1
|
Rhodes VL, Waterhouse RM, Michel K. The molecular toll pathway repertoire in anopheline mosquitoes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 162:105287. [PMID: 39522894 DOI: 10.1016/j.dci.2024.105287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Innate immunity in mosquitoes has received much attention due to its potential impact on vector competence for vector-borne disease pathogens, including malaria parasites. The nuclear factor (NF)-κB-dependent Toll pathway is a major regulator of innate immunity in insects. In mosquitoes, this pathway controls transcription of the majority of the known canonical humoral immune effectors, mediates anti-bacterial, anti-fungal and anti-viral immune responses, and contributes to malaria parasite killing. However, besides initial gene annotation of putative Toll pathway members and genetic analysis of the contribution of few key components to immunity, the molecular make-up and function of the Toll pathway in mosquitoes is largely unexplored. To facilitate functional analyses of the Toll pathway in mosquitoes, we report here manually annotated and refined gene models of Toll-like receptors and all putative components of the intracellular signal transduction cascade across 19 anopheline genomes, and in two culicine genomes. In addition, based on phylogenetic analyses, we identified differing levels of evolutionary constraint across the intracellular Toll pathway members, and identified a recent radiation of TOLL1/5 within the Anopheles gambiae complex. Together, this study provides insight into the evolution of TLRs and the putative members of the intracellular signal transduction cascade within the genus Anopheles.
Collapse
Affiliation(s)
- Victoria L Rhodes
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; Biology Department, Missouri Southern University, Joplin, MO 64801, USA
| | | | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
2
|
Sharakhov IV, Sharakhova MV. Chromosomal inversions and their impact on insect evolution. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101280. [PMID: 39374869 DOI: 10.1016/j.cois.2024.101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/20/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
Insects can adapt quickly and effectively to rapid environmental change and maintain long-term adaptations, but the genetic mechanisms underlying this response are not fully understood. In this review, we summarize studies on the potential impact of chromosomal inversion polymorphisms on insect evolution at different spatial and temporal scales, ranging from long-term evolutionary stability to rapid emergence in response to emerging biotic and abiotic factors. The study of inversions has recently been advanced by comparative, population, and 3D genomics methods. The impact of inversions on insect genome evolution can be profound, including increased gene order rearrangements on sex chromosomes, accumulation of transposable elements, and facilitation of genome divergence. Understanding these processes provides critical insights into the evolutionary mechanisms shaping insect diversity.
Collapse
Affiliation(s)
- Igor V Sharakhov
- Department of Entomology and Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; The Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; The Center for Mathematics of Biosystems, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; Department of Genetics and Cell Biology, Tomsk State University, Tomsk 634050, Russia.
| | - Maria V Sharakhova
- Department of Entomology and Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; The Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; Laboratory of Cell Differentiation Mechanisms, Institute of Cytology and Genetics, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Rhodes VL, Waterhouse RM, Michel K. The Molecular Toll Pathway Repertoire in Anopheline Mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612760. [PMID: 39345384 PMCID: PMC11429875 DOI: 10.1101/2024.09.12.612760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Innate immunity in mosquitoes has received much attention due to its potential impact on vector competence for vector-borne disease pathogens, including malaria parasites. The nuclear factor (NF)-κB-dependent Toll pathway is a major regulator of innate immunity in insects. In mosquitoes, this pathway controls transcription of the majority of the known canonical humoral immune effectors, mediates anti-bacterial, anti-fungal and anti-viral immune responses, and contributes to malaria parasite killing. However, besides initial gene annotation of putative Toll pathway members and genetic analysis of the contribution of few key components to immunity, the molecular make-up and function of the Toll pathway in mosquitoes is largely unexplored. To facilitate functional analyses of the Toll pathway in mosquitoes, we report here manually annotated and refined gene models of Toll-like receptors and all putative components of the intracellular signal transduction cascade across 19 anopheline genomes, and in two culicine genomes. In addition, based on phylogenetic analyses, we identified differing levels of evolutionary constraint across the intracellular Toll pathway members, and identified a recent radiation of TOLL1/5 within the An. gambiae complex. Together, this study provides insight into the evolution of TLRs and the putative members of the intracellular signal transduction cascade within the genus Anopheles.
Collapse
Affiliation(s)
- Victoria L. Rhodes
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
- Biology Department, Missouri Southern University, Joplin, MO 64801, USA
| | | | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
4
|
Dyer NA, Lucas ER, Nagi SC, McDermott DP, Brenas JH, Miles A, Clarkson CS, Mawejje HD, Wilding CS, Halfon MS, Asma H, Heinz E, Donnelly MJ. Mechanisms of transcriptional regulation in Anopheles gambiae revealed by allele-specific expression. Proc Biol Sci 2024; 291:20241142. [PMID: 39288798 PMCID: PMC11407855 DOI: 10.1098/rspb.2024.1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 09/19/2024] Open
Abstract
Malaria control relies on insecticides targeting the mosquito vector, but this is increasingly compromised by insecticide resistance, which can be achieved by elevated expression of detoxifying enzymes that metabolize the insecticide. In diploid organisms, gene expression is regulated both in cis, by regulatory sequences on the same chromosome, and by trans acting factors, affecting both alleles equally. Differing levels of transcription can be caused by mutations in cis-regulatory modules (CRM), but few of these have been identified in mosquitoes. We crossed bendiocarb-resistant and susceptible Anopheles gambiae strains to identify cis-regulated genes that might be responsible for the resistant phenotype using RNAseq, and CRM sequences controlling gene expression in insecticide resistance relevant tissues were predicted using machine learning. We found 115 genes showing allele-specific expression (ASE) in hybrids of insecticide susceptible and resistant strains, suggesting cis-regulation is an important mechanism of gene expression regulation in A. gambiae. The genes showing ASE included a higher proportion of Anopheles-specific genes on average younger than genes with balanced allelic expression.
Collapse
Affiliation(s)
- Naomi A. Dyer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
| | - Eric R. Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
| | - Sanjay C. Nagi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
| | - Daniel P. McDermott
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
| | - Jon H. Brenas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SA, UK
| | - Alistair Miles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SA, UK
| | - Chris S. Clarkson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SA, UK
| | - Henry D. Mawejje
- Infectious Diseases Research Collaboration (IDRC), Plot 2C Nakasero Hill Road, PO Box 7475, Kampala, Uganda
| | - Craig S. Wilding
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, LiverpoolL3 3AF, UK
| | - Marc S. Halfon
- Department of Biochemistry, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo-State University of New York, 955 Main Street, Buffalo, NY14203, USA
| | - Hasiba Asma
- Department of Biochemistry, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo-State University of New York, 955 Main Street, Buffalo, NY14203, USA
| | - Eva Heinz
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, GlasgowG4 0RE, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
| |
Collapse
|
5
|
Rose NH, Shepard JJ, Ayala D. Establishing Colonies from Field-Collected Mosquitoes: Special Accommodations for Wild Strains. Cold Spring Harb Protoc 2024; 2024:pdb.top107654. [PMID: 37208146 DOI: 10.1101/pdb.top107654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A researcher may have many reasons for wanting to establish new laboratory colonies from field-collected mosquitoes. In particular, the ability to study the diversity found within and among natural populations in a controlled laboratory environment opens up a wide range of possibilities for understanding how and why burdens of vector-borne disease vary over space and time. However, field-collected mosquitoes are often more difficult to work with than established laboratory strains, and considerable logistical challenges are involved in safely transporting field-collected mosquitoes into the laboratory. Here, we provide advice for researchers working with Aedes aegypti, Anopheles gambiae, and Culex pipiens, as well as notes on other closely related species. We provide guidance on each stage of the life cycle and highlight the life stages for which it is easiest to initiate new laboratory colonies for each species. In accompanying protocols, we provide methods detailing Ae. aegypti egg collection and hatching as well as how to transport larvae and pupae from the field.
Collapse
Affiliation(s)
- Noah H Rose
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - John J Shepard
- Department of Entomology and Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA
| | - Diego Ayala
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier BP 64501, 34394, France
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo BP1274, 101, Madagascar
| |
Collapse
|
6
|
Naidoo K, Oliver SV. Gene drives: an alternative approach to malaria control? Gene Ther 2024:10.1038/s41434-024-00468-8. [PMID: 39039203 DOI: 10.1038/s41434-024-00468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Genetic modification for the control of mosquitoes is frequently touted as a solution for a variety of vector-borne diseases. There has been some success using non-insecticidal methods like sterile or incompatible insect techniques to control arbovirus diseases. However, control by genetic modifications to reduce mosquito populations or create mosquitoes that are refractory to infection with pathogens are less developed. The advent of CRISPR-Cas9-mediated gene drives may advance this mechanism of control. In this review, use and progress of gene drives for vector control, particularly for malaria, is discussed. A brief history of population suppression and replacement gene drives in mosquitoes, rapid advancement of the field over the last decade and how genetic modification fits into the current scope of vector control are described. Mechanisms of alternative vector control by genetic modification to modulate mosquitoes' immune responses and anti-parasite effector molecules as part of a combinational strategy to combat malaria are considered. Finally, the limitations and ethics of using gene drives for mosquito control are discussed.
Collapse
Affiliation(s)
- Kubendran Naidoo
- SAMRC/Wits Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- National Health Laboratory Service, Johannesburg, South Africa.
- Wits Research Institute for Malaria, Faculty of Health Sciences, National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa.
- Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Shüné V Oliver
- Wits Research Institute for Malaria, Faculty of Health Sciences, National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
7
|
Nanakorn Z, Kawai T, Tassanakajon A. Cytokine-like-Vago-mediated antiviral response in Penaeus monodon via IKK-NF-κB signaling pathway. iScience 2024; 27:110161. [PMID: 38974974 PMCID: PMC11226982 DOI: 10.1016/j.isci.2024.110161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/15/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024] Open
Abstract
Interferon (IFN) system is the primary mechanism of innate antiviral defense in immune response. To date, limited studies of IFN system were conducted in crustaceans. Previous report in Penaeus monodon demonstrated the interconnection of cytokine-like molecule Vago and inhibitor of kappa B kinase-nuclear factor κB (IKK-NF-κB) cascade against white spot syndrome virus (WSSV). This study further identified five different PmVago isoforms. Upon immune stimulation, PmVagos expressed against shrimp pathogens. PmVago1, PmVago4, and PmVago5 highly responded to WSSV, whereas, PmVago1 and PmVago4 RNAi exhibited a rapid mortality with elevated WSSV replication. Suppression of PmVago1 and PmVago4 negatively affected proPO system, genes in signal transduction, and AMPs. WSSV infection additionally induced PmVaog4 granule accumulation and cellular translocation to the area of cell membrane. More importantly, PmVago1 and PmVago4 promoters were stimulated by PmIKK overexpression; meanwhile, they further activated Dorsal and Relish promoter activities. These results suggested the possible roles of the cytokine-like PmVago via IKK-NF-κB cascade against WSSV infection.
Collapse
Affiliation(s)
- Zittipong Nanakorn
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Foster LJ, Tsvetkov N, McAfee A. Mechanisms of Pathogen and Pesticide Resistance in Honey Bees. Physiology (Bethesda) 2024; 39:0. [PMID: 38411571 PMCID: PMC11368521 DOI: 10.1152/physiol.00033.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024] Open
Abstract
Bees are the most important insect pollinators of the crops humans grow, and Apis mellifera, the Western honey bee, is the most commonly managed species for this purpose. In addition to providing agricultural services, the complex biology of honey bees has been the subject of scientific study since the 18th century, and the intricate behaviors of honey bees and ants, fellow hymenopterans, inspired much sociobiological inquest. Unfortunately, honey bees are constantly exposed to parasites, pathogens, and xenobiotics, all of which pose threats to their health. Despite our curiosity about and dependence on honey bees, defining the molecular mechanisms underlying their interactions with biotic and abiotic stressors has been challenging. The very aspects of their physiology and behavior that make them so important to agriculture also make them challenging to study, relative to canonical model organisms. However, because we rely on A. mellifera so much for pollination, we must continue our efforts to understand what ails them. Here, we review major advancements in our knowledge of honey bee physiology, focusing on immunity and detoxification, and highlight some challenges that remain.
Collapse
Affiliation(s)
- Leonard J Foster
- Department of Biochemistry and Molecular Biology and Michael Smith LaboratoriesUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Nadejda Tsvetkov
- Department of Biochemistry and Molecular Biology and Michael Smith LaboratoriesUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Alison McAfee
- Department of Biochemistry and Molecular Biology and Michael Smith LaboratoriesUniversity of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Xie M, Yao Y, Feng Y, Xie L, Mao C, He J, Li X, Ni Q. Chromosome-Level Genome Assembly of Apoderus dimidiatus Voss (Coleoptera: Attelabidae): Insights into Evolution and Behavior. INSECTS 2024; 15:431. [PMID: 38921146 PMCID: PMC11204265 DOI: 10.3390/insects15060431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/27/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
Attelabidae insects have attracted much attention due to their unique leaf rolling behavior before oviposition. However, the lack of genomic data makes it difficult to understand the molecular mechanism behind their behavior and their evolutionary relationship with other species. To address this gap, we utilized Illumina and Nanopore sequencing platforms along with Hi-C technology to establish a highly accurate whole genome of A. dimidiatus at the chromosome level. The resulting genome size was determined to be 619.26 Mb, with a contig N50 of 50.89 Mb and GC content of 33.89%. Moreover, a total of 12,572 genes were identified, with 82.59% being functionally annotated, and 64.78% designated as repeat sequences. Our subsequent phylogenetic tree analysis revealed that Attelabidae's divergence from Curculionidae occurred approximately 161.52 million years ago. Furthermore, the genome of A. dimidiatus contained 334 expanded gene families and 1718 contracted gene families. In addition, using Phylogenetic Analysis by Maximum Likelihood (PAML), we identified 106 rapidly evolved genes exhibiting significant signals and 540 positively selected genes. Our research endeavors to serve as an invaluable genomic data resource for the study of Attelabidae, offering fresh perspectives for the exploration of its leaf rolling behavior.
Collapse
Affiliation(s)
- Meng Xie
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (M.X.); (Y.Y.)
| | - Yuhao Yao
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (M.X.); (Y.Y.)
| | - Yuling Feng
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.F.); (L.X.)
| | - Lei Xie
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.F.); (L.X.)
| | - Chuyang Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming 650223, China; (C.M.); (J.H.)
| | - Jinwu He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming 650223, China; (C.M.); (J.H.)
| | - Xueyan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming 650223, China; (C.M.); (J.H.)
| | - Qingyong Ni
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.F.); (L.X.)
| |
Collapse
|
10
|
Daron J, Bouafou L, Tennessen JA, Rahola N, Makanga B, Akone-Ella O, Ngangue MF, Longo Pendy NM, Paupy C, Neafsey DE, Fontaine MC, Ayala D. Genomic Signatures of Microgeographic Adaptation in Anopheles coluzzii Along an Anthropogenic Gradient in Gabon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594472. [PMID: 38798379 PMCID: PMC11118577 DOI: 10.1101/2024.05.16.594472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Species distributed across heterogeneous environments often evolve locally adapted populations, but understanding how these persist in the presence of homogenizing gene flow remains puzzling. In Gabon, Anopheles coluzzii, a major African malaria mosquito is found along an ecological gradient, including a sylvatic population, away of any human presence. This study identifies into the genomic signatures of local adaptation in populations from distinct environments including the urban area of Libreville, and two proximate sites 10km apart in the La Lopé National Park (LLP), a village and its sylvatic neighborhood. Whole genome re-sequencing of 96 mosquitoes unveiled ∼ 5.7millions high-quality single nucleotide polymorphisms. Coalescent-based demographic analyses suggest an ∼ 8,000-year-old divergence between Libreville and La Lopé populations, followed by a secondary contact ( ∼ 4,000 ybp) resulting in asymmetric effective gene flow. The urban population displayed reduced effective size, evidence of inbreeding, and strong selection pressures for adaptation to urban settings, as suggested by the hard selective sweeps associated with genes involved in detoxification and insecticide resistance. In contrast, the two geographically proximate LLP populations showed larger effective sizes, and distinctive genomic differences in selective signals, notably soft-selective sweeps on the standing genetic variation. Although neutral loci and chromosomal inversions failed to discriminate between LLP populations, our findings support that microgeographic adaptation can swiftly emerge through selection on standing genetic variation despite high gene flow. This study contributes to the growing understanding of evolution of populations in heterogeneous environments amid ongoing gene flow and how major malaria mosquitoes adapt to human. Significance Anopheles coluzzii , a major African malaria vector, thrives from humid rainforests to dry savannahs and coastal areas. This ecological success is linked to its close association with domestic settings, with human playing significant roles in driving the recent urban evolution of this mosquito. Our research explores the assumption that these mosquitoes are strictly dependent on human habitats, by conducting whole-genome sequencing on An. coluzzii specimens from urban, rural, and sylvatic sites in Gabon. We found that urban mosquitoes show de novo genetic signatures of human-driven vector control, while rural and sylvatic mosquitoes exhibit distinctive genetic evidence of local adaptations derived from standing genetic variation. Understanding adaptation mechanisms of this mosquito is therefore crucial to predict evolution of vector control strategies.
Collapse
|
11
|
Dennis TPW, Essandoh J, Mable BK, Viana MS, Yawson AE, Weetman D. Signatures of adaptation at key insecticide resistance loci in Anopheles gambiae in Southern Ghana revealed by reduced-coverage WGS. Sci Rep 2024; 14:8650. [PMID: 38622230 PMCID: PMC11018624 DOI: 10.1038/s41598-024-58906-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Resistance to insecticides and adaptation to a diverse range of environments present challenges to Anopheles gambiae s.l. mosquito control efforts in sub-Saharan Africa. Whole-genome-sequencing is often employed for identifying the genomic basis underlying adaptation in Anopheles, but remains expensive for large-scale surveys. Reduced coverage whole-genome-sequencing can identify regions of the genome involved in adaptation at a lower cost, but is currently untested in Anopheles mosquitoes. Here, we use reduced coverage WGS to investigate population genetic structure and identify signatures of local adaptation in Anopheles mosquitoes across southern Ghana. In contrast to previous analyses, we find no structuring by ecoregion, with Anopheles coluzzii and Anopheles gambiae populations largely displaying the hallmarks of large, unstructured populations. However, we find signatures of selection at insecticide resistance loci that appear ubiquitous across ecoregions in An. coluzzii, and strongest in forest ecoregions in An. gambiae. Our study highlights resistance candidate genes in this region, and validates reduced coverage WGS, potentially to very low coverage levels, for population genomics and exploratory surveys for adaptation in Anopheles taxa.
Collapse
Affiliation(s)
- Tristan P W Dennis
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK.
| | - John Essandoh
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Conservation Biology and Entomology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Barbara K Mable
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Mafalda S Viana
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Alexander E Yawson
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
12
|
Habtewold T, Wagah M, Tambwe MM, Moore S, Windbichler N, Christophides G, Johnson H, Heaton H, Collins J, Krasheninnikova K, Pelan SE, Pointon DLB, Sims Y, Torrance JW, Tracey A, Uliano Da Silva M, Wood JMD, von Wyschetzki K, McCarthy SA, Neafsey DE, Makunin A, Lawniczak MK, Lawniczak M. A chromosomal reference genome sequence for the malaria mosquito, Anopheles gambiae, Giles, 1902, Ifakara strain. Wellcome Open Res 2024; 8:74. [PMID: 37424773 PMCID: PMC10326452 DOI: 10.12688/wellcomeopenres.18854.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
We present a genome assembly from an individual female Anopheles gambiae (the malaria mosquito; Arthropoda; Insecta; Diptera; Culicidae), Ifakara strain. The genome sequence is 264 megabases in span. Most of the assembly is scaffolded into three chromosomal pseudomolecules with the X sex chromosome assembled. The complete mitochondrial genome was also assembled and is 15.4 kilobases in length.
Collapse
Affiliation(s)
- Tibebu Habtewold
- Department of Life Sciences, Imperial College London, London, UK
| | - Martin Wagah
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | - Mgeni Mohamed Tambwe
- Vector Control Product Testing Unit, Ifakara Health institute, Bagamoyo, Tanzania
| | - Sarah Moore
- Vector Control Product Testing Unit, Ifakara Health institute, Bagamoyo, Tanzania
- Vector Biology Unit, Swiss Tropical and Public Health Institute, Bagamoyo, Tanzania
| | | | | | - Harriet Johnson
- Scientific Operations, Wellcome Sanger Institute, Hinxton, UK
| | | | | | | | | | | | - Ying Sims
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | | | - Alan Tracey
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | | | | | | | - Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective
- Department of Life Sciences, Imperial College London, London, UK
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
- Vector Control Product Testing Unit, Ifakara Health institute, Bagamoyo, Tanzania
- Vector Biology Unit, Swiss Tropical and Public Health Institute, Bagamoyo, Tanzania
- Scientific Operations, Wellcome Sanger Institute, Hinxton, UK
- CSSE, Auburn University, Auburn, Alabama, USA
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Daniel E. Neafsey
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Alex Makunin
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | | | | |
Collapse
|
13
|
Ratcliffe NA, Mello CB, Castro HC, Dyson P, Figueiredo M. Immune Reactions of Vector Insects to Parasites and Pathogens. Microorganisms 2024; 12:568. [PMID: 38543619 PMCID: PMC10974449 DOI: 10.3390/microorganisms12030568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 11/12/2024] Open
Abstract
This overview initially describes insect immune reactions and then brings together present knowledge of the interactions of vector insects with their invading parasites and pathogens. It is a way of introducing this Special Issue with subsequent papers presenting the latest details of these interactions in each particular group of vectors. Hopefully, this paper will fill a void in the literature since brief descriptions of vector immunity have now been brought together in one publication and could form a starting point for those interested and new to this important area. Descriptions are given on the immune reactions of mosquitoes, blackflies, sandflies, tsetse flies, lice, fleas and triatomine bugs. Cellular and humoral defences are described separately but emphasis is made on the co-operation of these processes in the completed immune response. The paper also emphasises the need for great care in extracting haemocytes for subsequent study as appreciation of their fragile nature is often overlooked with the non-sterile media, smearing techniques and excessive centrifugation sometimes used. The potential vital role of eicosanoids in the instigation of many of the immune reactions described is also discussed. Finally, the priming of the immune system, mainly in mosquitoes, is considered and one possible mechanism is presented.
Collapse
Affiliation(s)
- Norman Arthur Ratcliffe
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA28PP, UK
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Cicero Brasileiro Mello
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Helena Carla Castro
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA28PP, UK; (P.D.); (M.F.)
| | - Marcela Figueiredo
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA28PP, UK; (P.D.); (M.F.)
| |
Collapse
|
14
|
Ryazansky SS, Chen C, Potters M, Naumenko AN, Lukyanchikova V, Masri RA, Brusentsov II, Karagodin DA, Yurchenko AA, Dos Anjos VL, Haba Y, Rose NH, Hoffman J, Guo R, Menna T, Kelley M, Ferrill E, Schultz KE, Qi Y, Sharma A, Deschamps S, Llaca V, Mao C, Murphy TD, Baricheva EM, Emrich S, Fritz ML, Benoit JB, Sharakhov IV, McBride CS, Tu Z, Sharakhova MV. The chromosome-scale genome assembly for the West Nile vector Culex quinquefasciatus uncovers patterns of genome evolution in mosquitoes. BMC Biol 2024; 22:16. [PMID: 38273363 PMCID: PMC10809549 DOI: 10.1186/s12915-024-01825-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Understanding genome organization and evolution is important for species involved in transmission of human diseases, such as mosquitoes. Anophelinae and Culicinae subfamilies of mosquitoes show striking differences in genome sizes, sex chromosome arrangements, behavior, and ability to transmit pathogens. However, the genomic basis of these differences is not fully understood. METHODS In this study, we used a combination of advanced genome technologies such as Oxford Nanopore Technology sequencing, Hi-C scaffolding, Bionano, and cytogenetic mapping to develop an improved chromosome-scale genome assembly for the West Nile vector Culex quinquefasciatus. RESULTS We then used this assembly to annotate odorant receptors, odorant binding proteins, and transposable elements. A genomic region containing male-specific sequences on chromosome 1 and a polymorphic inversion on chromosome 3 were identified in the Cx. quinquefasciatus genome. In addition, the genome of Cx. quinquefasciatus was compared with the genomes of other mosquitoes such as malaria vectors An. coluzzi and An. albimanus, and the vector of arboviruses Ae. aegypti. Our work confirms significant expansion of the two chemosensory gene families in Cx. quinquefasciatus, as well as a significant increase and relocation of the transposable elements in both Cx. quinquefasciatus and Ae. aegypti relative to the Anophelines. Phylogenetic analysis clarifies the divergence time between the mosquito species. Our study provides new insights into chromosomal evolution in mosquitoes and finds that the X chromosome of Anophelinae and the sex-determining chromosome 1 of Culicinae have a significantly higher rate of evolution than autosomes. CONCLUSION The improved Cx. quinquefasciatus genome assembly uncovered new details of mosquito genome evolution and has the potential to speed up the development of novel vector control strategies.
Collapse
Affiliation(s)
- Sergei S Ryazansky
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Department of Molecular Genetics of Cell, NRC "Kurchatov Institute", Moscow, Russia
| | - Chujia Chen
- Genetics, Bioinformatics, Computational Biology Program, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Mark Potters
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, USA
| | - Anastasia N Naumenko
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Varvara Lukyanchikova
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Group of Genomic Mechanisms of Development, Institute of Cytology and Genetics, Novosibirsk, Russia
- Laboratory of Structural and Functional Genomics, Novosibirsk State University, Novosibirsk, Russia
| | - Reem A Masri
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Ilya I Brusentsov
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Laboratory of Cell Differentiation Mechanisms, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Dmitriy A Karagodin
- Laboratory of Cell Differentiation Mechanisms, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Andrey A Yurchenko
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Vitor L Dos Anjos
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Yuki Haba
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Noah H Rose
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Jinna Hoffman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Rong Guo
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Theresa Menna
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Melissa Kelley
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Emily Ferrill
- County of San Diego Vector Control Program, San Diego, CA, USA
| | - Karen E Schultz
- Mosquito and Vector Management District of Santa Barbara County, Santa Barbara, CA, USA
| | - Yumin Qi
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, USA
| | - Atashi Sharma
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, USA
| | | | | | - Chunhong Mao
- Biocomplexity Institute & Initiative University of Virginia, Charlottesville, VA, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Elina M Baricheva
- Laboratory of Cell Differentiation Mechanisms, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Scott Emrich
- Department of Electrical Engineering & Computer Science, the University of Tennessee, Knoxville, TN, USA
| | - Megan L Fritz
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Igor V Sharakhov
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Fralin Life Sciences Institute, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Department of Genetics and Cell Biology, Tomsk State University, Tomsk, Russia
| | - Carolyn S McBride
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Zhijian Tu
- Genetics, Bioinformatics, Computational Biology Program, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, USA
- Fralin Life Sciences Institute, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Maria V Sharakhova
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA.
- Laboratory of Cell Differentiation Mechanisms, Institute of Cytology and Genetics, Novosibirsk, Russia.
- Fralin Life Sciences Institute, Virginia Polytechnic and State University, Blacksburg, VA, USA.
| |
Collapse
|
15
|
Brait N, Hackl T, Morel C, Exbrayat A, Gutierrez S, Lequime S. A tale of caution: How endogenous viral elements affect virus discovery in transcriptomic data. Virus Evol 2023; 10:vead088. [PMID: 38516656 PMCID: PMC10956553 DOI: 10.1093/ve/vead088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/24/2023] [Accepted: 12/22/2023] [Indexed: 03/23/2024] Open
Abstract
Large-scale metagenomic and -transcriptomic studies have revolutionized our understanding of viral diversity and abundance. In contrast, endogenous viral elements (EVEs), remnants of viral sequences integrated into host genomes, have received limited attention in the context of virus discovery, especially in RNA-Seq data. EVEs resemble their original viruses, a challenge that makes distinguishing between active infections and integrated remnants difficult, affecting virus classification and biases downstream analyses. Here, we systematically assess the effects of EVEs on a prototypical virus discovery pipeline, evaluate their impact on data integrity and classification accuracy, and provide some recommendations for better practices. We examined EVEs and exogenous viral sequences linked to Orthomyxoviridae, a diverse family of negative-sense segmented RNA viruses, in 13 genomic and 538 transcriptomic datasets of Culicinae mosquitoes. Our analysis revealed a substantial number of viral sequences in transcriptomic datasets. However, a significant portion appeared not to be exogenous viruses but transcripts derived from EVEs. Distinguishing between transcribed EVEs and exogenous virus sequences was especially difficult in samples with low viral abundance. For example, three transcribed EVEs showed full-length segments, devoid of frameshift and nonsense mutations, exhibiting sufficient mean read depths that qualify them as exogenous virus hits. Mapping reads on a host genome containing EVEs before assembly somewhat alleviated the EVE burden, but it led to a drastic reduction of viral hits and reduced quality of assemblies, especially in regions of the viral genome relatively similar to EVEs. Our study highlights that our knowledge of the genetic diversity of viruses can be altered by the underestimated presence of EVEs in transcriptomic datasets, leading to false positives and altered or missing sequence information. Thus, recognizing and addressing the influence of EVEs in virus discovery pipelines will be key in enhancing our ability to capture the full spectrum of viral diversity.
Collapse
Affiliation(s)
- Nadja Brait
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, The Netherlands
| | | | - Côme Morel
- ASTRE research unit, Cirad, INRAe, Université de Montpellier, Montpellier 34398, France
| | - Antoni Exbrayat
- ASTRE research unit, Cirad, INRAe, Université de Montpellier, Montpellier 34398, France
| | - Serafin Gutierrez
- ASTRE research unit, Cirad, INRAe, Université de Montpellier, Montpellier 34398, France
| | - Sebastian Lequime
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
16
|
Lewis J, Gallichotte EN, Randall J, Glass A, Foy BD, Ebel GD, Kading RC. Intrinsic factors driving mosquito vector competence and viral evolution: a review. Front Cell Infect Microbiol 2023; 13:1330600. [PMID: 38188633 PMCID: PMC10771300 DOI: 10.3389/fcimb.2023.1330600] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Mosquitoes are responsible for the transmission of numerous viruses of global health significance. The term "vector competence" describes the intrinsic ability of an arthropod vector to transmit an infectious agent. Prior to transmission, the mosquito itself presents a complex and hostile environment through which a virus must transit to ensure propagation and transmission to the next host. Viruses imbibed in an infectious blood meal must pass in and out of the mosquito midgut, traffic through the body cavity or hemocoel, invade the salivary glands, and be expelled with the saliva when the vector takes a subsequent blood meal. Viruses encounter physical, cellular, microbial, and immunological barriers, which are influenced by the genetic background of the mosquito vector as well as environmental conditions. Collectively, these factors place significant selective pressure on the virus that impact its evolution and transmission. Here, we provide an overview of the current state of the field in understanding the mosquito-specific factors that underpin vector competence and how each of these mechanisms may influence virus evolution.
Collapse
Affiliation(s)
- Juliette Lewis
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Emily N. Gallichotte
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Jenna Randall
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Arielle Glass
- Department of Cellular and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Brian D. Foy
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Gregory D. Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rebekah C. Kading
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
17
|
Dyer NA, Lucas ER, Nagi SC, McDermott DP, Brenas JH, Miles A, Clarkson CS, Mawejje HD, Wilding CS, Halfon MS, Asma H, Heinz E, Donnelly MJ. Mechanisms of transcriptional regulation in Anopheles gambiae revealed by allele specific expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568226. [PMID: 38045426 PMCID: PMC10690255 DOI: 10.1101/2023.11.22.568226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Malaria control relies on insecticides targeting the mosquito vector, but this is increasingly compromised by insecticide resistance, which can be achieved by elevated expression of detoxifying enzymes that metabolize the insecticide. In diploid organisms, gene expression is regulated both in cis, by regulatory sequences on the same chromosome, and by trans acting factors, affecting both alleles equally. Differing levels of transcription can be caused by mutations in cis-regulatory modules (CRM), but few of these have been identified in mosquitoes. We crossed bendiocarb resistant and susceptible Anopheles gambiae strains to identify cis-regulated genes that might be responsible for the resistant phenotype using RNAseq, and cis-regulatory module sequences controlling gene expression in insecticide resistance relevant tissues were predicted using machine learning. We found 115 genes showing allele specific expression in hybrids of insecticide susceptible and resistant strains, suggesting cis regulation is an important mechanism of gene expression regulation in Anopheles gambiae. The genes showing allele specific expression included a higher proportion of Anopheles specific genes on average younger than genes those with balanced allelic expression.
Collapse
Affiliation(s)
- Naomi A Dyer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Eric R Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Sanjay C Nagi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Daniel P McDermott
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jon H Brenas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Alistair Miles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Chris S Clarkson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Henry D Mawejje
- Infectious Diseases Research Collaboration (IDRC), Plot 2C Nakasero Hill Road, P.O.Box 7475, Kampala, Uganda
| | - Craig S Wilding
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Marc S Halfon
- Department of Biochemistry, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo-State University of New York, 955 Main Street, Buffalo, New York 14203, USA
| | - Hasiba Asma
- Department of Biochemistry, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo-State University of New York, 955 Main Street, Buffalo, New York 14203, USA
| | - Eva Heinz
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| |
Collapse
|
18
|
Cheatle Jarvela AM, Wexler JR. Advances in genome sequencing reveal changes in gene content that contribute to arthropod macroevolution. Dev Genes Evol 2023; 233:59-76. [PMID: 37982820 DOI: 10.1007/s00427-023-00712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023]
Abstract
Current sequencing technology allows for the relatively affordable generation of highly contiguous genomes. Technological advances have made it possible for researchers to investigate the consequences of diverse sorts of genomic variants, such as gene gain and loss. With the extraordinary number of high-quality genomes now available, we take stock of how these genomic variants impact phenotypic evolution. We take care to point out that the identification of genomic variants of interest is only the first step in understanding their impact. Painstaking lab or fieldwork is still required to establish causal relationships between genomic variants and phenotypic evolution. We focus mostly on arthropod research, as this phylum has an impressive degree of phenotypic diversity and is also the subject of much evolutionary genetics research. This article is intended to both highlight recent advances in the field and also to be a primer for learning about evolutionary genetics and genomics.
Collapse
Affiliation(s)
- Alys M Cheatle Jarvela
- Department of Entomology, University of Maryland, College Park, MD, USA.
- HHMI Janelia Research Campus, Ashburn, VA, USA.
| | - Judith R Wexler
- Department of Ecology, Evolution, and Behavior, The Hebrew University in Jerusalem, Jerusalem, Israel.
| |
Collapse
|
19
|
Hernandez-Caballero I, Hellgren O, Garcia-Longoria Batanete L. Genomic advances in the study of the mosquito vector during avian malaria infection. Parasitology 2023; 150:1330-1339. [PMID: 37614176 PMCID: PMC10941221 DOI: 10.1017/s0031182023000756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023]
Abstract
Invertebrate host–parasite associations are one of the keystones in order to understand vector-borne diseases. The study of these specific interactions provides information not only about how the vector is affected by the parasite at the gene-expression level, but might also reveal mosquito strategies for blocking the transmission of the parasites. A very well-known vector for human malaria is Anopheles gambiae. This mosquito species has been the main focus for genomics studies determining essential key genes and pathways over the course of a malaria infection. However, to-date there is an important knowledge gap concerning other non-mammophilic mosquito species, for example some species from the Culex genera which may transmit avian malaria but also zoonotic pathogens such as West Nile virus. From an evolutionary perspective, these 2 mosquito genera diverged 170 million years ago, hence allowing studies in both species determining evolutionary conserved genes essential during malaria infections, which in turn might help to find key genes for blocking malaria cycle inside the mosquito. Here, we extensively review the current knowledge on key genes and pathways expressed in Anopheles over the course of malaria infections and highlight the importance of conducting genomic investigations for detecting pathways in Culex mosquitoes linked to infection of avian malaria. By pooling this information, we underline the need to increase genomic studies in mosquito–parasite associations, such as the one in Culex–Plasmodium, that can provide a better understanding of the infection dynamics in wildlife and reduce the negative impact on ecosystems.
Collapse
Affiliation(s)
- Irene Hernandez-Caballero
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, E-06071 Badajoz, Spain
| | - Olof Hellgren
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Sölvegatan 37, SE-22362, Sweden
| | | |
Collapse
|
20
|
Pescod P, Bevivino G, Anthousi A, Shelton R, Shepherd J, Lombardo F, Nolan T. Measuring the Impact of Genetic Heterogeneity and Chromosomal Inversions on the Efficacy of CRISPR-Cas9 Gene Drives in Different Strains of Anopheles gambiae. CRISPR J 2023; 6:419-429. [PMID: 37702604 DOI: 10.1089/crispr.2023.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
The human malaria vector Anopheles gambiae is becoming increasingly resistant to insecticides, spurring the development of genetic control strategies. CRISPR-Cas9 gene drives can modify a population by creating double-stranded breaks at highly specific targets, triggering copying of the gene drive into the cut site ("homing"), ensuring its inheritance. The DNA repair mechanism responsible requires homology between the donor and recipient chromosomes, presenting challenges for the invasion of laboratory-developed gene drives into wild populations of target species An. gambiae species complex, which show high levels of genome variation. Two gene drives (vas2-5958 and zpg-7280) were introduced into three An. gambiae strains collected across Africa with 5.3-6.6% variation around the target sites, and the effect of this variation on homing was measured. Gene drive homing across different karyotypes of the 2La chromosomal inversion was also assessed. No decrease in gene drive homing was seen despite target site heterology, demonstrating the applicability of gene drives to wild populations.
Collapse
Affiliation(s)
- Poppy Pescod
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Giulia Bevivino
- Division of Parasitology, Department of Public Health and Infectious Diseases, University of Rome "la Sapienza," Rome, Italy; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Amalia Anthousi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece; and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Insects and Vector Borne Diseases, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Ruth Shelton
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Josephine Shepherd
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Fabrizio Lombardo
- Division of Parasitology, Department of Public Health and Infectious Diseases, University of Rome "la Sapienza," Rome, Italy; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Tony Nolan
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| |
Collapse
|
21
|
Paris V, Hardy C, Hoffmann AA, Ross PA. How often are male mosquitoes attracted to humans? ROYAL SOCIETY OPEN SCIENCE 2023; 10:230921. [PMID: 37885984 PMCID: PMC10598425 DOI: 10.1098/rsos.230921] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Many mosquito species live close to humans where females feed on human blood. While male mosquitoes do not feed on blood, it has long been recognized that males of some species can be attracted to human hosts. To investigate the frequency of male mosquito attraction to humans, we conducted a literature review and human-baited field trials, as well as laboratory experiments involving males and females of three common Aedes species. Our literature review indicated that male attraction to humans is limited to a small number of species, including Ae. aegypti and Ae. albopictus. In our human-baited field collections, only 4 out of 13 species captured included males. In laboratory experiments, we found that male Ae. notoscriptus and Ae. vigilax showed no attraction to humans, while male Ae. aegypti exhibited persistent attraction for up to 30 min. Both male and female Ae. aegypti displayed similar preferences for different human subjects, suggesting that male Ae. aegypti respond to similar cues as females. Additionally, we found that mosquito repellents applied to human skin effectively repelled male mosquitoes. These findings shed light on mosquito behaviour and have implications for mosquito control programmes, particularly those involving the release or monitoring of the male mosquito population.
Collapse
Affiliation(s)
- Véronique Paris
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christopher Hardy
- CSIRO Environment, Canberra, Australian Capital Territory 2601, Australia
| | - Ary A. Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Perran A. Ross
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| |
Collapse
|
22
|
Ma X, Fan X, Youssaou KC, Zhang J, Wang X, Zheng G, Tian S, Gao Y. Clinical and Biological Characteristics of Severe Malaria in Children under 5 Years Old in Benin. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:5516408. [PMID: 37771844 PMCID: PMC10533293 DOI: 10.1155/2023/5516408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023]
Abstract
Background Malaria is a global public health concern, mainly occurring in sub-Saharan Africa. Children infected with malaria are more likely to develop severe disease, which can be fatal. During COVID-19 in 2020, diagnosing and treating malaria became difficult. We analyzed the clinical characteristics and laboratory indicators of children with severe malaria in Benin to provide important information for designing effective prevention and treatment strategies to manage pediatric cases. Methods Clinical characteristics of pediatric patients with severe malaria admitted to two hospitals in Benin (Central Hospital of Lokossa and Regional Hospital of Natitingou, located ∼650 kilometers apart) were collected from January to December 2020. Patients were grouped according to age (group A: 4-12 months old, group B: 13-36 months old, and group C: 37-60 months old), and clinical and laboratory indicators were compared. The incidences of severe pediatric malaria in both hospitals in 2020 were calculated. Inclusion, exclusion, and blood transfusion criteria were identified. Results We analyzed 236 pediatric cases. The main clinical symptoms among all patients were severe anemia, vomiting, prostration, poor appetite, dysphoria, and dyspnea. Over 50% of patients in group A experienced vomiting and severe anemia. Most patients in group B had severe anemia and prostration. Delirium affected significantly more patients in group C than in groups A and B. In group C, the hemoglobin and hematocrit levels were significantly higher (p < 0.05), and the leukocyte count was significantly lower (p < 0.01) than in groups A and B. Parasitemia was significantly higher in group C than in group A (p < 0.01). Twelve deaths occurred. Conclusions Severe pediatric malaria is seasonal in Benin. The situation in children under 5 years old is poor. The main problems are severe disease conditions and high fatality rates. Effective approaches such as prevention and early and appropriate treatment are necessary to reduce the malaria burden in pediatric patients.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Emergency, General Hospital, Ningxia Medical University, Yinchuan, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xin Fan
- Department of Ophthalmology, General Hospital, Ningxia Medical University, Yinchuan, China
| | - Kora Chabi Youssaou
- Department of Internal Medicine, Hospital of Zone of Natitingou (Women's and Children's Hospital), Natitingou, Atacora Province, Benin
| | - Junfei Zhang
- Department of Emergency, General Hospital, Ningxia Medical University, Yinchuan, China
| | - Xingyi Wang
- Department of Emergency, General Hospital, Ningxia Medical University, Yinchuan, China
| | - Guoqiang Zheng
- General Practice, People's Hospital of Ningxia, Yinchuan, China
| | - Shuping Tian
- Department of Pediatric, General Hospital, Ningxia Medical University, Yinchuan, China
| | - Yujing Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
23
|
Pereira J, Santos-Araujo S, Bomfim L, Gondim KC, Majerowicz D, Pane A, Ramos I. Gene identification and RNAi-silencing of p62/SQSTM1 in the vector Rhodnius prolixus reveals a high degree of sequence conservation but no apparent deficiency-related phenotypes in vitellogenic females. PLoS One 2023; 18:e0287488. [PMID: 37486954 PMCID: PMC10365311 DOI: 10.1371/journal.pone.0287488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/06/2023] [Indexed: 07/26/2023] Open
Abstract
Autophagy and the ubiquitin-proteasome system (UPS) are important cellular mechanisms that coordinate protein degradation essential for proteostasis. P62/SQSTM1 is a receptor cargo protein able to deliver ubiquitinated targets to the proteasome proteolytic complex and/or to the autophagosome. In the insect vector of Chagas disease, Rhodnius prolixus, previous works have shown that the knockdown of different autophagy-related genes (ATGs) and ubiquitin-conjugating enzymes resulted in abnormal oogenesis phenotypes and embryo lethality. Here, we investigate the role of the autophagy/UPS adaptor protein p62 during the oogenesis and reproduction of this vector. We found that R. prolixus presents one isoform of p62 encoded by a non-annotated gene. The predicted protein presents the domain architecture anticipated for p62: PB1 (N-term), ZZ-finger, and UBA (C-term) domains, and phylogenetic analysis showed that this pattern is highly conserved within insects. Using parental RNAi, we found that although p62 is expressed in the ovary, midgut, and fat body of adult females, systemic silencing of this gene did not result in any apparent phenotypes under in-house conditions. The insects' overall levels of blood meal digestion, lifespan, yolk protein production, oviposition, and embryo viability were not altered when compared to controls. Because it is known that autophagy and UPS can undergo compensatory mechanisms, we asked whether the silencing of p62 was triggering adaptative changes in the expression of genes of the autophagy, UPS, and the unfolded protein response (UPR) and found that only ATG1 was slightly up regulated in the ovaries of silenced females. In addition, experiments to further investigate the role of p62 in insects previously silenced for the E1-conjugating enzyme (a condition known to trigger the upregulation of p62), also did not result in any apparent phenotypes in vitellogenic females.
Collapse
Affiliation(s)
- Jéssica Pereira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Samara Santos-Araujo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Larissa Bomfim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Katia Calp Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - David Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Attilio Pane
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
24
|
Prado Sepulveda CC, Alencar RM, Santana RA, Belém de Souza I, D'Elia GMA, Godoy RSM, Duarte AP, Lopes SCP, de Lacerda MVG, Monteiro WM, Nacif-Pimenta R, Secundino NFC, Koerich LB, Pimenta PFP. Evolution and assembly of Anopheles aquasalis's immune genes: primary malaria vector of coastal Central and South America and the Caribbean Islands. Open Biol 2023; 13:230061. [PMID: 37433331 PMCID: PMC10335856 DOI: 10.1098/rsob.230061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023] Open
Abstract
Anophelines are vectors of malaria, the deadliest disease worldwide transmitted by mosquitoes. The availability of genomic data from various Anopheles species allowed evolutionary comparisons of the immune response genes in search of alternative vector control of the malarial parasites. Now, with the Anopheles aquasalis genome, it was possible to obtain more information about the evolution of the immune response genes. Anopheles aquasalis has 278 immune genes in 24 families or groups. Comparatively, the American anophelines possess fewer genes than Anopheles gambiae s. s., the most dangerous African vector. The most remarkable differences were found in the pathogen recognition and modulation families like FREPs, CLIP and C-type lectins. Even so, genes related to the modulation of the expression of effectors in response to pathogens and gene families that control the production of reactive oxygen species were more conserved. Overall, the results show a variable pattern of evolution in the immune response genes in the anopheline species. Environmental factors, such as exposure to different pathogens and differences in the microbiota composition, could shape the expression of this group of genes. The results presented here will contribute to a better knowledge of the Neotropical vector and open opportunities for malaria control in the endemic-affected areas of the New World.
Collapse
Affiliation(s)
- Cesar Camilo Prado Sepulveda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Rodrigo Maciel Alencar
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Rosa Amélia Santana
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Igor Belém de Souza
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Gigliola Mayra Ayres D'Elia
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Raquel Soares Maia Godoy
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, FIOCRUZ – Belo Horizonte. Minas Gerais, Brazil
| | - Ana Paula Duarte
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Stefanie Costa Pinto Lopes
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Instituto de Pesquisas Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas, Brazil
| | - Marcus Vinicius Guimarães de Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Instituto de Pesquisas Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas, Brazil
- University of Texas Medical Branch, Galveston, TX, USA
| | - Wuelton Marcelo Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Rafael Nacif-Pimenta
- Departament of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, CT, USA
| | - Nágila Francinete Costa Secundino
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, FIOCRUZ – Belo Horizonte. Minas Gerais, Brazil
| | - Leonardo Barbosa Koerich
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo Filemon Paolucci Pimenta
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, FIOCRUZ – Belo Horizonte. Minas Gerais, Brazil
| |
Collapse
|
25
|
Brown JJ, Pascual M, Wimberly MC, Johnson LR, Murdock CC. Humidity - The overlooked variable in the thermal biology of mosquito-borne disease. Ecol Lett 2023; 26:1029-1049. [PMID: 37349261 DOI: 10.1111/ele.14228] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/05/2023] [Indexed: 06/24/2023]
Abstract
Vector-borne diseases cause significant financial and human loss, with billions of dollars spent on control. Arthropod vectors experience a complex suite of environmental factors that affect fitness, population growth and species interactions across multiple spatial and temporal scales. Temperature and water availability are two of the most important abiotic variables influencing their distributions and abundances. While extensive research on temperature exists, the influence of humidity on vector and pathogen parameters affecting disease dynamics are less understood. Humidity is often underemphasized, and when considered, is often treated as independent of temperature even though desiccation likely contributes to declines in trait performance at warmer temperatures. This Perspectives explores how humidity shapes the thermal performance of mosquito-borne pathogen transmission. We summarize what is known about its effects and propose a conceptual model for how temperature and humidity interact to shape the range of temperatures across which mosquitoes persist and achieve high transmission potential. We discuss how failing to account for these interactions hinders efforts to forecast transmission dynamics and respond to epidemics of mosquito-borne infections. We outline future research areas that will ground the effects of humidity on the thermal biology of pathogen transmission in a theoretical and empirical framework to improve spatial and temporal prediction of vector-borne pathogen transmission.
Collapse
Affiliation(s)
- Joel J Brown
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
| | - Michael C Wimberly
- Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma, USA
| | - Leah R Johnson
- Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | | |
Collapse
|
26
|
Izquierdo L. The glycobiology of plasmodium falciparum: New approaches and recent advances. Biotechnol Adv 2023; 66:108178. [PMID: 37216996 DOI: 10.1016/j.biotechadv.2023.108178] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/22/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Like any other microorganism, pathogenic protozoan parasites rely heavily on glycoconjugates and glycan binding proteins to protect themselves from the environment and to interact with their diverse hosts. A thorough comprehension of how glycobiology contributes to the survival and virulence of these organisms may reveal unknown aspects of their biology and may open much needed avenues for the design of new strategies against them. In the case of Plasmodium falciparum, which causes the vast majority of malaria cases and deaths, the restricted variety and the simplicity of its glycans seemed to confer limited significance to the role played by glycoconjugates in the parasite. Nonetheless, the last 10 to 15 years of research are revealing a clearer and more defined picture. Thus, the use of new experimental techniques and the results obtained provide new avenues for understanding the biology of the parasite, as well as opportunities for the development of much required new tools against malaria.
Collapse
Affiliation(s)
- Luis Izquierdo
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain; CIBER de Enfermedades Infecciosas, Madrid, Spain.
| |
Collapse
|
27
|
Almeida-Oliveira F, Santos-Araujo S, Carvalho-Kelly LF, Macedo-Silva A, Meyer-Fernandes JR, Gondim KC, Majerowicz D. ATP synthase affects lipid metabolism in the kissing bug Rhodnius prolixus beyond its role in energy metabolism. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023:103956. [PMID: 37196906 DOI: 10.1016/j.ibmb.2023.103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
ATP synthase plays an essential role in mitochondrial metabolism, being responsible for the production of ATP in oxidative phosphorylation. However, recent results have shown that it may also be present in the cell membrane, involved in lipophorin binding to its receptors. Here, we used a functional genetics approach to investigate the roles of ATP synthase in lipid metabolism in the kissing bug Rhodnius prolixus. The genome of R. prolixus encodes five nucleotide-binding domain genes of the ATP synthase alpha and beta family, including the alpha and beta subunits of ATP synthase (RpATPSynA and RpATPSynB), and the catalytic and non-catalytic subunits of the vacuolar ATPase (RpVha68 and RpVha55). These genes were expressed in all analyzed organs, being their expression highest in the ovaries, fat body and flight muscle. Feeding did not regulate the expression of ATP synthases in the posterior midgut or fat body. Furthermore, ATP synthase is present in the fat body's mitochondrial and membrane fractions. RpATPSynB knockdown by RNAi impaired ovarian development and reduced egg-laying by approximately 85%. Furthermore, the lack of RpATPSynB increased the amount of triacylglycerol in the fat body due to increased de novo fatty acid synthesis and reduced transfer of lipids to lipophorin. RpATPSynA knockdown had similar effects, with altered ovarian development, reduced oviposition, and triacylglycerol accumulation in the fat body. However, ATP synthases knockdown had only a slight effect on the amount of ATP in the fat body. These results support the hypothesis that ATP synthase has a direct role in lipid metabolism and lipophorin physiology, which are not directly due to changes in energy metabolism.
Collapse
Affiliation(s)
| | - Samara Santos-Araujo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | | | - Alessa Macedo-Silva
- Programa de Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro, Brazil
| | | | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil
| | - David Majerowicz
- Programa de Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil; Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
28
|
Achuthkumar A, Uchamballi S, Arvind K, Vasu DA, Varghese S, Ravindran R, Grace T. Transcriptome Profiling of Rhipicephalus annulatus Reveals Differential Gene Expression of Metabolic Detoxifying Enzymes in Response to Acaricide Treatment. Biomedicines 2023; 11:biomedicines11051369. [PMID: 37239047 DOI: 10.3390/biomedicines11051369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 05/28/2023] Open
Abstract
Ticks are hematophagous ectoparasites of economic consequence by virtue of being carriers of infectious diseases that affect livestock and other sectors of the agricultural industry. A widely prevalent tick species, Rhipicephalus (Boophilus) annulatus, has been recognized as a prime vector of tick-borne diseases in South Indian regions. Over time, the use of chemical acaricides for tick control has promoted the evolution of resistance to these widely used compounds through metabolic detoxification. Identifying the genes related to this detoxification is extremely important, as it could help detect valid insecticide targets and develop novel strategies for effective insect control. We performed an RNA-sequencing analysis of acaricide-treated and untreated R. (B.) annulatus and mapped the detoxification genes expressed due to acaricide exposure. Our results provided high-quality RNA-sequenced data of untreated and amitraz-treated R. (B.) annulatus, and then the data were assembled into contigs and clustered into 50,591 and 71,711 uni-gene sequences, respectively. The expression levels of the detoxification genes across different developmental stages of R. (B.) annulatu identified 16,635 transcripts as upregulated and 15,539 transcripts as downregulated. The annotations of the differentially expressed genes (DEGs) revealed the significant expression of 70 detoxification genes in response to the amitraz treatment. The qRT-PCR revealed significant differences in the gene expression levels across different life stages of R. (B.) annulatus.
Collapse
Affiliation(s)
- Amritha Achuthkumar
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod 671320, Kerala, India
| | - Shamjana Uchamballi
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod 671320, Kerala, India
| | - Kumar Arvind
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod 671320, Kerala, India
| | - Deepa Azhchath Vasu
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod 671320, Kerala, India
| | - Sincy Varghese
- Department of Biochemistry, Pazhassiraja College, Pulpally 673579, Kerala, India
| | - Reghu Ravindran
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode 673576, Kerala, India
| | - Tony Grace
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod 671320, Kerala, India
| |
Collapse
|
29
|
Li X, Guan Z, Wang F, Wang Y, Asare E, Shi S, Lin Z, Ji T, Gao B, Song C. Evolution of piggyBac Transposons in Apoidea. INSECTS 2023; 14:402. [PMID: 37103217 PMCID: PMC10140906 DOI: 10.3390/insects14040402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
In this study, we investigated the presence of piggyBac (PB) transposons in 44 bee genomes from the Apoidea order, which is a superfamily within the Hymenoptera, which includes a large number of bee species crucial for pollination. We annotated the PB transposons in these 44 bee genomes and examined their evolution profiles, including structural characteristics, distribution, diversity, activity, and abundance. The mined PB transposons were divided into three clades, with uneven distribution in each genus of PB transposons in Apoidea. The complete PB transposons we discovered are around 2.23-3.52 kb in length and encode transposases of approximately 580 aa, with terminal inverted repeats (TIRs) of about 14 bp and 4 bp (TTAA) target-site duplications. Long TIRs (200 bp, 201 bp, and 493 bp) were also detected in some species of bees. The DDD domains of the three transposon types were more conserved, while the other protein domains were less conserved. Generally, most PB transposons showed low abundance in the genomes of Apoidea. Divergent evolution dynamics of PB were observed in the genomes of Apoidea. PB transposons in some identified species were relatively young, whiles others were older and with some either active or inactive. In addition, multiple invasions of PB were also detected in some genomes of Apoidea. Our findings highlight the contribution of PB transposons to genomic variation in these species and suggest their potential as candidates for future gene transfer tools.
Collapse
|
30
|
Blair CD. A Brief History of the Discovery of RNA-Mediated Antiviral Immune Defenses in Vector Mosquitos. Microbiol Mol Biol Rev 2023; 87:e0019121. [PMID: 36511720 PMCID: PMC10029339 DOI: 10.1128/mmbr.00191-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) persist in a natural cycle that includes infections of humans or other vertebrates and transmission between vertebrates by infected arthropods, most commonly mosquitos. Arboviruses can cause serious, sometimes fatal diseases in humans and other vertebrates but cause little pathology in their mosquito vectors. Knowledge of the interactions between mosquito vectors and the arboviruses that they transmit is an important facet of developing schemes to control transmission. Mosquito innate immune responses to virus infection modulate virus replication in the vector, and understanding the components and mechanisms of the immune response could lead to improved methods for interrupting the transmission cycle. The most important aspect of mosquito antiviral defense is the exogenous small interfering RNA (exo-siRNA) pathway, one arm of the RNA interference (RNAi) silencing response. Our research as well as that of many other groups over the past 25 years to define this pathway are reviewed here. A more recently recognized but less well-understood RNA-mediated mosquito defense against arbovirus infections, the PIWI-interacting RNA (piRNA) pathway, is also described.
Collapse
Affiliation(s)
- Carol D Blair
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
31
|
Holmes CJ, Brown ES, Sharma D, Warden M, Pathak A, Payton B, Nguyen Q, Spangler A, Sivakumar J, Hendershot JM, Benoit JB. Dehydration Alters Transcript Levels in the Mosquito Midgut, Likely Facilitating Rapid Rehydration following a Bloodmeal. INSECTS 2023; 14:274. [PMID: 36975959 PMCID: PMC10056721 DOI: 10.3390/insects14030274] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The mosquito midgut is an important site for bloodmeal regulation while also acting as a primary site for pathogen exposure within the mosquito. Recent studies show that exposure to dehydrating conditions alters mosquito bloodfeeding behaviors as well as post-feeding regulation, likely altering how pathogens interact with the mosquito. Unfortunately, few studies have explored the underlying dynamics between dehydration and bloodmeal utilization, and the overall impact on disease transmission dynamics remains veiled. In this study, we find that dehydration-based feeding in the yellow fever mosquito, Aedes aegypti, prompts alterations to midgut gene expression, as well as subsequent physiological factors involving water control and post-bloodfeeding (pbf) regulation. Altered expression of ion transporter genes and aquaporin 2 (AQP2) in the midgut of dehydrated mosquitoes as well as the rapid reequilibration of hemolymph osmolality after a bloodmeal indicate an ability to expedite fluid and ion processing. These alterations ultimately indicate that female A. aegypti employ mechanisms to ameliorate the detriments of dehydration by imbibing a bloodmeal, providing an effective avenue for rehydration. Continued research into bloodmeal utilization and the resulting effects on arthropod-borne transmission dynamics becomes increasingly important as drought prevalence is increased by climate change.
Collapse
|
32
|
Cottis S, Blisnick AA, Failloux AB, Vernick KD. Determinants of Chikungunya and O'nyong-Nyong Virus Specificity for Infection of Aedes and Anopheles Mosquito Vectors. Viruses 2023; 15:589. [PMID: 36992298 PMCID: PMC10051923 DOI: 10.3390/v15030589] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Mosquito-borne diseases caused by viruses and parasites are responsible for more than 700 million infections each year. Anopheles and Aedes are the two major vectors for, respectively, malaria and arboviruses. Anopheles mosquitoes are the primary vector of just one known arbovirus, the alphavirus o'nyong-nyong virus (ONNV), which is closely related to the chikungunya virus (CHIKV), vectored by Aedes mosquitoes. However, Anopheles harbor a complex natural virome of RNA viruses, and a number of pathogenic arboviruses have been isolated from Anopheles mosquitoes in nature. CHIKV and ONNV are in the same antigenic group, the Semliki Forest virus complex, are difficult to distinguish via immunodiagnostic assay, and symptomatically cause essentially the same human disease. The major difference between the arboviruses appears to be their differential use of mosquito vectors. The mechanisms governing this vector specificity are poorly understood. Here, we summarize intrinsic and extrinsic factors that could be associated with vector specificity by these viruses. We highlight the complexity and multifactorial aspect of vectorial specificity of the two alphaviruses, and evaluate the level of risk of vector shift by ONNV or CHIKV.
Collapse
Affiliation(s)
- Solène Cottis
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris Cité, CNRS UMR2000, F-75015 Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Université UPMC Paris VI, 75252 Paris, France
| | - Adrien A. Blisnick
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Anna-Bella Failloux
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Kenneth D. Vernick
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris Cité, CNRS UMR2000, F-75015 Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Université UPMC Paris VI, 75252 Paris, France
| |
Collapse
|
33
|
García-Longoria L, Ahrén D, Berthomieu A, Kalbskopf V, Rivero A, Hellgren O. Immune gene expression in the mosquito vector Culex quinquefasciatus during an avian malaria infection. Mol Ecol 2023; 32:904-919. [PMID: 36448733 PMCID: PMC10108303 DOI: 10.1111/mec.16799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022]
Abstract
Plasmodium relictum is the most widespread avian malaria parasite in the world. It is listed as one of the 100 most dangerous invasive species, having been responsible for the extinction of several endemic bird species, and the near-demise of several others. Here we present the first transcriptomic study focused on the effect of P. relictum on the immune system of its vector (the mosquito Culex quinquefasciatus) at different times post-infection. We show that over 50% of immune genes identified as being part of the Toll pathway and 30%-40% of the immune genes identified within the Imd pathway are overexpressed during the critical period spanning the parasite's oocyst and sporozoite formation (8-12 days), revealing the crucial role played by both these pathways in this natural mosquito-Plasmodium combination. Comparison of infected mosquitoes with their uninfected counterparts also revealed some unexpected immune RNA expression patterns earlier and later in the infection: significant differences in expression of several immune effectors were observed as early as 30 min after ingestion of the infected blood meal. In addition, in the later stages of the infection (towards the end of the mosquito lifespan), we observed an unexpected increase in immune investment in uninfected, but not in infected, mosquitoes. In conclusion, our work extends the comparative transcriptomic analyses of malaria-infected mosquitoes beyond human and rodent parasites and provides insights into the degree of conservation of immune pathways and into the selective pressures exerted by Plasmodium parasites on their vectors.
Collapse
Affiliation(s)
- Luz García-Longoria
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Badajoz, Spain
| | - Dag Ahrén
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | | | - Victor Kalbskopf
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | - Ana Rivero
- MIVEGEC (CNRS, Université de Montpellier, IRD), Montpellier, France
| | - Olof Hellgren
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
34
|
Liu W, Cheng P, An S, Zhang K, Gong M, Zhang Z, Zhang R. Chromosome-level assembly of Culex pipiens molestus and improved reference genome of Culex pipiens pallens (Culicidae, Diptera). Mol Ecol Resour 2023; 23:486-498. [PMID: 36075571 DOI: 10.1111/1755-0998.13712] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/06/2022] [Accepted: 09/05/2022] [Indexed: 01/04/2023]
Abstract
Culex pipiens molestus and Culex pipiens pallens are two distinct bioforms in the Culex pipiens complex that are important vectors of several pathogens and are widely distributed around the world. In the current study, we present a high-quality chromosome-level genome of Cx. pipiens f. molestus and describe the genetic characteristics of this genome. The assembly genome was 559.749 Mb with contig and scaffold N50 values of 200.952 Mb and 0.370 Mb, and more than 94.78% of the assembled bases were located on 3 chromosomes. A total of 19,399 protein-coding genes were predicted. Many gene families were expanded in the genome of Cx. pipiens f. molestus, particularly those of the chemosensory protein (CSP) and gustatory receptor (GR) gene families. In addition, utilizing Hi-C data, we improved the previously assembled draft genome of Cx. pipiens f. pallens, with scaffold N50 of 186.195 Mb and contig N50 of 0.749 Mb, and more than 97.02% of the assembled bases were located on three chromosomes. This reference genome provides a foundation for genome-based investigations of the unique ecological and evolutionary characteristics of Cx. pipiens f. molestus, and the findings in this study will help to elucidate the mechanisms involved in species divergence in the Culex pipiens complex.
Collapse
Affiliation(s)
- Wenjuan Liu
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| | - Peng Cheng
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,Shandong Institute of Parasitic Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Jining, China
| | - Sha An
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| | - Kexin Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| | - Maoqing Gong
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,Shandong Institute of Parasitic Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Jining, China
| | - Zhong Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| | - Ruiling Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| |
Collapse
|
35
|
Smith EG, Surm JM, Macrander J, Simhi A, Amir G, Sachkova MY, Lewandowska M, Reitzel AM, Moran Y. Micro and macroevolution of sea anemone venom phenotype. Nat Commun 2023; 14:249. [PMID: 36646703 PMCID: PMC9842752 DOI: 10.1038/s41467-023-35794-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Venom is a complex trait with substantial inter- and intraspecific variability resulting from strong selective pressures acting on the expression of many toxic proteins. However, understanding the processes underlying toxin expression dynamics that determine the venom phenotype remains unresolved. By interspecific comparisons we reveal that toxin expression in sea anemones evolves rapidly and that in each species different toxin family dictates the venom phenotype by massive gene duplication events. In-depth analysis of the sea anemone, Nematostella vectensis, revealed striking variation of the dominant toxin (Nv1) diploid copy number across populations (1-24 copies) resulting from independent expansion/contraction events, which generate distinct haplotypes. Nv1 copy number correlates with expression at both the transcript and protein levels with one population having a near-complete loss of Nv1 production. Finally, we establish the dominant toxin hypothesis which incorporates observations in other venomous lineages that animals have convergently evolved a similar strategy in shaping their venom.
Collapse
Affiliation(s)
- Edward G Smith
- University of North Carolina at Charlotte, Department of Biological Sciences, Charlotte, NC, USA. .,School of Life Sciences, University of Warwick, Coventry, United Kingdom.
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Jason Macrander
- University of North Carolina at Charlotte, Department of Biological Sciences, Charlotte, NC, USA.,Florida Southern College, Biology Department, Lakeland, FL, USA
| | - Adi Simhi
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Hebrew University of Jerusalem, The School of Computer Science & Engineering, Jerusalem, Israel
| | - Guy Amir
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Hebrew University of Jerusalem, The School of Computer Science & Engineering, Jerusalem, Israel
| | - Maria Y Sachkova
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Magda Lewandowska
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adam M Reitzel
- University of North Carolina at Charlotte, Department of Biological Sciences, Charlotte, NC, USA
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
36
|
Henderson C, Kemirembe K, McKeand S, Bergey C, Rasgon JL. Novel genome sequences and evolutionary dynamics of the North American anopheline species Anopheles freeborni, Anopheles crucians, Anopheles quadrimaculatus, and Anopheles albimanus. G3 (BETHESDA, MD.) 2023; 13:jkac284. [PMID: 36377778 PMCID: PMC9836346 DOI: 10.1093/g3journal/jkac284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022]
Abstract
Anopheles mosquitoes are the principal vectors for malaria and lymphatic filariasis, and evidence for arboviral transmission under laboratory and natural contexts has been demonstrated. Vector management approaches require an understanding of the ecological, epidemiological, and biological contexts of the species in question, and increased interest in gene drive systems for vector control applications has resulted in an increased need for genome assemblies from understudied mosquito vector species. In this study, we present novel genome assemblies for Anopheles crucians, Anopheles freeborni, Anopheles albimanus, and Anopheles quadrimaculatus and examine the evolutionary relationship between these species. We identified 790 shared single-copy orthologs between the newly sequenced genomes and created a phylogeny using 673 of the orthologs, identifying 289 orthologs with evidence for positive selection on at least 1 branch of the phylogeny. Gene ontology terms such as calcium ion signaling, histone binding, and protein acetylation identified as being biased in the set of selected genes. These novel genome sequences will be useful in developing our understanding of the diverse biological traits that drive vectorial capacity in anophelines.
Collapse
Affiliation(s)
- Cory Henderson
- Department of Entomology, The Pennsylvania State University, University Park, PA 16801, USA
- Department of Genetics, Rutgers University, New Brunswick, NJ 08901, USA
| | - Karen Kemirembe
- Department of Entomology, The Pennsylvania State University, University Park, PA 16801, USA
| | - Sage McKeand
- Department of Entomology, The Pennsylvania State University, University Park, PA 16801, USA
| | - Christina Bergey
- Department of Genetics, Rutgers University, New Brunswick, NJ 08901, USA
| | - Jason L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, PA 16801, USA
| |
Collapse
|
37
|
Alvarenga PH, Andersen JF. An Overview of D7 Protein Structure and Physiological Roles in Blood-Feeding Nematocera. BIOLOGY 2022; 12:biology12010039. [PMID: 36671732 PMCID: PMC9855781 DOI: 10.3390/biology12010039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Each time an insect bites a vertebrate host, skin and vascular injury caused by piercing triggers a series of responses including hemostasis, inflammation and immunity. In place, this set of redundant and interconnected responses would ultimately cause blood coagulation, itching and pain leading to host awareness, resulting in feeding interruption in the best-case scenario. Nevertheless, hematophagous arthropod saliva contains a complex cocktail of molecules that are crucial to the success of blood-feeding. Among important protein families described so far in the saliva of blood sucking arthropods, is the D7, abundantly expressed in blood feeding Nematocera. D7 proteins are distantly related to insect Odorant-Binding Proteins (OBP), and despite low sequence identity, observation of structural similarity led to the suggestion that like OBPs, they should bind/sequester small hydrophobic compounds. Members belonging to this family are divided in short forms and long forms, containing one or two OBP-like domains, respectively. Here, we provide a review of D7 proteins structure and function, discussing how gene duplication and some modifications in their OBP-like domains during the course of evolution lead to gain and loss of function among different hematophagous Diptera species.
Collapse
|
38
|
Abstract
Age is the key risk factor for diseases and disabilities of the elderly. Efforts to tackle age-related diseases and increase healthspan have suggested targeting the ageing process itself to 'rejuvenate' physiological functioning. However, achieving this aim requires measures of biological age and rates of ageing at the molecular level. Spurred by recent advances in high-throughput omics technologies, a new generation of tools to measure biological ageing now enables the quantitative characterization of ageing at molecular resolution. Epigenomic, transcriptomic, proteomic and metabolomic data can be harnessed with machine learning to build 'ageing clocks' with demonstrated capacity to identify new biomarkers of biological ageing.
Collapse
Affiliation(s)
- Jarod Rutledge
- Department of Genetics, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Paul F. Glenn Center for the Biology of Ageing, Stanford University School of Medicine, Stanford, CA, USA
| | - Hamilton Oh
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Paul F. Glenn Center for the Biology of Ageing, Stanford University School of Medicine, Stanford, CA, USA
- Graduate Program in Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Tony Wyss-Coray
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Ageing, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
39
|
Liang J, Bondarenko SM, Sharakhov IV, Sharakhova MV. Visualization of the Linear and Spatial Organization of Chromosomes in Mosquitoes. Cold Spring Harb Protoc 2022; 2022:585-590. [PMID: 35960626 DOI: 10.1101/pdb.top107732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mosquitoes are vectors of dangerous human diseases such as malaria, dengue, Zika, West Nile fever, and lymphatic filariasis. Visualization of the linear and spatial organization of mosquito chromosomes is important for understanding genome structure and function. Utilization of chromosomal inversions as markers for population genetics studies yields insights into mosquito adaptation and evolution. Cytogenetic approaches assist with the development of chromosome-scale genome assemblies that are useful tools for studying mosquito biology and for designing novel vector control strategies. Fluorescence in situ hybridization is a powerful technique for localizing specific DNA sequences within the linear chromosome structure and within the spatial organization of the cell nucleus. Here, we introduce protocols used in our laboratories for chromosome visualization and their application in mosquitoes.
Collapse
Affiliation(s)
- Jiangtao Liang
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, USA
| | - Simon M Bondarenko
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, USA.,Department of Genetics and Cell Biology, Tomsk State University, Tomsk 634050, Russia
| | - Igor V Sharakhov
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, USA.,Department of Genetics and Cell Biology, Tomsk State University, Tomsk 634050, Russia
| | - Maria V Sharakhova
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, USA .,Laboratory of Evolutionary Genomics of Insects, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
40
|
Kientega M, Kranjc N, Traoré N, Kaboré H, Soma DD, Morianou I, Namountougou M, Belem AMG, Diabaté A. Analysis of the Genetic Variation of the Fruitless Gene within the Anopheles gambiae ( Diptera: Culicidae) Complex Populations in Africa. INSECTS 2022; 13:1048. [PMID: 36421951 PMCID: PMC9699577 DOI: 10.3390/insects13111048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Targeting genes involved in sexual determinism, for vector or pest control purposes, requires a better understanding of their polymorphism in natural populations in order to ensure a rapid spread of the construct. By using genomic data from An. gambiae s.l., we analyzed the genetic variation and the conservation score of the fru gene in 18 natural populations across Africa. A total of 34,339 SNPs were identified, including 3.11% non-synonymous segregating sites. Overall, the nucleotide diversity was low, and the Tajima’s D neutrality test was negative, indicating an excess of low frequency SNPs in the fru gene. The allelic frequencies of the non-synonymous SNPs were low (freq < 0.26), except for two SNPs identified at high frequencies (freq > 0.8) in the zinc-finger A and B protein domains. The conservation score was variable throughout the fru gene, with maximum values in the exonic regions compared to the intronic regions. These results showed a low genetic variation overall in the exonic regions, especially the male sex-specific exon and the BTB-exon 1 of the fru gene. These findings will facilitate the development of an effective gene drive construct targeting the fru gene that can rapidly spread without encountering resistance in wild populations.
Collapse
Affiliation(s)
- Mahamadi Kientega
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso 01 BP 545, Burkina Faso
- Laboratoire de Santé Animale Tropicale, Institut du Développement Rural, Université Nazi Boni, Bobo-Dioulasso 01 BP 1091, Burkina Faso
| | - Nace Kranjc
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Nouhoun Traoré
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso 01 BP 545, Burkina Faso
- Laboratoire de Santé Animale Tropicale, Institut du Développement Rural, Université Nazi Boni, Bobo-Dioulasso 01 BP 1091, Burkina Faso
| | - Honorine Kaboré
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso 01 BP 545, Burkina Faso
- Laboratoire de Santé Animale Tropicale, Institut du Développement Rural, Université Nazi Boni, Bobo-Dioulasso 01 BP 1091, Burkina Faso
| | - Dieudonné Diloma Soma
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso 01 BP 545, Burkina Faso
- Laboratoire de Santé Animale Tropicale, Institut du Développement Rural, Université Nazi Boni, Bobo-Dioulasso 01 BP 1091, Burkina Faso
| | - Ioanna Morianou
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Moussa Namountougou
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso 01 BP 545, Burkina Faso
- Laboratoire de Santé Animale Tropicale, Institut du Développement Rural, Université Nazi Boni, Bobo-Dioulasso 01 BP 1091, Burkina Faso
| | - Adrien Marie Gaston Belem
- Laboratoire de Santé Animale Tropicale, Institut du Développement Rural, Université Nazi Boni, Bobo-Dioulasso 01 BP 1091, Burkina Faso
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso 01 BP 545, Burkina Faso
| |
Collapse
|
41
|
Zhao DZ, Wang XK, Zhao T, Li H, Xing D, Gao HT, Song F, Chen GH, Li CX. A Swin Transformer-based model for mosquito species identification. Sci Rep 2022; 12:18664. [PMID: 36333318 PMCID: PMC9636261 DOI: 10.1038/s41598-022-21017-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
Mosquito transmit numbers of parasites and pathogens resulting in fatal diseases. Species identification is a prerequisite for effective mosquito control. Existing morphological and molecular classification methods have evitable disadvantages. Here we introduced Deep learning techniques for mosquito species identification. A balanced, high-definition mosquito dataset with 9900 original images covering 17 species was constructed. After three rounds of screening and adjustment-testing (first round among 3 convolutional neural networks and 3 Transformer models, second round among 3 Swin Transformer variants, and third round between 2 images sizes), we proposed the first Swin Transformer-based mosquito species identification model (Swin MSI) with 99.04% accuracy and 99.16% F1-score. By visualizing the identification process, the morphological keys used in Swin MSI were similar but not the same as those used by humans. Swin MSI realized 100% subspecies-level identification in Culex pipiens Complex and 96.26% accuracy for novel species categorization. It presents a promising approach for mosquito identification and mosquito borne diseases control.
Collapse
Affiliation(s)
- De-Zhong Zhao
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Xin-Kai Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Teng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - He-Ting Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Guo-Hua Chen
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Chun-Xiao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
42
|
Zhang C, Guo X, Li T, Cheng P, Gong M. New insights into cypermethrin insecticide resistance mechanisms of Culex pipiens pallens by proteome analysis. PEST MANAGEMENT SCIENCE 2022; 78:4579-4588. [PMID: 35837767 DOI: 10.1002/ps.7077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/24/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Due to the development of insecticide resistance in mosquitoes, with worldwide mosquito-borne diseases resurgence in recent years, recent advances in proteome technology have facilitated a proteome-wide analysis of insecticide resistance-associated proteins in mosquitoes. Understanding the complexity of the molecular basis of insecticide resistance mechanisms employed by mosquitoes will help in designing the most effective and sustainable mosquito control methods. RESULTS After 30 generations, insecticide-selected strains showed elevated resistance levels to the cypermethrin used for selection. Proteome data allowed the detection of 2892 proteins, of which 2885 differentially expressed proteins (DEPs) achieved quantitative significances in four stages (egg, larvae, pupae, adult) of Culex pipiens pallens cypermethrin-resistant strain as compared to the susceptible strain. Among them, a significant enrichment of proteins, including cuticular proteins, enzymes involved in the detoxification (cytochrome P450, glutathione S-transferases, esterase, ATP-binding cassette) and some biological pathways (oxidative phosphorylation, hippo signalling) that are potentially involved in cypermethrin resistance, was observed. Thirty-one representative DEPs (cytochrome P450, glutathione S-transferase, cuticle protein) during Cx. pipiens pallens developmental stages were confirmed by a parallel reaction monitoring strategy. CONCLUSIONS The present study confirmed the power of isobaric tags for relative and absolute quantification for identifying concomitantly quantitative proteome changes associated with cypermethrin in Cx. pipiens pallens. Proteome analysis suggests that proteome modifications can be selected rapidly by cypermethrin, and multiple resistance mechanisms operate simultaneously in cypermethrin-resistance of Cx. pipiens pallens, Our results interpret that an up-regulated expression of proteins and enzymes like cytochrome P450, glutathione S-transferases, esterase etc. has an impact in insecticide resistance. Previously neglected penetration resistance (cuticular proteins) may play an important role in the adaptive response of Cx. pipiens pallens to insecticides. This information may serve as a basis for future work concerning the possible role of these proteins in cypermethrin resistance in mosquito Cx. pipiens pallens. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chongxing Zhang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
| | - Xiuxia Guo
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
| | - Tao Li
- Nanning MHelix ProTech Co., Ltd, Nanning Hi-tech Zone Bioengineering Center, Nanning, P. R. China
| | - Peng Cheng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
| | - Maoqing Gong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
| |
Collapse
|
43
|
Sattelle DB. Invertebrate neurones, genomes, phenotypic and target-based screening; their contributions to the search for new chemical leads and new molecular targets for the control of pests, parasites and disease vectors. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105175. [PMID: 36127074 DOI: 10.1016/j.pestbp.2022.105175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Insect-borne diseases of humans, animals and plants can be devastating. The direct damage to crops by insect and nematode pests can also severely reduce crop yields and threaten harvests. Parasitic nematodes can impair human health and the health of farm livestock. Effective control for all such pests, vectors and pathogens is required as the economic and health burden can be substantial. Insecticides, nematicides and anthelmintics have been at the forefront of control and will remain important in the immediate future, even as we explore new and more sustainable methods to maintain the necessary disease control and the growth in food supply. Many important chemicals deployed for the control of invertebrate disease vectors and pathogens of humans, agricultural crops and farm livestock are active on ion channels, resulting in rapid actions. Understanding their modes of action has been accelerated by studies on the physiology of identifiable invertebrate excitable cells. Nematode and insect genetic model organisms and comparative genomics have contributed to defining the molecular targets of insecticides and anthelmintics, facilitating target-based screening. Automated phenotyping, which allows high-throughput screening of chemical libraries for new and re-purposed compounds, has been increasingly deployed in the search for new molecules of interest. With a growing world population to be fed and a 20-49% loss of global harvest to pests, we need to maintain control of the pests, parasites and pathogens that threaten global food supply and global health.
Collapse
Affiliation(s)
- David B Sattelle
- Division of Medicine, Rayne Building, University College London, 5 University Street, London WC1E 6JF, UK.
| |
Collapse
|
44
|
Kojin BB, Compton A, Adelman ZN, Tu Z. Selective targeting of biting females to control mosquito-borne infectious diseases. Trends Parasitol 2022; 38:791-804. [PMID: 35952630 PMCID: PMC9372635 DOI: 10.1016/j.pt.2022.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
Mosquitoes are vectors for a number of infectious diseases. Only females feed on blood to provision for their embryos and, in doing so, transmit pathogens to the associated vertebrate hosts. Therefore, sex is an important phenotype in the context of genetic control programs, both for sex separation in the rearing facilities to avoid releasing biting females and for ways to distort the sex ratio towards nonbiting males. We review recent progress in the fundamental knowledge of sex determination and sex chromosomes in mosquitoes and discuss new methods to achieve sex separation and sex ratio distortion to help control mosquito-borne infectious diseases. We conclude by suggesting a few critical areas for future research.
Collapse
Affiliation(s)
- Bianca B Kojin
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX, USA
| | - Austin Compton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA; Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Zach N Adelman
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX, USA.
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA; Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
45
|
Zhou A, Huang C, Li Y, Li X, Zhang Z, He H, Ding W, Xue J, Li Y, Qiu L. A chromosome-level genome assembly provides insights into the environmental adaptability and outbreaks of Chlorops oryzae. Commun Biol 2022; 5:881. [PMID: 36028584 PMCID: PMC9418232 DOI: 10.1038/s42003-022-03850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
Chlorops oryzae is a pest of rice that has caused severe damage to crops in major rice-growing areas in recent years. We generated a 447.60 Mb high-quality chromosome-level genome with contig and scaffold N50 values of 1.17 Mb and 117.57 Mb, respectively. Hi-C analysis anchored 93.22% scaffolds to 4 chromosomes. The relatively high expression level of Heat Shock Proteins (HSPs) and antioxidant genes in response to thermal stress suggests these genes may play a role in the environmental adaptability of C. oryzae. The identification of multiple pathways that regulate reproductive development (juvenile hormone, 20-hydroxyecdsone, and insulin signaling pathways) provides evidence that these pathways also play an important role in vitellogenesis and thus insect population maintenance. These findings identify possible reasons for the increased frequency of outbreaks of C. oryzae in recent years. Our chromosome-level genome assembly may provide a basis for further genetic studies of C. oryzae, and promote the development of novel, sustainable strategies to control this pest. A chromosome-level genome assembly for the rice pest, Chlorops oryzae, pinpoints molecular pathways that might contribute toward increased outbreaks for this important crop pest.
Collapse
Affiliation(s)
- Ailin Zhou
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.,Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, 410128, China
| | - Cong Huang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yi Li
- Plant Protection and Inspection Station, Agriculture and Rural Development of Hunan Province, Changsha, 410005, China
| | - Xinwen Li
- Plant Protection and Inspection Station, Agriculture and Rural Development of Hunan Province, Changsha, 410005, China
| | - Zhengbing Zhang
- Plant Protection and Inspection Station, Agriculture and Rural Development of Hunan Province, Changsha, 410005, China
| | - Hualiang He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Wenbing Ding
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.,Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, 410128, China
| | - Jin Xue
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Youzhi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China. .,Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, 410128, China.
| | - Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
46
|
Lizana P, Mutis A, Quiroz A, Venthur H. Insights Into Chemosensory Proteins From Non-Model Insects: Advances and Perspectives in the Context of Pest Management. Front Physiol 2022; 13:924750. [PMID: 36072856 PMCID: PMC9441497 DOI: 10.3389/fphys.2022.924750] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
Nowadays, insect chemosensation represents a key aspect of integrated pest management in the Anthropocene epoch. Olfaction-related proteins have been the focus of studies due to their function in vital processes, such ashost finding and reproduction behavior. Hence, most research has been based on the study of model insects, namely Drosophila melanogaster, Bombyx mori or Tribolium castaneum. Over the passage of time and the advance of new molecular techniques, insects considered non-models have been studied, contributing greatly to the knowledge of insect olfactory systems and enhanced pest control methods. In this review, a reference point for non-model insects is proposed and the concept of model and non-model insects is discussed. Likewise, it summarizes and discusses the progress and contribution in the olfaction field of both model and non-model insects considered pests in agriculture.
Collapse
Affiliation(s)
- Paula Lizana
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Ana Mutis
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Andrés Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Herbert Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
47
|
Oke MA, Afolabi FJ, Oyeleke OO, Kilani TA, Adeosun AR, Olanbiwoninu AA, Adebayo EA. Ganoderma lucidum: Unutilized natural medicine and promising future solution to emerging diseases in Africa. Front Pharmacol 2022; 13:952027. [PMID: 36071846 PMCID: PMC9441938 DOI: 10.3389/fphar.2022.952027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Ganoderma lucidum is a well-known medicinal mushroom that has been used for the prevention and treatment of different ailments to enhance longevity and health specifically in China, Japan, and Korea. It was known as "God's herb" in ancient China as it was believed to prolong life, enhance the youthful spirit and sustain/preserve vitality. G. lucidum is seldom collected from nature and is substantially cultivated on wood logs and sawdust in plastic bags or bottles to meet the international market demand. Both in vitro and in vivo studies on the copious metabolic activities of G. lucidum have been carried out. Varied groups of chemical compounds including triterpenoids, polysaccharides, proteins, amino acids, nucleosides, alkaloids, steroids, lactones, lectins, fatty acids, and enzymes with potent pharmacological activities have been isolated from the mycelia and fruiting bodies of G. lucidum. Several researchers have reported the abundance and diversification of its biological actions triggered by these chemical compounds. Triterpenoids and polysaccharides of G. lucidum have been reported to possess cytotoxic, hepatoprotective, antihypertensive, hypocholesterolemic, antihistaminic effects, antioxidant, antimicrobial, anti-inflammatory, hypoglycemic antiallergic, neuroprotective, antitumor, immunomodulatory and antiangiogenic activities. Various formulations have been developed, patented, and utilized as nutraceuticals, cosmeceuticals, and pharmaceuticals from G. lucidum extracts and active compounds. Thus, this review presents current updates on emerging infectious diseases and highlights the scope, dynamics, and advances in infectious disease management with a particular focus on Ganoderma lucidum, an unutilized natural medicine as a promising future solution to emerging diseases in Africa. However, details such as the chemical compound and mode of action of each bioactive against different emerging diseases were not discussed in this study.
Collapse
Affiliation(s)
- M. A. Oke
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Microbiology and Nanobiotechnology Laboratory, LAUTECH, Ogbomoso, Nigeria
| | - F. J. Afolabi
- Mushrooms Department, National Biotechnology Development Centre, Ogbomoso, Nigeria
| | - O. O. Oyeleke
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Microbiology and Nanobiotechnology Laboratory, LAUTECH, Ogbomoso, Nigeria
| | - T. A. Kilani
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Microbiology and Nanobiotechnology Laboratory, LAUTECH, Ogbomoso, Nigeria
| | - A. R. Adeosun
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Microbiology and Nanobiotechnology Laboratory, LAUTECH, Ogbomoso, Nigeria
| | - A. A. Olanbiwoninu
- Department of Biological Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - E. A. Adebayo
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Microbiology and Nanobiotechnology Laboratory, LAUTECH, Ogbomoso, Nigeria
- Mushrooms Department, National Biotechnology Development Centre, Ogbomoso, Nigeria
| |
Collapse
|
48
|
Mashanov V, Machado DJ, Reid R, Brouwer C, Kofsky J, Janies DA. Twinkle twinkle brittle star: the draft genome of Ophioderma brevispinum (Echinodermata: Ophiuroidea) as a resource for regeneration research. BMC Genomics 2022; 23:574. [PMID: 35953768 PMCID: PMC9367165 DOI: 10.1186/s12864-022-08750-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/08/2022] [Indexed: 12/13/2022] Open
Abstract
Background Echinoderms are established models in experimental and developmental biology, however genomic resources are still lacking for many species. Here, we present the draft genome of Ophioderma brevispinum, an emerging model organism in the field of regenerative biology. This new genomic resource provides a reference for experimental studies of regenerative mechanisms. Results We report a de novo nuclear genome assembly for the brittle star O. brevispinum and annotation facilitated by the transcriptome assembly. The final assembly is 2.68 Gb in length and contains 146,703 predicted protein-coding gene models. We also report a mitochondrial genome for this species, which is 15,831 bp in length, and contains 13 protein-coding, 22 tRNAs, and 2 rRNAs genes, respectively. In addition, 29 genes of the Notch signaling pathway are identified to illustrate the practical utility of the assembly for studies of regeneration. Conclusions The sequenced and annotated genome of O. brevispinum presented here provides the first such resource for an ophiuroid model species. Considering the remarkable regenerative capacity of this species, this genome will be an essential resource in future research efforts on molecular mechanisms regulating regeneration. Supplementary Information The online version contains supplementary material available at (10.1186/s12864-022-08750-y).
Collapse
Affiliation(s)
- Vladimir Mashanov
- Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, 27101, NC, USA. .,University of North Florida, Department of Biology, 1 UNF Drive, Jacksonville, 32224, FL, USA.
| | - Denis Jacob Machado
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, 9201 University City Blvd, Charlotte, 28223, NC, USA
| | - Robert Reid
- University of North Carolina at Charlotte, College of Computing and Informatics, North Carolina Research Campus, 150 Research Campus Drive, Kannapolis, 28081, NC, USA
| | - Cory Brouwer
- University of North Carolina at Charlotte, College of Computing and Informatics, North Carolina Research Campus, 150 Research Campus Drive, Kannapolis, 28081, NC, USA
| | - Janice Kofsky
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, 9201 University City Blvd, Charlotte, 28223, NC, USA
| | - Daniel A Janies
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, 9201 University City Blvd, Charlotte, 28223, NC, USA
| |
Collapse
|
49
|
Guo R, Papanicolaou A, Fritz ML. Validation of reference-assisted assembly using existing and novel Heliothine genomes. Genomics 2022; 114:110441. [PMID: 35931274 DOI: 10.1016/j.ygeno.2022.110441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Chloridea subflexa and Chloridea virescens are a pair of closely related noctuid species exhibiting pheromone-based sexual isolation and divergent host plant preferences. We produced a novel Illumina short read C. subflexa genome assembly and an improved C. virescens genome assembly, which offer opportunities to study the genomic basis for evolutionarily important traits in this lepidopteran family with few genomic resources. We then examined the feasibility of reference-assisted assembly, an approach that leverages existing high quality genomic resources for genome improvement in closely related taxa and applied it to our Heliothine genomes. Our work demonstrates that reference-assisted assembly has the potential to enhance contiguity and completeness of existing insect genomic resources with minimal additional laboratory costs. We conclude by discussing both the potential and pitfalls of reference-assisted assembly according to the intended downstream assembly application.
Collapse
Affiliation(s)
- Rong Guo
- Department of Entomology, University of Maryland, College Park, MD 20742, USA; Computational Biology, Bioinformatics and Genomics Program, Department of Biological Sciences, University of Maryland, College Park, MD 20742, USA
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia.
| | - Megan L Fritz
- Department of Entomology, University of Maryland, College Park, MD 20742, USA; Computational Biology, Bioinformatics and Genomics Program, Department of Biological Sciences, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
50
|
Ashraf F, Weedall GD. Characterization of the glutathione S-transferase genes in the sand flies Phlebotomus papatasi and Lutzomyia longipalpis shows expansion of the novel glutathione S-transferase xi (X) class. INSECT MOLECULAR BIOLOGY 2022; 31:417-433. [PMID: 35238100 PMCID: PMC9540044 DOI: 10.1111/imb.12769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 05/17/2023]
Abstract
Leishmaniasis control often relies upon insecticidal control of phlebotomine sandfly vector populations. Such methods are vulnerable to the evolution of insecticide resistance via a range of molecular mechanisms. There is evidence that two major resistance mechanisms, target site insensitivity and metabolic resistance, have evolved in some sandfly populations and further genetic characterization of resistance would be useful to understand and combat it. To facilitate the study of the mechanisms of metabolic resistance, here we improved the annotation and characterized a major detoxification gene family, the glutathione-s-transferases (GST), in the genomes of two sand fly species: Phlebotomus papatasi and Lutzomyia longipalpis. The compositions of the GST gene family differ markedly from those of Aedes and Anopheles mosquitoes. Most strikingly, the xi (X) class of GSTs appears to have expanded in both sand fly genomes. Our results provide a basis for further studies of metabolic resistance mechanisms in these important disease vector species.
Collapse
Affiliation(s)
- Faisal Ashraf
- School of Biological and Environmental SciencesLiverpool John Moores UniversityLiverpoolUK
| | - Gareth D. Weedall
- School of Biological and Environmental SciencesLiverpool John Moores UniversityLiverpoolUK
| |
Collapse
|