137 DOI: 10.1021/acs.jctc.0c00997] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new scheme is proposed for modeling molecular nonadiabatic dynamics near metal surfaces. The charge-transfer character of such dynamics is exploited to construct an efficient reduced representation for the electronic structure. In this representation, the fewest switches surface hopping (FSSH) approach can be naturally modified to include electronic relaxation (ER). The resulting FSSH-ER method is valid across a wide range of coupling strengths as supported by tests applied to the Anderson-Holstein model for electron transfer. Future work will combine this scheme with ab initio electronic structure calculations.
Collapse
Affiliation(s)
- Zuxin Jin
- Chemistry, University of Pennsylvania, 231 S. 34 Street, Cret Wing 141D, Philadelphia, Pennsylvania 19104-6243, United States
| | - Joseph E Subotnik
- Chemistry, University of Pennsylvania, 231 S. 34 Street, Cret Wing 141D, Philadelphia, Pennsylvania 19104-6243, United States
| |
Collapse
|
29
|
Wang P, Yan G, Zhu X, Du Y, Chen D, Zhang J. Heterofullerene MC 59 (M = B, Si, Al) as Potential Carriers for Hydroxyurea Drug Delivery. NANOMATERIALS 2021; 11:nano11010115. [PMID: 33430313 PMCID: PMC7825758 DOI: 10.3390/nano11010115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/03/2022]
Abstract
As a representative nanomaterial, C60 and its derivatives have drawn much attention in the field of drug delivery over the past years, due to their unique geometric and electronic structures. Herein, the interactions of hydroxyurea (HU) drug with the pristine C60 and heterofullerene MC59 (M = B, Si, Al) were investigated using the density functional theory calculations. The geometric and electronic properties in terms of adsorption configuration, adsorption energy, Hirshfeld charge, frontier molecular orbitals, and charge density difference are calculated. In contrast to pristine C60, it is found that HU molecule is chemisorbed on the BC59, SiC59, and AlC59 molecules with moderate adsorption energy and apparent charge transfer. Therefore, heterofullerene BC59, SiC59, and AlC59 are expected to be promising carriers for hydroxyurea drug delivery.
Collapse
Affiliation(s)
- Peng Wang
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (P.W.); (G.Y.); (X.Z.); (Y.D.); (D.C.)
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Ge Yan
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (P.W.); (G.Y.); (X.Z.); (Y.D.); (D.C.)
| | - Xiaodong Zhu
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (P.W.); (G.Y.); (X.Z.); (Y.D.); (D.C.)
| | - Yingying Du
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (P.W.); (G.Y.); (X.Z.); (Y.D.); (D.C.)
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Da Chen
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (P.W.); (G.Y.); (X.Z.); (Y.D.); (D.C.)
| | - Jinjuan Zhang
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (P.W.); (G.Y.); (X.Z.); (Y.D.); (D.C.)
- Correspondence: ; Tel.: +86-187-5425-3028
| |
Collapse
|
30
|
Lee SW, Kim JM, Park W, Lee H, Lee GR, Jung Y, Jung YS, Park JY. Controlling hot electron flux and catalytic selectivity with nanoscale metal-oxide interfaces. Nat Commun 2021; 12:40. [PMID: 33397946 PMCID: PMC7782808 DOI: 10.1038/s41467-020-20293-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 11/18/2020] [Indexed: 11/10/2022] Open
Abstract
Interaction between metal and oxides is an important molecular-level factor that influences the selectivity of a desirable reaction. Therefore, designing a heterogeneous catalyst where metal-oxide interfaces are well-formed is important for understanding selectivity and surface electronic excitation at the interface. Here, we utilized a nanoscale catalytic Schottky diode from Pt nanowire arrays on TiO2 that forms a nanoscale Pt-TiO2 interface to determine the influence of the metal-oxide interface on catalytic selectivity, thereby affecting hot electron excitation; this demonstrated the real-time detection of hot electron flow generated under an exothermic methanol oxidation reaction. The selectivity to methyl formate and hot electron generation was obtained on nanoscale Pt nanowires/TiO2, which exhibited ~2 times higher partial oxidation selectivity and ~3 times higher chemicurrent yield compared to a diode based on Pt film. By utilizing various Pt/TiO2 nanostructures, we found that the ratio of interface to metal sites significantly affects the selectivity, thereby enhancing chemicurrent yield in methanol oxidation. Density function theory (DFT) calculations show that formation of the Pt-TiO2 interface showed that selectivity to methyl formate formation was much larger in Pt nanowire arrays than in Pt films because of the different reaction mechanism.
Collapse
Affiliation(s)
- Si Woo Lee
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jong Min Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Woonghyeon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyosun Lee
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Korea Institute of Industrial Technology (KITECH), Intelligent Sustainable Material R&D Group, Cheonan, 31056, Republic of Korea
| | - Gyu Rac Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yousung Jung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Jeong Young Park
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
31
|
Geweke J, Wodtke AM. Vibrationally inelastic scattering of HCl from Ag(111). J Chem Phys 2020; 153:164703. [DOI: 10.1063/5.0026228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jan Geweke
- Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Max-Planck-EPFL Center for Molecular Nanoscience and Technology, Institute of Chemical Sciences and Engineering (ISIC), Station 6, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Institute for Physical Chemistry, Georg-August University of Göttingen, 37077 Göttingen, Germany
| | - Alec M. Wodtke
- Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Max-Planck-EPFL Center for Molecular Nanoscience and Technology, Institute of Chemical Sciences and Engineering (ISIC), Station 6, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Institute for Physical Chemistry, Georg-August University of Göttingen, 37077 Göttingen, Germany
- International Center for Advanced Studies of Energy Conversion, Georg-August University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
32
|
Zhao Z, Yong Y, Zhou Q, Kuang Y, Li X. Gas-Sensing Properties of the SiC Monolayer and Bilayer: A Density Functional Theory Study. ACS OMEGA 2020; 5:12364-12373. [PMID: 32548420 PMCID: PMC7271371 DOI: 10.1021/acsomega.0c01084] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Using density functional theory calculations, the adsorption of gaseous molecules (NO, NO2, NH3, SO2, CO, HCN, O2, H2, N2, CO2, and H2O) on the graphitic SiC monolayer and bilayer has been investigated to explore the possibilities in gas sensors for NO, NO2, and NH3 detection. The strong adsorption of NO2 and SO2 on the SiC monolayer precludes its applications in nitride gas sensors. The nitride gases (NO, NO2, and NH3) are chemisorbed on the SiC bilayer with moderate adsorption energies and apparent charge transfer, while the other molecules are all physisorbed. Further, the bilayer can effectively weaken the adsorption strength of NO2 and SO2 molecules, that is, NO2 molecules are only weakly chemisorbed on the SiC bilayer with an E ads of -0.62 eV, while SO2 are physisorbed on the bilayer. These results indicate that the SiC bilayer can serve as a gas sensor to detect NO, NO2, and NH3 gases with excellent performance (high sensitivity, high selectivity, and rapid recovery time). Moreover, compared with other molecular adsorptions, the adsorption of NH3 molecules significantly changes the work function of the SiC monolayer and bilayer, indicating that they can be used as optical gas sensors for NH3 detection.
Collapse
Affiliation(s)
- Zijia Zhao
- School of Physics
and Engineering, Henan Key Laboratory of Photoelectric Energy Storage
Materials and Applications, Henan University
of Science and Technology, Luoyang 471023, China
| | - Yongliang Yong
- School of Physics
and Engineering, Henan Key Laboratory of Photoelectric Energy Storage
Materials and Applications, Henan University
of Science and Technology, Luoyang 471023, China
| | - Qingxiao Zhou
- School of Physics
and Engineering, Henan Key Laboratory of Photoelectric Energy Storage
Materials and Applications, Henan University
of Science and Technology, Luoyang 471023, China
| | - Yanmin Kuang
- Institute
of Photobiophysics, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Xiaohong Li
- School of Physics
and Engineering, Henan Key Laboratory of Photoelectric Energy Storage
Materials and Applications, Henan University
of Science and Technology, Luoyang 471023, China
| |
Collapse
|
33
|
Dyck O, Lingerfelt D, Kim S, Jesse S, Kalinin SV. Direct matter disassembly via electron beam control: electron-beam-mediated catalytic etching of graphene by nanoparticles. NANOTECHNOLOGY 2020; 31:245303. [PMID: 32160595 DOI: 10.1088/1361-6528/ab7ef8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report electron-beam activated motion of a catalytic nanoparticle along a graphene step edge and associated etching of the edge. The catalytic hydrogenation process was observed to be activated by a combination of elevated temperature and electron beam irradiation. Reduction of beam fluence on the particle was sufficient to stop the process, leading to the ability to switch on and off the etching. Such an approach enables the targeting of individual nanoparticles to induce motion and beam-controlled etching of matter through activated electrocatalytic processes. The applications of electron-beam control as a paradigm for molecular-scale robotics are discussed.
Collapse
Affiliation(s)
- Ondrej Dyck
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States of America
| | | | | | | | | |
Collapse
|
34
|
Jin Z, Dou W, Subotnik JE. Configuration interaction approaches for solving quantum impurity models. J Chem Phys 2020; 152:064105. [PMID: 32061216 DOI: 10.1063/1.5131624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We develop several configuration interaction approaches for characterizing the electronic structure of an adsorbate on a metal surface (at least in model form). When one can separate the adsorbate from the substrate, these methods can achieve a reasonable description of adsorbate on-site electron-electron correlation in the presence of a continuum of states. While the present paper is restricted to the Anderson impurity model, there is hope that these methods can be extended to ab initio Hamiltonians and provide insight into the structure and dynamics of molecule-metal surface interactions.
Collapse
Affiliation(s)
- Zuxin Jin
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Wenjie Dou
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
35
|
Nedrygailov I, Heo Y, Kim H, Park JY. Charge Transfer during the Aluminum-Water Reaction Studied with Schottky Nanodiode Sensors. ACS OMEGA 2019; 4:20838-20843. [PMID: 31858070 PMCID: PMC6906933 DOI: 10.1021/acsomega.9b03397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
The aluminum-water reaction is a promising source for hydrogen production. However, experimental studies of this reaction are difficult because of the highly concentrated alkaline solution used to activate the surface of aluminum. Here, we show that the reaction kinetics can be monitored in real time by a Schottky diode sensor, consisting of an ultrathin aluminum film deposited on a semiconductor substrate. Charge resulting from the corrosion of the aluminum film causes an electrical signal in the sensor, which is proportional to the rate of the chemical process. We discuss the possible mechanisms for the reaction-induced charge generation and transfer, as well as the use of Schottky diode based sensors for operando studies of the aluminum-water reaction and similar reactions on metals in concentrated alkaline solutions.
Collapse
Affiliation(s)
- Ievgen
I. Nedrygailov
- Center
for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon 34141, Republic of Korea
| | - Yeob Heo
- Center
for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon 34141, Republic of Korea
- Department
of Chemistry and EEWS Graduate School, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Heeyoung Kim
- Center
for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon 34141, Republic of Korea
- Department
of Chemistry and EEWS Graduate School, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeong Young Park
- Center
for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon 34141, Republic of Korea
- Department
of Chemistry and EEWS Graduate School, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
36
|
Lee SW, Park W, Lee H, Chan Song H, Jung Y, Park JY. Intrinsic Relation between Hot Electron Flux and Catalytic Selectivity during Methanol Oxidation. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Si Woo Lee
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Woonghyeon Park
- Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyosun Lee
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hee Chan Song
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yousung Jung
- Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeong Young Park
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
37
|
Jiang B, Guo H. Dynamics in reactions on metal surfaces: A theoretical perspective. J Chem Phys 2019; 150:180901. [PMID: 31091904 DOI: 10.1063/1.5096869] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent advances in theoretical characterization of reaction dynamics on metal surfaces are reviewed. It is shown that the widely available density functional theory of metals and their interactions with molecules have enabled first principles theoretical models for treating surface reaction dynamics. The new theoretical tools include methods to construct high-dimensional adiabatic potential energy surfaces, to characterize nonadiabatic processes within the electronic friction models, and to describe dynamics both quantum mechanically and classically. Three prototypical surface reactions, namely, dissociative chemisorption, Eley-Rideal reactions, and recombinative desorption, are surveyed with a focus on some representative examples. While principles governing gas phase reaction dynamics may still be applicable, the presence of the surface introduces a higher level of complexity due to strong interaction between the molecular species and metal substrate. Furthermore, most of these reactive processes are impacted by energy exchange with surface phonons and/or electron-hole pair excitations. These theoretical studies help to interpret and rationalize experimental observations and, in some cases, guide experimental explorations. Knowledge acquired in these fundamental studies is expected to impact many practical problems in a wide range of interfacial processes.
Collapse
Affiliation(s)
- Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
38
|
Serwatka T, Tremblay JC. Stochastic wave packet approach to nonadiabatic scattering of diatomic molecules from metals. J Chem Phys 2019; 150:184105. [PMID: 31091890 DOI: 10.1063/1.5092698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this contribution, we present a quantum dynamical approach to study inelastic scattering of diatomic molecules from metal surfaces at normal incidence. The dissipative dynamics obeys a stochastic Schrödinger equation describing the time-evolution of the system as a piecewise deterministic process. Energy exchange between the molecular vibrational degrees of freedom and the metal electrons is represented using operators in tensor product form, which are coupled via anharmonic transition rates calculated from first-order perturbation theory. Full dimensional observables are obtained by averaging over simulations in 4D-including the internal stretch, the distance to the surface, and the orientation angles-at different surface sites. The method is applied to the state-resolved scattering of vibrationally excited NO from Au(111), revealing important channels for quantized energy relaxation.
Collapse
Affiliation(s)
- T Serwatka
- Institut für Chemie und Biochemie, Freie Universität Berlin, D-14195 Berlin, Germany
| | - J C Tremblay
- Institut für Chemie und Biochemie, Freie Universität Berlin, D-14195 Berlin, Germany
| |
Collapse
|
39
|
Jiang H, Dorenkamp Y, Krüger K, Bünermann O. Inelastic H and D atom scattering from Au(111) as benchmark for theory. J Chem Phys 2019; 150:184704. [DOI: 10.1063/1.5094693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hongyan Jiang
- Institute for Physical Chemistry, Georg-August University of Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
- Department of Dynamics at Surfaces, Max-Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Yvonne Dorenkamp
- Institute for Physical Chemistry, Georg-August University of Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - Kerstin Krüger
- Institute for Physical Chemistry, Georg-August University of Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - Oliver Bünermann
- Institute for Physical Chemistry, Georg-August University of Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
- Department of Dynamics at Surfaces, Max-Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
- International Center for Advanced Studies of Energy Conversion, Georg-August University of Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| |
Collapse
|
40
|
Jin Z, Subotnik JE. A practical ansatz for evaluating the electronic friction tensor accurately, efficiently, and in a nearly black-box format. J Chem Phys 2019; 150:164105. [PMID: 31042890 DOI: 10.1063/1.5085683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is well-known that under conditions of fast electronic equilibration and weak nonadiabaticity, nonadiabatic effects induced by electron-hole pair excitations can be partly incorporated through a frictional force. However, ab initio computation of the electronic friction tensor suffers from numerical instability and usually demands a convergence check. In this study, we present an efficient and accurate interpolation method for computing the electronic friction tensor in a nearly black-box manner as appropriate for molecular dynamics. In almost all cases, our method agrees quite well with the exact friction tensor which is available for several quadratic Hamiltonians. As such, we outperform more conventional approaches that are based on the introduction of a broadening parameter. Future work will implement this interpolation approach within ab initio software packages.
Collapse
Affiliation(s)
- Zuxin Jin
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
41
|
Doroshkevich AS, Asgerov EB, Shylo AV, Lyubchyk AI, Logunov AI, Glazunova VA, Islamov AK, Turchenko VA, Almasan V, Lazar D, Balasoiu M, Doroshkevich VS, Madadzada AI, Kholmurodov KT, Bodnarchuk VI, Oksengendler BL. Direct conversion of the water adsorption energy to electricity on the surface of zirconia nanoparticles. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-00979-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Füchsel G, Zhou X, Jiang B, Juaristi JI, Alducin M, Guo H, Kroes GJ. Reactive and Nonreactive Scattering of HCl from Au(111): An Ab Initio Molecular Dynamics Study. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:2287-2299. [PMID: 30740194 PMCID: PMC6366682 DOI: 10.1021/acs.jpcc.8b10686] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/19/2018] [Indexed: 05/20/2023]
Abstract
The HCl + Au(111) system has recently become a benchmark for highly activated dissociative chemisorption, which presumably is strongly affected by electron-hole pair excitation. Previous dynamics calculations, which were based on density functional theory at the generalized gradient approximation level (GGA-DFT) for the molecule-surface interaction, have all overestimated measured reaction probabilities by at least an order of magnitude. Here, we perform ab initio molecular dynamics (AIMD) and AIMD with electronic friction (AIMDEF) calculations employing a density functional that includes the attractive van der Waals interaction. Our calculations model the simultaneous and possibly synergistic effects of surface temperature, surface atom motion, electron-hole pair excitation, the molecular beam conditions of the experiments, and the van der Waals interaction on the reactivity. We find that reaction probabilities computed with AIMDEF and the SRP32-vdW functional still overestimate the measured reaction probabilities, by a factor 18 for the highest incidence energy at which measurements were performed (≈2.5 eV). Even granting that the experiment could have underestimated the sticking probability by about a factor three, this still translates into a considerable overestimation of the reactivity by the current theory. Likewise, scaled transition probabilities for vibrational excitation from ν = 1, j = 1 to ν = 2 are overestimated by the AIMDEF theory, by factors 3-8 depending on the initial conditions modeled. Energy losses to the surface and translational energy losses are, however, in good agreement with experimental values.
Collapse
Affiliation(s)
- Gernot Füchsel
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- Institut
für Chemie und Biochemie—Physikalische und Theoretische
Chemie, Freie Universität Berlin, Takustraße3, 14195 Berlin, Germany
- E-mail: (G.F.)
| | - Xueyao Zhou
- Hefei
National Laboratory for Physical Science at the Microscale, Department
of Chemical Physics, School of Chemistry and Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bin Jiang
- Hefei
National Laboratory for Physical Science at the Microscale, Department
of Chemical Physics, School of Chemistry and Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - J. Iñaki Juaristi
- Departamento
de Física de Materiales, Facultad
de Químicas (UPV/EHU), Apartado 1072, 20080 Donostia-San Sebastián, Spain
- Centro
de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Maite Alducin
- Centro
de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Hua Guo
- Department
of Chemistry and Chemical Biology, University
of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Geert-Jan Kroes
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- E-mail: . Phone: +31 (0)71 527
4396 (G.-J.K.)
| |
Collapse
|
43
|
Zhang Y, Maurer RJ, Guo H, Jiang B. Hot-electron effects during reactive scattering of H 2 from Ag(111): the interplay between mode-specific electronic friction and the potential energy landscape. Chem Sci 2019; 10:1089-1097. [PMID: 30774906 PMCID: PMC6346630 DOI: 10.1039/c8sc03955k] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/07/2018] [Indexed: 01/29/2023] Open
Abstract
The breakdown of the Born-Oppenheimer approximation gives rise to nonadiabatic effects in gas-surface reactions at metal surfaces. However, for a given reaction, it remains unclear which factors quantitatively determine whether these effects measurably contribute to surface reactivity in catalysis and photo/electrochemistry. Here, we systematically investigate hot electron effects during H2 scattering from Ag(111) using electronic friction theory. We combine first-principles calculations of tensorial friction by time-dependent perturbation theory based on density functional theory and an analytical neural network representation, to overcome the limitations of existing approximations and explicitly simulate mode-specific nonadiabatic energy loss during molecular dynamics. Despite sizable hot-electron-induced energy loss, no measurable nonadiabatic effects can be found for H2 scattering on Ag(111). This is in stark contrast to previous reports for vibrationally excited H2 scattering on Cu(111). By detailed analysis of the two systems, we attribute this discrepancy to a subtle interplay between the magnitude of electronic friction along intramolecular vibration and the shape of the potential energy landscape that controls the molecular velocity at impact. On the basis of this characterization, we offer guidance for the search of highly nonadiabatic surface reactions.
Collapse
Affiliation(s)
- Yaolong Zhang
- Hefei National Laboratory for Physical Science at the Microscale , Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China .
| | - Reinhard J Maurer
- Department of Chemistry and Centre for Scientific Computing , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK .
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , USA
| | - Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale , Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China .
| |
Collapse
|
44
|
van Lent R, Auras SV, Cao K, Walsh AJ, Gleeson MA, Juurlink LBF. Site-specific reactivity of molecules with surface defects—the case of H2 dissociation on Pt. Science 2019; 363:155-157. [DOI: 10.1126/science.aau6716] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/30/2018] [Indexed: 11/02/2022]
Abstract
The classic system that describes weakly activated dissociation in heterogeneous catalysis has been explained by two dynamical models that are fundamentally at odds. Whereas one model for hydrogen dissociation on platinum(111) invokes a preequilibrium and diffusion toward defects, the other is based on direct and local reaction. We resolve this dispute by quantifying site-specific reactivity using a curved platinum single-crystal surface. Reactivity is step-type dependent and varies linearly with step density. Only the model that relies on localized dissociation is consistent with our results. Our approach provides absolute, site-specific reaction cross sections.
Collapse
|
45
|
Li HJ, Zhang D, Wang H, Chen Z, Ou N, Wang P, Wang D, Wang X, Yang J. Molecule-Driven Nanoenergy Generator. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804146. [PMID: 30549446 DOI: 10.1002/smll.201804146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/17/2018] [Indexed: 05/28/2023]
Abstract
A large potential can be generated when one end of 1D and/or 2D semiconducting nanostructures such as zinc oxide (ZnO) and molybdenum disulfide is exposed to a wide spectrum of chemical molecules. A nanoenergy generator that comprises vertically aligned ZnO nanowires and poly(vinyl chloride-co-vinyl-co-2-hydroxypropyl acrylate) is fabricated, and it can generate electricity from various molecules including gaseous species exhaled from human breath. The generated voltage, which depends sensitively on the molecular dipole moment of adsorbed chemical species and surface coverage, is significantly larger than the streaming or piezoelectric potentials and is powerful enough to directly drive a single carbon nanotube field-effect transistor. It is demonstrated that the notion of voltage generation through molecule-surface interactions bears general implications to other semiconducting materials, and has the advantages of simplicity, cost-effectiveness, fast response to a wide range of molecules, and high power output, making our approach a promising tool for energy conversion and sensing applications.
Collapse
Affiliation(s)
- Hui-Jun Li
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Darui Zhang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hongwu Wang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhenlu Chen
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Nanquan Ou
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ping Wang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ding Wang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xianying Wang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Junhe Yang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
46
|
Synthetically tuned electronic and geometrical properties of intermetallic compounds as effective heterogeneous catalysts. PROG SOLID STATE CH 2018. [DOI: 10.1016/j.progsolidstchem.2018.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Auburger P, Kemeny I, Bertram C, Ligges M, Bockstedte M, Bovensiepen U, Morgenstern K. Microscopic Insight into Electron-Induced Dissociation of Aromatic Molecules on Ice. PHYSICAL REVIEW LETTERS 2018; 121:206001. [PMID: 30500234 DOI: 10.1103/physrevlett.121.206001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 06/09/2023]
Abstract
We use scanning tunneling microscopy, photoelectron spectroscopy, and ab initio calculations to investigate the electron-induced dissociation of halogenated benzene molecules adsorbed on ice. Dissociation of halobenzene is triggered by delocalized excess electrons attaching to the π^{*} orbitals of the halobenzenes from where they are transferred to σ^{*} orbitals. The latter orbitals provide a dissociative potential surface. Adsorption on ice sufficiently lowers the energy barrier for the transfer between the orbitals to facilitate dissociation of bromo- and chloro- but not of flourobenzene at cryogenic temperatures. Our results shed light on the influence of environmentally important ice particles on the reactivity of halogenated aromatic molecules.
Collapse
Affiliation(s)
- Philipp Auburger
- Solid State Theory, Friedrich-Alexander University Erlangen-Nürnberg, Staudstr. 7B2, D-91058 Erlangen, Germany
| | - Ishita Kemeny
- Faculty of Physics, University of Duisburg-Essen, Lotharstr. 1, D-47057 Duisburg, Germany
| | - Cord Bertram
- Faculty of Physics, University of Duisburg-Essen, Lotharstr. 1, D-47057 Duisburg, Germany
- Physical Chemistry I, Ruhr-Universität Bochum, Universitätsstr. 150, D-44801 Bochum, Germany
| | - Manuel Ligges
- Faculty of Physics, University of Duisburg-Essen, Lotharstr. 1, D-47057 Duisburg, Germany
| | - Michel Bockstedte
- Solid State Theory, Friedrich-Alexander University Erlangen-Nürnberg, Staudstr. 7B2, D-91058 Erlangen, Germany
- Department of Chemistry and Physics of Materials, Paris-Lodron University Salzburg, Jakob-Haringer-Str. 2a, A-5020 Salzburg, Austria
| | - Uwe Bovensiepen
- Faculty of Physics, University of Duisburg-Essen, Lotharstr. 1, D-47057 Duisburg, Germany
| | - Karina Morgenstern
- Physical Chemistry I, Ruhr-Universität Bochum, Universitätsstr. 150, D-44801 Bochum, Germany
| |
Collapse
|
48
|
Shakouri K, Behler J, Meyer J, Kroes GJ. Analysis of Energy Dissipation Channels in a Benchmark System of Activated Dissociation: N 2 on Ru(0001). THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:23470-23480. [PMID: 30364480 PMCID: PMC6196344 DOI: 10.1021/acs.jpcc.8b06729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/18/2018] [Indexed: 05/20/2023]
Abstract
The excitation of electron-hole pairs in reactive scattering of molecules at metal surfaces often affects the physical and dynamical observables of interest, including the reaction probability. Here, we study the influence of electron-hole pair excitation on the dissociative chemisorption of N2 on Ru(0001) using the local density friction approximation method. The effect of surface atom motion has also been taken into account by a high-dimensional neural network potential. Our nonadiabatic molecular dynamics simulations with electronic friction show that the reaction of N2 is more strongly affected by the energy transfer to surface phonons than by the energy loss to electron-hole pairs. The discrepancy between the computed reaction probabilities and experimental results is within the experimental error both with and without friction; however, the incorporation of electron-hole pairs yields somewhat better agreement with experiments, especially at high collision energies. We also calculate the vibrational efficacy for the N2 + Ru(0001) reaction and demonstrate that the N2 reaction is more enhanced by exciting the molecular vibrations than by adding an equivalent amount of energy into translation.
Collapse
Affiliation(s)
- Khosrow Shakouri
- Gorlaeus
Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jörg Behler
- Institut
für Physikalische Chemie, Theoretische Chemie, Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - Jörg Meyer
- Gorlaeus
Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Geert-Jan Kroes
- Gorlaeus
Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
49
|
Nour Ghassemi E, Somers M, Kroes GJ. Test of the Transferability of the Specific Reaction Parameter Functional for H 2 + Cu(111) to D 2 + Ag(111). THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:22939-22952. [PMID: 30344838 PMCID: PMC6189907 DOI: 10.1021/acs.jpcc.8b05658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/04/2018] [Indexed: 06/08/2023]
Abstract
The accurate description of the dissociative chemisorption of a molecule on a metal surface requires a chemically accurate description of the molecule-surface interaction. Previously, it was shown that the specific reaction parameter approach to density functional theory (SRP-DFT) enables accurate descriptions of the reaction of dihydrogen with metal surfaces in, for instance, H2 + Pt(111), H2 + Cu(111), and H2 + Cu(100). SRP-DFT likewise allowed a chemically accurate description of dissociation of methane on Ni(111) and Pt(111), and the SRP functional for CH4 + Ni(111) was transferable to CH4 + Pt(111), where Ni and Pt belong to the same group. Here, we investigate whether the SRP density functional derived for H2 + Cu(111) also gives chemically accurate results for H2 + Ag(111), where Ag belongs to the same group as Cu. To do this, we have performed quasi-classical trajectory calculations using the six-dimensional potential energy surface of H2 + Ag(111) within the Born-Oppenheimer static surface approximation. The computed reaction probabilities are compared with both state-resolved associative desorption and molecular beam sticking experiments. Our results do not yet show transferability, as the computed sticking probabilities and initial-state selected reaction probabilities are shifted relative to experiment to higher energies by about 2-3 kcal/mol. The lack of transferability may be due to the different character of the SRP functionals for H2 + Cu and CH4 + group 10 metals, the latter containing a van der Waals correlation functional and the former not.
Collapse
|
50
|
Montemore MM, Hoyt R, Kolesov G, Kaxiras E. Reaction-Induced Excitations and Their Effect on Surface Chemistry. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew M. Montemore
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Robert Hoyt
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Grigory Kolesov
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Efthimios Kaxiras
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|