1
|
Tomasino B, Canderan C, Rumiati RI. Instruction-induced modulation of the visual stream during gesture observation. Neuropsychologia 2025; 208:109078. [PMID: 39848316 DOI: 10.1016/j.neuropsychologia.2025.109078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
Although gesture observation tasks are believed to invariably activate the action-observation network (AON), we investigated whether the activation of different cognitive mechanisms when processing identical stimuli with different explicit instructions modulates AON activations. Accordingly, 24 healthy right-handed individuals observed gestures and they processed both the actor's moved hand (hand laterality judgment task, HT) and the meaning of the actor's gesture (meaning task, MT). The main brain-level result was that the HT (vs MT) differentially activated the left and right precuneus, the left inferior parietal lobe, the left and right superior parietal lobe, the middle frontal gyri bilaterally and the left precentral gyrus. MT (vs HT) differentially activated the left and right calcarine cortex, the fusiform gyrus bilaterally, the left inferior temporal gyrus, the left and right hippocampus and parahippocampal gyri, and the temporal pole bilaterally. Processing the actor's moving hand modulates the dorsal action observation network (while processing gesture meaning modulates the ventral object recognition stream). The present results suggest instruction-induced modulation on the visual stream during gesture observation.
Collapse
Affiliation(s)
- Barbara Tomasino
- Scientific Institute IRCCS "Eugenio Medea", Polo FVG, Pasian di Prato (UD), Italy.
| | - Cinzia Canderan
- Scientific Institute IRCCS "Eugenio Medea", Polo FVG, Pasian di Prato (UD), Italy
| | - Raffaella I Rumiati
- Neuroscience Area, SISSA, Trieste, Italy; Dipartimento di Medicina dei Sistemi, Università di Roma-Tor Vergata, Roma, Italy
| |
Collapse
|
2
|
Liu P, Yang X, Han F, Peng G, Li Q, Huang L, Wang L, Fan Y. Brain Activation Pattern Caused by Soft Rehabilitation Glove and Virtual Reality Scenes: A Pilot fNIRS Study. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3848-3857. [PMID: 39418155 DOI: 10.1109/tnsre.2024.3482470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Clinical studies have proved significant improvements in hand motor function in stroke patients when assisted by robotic devices. However, there were few studies on neural activity changes in the brain during execution. This study aimed to investigate the brain activation pattern caused by soft rehabilitation glove and virtual reality scenes. Twenty healthy subjects and twenty stroke patients were recruited to complete three controlled trials: grasping passively with robotic glove assistance (RA), watching grasping movement video in virtual reality (VR), and the joint use of robotic glove and virtual reality (VRA). Neural activity in the prefrontal cortex, motor cortex and occipital lobe was synchronously collected by the functional near-infrared spectroscopy (fNIRS) device. Activation level and functional connectivity of these brain regions were subsequently calculated and statistically analyzed. For both groups, the VR and VRA tasks induced activation of larger cortical areas. Stroke group had higher average cortical activation in all three tasks compared to healthy group, especially in the prefrontal cortex ( [Formula: see text]). Functional connectivity was weaker in the stroke group than in the healthy group across most regions, but was significantly stronger across some regions of the right hemisphere. These findings suggest significant differences in activation patterns across three tasks. In addition, multi-sensory stimulation can promote functional communication between more brain regions in patients. It has potential for neuromodulation in rehabilitation training by setting up different sensory stimulation modalities.
Collapse
|
3
|
Liu DY, Hu XW, Han JF, Tan ZL, Song XM. Abnormal activation patterns in MT+ during visual motion perception in major depressive disorder. Front Psychiatry 2024; 15:1433239. [PMID: 39252757 PMCID: PMC11381256 DOI: 10.3389/fpsyt.2024.1433239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Objective Previous studies have found that patients with Major Depressive Disorder (MDD) exhibit impaired visual motion perception capabilities, and multi-level abnormalities in the human middle temporal complex (MT+), a key brain area for processing visual motion information. However, the brain activity pattern of MDD patients during the perception of visual motion information is currently unclear. In order to study the effect of depression on the activity and functional connectivity (FC) of MT+ during the perception of visual motion information, we conducted a study combining task-state fMRI and psychophysical paradigm to compare MDD patients and healthy control (HC). Methods Duration threshold was examined through a visual motion perception psychophysical experiment. In addition, a classic block-design grating motion task was utilized for fMRI scanning of 24 MDD patients and 25 HC. The grating moved randomly in one of eight directions. We examined the neural activation under visual stimulation conditions compared to the baseline and FC. Results Compared to HC group, MDD patients exhibited increased duration threshold. During the task, MDD patients showed decreased beta value and percent signal change in left and right MT+. In the sample comprising MDD and HC, there was a significant negative correlation between beta value in right MT+ and duration threshold. And in MDD group, activation in MT+ were significantly correlated with retardation score. Notably, no such differences in activation were observed in primary visual cortex (V1). Furthermore, when left MT+ served as the seed region, compared to the HC, MDD group showed increased FC with right calcarine fissure and surrounding cortex and decreased FC with left precuneus. Conclusion Overall, the findings of this study highlight that the visual motion perception function impairment in MDD patients relates to abnormal activation patterns in MT+, and task-related activity are significantly connected to the retardation symptoms of the disease. This not only provides insights into the potential neurobiological mechanisms behind visual motion perception disorder in MDD patients from the aspect of task-related brain activity, but also supports the importance of MT+ as a candidate biomarker region for MDD.
Collapse
Affiliation(s)
- Dong-Yu Liu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Xi-Wen Hu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jin-Fang Han
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhong-Lin Tan
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xue Mei Song
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Fernandes LA, Apolinário-Souza T, Castellano G, Fortuna BC, Lage GM. Hand differences in aiming task: A complementary spatial approach and analysis of dynamic brain networks with EEG. Behav Brain Res 2024; 469:114973. [PMID: 38641177 DOI: 10.1016/j.bbr.2024.114973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/21/2024]
Abstract
Left and right-hand exhibit differences in the execution of movements. Particularly, it has been shown that manual goal-directed aiming is more accurate with the right hand than with the left, which has been explained through the shorter time spent by the right hand in the feedback phase (FB). This explanation makes sense for the temporal aspects of the task; however, there is a lack of explanations for the spatial aspects. The present study hypothesizes that the right hand is more associated with the FB, while the left hand is more strongly associated with the pre-programming phase (PP). In addition, the present study aims to investigate differences between hands in functional brain connectivity (FBC). We hypothesize an increase in FBC of the right hand compared to the left hand. Twenty-two participants performed 20 trials of the goal-directed aiming task with both hands. Overall, the results confirm the study's hypotheses. Although the right hand stopped far from the target at the PP, it exhibited a lower final position error than the left hand. These findings imply that during the FB, the right hand compensates for the higher error observed in the PP, using the visual feedback to approach the target more closely than the left hand. Conversely, the left hand displayed a lower error at the PP than the right. Also, the right hand displayed greater FBC within and between brain hemispheres. This heightened connectivity in the right hand might be associated with inhibitory mechanisms between hemispheres.
Collapse
Affiliation(s)
| | | | - Gabriela Castellano
- Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN-FAPESP), Campinas, Brazil
| | | | | |
Collapse
|
5
|
Britton K, Price KM, Caballero A, Ahmed A, Bolin J, Simon-Dack SL. The relationship between neural processing efficiency during inter-hemispheric transfer, alcohol consumption, and sleep quality in college students: an ERP study. JOURNAL OF AMERICAN COLLEGE HEALTH : J OF ACH 2024:1-12. [PMID: 38917359 DOI: 10.1080/07448481.2024.2369900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
Objective: To examine relationships between sleep, alcohol consumption, and a physiological and behavioral marker of cognitive function in college students. College students are in a high risk category for high alcohol consumption and poor sleep quality, two unhealthful behaviors which can lead to poor mental health outcomes and compromised academic performance. Participants: Thirty college students from a large midwestern institution. Methods: Participants performed an interhemispheric transfer task while their electroencephalography was recorded for later examination of event-related potentials. They were also administered the Pittsburgh Sleep Quality Index, the Alcohol Use Disorders Identification Test, and the Alcohol Timeline Follow-Back. Results: Results demonstrate that increased alcohol consumption is associated with poor right-to-left interhemispheric transfer performance, and increased frontal P1 ERP amplitudes to neuro-ipsilateral targets requiring an interhemispheric-transfer. Conclusions: These findings assist in furthering explorations into the impacts of unhealthy behaviors in college students and underlying markers of simple cognitive and behavioral function.
Collapse
|
6
|
Chui K, Ng CT, Chang TT. The visuo-sensorimotor substrate of co-speech gesture processing. Neuropsychologia 2023; 190:108697. [PMID: 37827428 DOI: 10.1016/j.neuropsychologia.2023.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
Co-speech gestures are integral to human communication and exhibit diverse forms, each serving a distinct communication function. However, existing literature has focused on individual gesture types, leaving a gap in understanding the comparative neural processing of these diverse forms. To address this, our study investigated the neural processing of two types of iconic gestures: those representing attributes or event knowledge of entity concepts, beat gestures enacting rhythmic manual movements without semantic information, and self-adaptors. During functional magnetic resonance imaging, systematic randomization and attentive observation of video stimuli revealed a general neural substrate for co-speech gesture processing primarily in the bilateral middle temporal and inferior parietal cortices, characterizing visuospatial attention, semantic integration of cross-modal information, and multisensory processing of manual and audiovisual inputs. Specific types of gestures and grooming movements elicited distinct neural responses. Greater activity in the right supramarginal and inferior frontal regions was specific to self-adaptors, and is relevant to the spatiomotor and integrative processing of speech and gestures. The semantic and sensorimotor regions were least active for beat gestures. The processing of attribute gestures was most pronounced in the left posterior middle temporal gyrus upon access to knowledge of entity concepts. This fMRI study illuminated the neural underpinnings of gesture-speech integration and highlighted the differential processing pathways for various co-speech gestures.
Collapse
Affiliation(s)
- Kawai Chui
- Department of English, National Chengchi University, Taipei, Taiwan; Research Centre for Mind, Brain, and Learning, National Chengchi University, Taipei, Taiwan
| | - Chan-Tat Ng
- Department of Psychology, National Chengchi University, Taipei, Taiwan
| | - Ting-Ting Chang
- Research Centre for Mind, Brain, and Learning, National Chengchi University, Taipei, Taiwan; Department of Psychology, National Chengchi University, Taipei, Taiwan.
| |
Collapse
|
7
|
Sadras N, Sani OG, Ahmadipour P, Shanechi MM. Post-stimulus encoding of decision confidence in EEG: toward a brain-computer interface for decision making. J Neural Eng 2023; 20:056012. [PMID: 37524073 DOI: 10.1088/1741-2552/acec14] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Objective.When making decisions, humans can evaluate how likely they are to be correct. If this subjective confidence could be reliably decoded from brain activity, it would be possible to build a brain-computer interface (BCI) that improves decision performance by automatically providing more information to the user if needed based on their confidence. But this possibility depends on whether confidence can be decoded right after stimulus presentation and before the response so that a corrective action can be taken in time. Although prior work has shown that decision confidence is represented in brain signals, it is unclear if the representation is stimulus-locked or response-locked, and whether stimulus-locked pre-response decoding is sufficiently accurate for enabling such a BCI.Approach.We investigate the neural correlates of confidence by collecting high-density electroencephalography (EEG) during a perceptual decision task with realistic stimuli. Importantly, we design our task to include a post-stimulus gap that prevents the confounding of stimulus-locked activity by response-locked activity and vice versa, and then compare with a task without this gap.Main results.We perform event-related potential and source-localization analyses. Our analyses suggest that the neural correlates of confidence are stimulus-locked, and that an absence of a post-stimulus gap could cause these correlates to incorrectly appear as response-locked. By preventing response-locked activity from confounding stimulus-locked activity, we then show that confidence can be reliably decoded from single-trial stimulus-locked pre-response EEG alone. We also identify a high-performance classification algorithm by comparing a battery of algorithms. Lastly, we design a simulated BCI framework to show that the EEG classification is accurate enough to build a BCI and that the decoded confidence could be used to improve decision making performance particularly when the task difficulty and cost of errors are high.Significance.Our results show feasibility of non-invasive EEG-based BCIs to improve human decision making.
Collapse
Affiliation(s)
- Nitin Sadras
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Omid G Sani
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Parima Ahmadipour
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Maryam M Shanechi
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
- Department of Computer Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
- Neuroscience Graduate Program University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
8
|
Wang Y, Chen Z, Ma G, Wang L, Liu Y, Qin M, Fei X, Wu Y, Xu M, Zhang S. A frontal transcallosal inhibition loop mediates interhemispheric balance in visuospatial processing. Nat Commun 2023; 14:5213. [PMID: 37626171 PMCID: PMC10457336 DOI: 10.1038/s41467-023-40985-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Interhemispheric communication through the corpus callosum is required for both sensory and cognitive processes. Impaired transcallosal inhibition causing interhemispheric imbalance is believed to underlie visuospatial bias after frontoparietal cortical damage, but the synaptic circuits involved remain largely unknown. Here, we show that lesions in the mouse anterior cingulate area (ACA) cause severe visuospatial bias mediated by a transcallosal inhibition loop. In a visual-change-detection task, ACA callosal-projection neurons (CPNs) were more active with contralateral visual field changes than with ipsilateral changes. Unilateral CPN inactivation impaired contralateral change detection but improved ipsilateral detection by altering interhemispheric interaction through callosal projections. CPNs strongly activated contralateral parvalbumin-positive (PV+) neurons, and callosal-input-driven PV+ neurons preferentially inhibited ipsilateral CPNs, thus mediating transcallosal inhibition. Unilateral PV+ neuron activation caused a similar behavioral bias to contralateral CPN activation and ipsilateral CPN inactivation, and bilateral PV+ neuron activation eliminated this bias. Notably, restoring interhemispheric balance by activating contralesional PV+ neurons significantly improved contralesional detection in ACA-lesioned animals. Thus, a frontal transcallosal inhibition loop comprising CPNs and callosal-input-driven PV+ neurons mediates interhemispheric balance in visuospatial processing, and enhancing contralesional transcallosal inhibition restores interhemispheric balance while also reversing lesion-induced bias.
Collapse
Affiliation(s)
- Yanjie Wang
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhaonan Chen
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Guofen Ma
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lizhao Wang
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yanmei Liu
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Meiling Qin
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiang Fei
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yifan Wu
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Min Xu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Siyu Zhang
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China.
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
9
|
Chung C, Choi S, Jeong H, Lee J, Lee H. Attention mechanisms and emotion judgment for Korean and American emotional faces: an eye movement study. Front Psychol 2023; 14:1235238. [PMID: 37621937 PMCID: PMC10446967 DOI: 10.3389/fpsyg.2023.1235238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction This study investigates attention mechanisms and the accuracy of emotion judgment among South Korean children by employing Korean and American faces in conjunction with eye-tracking technology. Methods A total of 42 participants were individually presented with photos featuring either Korean or American children, and their task was to judge the emotions conveyed through the facial expressions in each photo. The participants' eye movements during picture viewing were meticulously observed using an eye tracker. Results The analysis of the emotion judgment task outcomes revealed that the accuracy scores for discerning emotions of joy, sadness, and anger in Korean emotional faces were found to be significantly higher than those for American children. Conversely, no significant difference in accuracy scores was observed for the recognition of fear emotion between Korean and American faces. Notably, the study also uncovered distinct patterns of fixation duration among children, depending on whether they were viewing Korean or American faces. These patterns predominantly manifested in the three main facial areas of interest, namely the eyes, nose, and mouth. Discussion The observed phenomena can be best understood within the framework of the "other-race effect." Consequently, this prototype formation leads to heightened accuracy in recognizing and interpreting emotional expressions exhibited by faces belonging to the same racial group. The present study contributes to a deeper understanding of how attention mechanisms and other-race effects impact emotion judgment among South Korean children. The utilization of eye-tracking technology enhances the validity and precision of our findings, providing valuable insights for both theoretical models of face processing and practical applications in various fields such as psychology, education, and intercultural communication.
Collapse
Affiliation(s)
- Chunghee Chung
- School of Child Studies, Kyungpook National University, Daegu, Republic of Korea
| | - Sungmook Choi
- Department of English Education, Kyungpook National University, Daegu, Republic of Korea
| | - Hyojin Jeong
- Department of Early Childhood Education, Keimyung College University, Daegu, Republic of Korea
| | - Jiyeon Lee
- School of Child Studies, Kyungpook National University, Daegu, Republic of Korea
| | - Hyorim Lee
- Department of Home Economics Education, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
10
|
Zhang S, Zhang T, He Z, Li X, Zhang L, Zhu D, Jiang X, Liu T, Han J, Guo L. Gyral peaks and patterns in human brains. Cereb Cortex 2023; 33:6708-6722. [PMID: 36646465 PMCID: PMC10422926 DOI: 10.1093/cercor/bhac537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
Cortical folding patterns are related to brain function, cognition, and behavior. Since the relationship has not been fully explained on a coarse scale, many efforts have been devoted to the identification of finer grained cortical landmarks, such as sulcal pits and gyral peaks, which were found to remain invariant across subjects and ages and the invariance may be related to gene mediated proto-map. However, gyral peaks were only investigated on macaque monkey brains, but not on human brains where the investigation is challenged due to high inter-individual variabilities. To this end, in this work, we successfully identified 96 gyral peaks both on the left and right hemispheres of human brains, respectively. These peaks are spatially consistent across individuals. Higher or sharper peaks are more consistent across subjects. Both structural and functional graph metrics of peaks are significantly different from other cortical regions, and more importantly, these nodal graph metrics are anti-correlated with the spatial consistency metrics within peaks. In addition, the distribution of peaks and various cortical anatomical, structural/functional connective features show hemispheric symmetry. These findings provide new clues to understanding the cortical landmarks, as well as their relationship with brain functions, cognition, behavior in both healthy and aberrant brains.
Collapse
Affiliation(s)
- Songyao Zhang
- School of Automation, School of Information Technology, and School of Life Science and Technology, Northwestern Polytechnical University, Xi’an 710000, China
| | - Tuo Zhang
- School of Automation, School of Information Technology, and School of Life Science and Technology, Northwestern Polytechnical University, Xi’an 710000, China
| | - Zhibin He
- School of Automation, School of Information Technology, and School of Life Science and Technology, Northwestern Polytechnical University, Xi’an 710000, China
| | - Xiao Li
- School of Automation, School of Information Technology, and School of Life Science and Technology, Northwest University, Xi’an, China
| | - Lu Zhang
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX, United States
| | - Dajiang Zhu
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX, United States
| | - Xi Jiang
- School of Automation, School of Information Technology, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30605, United States
| | - Junwei Han
- School of Automation, School of Information Technology, and School of Life Science and Technology, Northwestern Polytechnical University, Xi’an 710000, China
| | - Lei Guo
- School of Automation, School of Information Technology, and School of Life Science and Technology, Northwestern Polytechnical University, Xi’an 710000, China
| |
Collapse
|
11
|
Leisman G, Melillo R, Melillo T. Prefrontal Functional Connectivities in Autism Spectrum Disorders: A Connectopathic Disorder Affecting Movement, Interoception, and Cognition. Brain Res Bull 2023; 198:65-76. [PMID: 37087061 DOI: 10.1016/j.brainresbull.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
The prefrontal cortex is included in a neuronal system that includes the basal ganglia, the thalamus, and the cerebellum. Most of the higher and more complex motor, cognitive, and emotional behavioral functions are thought to be found primarily in the frontal lobes. Insufficient connectivity between the medial prefrontal cortex (mPFC) and other regions of the brain that are distant from each other involved in top-down information processing rely on the global integration of data from multiple input sources and enhance low level perception processes (bottom-up information processing). The reduced deactivation in mPFC and in the rest of the Default Network during global task processing is consistent with the integrative modulatory role served by the mPFC. We stress the importance of understanding the degree to which sensory and movement anomalies in individuals with autism spectrum disorder (ASD) can contribute to social impairment. Further investigation on the neurobiological basis of sensory symptoms and its relationship to other clinical features found in ASD is required Treatment perhaps should not be first behaviorally based but rather based on facilitating sensory motor development.
Collapse
Affiliation(s)
- Gerry Leisman
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel; University of the Medical Sciences of Havana, Department of Clinical Neurophysiology, Institute of Neurology and Neurosurgery, Havana, Cuba.
| | - Robert Melillo
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel
| | - Ty Melillo
- Northeast College of the Health Sciencs, Seneca Falls, NY USA
| |
Collapse
|
12
|
Wang D, Wang J, Zhao H, Liang Y, Zhang W, Li M, Liu H, Hu D, Zhang S, Xing E, Su Y, Yu W, Sun J, Yang A. The relationship between the prefrontal cortex and limb motor function in stroke: A study based on resting-state functional near-infrared spectroscopy. Brain Res 2023; 1805:148269. [PMID: 36736871 DOI: 10.1016/j.brainres.2023.148269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND With the ageing of the world population, the incidence of stroke has been increasing annually, becoming a public health problem affecting adult health. Limb motor dysfunction is one of the common complications of stroke and an important factor in disability. Therefore, restoring limb function is an important task in current rehabilitation. Accurate assessment of motor function in stroke patients is the basis for formulating effective rehabilitation strategies. With the development of neuroimaging technology, scholars have begun to study objective evaluation methods for limb motor dysfunction in stroke to determine reliable neural biomarkers to accurately identify brain functional activity and its relationship with limb motor function. The prefrontal cortex (PFC) plays an important role in motor control and in response to motor state changes. Our previous study found that the PFC network characteristics of stroke patients are related to their motor function status and the topological properties of the PFC network under resting state can predict the motor function of stroke patients to some extent. Therefore, this study used functional near-infrared spectroscopy (fNIRS) to evaluate prefrontal neuroplasticity markers and the relationships between such neural markers and limb motor function in stroke patients with limb motor dysfunction, which could be helpful to further clarify the relationship between brain neuroplasticity and cerebral haemodynamics. At the same time, through accurate and objective means of evaluation, it could be helpful for clinicians to formulate and optimize individualized rehabilitation treatment plans and accurately determine the rehabilitation efficacy and prognosis. METHODS This study recruited 17 S patients with limb motor dysfunction and 9 healthy subjects. fNIRS was used to collect 22 channels of cerebral blood oxygen signals in the PFC in the resting state. The differences in prefrontal oxygenated haemoglobin (HbO) and deoxygenated haemoglobin (HbR) concentrations were analysed between stroke patients and healthy subjects, and the lateralization index (LI) of HbO in stroke patients was also calculated. Pearson's correlation analysis was performed between the LI and the scores of the Fugl-Meyer Assessment Scale (FMA) of motor function in stroke patients. RESULTS The results found that the prefrontal HbO concentration was significantly decreased in stroke patients with limb motor dysfunction compared with healthy subjects, and there was a significant, positive correlation between the LI of the PFC and FMA scores in stroke patients. CONCLUSION These study results showed that stroke can cause cerebral haemodynamic changes in the PFC, and the functional imbalance of the left and right PFC in the resting state is correlated with the severity of limb motor dysfunction. Furthermore, we emphasize that the cerebral haemodynamic activity reflected by fNIRS could be used as a reliable neural biomarker for assessing limb motor dysfunction in stroke.
Collapse
Affiliation(s)
- Dan Wang
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Jie Wang
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Hongbo Zhao
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Yahui Liang
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Wenyue Zhang
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Mingxi Li
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Hua Liu
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Di Hu
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Sibin Zhang
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Enlong Xing
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Ying Su
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Wanchen Yu
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Jinyan Sun
- School of Medicine, Foshan University, Foshan, China.
| | - Aoran Yang
- Department of Traditional Chinese Medicine, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
Grégoire C, Majerus S. Resisting Visual, Phonological, and Semantic Interference - Same or Different Processes? A Focused Mini-Review. Psychol Belg 2023; 62:44-63. [PMID: 37064504 PMCID: PMC10103719 DOI: 10.5334/pb.1184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/29/2023] [Indexed: 04/18/2023] Open
Abstract
The unitary nature of resistance to interference (RI) processes remains a strongly debated question: are they central cognitive processes or are they specific to the stimulus domains on which they operate? This focused mini-review examines behavioral, neuropsychological and neuroimaging evidence for and against domain-general RI processes, by distinguishing visual, verbal phonological and verbal semantic domains. Behavioral studies highlighted overall low associations between RI capacity across domains. Neuropsychological studies mainly report dissociations for RI abilities between the three domains. Neuroimaging studies highlight a left vs. right hemisphere distinction for verbal vs. visual RI, with furthermore distinct neural processes supporting phonological versus semantic RI in the left inferior frontal gyrus. While overall results appear to support the hypothesis of domain-specific RI processes, we discuss a number of methodological caveats that ask for caution in the interpretation of existing studies.
Collapse
Affiliation(s)
- Coline Grégoire
- Psychology & Neuroscience of Cognition Research Unit, University of Liège, Belgium
| | - Steve Majerus
- Psychology & Neuroscience of Cognition Research Unit, University of Liège, Belgium
- Fund for Scientific Research FNRS, Belgium
| |
Collapse
|
14
|
Taking Sides: Asymmetries in the Evolution of Human Brain Development in Better Understanding Autism Spectrum Disorder. Symmetry (Basel) 2022. [DOI: 10.3390/sym14122689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Confirmation from structural, functional, and behavioral studies agree and suggest a configuration of atypical lateralization in individuals with autistic spectrum disorders (ASD). It is suggested that patterns of cortical and behavioral atypicality are evident in individuals with ASDs with atypical lateralization being common in individuals with ASDs. The paper endeavors to better understand the relationship between alterations in typical cortical asymmetries and functional lateralization in ASD in evolutionary terms. We have proposed that both early genetic and/or environmental influences can alter the developmental process of cortical lateralization. There invariably is a “chicken or egg” issue that arises whether atypical cortical anatomy associated with abnormal function, or alternatively whether functional atypicality generates abnormal structure.
Collapse
|
15
|
Guo T, Wang F, Cao N, Liu H. Conflicts influence affects: an FMRI study of emotional effects in a conflict task. Cogn Neurodyn 2022; 16:1261-1271. [PMID: 36408071 PMCID: PMC9666575 DOI: 10.1007/s11571-022-09790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/24/2022] [Accepted: 02/08/2022] [Indexed: 11/03/2022] Open
Abstract
Although prior research has confirmed that conflict itself is likely to be aversive, it is unclear whether and how emotional conflicts influence an individual's affective processing. The current fMRI study adopted a lexical valence conflict task via instructing participants to shift lexical valence or not. We found that the involvement of positive emotions enhanced the activation of the middle right temporal gyrus (R-MTG) in the non-conflict condition, whereas such activation attenuated in the conflict condition. In addition, the R-MTG was activated in the opposite way when negative emotions were involved. The functional connectivity and correlation analyses further revealed that the faster the participants processed positive emotional words, the weaker the connectivity between R-MTG and positive emotion-related areas of left MTG in the non-conflict condition would be. In contrast, the faster the participants processed negative emotional words, the stronger the connectivity between R-MTG and negative emotion-related areas of the right cerebellum in the conflict condition would become. These findings suggest that conflicts have different influences on emotional processing.
Collapse
Affiliation(s)
- Tingting Guo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029 China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, 116029 Liaoning Province China
| | - Fenqi Wang
- Department of Linguistics, University of Florida, Gainesville, FL 32611-5454 USA
| | - Ningning Cao
- School of Foreign Languages, Northeast Normal University, Changchun, China
| | - Huanhuan Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029 China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, 116029 Liaoning Province China
| |
Collapse
|
16
|
Galdo M, Weichart ER, Sloutsky VM, Turner BM. The quest for simplicity in human learning: Identifying the constraints on attention. Cogn Psychol 2022; 138:101508. [PMID: 36152354 DOI: 10.1016/j.cogpsych.2022.101508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/14/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022]
Abstract
For better or worse, humans live a resource-constrained existence; only a fraction of physical sensations ever reach conscious awareness, and we store a shockingly small subset of these experiences in memory for later use. Here, we examined the effects of attention constraints on learning. Among models that frame selective attention as an optimization problem, attention orients toward information that will reduce errors. Using this framing as a basis, we developed a suite of models with a range of constraints on the attention available during each learning event. We fit these models to both choice and eye-fixation data from four benchmark category-learning data sets, and choice data from another dynamic categorization data set. We found consistent evidence for computations we refer to as "simplicity", where attention is deployed to as few dimensions of information as possible during learning, and "competition", where dimensions compete for selective attention via lateral inhibition.
Collapse
Affiliation(s)
- Matthew Galdo
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Emily R Weichart
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | | | - Brandon M Turner
- Department of Psychology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
17
|
Herrmann L, Kasties V, Boden C, Li M, Fan Y, Van der Meer J, Vester JC, Seilheimer B, Schultz M, Alizadeh S, Walter M. Nx4 attenuated stress-induced activity of the anterior cingulate cortex-A post-hoc analysis of a randomized placebo-controlled crossover trial. Hum Psychopharmacol 2022; 37:e2837. [PMID: 35213077 DOI: 10.1002/hup.2837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Stress-related symptoms are associated with significant health and economic burden. Several studies suggest Nx4 for the pharmacological management of the stress response and investigated the underlying neural processes. Here we hypothesized that Nx4 can directly affect the stress response in a predefined stress network, including the anterior cingulate cortex (ACC), which is linked to various stress-related symptoms in patients. METHODS In a randomized, placebo-controlled, double-blind, crossover trial, 39 healthy males took a single dose of placebo or Nx4. Psychosocial stress was induced by the ScanSTRESS paradigm inside an MRI scanner, and stress network activation was analyzed in brain regions defined a priori. RESULTS Using the placebo data only, we could validate the activation of a distinct neural stress pattern by the ScanSTRESS paradigm. For Nx4, we provide evidence of an attenuating effect on this stress response. A statistically significant reduction in differential stress-induced activation in the right supracallosal ACC was observed for the rotation stress task of the ScanSTRESS paradigm. The results add to previously published results of Nx4 effects on emotion regulation. CONCLUSIONS Our results strengthen the hypothesis that Nx4 modulates the stress response by reducing the activation in parts of the neural stress network, particularly in the ACC. TRIAL REGISTRATION NCT02602275; ClinicalTrials.gov.
Collapse
Affiliation(s)
- Luisa Herrmann
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Vanessa Kasties
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Cindy Boden
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Yan Fan
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Johan Van der Meer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | | | | | - Myron Schultz
- Biologische Heilmittel Heel GmbH, Baden-Baden, Germany
| | - Sarah Alizadeh
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| |
Collapse
|
18
|
Topographically organized representation of space and context in the medial prefrontal cortex. Proc Natl Acad Sci U S A 2022; 119:2117300119. [PMID: 35121665 PMCID: PMC8833199 DOI: 10.1073/pnas.2117300119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2021] [Indexed: 11/25/2022] Open
Abstract
The neocortex is composed of areas with specialized functions (e.g., sensory versus associational). Despite this functional diversity, emerging evidence suggests that the encoding of space might be a universal feature of cortical circuits. Here, we identified a gradient of spatial tuning depth along the dorsoventral axis. A complex topography of spatial tuning properties might support a division of labor among medial prefrontal cortical subnetworks to support local circuit computation relevant for the execution of context-dependent behavioral outcomes. Spatial tuning of neocortical pyramidal cells has been observed in diverse cortical regions and is thought to rely primarily on input from the hippocampal formation. Despite the well-studied hippocampal place code, many properties of the neocortical spatial tuning system are still insufficiently understood. In particular, it has remained unclear how the topography of direct anatomical connections from hippocampus to neocortex affects spatial tuning depth, and whether the dynamics of spatial coding in the hippocampal output region CA1, such as remapping in novel environments, is transmitted to the neocortex. Using mice navigating through virtual environments, we addressed these questions in the mouse medial prefrontal cortex, which receives direct input from the hippocampus. We found a rapidly emerging prefrontal representation of space in the absence of task rules, which discriminates familiar from novel environments and is reinstated upon reexposure to the same familiar environment. Topographical analysis revealed a dorsoventral gradient in the representation of the own position, which runs opposite to the innervation density of hippocampal inputs. Jointly, these results reveal a dynamically emerging and topographically organized prefrontal place code during spontaneous locomotion.
Collapse
|
19
|
Hippmann B, Tzvi E, Göttlich M, Weiblen R, Münte TF, Jessen S. Effective connectivity underlying reward-based executive control. Hum Brain Mapp 2021; 42:4555-4567. [PMID: 34173997 PMCID: PMC8410574 DOI: 10.1002/hbm.25564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022] Open
Abstract
Motivational influences on cognitive control play an important role in shaping human behavior. Cognitive facilitation through motivators such as prospective reward or punishment is thought to depend on regions from the dopaminergic mesocortical network, primarily the ventral tegmental area (VTA), inferior frontal junction (IFJ), and anterior cingulate cortex (ACC). However, how interactions between these regions relate to motivated control remains elusive. In the present functional magnetic resonance imaging study, we used dynamic causal modeling (DCM) to investigate effective connectivity between left IFJ, ACC, and VTA in a task-switching paradigm comprising three distinct motivational conditions (prospective monetary reward or punishment and a control condition). We found that while prospective punishment significantly facilitated switching between tasks on a behavioral level, interactions between IFJ, ACC, and VTA were characterized by modulations through prospective reward but not punishment. Our DCM results show that IFJ and VTA modulate ACC activity in parallel rather than by interaction to serve task demands in reward-based cognitive control. Our findings further demonstrate that prospective reward and punishment differentially affect neural control mechanisms to initiate decision-making.
Collapse
Affiliation(s)
| | - Elinor Tzvi
- Department of NeurologyUniversity of LeipzigLeipzigGermany
| | | | - Ronja Weiblen
- Department of NeurologyUniversity of LübeckLübeckGermany
| | | | - Sarah Jessen
- Department of NeurologyUniversity of LübeckLübeckGermany
| |
Collapse
|
20
|
Gonzalez PN, Vallejo-Azar M, Aristide L, Lopes R, Dos Reis SF, Perez SI. Endocranial asymmetry in New World monkeys: a comparative phylogenetic analysis of morphometric data. Brain Struct Funct 2021; 227:469-477. [PMID: 34455496 DOI: 10.1007/s00429-021-02371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022]
Abstract
Brain lateralization is a widespread phenomenon although its expression across primates is still controversial due to the reduced number of species analyzed and the disparity of methods used. To gain insight into the diversification of neuroanatomical asymmetries in non-human primates we analyze the endocasts, as a proxy of external brain morphology, of a large sample of New World monkeys and test the effect of brain size, home range and group sizes in the pattern and magnitude of shape asymmetry. Digital endocasts from 26 species were obtained from MicroCT scans and a set of 3D coordinates was digitized on endocast surfaces. Results indicate that Ateles, Brachyteles, Callicebus and Cacajao tend to have a rightward frontal and a leftward occipital lobe asymmetry, whereas Aotus, Callitrichinae and Cebinae have either the opposite pattern or no directional asymmetry. Such differences in the pattern of asymmetry were associated with group and home range sizes. Conversely, its magnitude was significantly associated with brain size, with larger-brained species showing higher inter-hemispheric differences. These findings support the hypothesis that reduction in inter-hemispheric connectivity in larger brains favors the lateralization and increases the structural asymmetries, whereas the patterns of shape asymmetry might be driven by socio-ecological differences among species.
Collapse
Affiliation(s)
- Paula N Gonzalez
- Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos (CONICET-UNAJ-HEC), Florencio Varela, Buenos Aires, Argentina.
| | - Mariana Vallejo-Azar
- Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos (CONICET-UNAJ-HEC), Florencio Varela, Buenos Aires, Argentina
| | | | - Ricardo Lopes
- Centro de Tecnologia (UFRJ), Laboratório de Instrumentação Nuclear, Rio de Janeiro, Brazil
| | | | - S Ivan Perez
- División Antropología (FCNyM-UNLP), CONICET, La Plata, Argentina
| |
Collapse
|
21
|
Neurophysiological basis of the N400 deflection, from Mismatch Negativity to Semantic Prediction Potentials and late positive components. Int J Psychophysiol 2021; 166:134-150. [PMID: 34097935 DOI: 10.1016/j.ijpsycho.2021.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/20/2021] [Accepted: 06/02/2021] [Indexed: 11/21/2022]
Abstract
The first theoretical model on the neurophysiological basis of the N400: the deflection reflects layer I dendritic plateaus on a preparatory state of synaptic integration that precedes layer V somatic burst firing for conscious identification of the higher-order features of the stimulus (a late positive shift). Plateaus ensue from apical disinhibition by vasoactive intestinal polypeptide-positive interneurons (VIPs) through suppression of Martinotti cells, opening the gates for glutamatergic feedback to trigger dendritic regenerative potentials. Cholinergic transients contribute to these dynamics directly, holding a central role in the N400 deflection. The stereotypical timing of the (frontal) glutamatergic feedback and the accompanying cholinergic transients account for the enigmatic "invariability" of the peak latency in the face of a gamut of different stimuli and paradigms. The theoretical postulations presented here may bring about unprecedented level of detail for the N400 deflection to be used in the study of schizophrenia, Alzheimer's disease and other higher-order pathologies. The substrates of a late positive component, the Mismatch Negativity and the Semantic Prediction Potentials are also surveyed.
Collapse
|
22
|
Neural substrates of the interplay between cognitive load and emotional involvement in bilingual decision making. Neuropsychologia 2020; 151:107721. [PMID: 33333137 DOI: 10.1016/j.neuropsychologia.2020.107721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Prior work has reported that foreign language influences decision making by either reducing access to emotion or imposing additional cognitive demands. In this fMRI study, we employed a cross-task design to assess at the neural level whether and how the interaction between cognitive load and emotional involvement is affected by language (native L1 vs. foreign L2). Participants completed a Lexico-semantic task where in each trial they were presented with a neutrally or a negatively valenced word either in L1 or L2, either under cognitive load or not. We manipulated cognitive load by varying the difficulty of the task: to increase cognitive demands, we used traditional characters instead of simplified ones in L1 (Chinese), and words with capital letters instead of lowercase letters in L2 (English). After each trial, participants decided whether to take a risky decision in a gambling game. During the Gamling task, left amygdala and right insula were more activated after having processed a negative word under cognitive load in the Lexico-semantic task. However, this was true for L1 but not for L2. In particular, in L1, cognitive load facilitated rather than hindered access to emotion. Further suggesting that cognitive load can enhance emotional sensitivity in L1 but not in L2, we found that functional connectivity between reward-related striatum and right insula increased under cognitive load only in L1. Overall, results suggest that cognitive load in L1 can favor access to emotion and lead to impulsive decision making, whereas cognitive load in L2 can attenuate access to emotion and lead to more rational decisions.
Collapse
|
23
|
Enhancing cognitive control training with transcranial direct current stimulation: a systematic parameter study. Brain Stimul 2020; 13:1358-1369. [DOI: 10.1016/j.brs.2020.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 12/31/2022] Open
|
24
|
Wang TY, Meng JL, Rao MY, He ZY, Chen L, Zhu H, Sun QQ, Ding SJ, Bao WZ, Zhou P, Zhang DW. Three-Dimensional Nanoscale Flexible Memristor Networks with Ultralow Power for Information Transmission and Processing Application. NANO LETTERS 2020; 20:4111-4120. [PMID: 32186388 DOI: 10.1021/acs.nanolett.9b05271] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
To construct an artificial intelligence system with high efficient information integration and computing capability like the human brain, it is necessary to realize the biological neurotransmission and information processing in artificial neural network (ANN), rather than a single electronic synapse as most reports. Because the power consumption of single synaptic event is ∼10 fJ in biology, designing an intelligent memristors-based 3D ANN with energy consumption lower than femtojoule-level (e.g., attojoule-level) and faster operating speed than millisecond-level makes it possible for constructing a higher energy efficient and higher speed computing system than the human brain. In this paper, a flexible 3D crossbar memristor array is presented, exhibiting the multilevel information transmission functionality with the power consumption of 4.28 aJ and the response speed of 50 ns per synaptic event. This work is a significant step toward the development of an ultrahigh efficient and ultrahigh-speed wearable 3D neuromorphic computing system.
Collapse
Affiliation(s)
- Tian-Yu Wang
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Jia-Lin Meng
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Ming-Yi Rao
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Zhen-Yu He
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Lin Chen
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Hao Zhu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Qing-Qing Sun
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Shi-Jin Ding
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Wen-Zhong Bao
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Peng Zhou
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - David Wei Zhang
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
| |
Collapse
|
25
|
Pflug A, Gompf F, Muthuraman M, Groppa S, Kell CA. Differential contributions of the two human cerebral hemispheres to action timing. eLife 2019; 8:e48404. [PMID: 31697640 PMCID: PMC6837842 DOI: 10.7554/elife.48404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/08/2019] [Indexed: 01/22/2023] Open
Abstract
Rhythmic actions benefit from synchronization with external events. Auditory-paced finger tapping studies indicate the two cerebral hemispheres preferentially control different rhythms. It is unclear whether left-lateralized processing of faster rhythms and right-lateralized processing of slower rhythms bases upon hemispheric timing differences that arise in the motor or sensory system or whether asymmetry results from lateralized sensorimotor interactions. We measured fMRI and MEG during symmetric finger tapping, in which fast tapping was defined as auditory-motor synchronization at 2.5 Hz. Slow tapping corresponded to tapping to every fourth auditory beat (0.625 Hz). We demonstrate that the left auditory cortex preferentially represents the relative fast rhythm in an amplitude modulation of low beta oscillations while the right auditory cortex additionally represents the internally generated slower rhythm. We show coupling of auditory-motor beta oscillations supports building a metric structure. Our findings reveal a strong contribution of sensory cortices to hemispheric specialization in action control.
Collapse
Affiliation(s)
- Anja Pflug
- Cognitive Neuroscience Group, Brain Imaging Center and Department of NeurologyGoethe UniversityFrankfurtGermany
| | - Florian Gompf
- Cognitive Neuroscience Group, Brain Imaging Center and Department of NeurologyGoethe UniversityFrankfurtGermany
| | - Muthuraman Muthuraman
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of NeurologyJohannes Gutenberg UniversityMainzGermany
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of NeurologyJohannes Gutenberg UniversityMainzGermany
| | - Christian Alexander Kell
- Cognitive Neuroscience Group, Brain Imaging Center and Department of NeurologyGoethe UniversityFrankfurtGermany
| |
Collapse
|
26
|
Xie H, Zhang M, Huo C, Xu G, Li Z, Fan Y. Tai Chi Chuan exercise related change in brain function as assessed by functional near-infrared spectroscopy. Sci Rep 2019; 9:13198. [PMID: 31519933 PMCID: PMC6744459 DOI: 10.1038/s41598-019-49401-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 08/23/2019] [Indexed: 01/27/2023] Open
Abstract
Early studies have shown that Tai Chi Chuan (TCC) contributes to the rehabilitation of cognitive disorders and increases blood oxygen concentration levels in the parietal and occipital brain areas; however, the mechanism of TCC training on brain function remains poorly understood. This study hypothesize that TCC has altered brain function and aims to explore the effects of TCC on functional connection and effective connection of the prefrontal cortex (PFC), motor cortex (MC), and occipital cortex (OC). The participants were 23 experienced Chen-style TCC practitioners (TCC group), and 32 demographically matched TCC-naive healthy controls (control group). Functional and effective connections were calculated using wavelet-based coherence analysis and dynamic Bayesian inference method, respectively. Results showed that beyond the intensity of activity in a particular cortical region induced by TCC, significant differences in brain activity and dynamic configuration of connectivity were observed between the TCC and control groups during resting and movement states. These findings suggested that TCC training improved the connection of PFC, MC and OC in myogenic activity, sympathetic nervous system, and endothelial cell metabolic activities; enhanced brain functional connections and relayed the ability of TCC to improve cognition and the anti-memory decline potential.
Collapse
Affiliation(s)
- Hui Xie
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids Beijing, Beijing, 100176, China
| | - Ming Zhang
- Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR, P.R. China
| | - Congcong Huo
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids Beijing, Beijing, 100176, China
| | - Gongcheng Xu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids Beijing, Beijing, 100176, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids Beijing, Beijing, 100176, China.
- Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, Beijing, 100176, China.
| | - Yubo Fan
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China.
- Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, Beijing, 100176, China.
| |
Collapse
|
27
|
Lee Y, Kim C. The role of frontopolar cortex in the individual differences in conflict adaptation. Neurosci Lett 2019; 705:212-218. [PMID: 31054332 DOI: 10.1016/j.neulet.2019.04.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/09/2019] [Accepted: 04/30/2019] [Indexed: 11/27/2022]
Abstract
It is well known that performance on a trial is flexibly modulated by preceding trial congruency in tasks that require cognitive control, such as the Stroop task, referred to as the conflict adaptation effect (CAE). The CAE indicates that conflict on the preceding trial leads to enhanced cognitive control, leading to more efficient regulation of current conflict. The present study aimed to identify neural mechanisms implicated in individual differences in CAEs. The participants performed a version of the color-word Stroop task during a functional magnetic resonance imaging (fMRI) experiment and were divided into two groups according to the magnitude of behavioral CAE: one exhibiting the CAE only in congruent trials and the other in both congruent and incongruent trials. The imaging results showed different activations in the pre-supplementary motor area for the Stroop effect between groups. Importantly, group differences in activation for the preceding trials were observed in several prefrontal regions including the bilateral frontopolar, dorsolateral prefrontal, and rostro-dorsal cingulate cortices. More interestingly, analyses of the preceding trials suggest that the frontopolar cortex is involved in conflict resolution through higher-order cognitive control strategies that are closely associated with subsequent conflict. The current study provides new evidence of the role of the frontopolar cortex in conflict adaptation.
Collapse
Affiliation(s)
- Yunji Lee
- Department of Psychology, Kyungpook National University, Daegu, South Korea
| | - Chobok Kim
- Department of Psychology, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
28
|
Brain Hemodynamic Intermediate Phenotype Links Vitamin B 12 to Cognitive Profile of Healthy and Mild Cognitive Impaired Subjects. Neural Plast 2019; 2019:6874805. [PMID: 31281345 PMCID: PMC6589271 DOI: 10.1155/2019/6874805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 01/05/2023] Open
Abstract
Vitamin B12, folate, and homocysteine are implicated in pivotal neurodegenerative mechanisms and partake in elders' mental decline. Findings on the association between vitamin-related biochemistry and cognitive abilities suggest that the structural and functional properties of the brain may represent an intermediate biomarker linking vitamin concentrations to cognition. Despite this, no previous study directly investigated whether vitamin B12, folate, and homocysteine levels are sufficient to explain individual neuropsychological profiles or, alternatively, whether the activity of brain regions modulated by these compounds better predicts cognition in elders. Here, we measured the relationship between vitamin blood concentrations, scores at seventeen neuropsychological tests, and brain activity of sixty-five elders spanning from normal to Mild Cognitive Impairment. We then evaluated whether task-related brain responses represent an intermediate phenotype, providing a better prediction of subjects' neuropsychological scores, as compared to the one obtained considering blood biochemistry only. We found that the hemodynamic activity of the right dorsal anterior cingulate cortex was positively associated (p value < 0.05 cluster corrected) with vitamin B12 concentrations, suggesting that elders with higher B12 levels had a more pronounced recruitment of this salience network region. Crucially, the activity of this area significantly predicted subjects' visual search and attention abilities (p value = 0.0023), whereas B12 levels per se failed to do so. Our results demonstrate that the relationship between blood biochemistry and elders' cognitive abilities is revealed when brain activity is included into the equation, thus highlighting the role of brain imaging as intermediate phenotype.
Collapse
|
29
|
Zhao T, Zhu Y, Tang H, Xie R, Zhu J, Zhang JH. Consciousness: New Concepts and Neural Networks. Front Cell Neurosci 2019; 13:302. [PMID: 31338025 PMCID: PMC6629860 DOI: 10.3389/fncel.2019.00302] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022] Open
Abstract
The definition of consciousness remains a difficult issue that requires urgent understanding and resolution. Currently, consciousness research is an intensely focused area of neuroscience. However, to establish a greater understanding of the concept of consciousness, more detailed, intrinsic neurobiological research is needed. Additionally, an accurate assessment of the level of consciousness may strengthen our awareness of this concept and provide new ideas for patients undergoing clinical treatment of consciousness disorders. In addition, research efforts that help elucidate the concept of consciousness have important scientific and clinical significance. This review presents the latest progress in consciousness research and proposes our assumptions with regard to the network of consciousness.
Collapse
Affiliation(s)
- Tong Zhao
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiqian Zhu
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hailiang Tang
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rong Xie
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - John H. Zhang
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
30
|
Neural correlates of reward-related response tendencies in an equiprobable Go/NoGo task. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 19:555-567. [DOI: 10.3758/s13415-019-00692-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Li LMW, Luo S, Ma J, Lin Y, Fan L, Zhong S, Yang J, Huang Y, Gu L, Fan L, Dai Z, Wu X. Functional connectivity pattern underlies individual differences in independent self-construal. Soc Cogn Affect Neurosci 2018; 13:269-280. [PMID: 29385622 PMCID: PMC5836281 DOI: 10.1093/scan/nsy008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/23/2018] [Indexed: 11/12/2022] Open
Abstract
Independent vs interdependent self-construal is a concept that reflects how people perceive the relationship between self and other people, which has been extensively examined across disciplines. However, little evidence on the whole-brain functional connectivity (FC) pattern of independent vs interdependent self-construal has been reported. Here, in a sample of 51 healthy participants, we used resting-state functional magnetic resonance imaging and voxel-based FC analysis (i.e. FC strength and seed-based FC) by measuring the temporal correlation of blood oxygen level-dependent signals between spatially separate brain regions to investigate the neural mechanism of independent vs interdependent self-construal. First, we found that FC strength of bilateral posterior cingulate cortex and precuneus, and left inferior frontal gyrus were positively correlated with the independent vs interdependent score. Seed-based FC analysis with these three regions as seeds revealed that, FC within default mode network and executive control network was positively correlated with the independent vs interdependent score. Negative correlation with independent vs interdependent score was shown in the connections between default mode network and executive control regions. Taking together, our results provide a comprehensive FC architecture of the independent vs interdependent self-construal and advance the understanding of the interplay between culture, mind and brain.
Collapse
Affiliation(s)
- Liman Man Wai Li
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China.,Department of Psychology, The Education University of Hong Kong, Hong Kong SAR, China
| | - Siyang Luo
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China.,Guangdong Key Laboratory of Social Cognitive Neuroscience and Mental Health, Sun Yat-sen University, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou 510006, China
| | - Junji Ma
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China.,Guangdong Key Laboratory of Social Cognitive Neuroscience and Mental Health, Sun Yat-sen University, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou 510006, China
| | - Ying Lin
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China.,Guangdong Key Laboratory of Social Cognitive Neuroscience and Mental Health, Sun Yat-sen University, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou 510006, China
| | - Linlin Fan
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China.,Guangdong Key Laboratory of Social Cognitive Neuroscience and Mental Health, Sun Yat-sen University, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou 510006, China
| | - Shengqi Zhong
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China.,Guangdong Key Laboratory of Social Cognitive Neuroscience and Mental Health, Sun Yat-sen University, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou 510006, China
| | - Junkai Yang
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China.,Guangdong Key Laboratory of Social Cognitive Neuroscience and Mental Health, Sun Yat-sen University, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingyu Huang
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China.,Guangdong Key Laboratory of Social Cognitive Neuroscience and Mental Health, Sun Yat-sen University, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou 510006, China
| | - Li Gu
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China.,Guangdong Key Laboratory of Social Cognitive Neuroscience and Mental Health, Sun Yat-sen University, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou 510006, China
| | - Leyi Fan
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China.,Guangdong Key Laboratory of Social Cognitive Neuroscience and Mental Health, Sun Yat-sen University, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhengjia Dai
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China.,Guangdong Key Laboratory of Social Cognitive Neuroscience and Mental Health, Sun Yat-sen University, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiang Wu
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China.,Guangdong Key Laboratory of Social Cognitive Neuroscience and Mental Health, Sun Yat-sen University, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
32
|
Collaboration of Cerebello-Rubral and Cerebello-Striatal Loops in a Motor Preparation Task. THE CEREBELLUM 2018; 18:203-211. [DOI: 10.1007/s12311-018-0980-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Zheng G, Qi X, Li Y, Zhang W, Yu Y. A Comparative Study of Standardized Infinity Reference and Average Reference for EEG of Three Typical Brain States. Front Neurosci 2018; 12:158. [PMID: 29593490 PMCID: PMC5859052 DOI: 10.3389/fnins.2018.00158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/27/2018] [Indexed: 11/24/2022] Open
Abstract
The choice of different reference electrodes plays an important role in deciphering the functional meaning of electroencephalography (EEG) signals. In recent years, the infinity zero reference using the reference electrode standard technique (REST) has been increasingly applied, while the average reference (AR) was generally advocated as the best available reference option in previous classical EEG studies. Here, we designed EEG experiments and performed a direct comparison between the influences of REST and AR on EEG-revealed brain activity features for three typical brain behavior states (eyes-closed, eyes-open and music-listening). The analysis results revealed the following observations: (1) there is no significant difference in the alpha-wave-blocking effect during the eyes-open state compared with the eyes-closed state for both REST and AR references; (2) there was clear frontal EEG asymmetry during the resting state, and the degree of lateralization under REST was higher than that under AR; (3) the global brain functional connectivity density (FCD) and local FCD have higher values for REST than for AR under different behavior states; and (4) the value of the small-world network characteristic in the eyes-closed state is significantly (in full, alpha, beta and gamma frequency bands) higher than that in the eyes-open state, and the small-world effect under the REST reference is higher than that under AR. In addition, the music-listening state has a higher small-world network effect than the eyes-closed state. The above results suggest that typical EEG features might be more clearly presented by applying the REST reference than by applying AR when using a 64-channel recording.
Collapse
Affiliation(s)
- Gaoxing Zheng
- State Key Laboratory of Medical Neurobiology, School of Life Science and Institutes of Brain Science, Center for Computational Systems Biology, Fudan University, Shanghai, China
| | - Xiaoying Qi
- State Key Laboratory of Medical Neurobiology, School of Life Science and Institutes of Brain Science, Center for Computational Systems Biology, Fudan University, Shanghai, China
| | - Yuzhu Li
- State Key Laboratory of Medical Neurobiology, School of Life Science and Institutes of Brain Science, Center for Computational Systems Biology, Fudan University, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Medical Neurobiology, School of Life Science and Institutes of Brain Science, Center for Computational Systems Biology, Fudan University, Shanghai, China
| | - Yuguo Yu
- State Key Laboratory of Medical Neurobiology, School of Life Science and Institutes of Brain Science, Center for Computational Systems Biology, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Tomasino B, Nobile M, Re M, Bellina M, Garzitto M, Arrigoni F, Molteni M, Fabbro F, Brambilla P. The mental simulation of state/psychological verbs in the adolescent brain: An fMRI study. Brain Cogn 2018; 123:34-46. [PMID: 29505944 DOI: 10.1016/j.bandc.2018.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 12/25/2022]
Abstract
This fMRI study investigated mental simulation of state/psychological and action verbs during adolescence. Sixteen healthy subjects silently read verbs describing a motor scene or not (STIMULUS: motor, state/psychological verbs) and they were explicitly asked to imagine the situation or they performed letter detection preventing them from using simulation (TASK: imagery vs. letter detection). A significant task by stimuli interaction showed that imagery of state/psychological verbs, as compared to action stimuli (controlled by the letter detection) selectively increased activation in the right supramarginal gyrus/rolandic operculum and in the right insula, and decreased activation in the right intraparietal sulcus. We compared these data to those from a group of older participants (Tomasino et al. 2014a). Activation in the left supramarginal gyrus decreased for the latter group (as compared to the present group) for imagery of state/psychological verbs. By contrast, activation in the right superior frontal gyrus decreased for the former group (as compared to the older group) for imagery of state/psychological verbs.
Collapse
Affiliation(s)
- Barbara Tomasino
- Scientific Institute IRCCS "E. Medea", Italy; Polo FVG, San Vito al Tagliamento, PN, Italy.
| | - Maria Nobile
- Scientific Institute IRCCS "E. Medea", Italy; Polo Bosisio Parini (Lc), Italy
| | - Marta Re
- Scientific Institute IRCCS "E. Medea", Italy; Polo Bosisio Parini (Lc), Italy
| | - Monica Bellina
- Scientific Institute IRCCS "E. Medea", Italy; Polo Bosisio Parini (Lc), Italy
| | | | - Filippo Arrigoni
- Scientific Institute IRCCS "E. Medea", Italy; Polo Bosisio Parini (Lc), Italy
| | - Massimo Molteni
- Scientific Institute IRCCS "E. Medea", Italy; Polo Bosisio Parini (Lc), Italy
| | | | - Paolo Brambilla
- Department of Neurosciences and Mental health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy; Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, TX, USA.
| |
Collapse
|
35
|
Hodgson JC, Hudson JM. Speech lateralization and motor control. PROGRESS IN BRAIN RESEARCH 2018; 238:145-178. [DOI: 10.1016/bs.pbr.2018.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
36
|
Richlan F, Schubert J, Mayer R, Hutzler F, Kronbichler M. Action video gaming and the brain: fMRI effects without behavioral effects in visual and verbal cognitive tasks. Brain Behav 2018; 8:e00877. [PMID: 29568680 PMCID: PMC5853626 DOI: 10.1002/brb3.877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION In this functional magnetic resonance imaging (fMRI) study, we compared task performance together with brain activation in a visuospatial task (VST) and a letter detection task (LDT) between longtime action video gamers (N = 14) and nongamers (N = 14) in order to investigate possible effects of gaming on cognitive and brain abilities. METHODS Based on previous research, we expected advantages in performance for experienced action video gamers accompanied by less activation (due to higher efficiency) as measured by fMRI in the frontoparietal attention network. RESULTS Contrary to these expectations, we did not find differences in overall task performance, nor in brain activation during the VST. We identified, however, a significantly different increase in the BOLD signal from a baseline task to the LDT in action video gamers compared with nongamers. This increased activation was evident in a number of frontoparietal regions including the left middle paracingulate cortex, the left superior frontal sulcus, the opercular part of the left inferior frontal gyrus, and the left and right posterior parietal cortex. Furthermore, we found increased activation in the triangular part of the left inferior frontal gyrus in gamers relative to nongamers when activation during the LDT was compared with activation during the VST. CONCLUSIONS In sum, the expected positive relation between action video game experience and cognitive performance could not be confirmed. Despite their comparable task performance, however, gamers and nongamers exhibited clear-cut differences in brain activation patterns presumably reflecting differences in neural engagement, especially during verbal cognitive tasks.
Collapse
Affiliation(s)
- Fabio Richlan
- Centre for Cognitive Neuroscience University of Salzburg Salzburg Austria.,Department of Psychology University of Salzburg Salzburg Austria
| | - Juliane Schubert
- Centre for Cognitive Neuroscience University of Salzburg Salzburg Austria.,Department of Psychology University of Salzburg Salzburg Austria
| | - Rebecca Mayer
- Centre for Cognitive Neuroscience University of Salzburg Salzburg Austria.,Department of Psychology University of Salzburg Salzburg Austria
| | - Florian Hutzler
- Centre for Cognitive Neuroscience University of Salzburg Salzburg Austria.,Department of Psychology University of Salzburg Salzburg Austria
| | - Martin Kronbichler
- Centre for Cognitive Neuroscience University of Salzburg Salzburg Austria.,Department of Psychology University of Salzburg Salzburg Austria.,Neuroscience Institute Christian-Doppler-Klinik Paracelsus Medical University Salzburg Austria
| |
Collapse
|
37
|
Manilla GT, de Braga J. A New Dyslexia Reading Method and Visual Correction Position Method. Glob Pediatr Health 2017; 4:2333794X17734096. [PMID: 29051916 PMCID: PMC5637968 DOI: 10.1177/2333794x17734096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/06/2017] [Indexed: 11/16/2022] Open
Abstract
Pediatricians and educators may interact daily with several dyslexic patients or students. One dyslexic author accidently developed a personal, effective, corrective reading method. Its effectiveness was evaluated in 3 schools. One school utilized 8 demonstration special education students. Over 3 months, one student grew one third year, 3 grew 1 year, and 4 grew 2 years. In another school, 6 sixth-, seventh-, and eighth-grade classroom teachers followed 45 treated dyslexic students. They all excelled and progressed beyond their classroom peers in 4 months. Using cyclovergence upper gaze, dyslexic reading problems disappeared at one of the Positional Reading Arc positions of 30°, 60°, 90°, 120°, or 150° for 10 dyslexics. Positional Reading Arc on 112 students of the second through eighth grades showed words read per minute, reading errors, and comprehension improved. Dyslexia was visually corrected by use of a new reading method and Positional Reading Arc positions.
Collapse
Affiliation(s)
| | - Joe de Braga
- Elko County School District, Elko, Nevada, USA.,Great Basin College, Elko, Nevada, USA
| |
Collapse
|
38
|
Increased spatial granularity of left brain activation and unique age/gender signatures: a 4D frequency domain approach to cerebral lateralization at rest. Brain Imaging Behav 2017; 10:1004-1014. [PMID: 26489978 DOI: 10.1007/s11682-015-9463-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cerebral lateralization is a well-studied topic. However, most of the research to date in functional magnetic resonance imaging (fMRI) has been carried out on hemodynamic fluctuations of voxels, networks, or regions of interest (ROIs). For example, cerebral differences can be revealed by comparing the temporal activation of an ROI in one hemisphere with the corresponding homotopic region in the other hemisphere. While this approach can reveal significant information about cerebral organization, it does not provide information about the full spatiotemporal organization of the hemispheres. The cerebral differences revealed in literature suggest that hemispheres have different spatiotemporal organization in the resting state. In this study, we evaluate cerebral lateralization in the 4D spatiotemporal frequency domain to compare the hemispheres in the context of general activation patterns at different spatial and temporal scales. We use a gender-balanced resting fMRI dataset comprising over 600 healthy subjects ranging in age from 12 to 71, that have previously been studied with a network specific voxel-wise and global analysis of lateralization (Agcaoglu, et al. NeuroImage, 2014). Our analysis elucidates significant differences in the spatiotemporal organization of brain activity between hemispheres, and generally more spatiotemporal fluctuation in the left hemisphere especially in the high spatial frequency bands, and more power in the right hemisphere in the low and middle spatial frequencies. Importantly, the identified effects are not visible in the context of a typical assessment of voxelwise, regional, or even global laterality, thus our study highlights the value of 4D spatiotemporal frequency domain analyses as a complementary and powerful tool for studying brain function.
Collapse
|
39
|
Bolt T, Prince EB, Nomi JS, Messinger D, Llabre MM, Uddin LQ. Combining region- and network-level brain-behavior relationships in a structural equation model. Neuroimage 2017; 165:158-169. [PMID: 29030103 DOI: 10.1016/j.neuroimage.2017.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 12/12/2022] Open
Abstract
Brain-behavior associations in fMRI studies are typically restricted to a single level of analysis: either a circumscribed brain region-of-interest (ROI) or a larger network of brain regions. However, this common practice may not always account for the interdependencies among ROIs of the same network or potentially unique information at the ROI-level, respectively. To account for both sources of information, we combined measurement and structural components of structural equation modeling (SEM) approaches to empirically derive networks from ROI activity, and to assess the association of both individual ROIs and their respective whole-brain activation networks with task performance using three large task-fMRI datasets and two separate brain parcellation schemes. The results for working memory and relational tasks revealed that well-known ROI-performance associations are either non-significant or reversed when accounting for the ROI's common association with its corresponding network, and that the network as a whole is instead robustly associated with task performance. The results for the arithmetic task revealed that in certain cases, an ROI can be robustly associated with task performance, even when accounting for its associated network. The SEM framework described in this study provides researchers additional flexibility in testing brain-behavior relationships, as well as a principled way to combine ROI- and network-levels of analysis.
Collapse
Affiliation(s)
- Taylor Bolt
- Department of Psychology, University of Miami, Coral Gables, FL, USA.
| | - Emily B Prince
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Jason S Nomi
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Daniel Messinger
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Maria M Llabre
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
40
|
Brederoo SG, Nieuwenstein MR, Lorist MM, Cornelissen FW. Hemispheric specialization for global and local processing: A direct comparison of linguistic and non-linguistic stimuli. Brain Cogn 2017; 119:10-16. [PMID: 28923763 DOI: 10.1016/j.bandc.2017.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 11/26/2022]
Abstract
It is often assumed that the human brain processes the global and local properties of visual stimuli in a lateralized fashion, with a left hemisphere (LH) specialization for local detail, and a right hemisphere (RH) specialization for global form. However, the evidence for such global-local lateralization stems predominantly from studies using linguistic stimuli, the processing of which has shown to be LH lateralized in itself. In addition, some studies have reported a reversal of global-local lateralization when using non-linguistic stimuli. Accordingly, it remains unclear whether global-local lateralization may in fact be stimulus-specific. To address this issue, we asked participants to respond to linguistic and non-linguistic stimuli that were presented in the right and left visual fields, allowing for first access by the LH and RH, respectively. The results showed global-RH and local-LH advantages for both stimulus types, but the global lateralization effect was larger for linguistic stimuli. Furthermore, this pattern of results was found to be robust, as it was observed regardless of two other task manipulations. We conclude that the instantiation and direction of global and local lateralization is not stimulus-specific. However, the magnitude of global,-but not local-, lateralization is dependent on stimulus type.
Collapse
Affiliation(s)
- Sanne G Brederoo
- Experimental Psychology, Faculty of Behavioural and Social Sciences, University of Groningen, The Netherlands; Neuroimaging Center Groningen, University Medical Center Groningen, University of Groningen, The Netherlands; Research School Behavioural and Cognitive Neurosciences, University of Groningen, The Netherlands.
| | - Mark R Nieuwenstein
- Experimental Psychology, Faculty of Behavioural and Social Sciences, University of Groningen, The Netherlands; Research School Behavioural and Cognitive Neurosciences, University of Groningen, The Netherlands
| | - Monicque M Lorist
- Experimental Psychology, Faculty of Behavioural and Social Sciences, University of Groningen, The Netherlands; Neuroimaging Center Groningen, University Medical Center Groningen, University of Groningen, The Netherlands; Research School Behavioural and Cognitive Neurosciences, University of Groningen, The Netherlands
| | - Frans W Cornelissen
- Neuroimaging Center Groningen, University Medical Center Groningen, University of Groningen, The Netherlands; Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, The Netherlands; Research School Behavioural and Cognitive Neurosciences, University of Groningen, The Netherlands
| |
Collapse
|
41
|
Alcalá-López D, Smallwood J, Jefferies E, Van Overwalle F, Vogeley K, Mars RB, Turetsky BI, Laird AR, Fox PT, Eickhoff SB, Bzdok D. Computing the Social Brain Connectome Across Systems and States. Cereb Cortex 2017; 28:2207-2232. [DOI: 10.1093/cercor/bhx121] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/27/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- Daniel Alcalá-López
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Jonathan Smallwood
- Department of Psychology, York Neuroimaging Centre, University of York, Hesslington, York, UK
| | - Elizabeth Jefferies
- Department of Psychology, York Neuroimaging Centre, University of York, Hesslington, York, UK
| | | | - Kai Vogeley
- Department of Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany
| | - Rogier B Mars
- Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands
| | - Bruce I Turetsky
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Simon B Eickhoff
- Medical Faculty, Institute for Systems Neuroscience, Heinrich-Heine University, Düsseldorf, Germany
- Institute for Neuroscience and Medicine (INM-7, Brain & Behavior), Research Center Jülich, Jülich, Germany
| | - Danilo Bzdok
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Parietal Team, INRIA, Neurospin, bat 145, CEA Saclay, Gif-sur-Yvette, France
- JARA, Translational Brain Medicine, Aachen, Germany
| |
Collapse
|
42
|
Wende KC, Thiel C, Sommer J, Paulus FM, Krach S, Jansen A. Mechanisms of hemispheric lateralization: A replication study. Cortex 2017; 94:182-192. [PMID: 28511792 DOI: 10.1016/j.cortex.2017.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/04/2017] [Accepted: 04/13/2017] [Indexed: 01/18/2023]
Abstract
It has been shown, using functional magnetic resonance imaging (fMRI), that hemispheric lateralization of brain activity depends on the requirements of the cognitive task performed during the processing of a sensory stimulus rather than on the intrinsic characteristics of that stimulus [Stephan et al., 2003, Science 301 (5631): 384-6]. Task-dependent increase in the coupling of the anterior cingulate cortex (ACC), a region involved in cognitive control, and brain areas in the left prefrontal and right parietal cortex, respectively, regions involved in task execution, was proposed as the mechanism underlying this task-dependency of hemispheric lateralization. The aim of the present study was two-fold: First, we aimed for a conceptual replication of these findings in an independent sample of subjects. Second, we investigated the test-retest reliability of the imaging paradigm to assess whether the task can be used to capture reliable measures of inter-individual differences in hemispheric lateralization. We were able to confirm previous findings showing that hemispheric lateralization depends on the nature of the cognitive task rather than on the nature of the processed stimuli. The task-related brain activation patterns were highly reliable across sessions (as indicated by intra-class correlation coefficients - ICCs, ≥.51). We could, however, not replicate previous results proposing task-dependent changes in the coupling between ACC and brain regions for task execution as the mechanism underlying hemispheric lateralization. This re-opens the question which mechanisms could determine the task-dependent functional asymmetries that were observed previously and replicated in this study.
Collapse
Affiliation(s)
- Kim C Wende
- Laboratory for Multimodal Neuroimaging (LMN), Department of Psychiatry and Psychotherapy, University of Marburg, Germany.
| | - Catherine Thiel
- Laboratory for Multimodal Neuroimaging (LMN), Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| | - Jens Sommer
- Core-Unit Brainimaging, Faculty of Medicine, University of Marburg, Germany
| | - Frieder M Paulus
- Social Neuroscience Lab, Department of Psychiatry and Psychotherapy, University of Lübeck, Germany
| | - Sören Krach
- Social Neuroscience Lab, Department of Psychiatry and Psychotherapy, University of Lübeck, Germany
| | - Andreas Jansen
- Laboratory for Multimodal Neuroimaging (LMN), Department of Psychiatry and Psychotherapy, University of Marburg, Germany; Core-Unit Brainimaging, Faculty of Medicine, University of Marburg, Germany.
| |
Collapse
|
43
|
Le TM, Borghi JA, Kujawa AJ, Klein DN, Leung HC. Alterations in visual cortical activation and connectivity with prefrontal cortex during working memory updating in major depressive disorder. NEUROIMAGE-CLINICAL 2017; 14:43-53. [PMID: 28138426 PMCID: PMC5257188 DOI: 10.1016/j.nicl.2017.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/13/2016] [Accepted: 01/04/2017] [Indexed: 12/01/2022]
Abstract
The present study examined the impacts of major depressive disorder (MDD) on visual and prefrontal cortical activity as well as their connectivity during visual working memory updating and related them to the core clinical features of the disorder. Impairment in working memory updating is typically associated with the retention of irrelevant negative information which can lead to persistent depressive mood and abnormal affect. However, performance deficits have been observed in MDD on tasks involving little or no demand on emotion processing, suggesting dysfunctions may also occur at the more basic level of information processing. Yet, it is unclear how various regions in the visual working memory circuit contribute to behavioral changes in MDD. We acquired functional magnetic resonance imaging data from 18 unmedicated participants with MDD and 21 age-matched healthy controls (CTL) while they performed a visual delayed recognition task with neutral faces and scenes as task stimuli. Selective working memory updating was manipulated by inserting a cue in the delay period to indicate which one or both of the two memorized stimuli (a face and a scene) would remain relevant for the recognition test. Our results revealed several key findings. Relative to the CTL group, the MDD group showed weaker postcue activations in visual association areas during selective maintenance of face and scene working memory. Across the MDD subjects, greater rumination and depressive symptoms were associated with more persistent activation and connectivity related to no-longer-relevant task information. Classification of postcue spatial activation patterns of the scene-related areas was also less consistent in the MDD subjects compared to the healthy controls. Such abnormalities appeared to result from a lack of updating effects in postcue functional connectivity between prefrontal and scene-related areas in the MDD group. In sum, disrupted working memory updating in MDD was revealed by alterations in activity patterns of the visual association areas, their connectivity with the prefrontal cortex, and their relationship with core clinical characteristics. These results highlight the role of information updating deficits in the cognitive control and symptomatology of depression. Unmedicated individuals with major depressive disorder showed several forms of deficits during visual working memory updating. Impaired visual working memory updating performance. Diminished category-specific response patterns in visual association areas, particularly those involved in scene processing. Loss of frontal functional connectivity with the scene-selective visual region during updating of scene information. Rumination is associated with heightened activity and functional connectivity for obsolete information in working memory.
Collapse
Affiliation(s)
- Thang M. Le
- Integrative Neuroscience program, Department of Psychology, Stony Brook University, Stony Brook, NY 11794-2500, United States
| | - John A. Borghi
- Integrative Neuroscience program, Department of Psychology, Stony Brook University, Stony Brook, NY 11794-2500, United States
| | - Autumn J. Kujawa
- Clinical Science program, Department of Psychology, Stony Brook University, Stony Brook, NY 11794-2500, United States
| | - Daniel N. Klein
- Clinical Science program, Department of Psychology, Stony Brook University, Stony Brook, NY 11794-2500, United States
| | - Hoi-Chung Leung
- Integrative Neuroscience program, Department of Psychology, Stony Brook University, Stony Brook, NY 11794-2500, United States
- Corresponding author at: Department of Psychology, Stony Brook University, Stony Brook, NY 11794-2500, United States.Department of PsychologyStony Brook UniversityStony BrookNY11794-2500United States
| |
Collapse
|
44
|
Black E, Stevenson JL, Bish JP. The Role of Musical Experience in Hemispheric Lateralization of Global and Local Auditory Processing. Perception 2017; 46:956-975. [DOI: 10.1177/0301006616685954] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The global precedence effect is a phenomenon in which global aspects of visual and auditory stimuli are processed before local aspects. Individuals with musical experience perform better on all aspects of auditory tasks compared with individuals with less musical experience. The hemispheric lateralization of this auditory processing is less well-defined. The present study aimed to replicate the global precedence effect with auditory stimuli and to explore the lateralization of global and local auditory processing in individuals with differing levels of musical experience. A total of 38 college students completed an auditory-directed attention task while electroencephalography was recorded. Individuals with low musical experience responded significantly faster and more accurately in global trials than in local trials regardless of condition, and significantly faster and more accurately when pitches traveled in the same direction (compatible condition) than when pitches traveled in two different directions (incompatible condition) consistent with a global precedence effect. In contrast, individuals with high musical experience showed less of a global precedence effect with regards to accuracy, but not in terms of reaction time, suggesting an increased ability to overcome global bias. Further, a difference in P300 latency between hemispheres was observed. These findings provide a preliminary neurological framework for auditory processing of individuals with differing degrees of musical experience.
Collapse
Affiliation(s)
- Emily Black
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
45
|
Abbott AE, Nair A, Keown CL, Datko M, Jahedi A, Fishman I, Müller RA. Patterns of Atypical Functional Connectivity and Behavioral Links in Autism Differ Between Default, Salience, and Executive Networks. Cereb Cortex 2016; 26:4034-45. [PMID: 26351318 PMCID: PMC5027998 DOI: 10.1093/cercor/bhv191] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by atypical brain network organization, but findings have been inconsistent. While methodological and maturational factors have been considered, the network specificity of connectivity abnormalities remains incompletely understood. We investigated intrinsic functional connectivity (iFC) for four "core" functional networks-default-mode (DMN), salience (SN), and left (lECN) and right executive control (rECN). Resting-state functional MRI data from 75 children and adolescents (37 ASD, 38 typically developing [TD]) were included. Functional connectivity within and between networks was analyzed for regions of interest (ROIs) and whole brain, compared between groups, and correlated with behavioral scores. ROI analyses showed overconnectivity (ASD > TD), especially between DMN and ECN. Whole-brain results were mixed. While predominant overconnectivity was found for DMN (posterior cingulate seed) and rECN (right inferior parietal seed), predominant underconnectivity was found for SN (right anterior insula seed) and lECN (left inferior parietal seed). In the ASD group, reduced SN integrity was associated with sensory and sociocommunicative symptoms. In conclusion, atypical connectivity in ASD is network-specific, ranging from extensive overconnectivity (DMN, rECN) to extensive underconnectivity (SN, lECN). Links between iFC and behavior differed between groups. Core symptomatology in the ASD group was predominantly related to connectivity within the salience network.
Collapse
Affiliation(s)
- Angela E. Abbott
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Aarti Nair
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
- Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, CA, USA
| | - Christopher L. Keown
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
- Department of Cognitive Science, University of California, San Diego, CA, USA
| | - Michael Datko
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
- Department of Cognitive Science, University of California, San Diego, CA, USA
| | - Afrooz Jahedi
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
- Computational Science Research Center, San Diego State University, San Diego, CA, USA
| | - Inna Fishman
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
- Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, CA, USA
| |
Collapse
|
46
|
Post-error adjustments and ADHD symptoms in adults: The effect of laterality and state regulation. Brain Cogn 2016; 108:11-9. [PMID: 27429094 DOI: 10.1016/j.bandc.2016.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 11/23/2022]
Abstract
Evidence is accumulating that individuals with Attention-Deficit/Hyperactivity Disorder (ADHD) do not adjust their responses after committing errors. Post-error response adjustments are taken to reflect, among others, error monitoring that is essential for learning, flexible behavioural adaptation, and achieving future goals. Many behavioural studies have suggested that atypical lateral brain functions and difficulties in allocating effort to protect performance against stressors (i.e., state regulation) are key factors in ADHD. Whether these factors contribute to the absence of post-error response adjustments in ADHD is unknown. The aim of the present study is to investigate the contribution of the left and right hemispheres and the deficiency in effort allocation to deviant post-error processing in adults with high ADHD symptoms. From a pool of 87 university students, two groups were formed: a group with higher (n=30) and a group with lower (n=26) scores on the ADHD index subscale of the Conners' Adult ADHD Rating Scales. The groups performed a lateralized lexical decision task with a fast and slower stimulus presentation rate. Post-error slowing and post-error response accuracy to stimuli presented in the left and right visual field were measured in each stimulus presentation rate. Results indicated that subjects with the lower ADHD scores slowed down and improved their response accuracy after errors, especially when stimuli were presented in the right visual field at the slower rate. In contrast, subjects with the higher ADHD scores showed no post-error adjustments. Results suggest that during lexical decision performance, impaired error processing in adults with ADHD is associated with affected ability of the left hemisphere to compensate for errors, especially when extra effort allocation is needed to meet task demands.
Collapse
|
47
|
Stephan KE, Schlagenhauf F, Huys QJM, Raman S, Aponte EA, Brodersen KH, Rigoux L, Moran RJ, Daunizeau J, Dolan RJ, Friston KJ, Heinz A. Computational neuroimaging strategies for single patient predictions. Neuroimage 2016; 145:180-199. [PMID: 27346545 DOI: 10.1016/j.neuroimage.2016.06.038] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/21/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022] Open
Abstract
Neuroimaging increasingly exploits machine learning techniques in an attempt to achieve clinically relevant single-subject predictions. An alternative to machine learning, which tries to establish predictive links between features of the observed data and clinical variables, is the deployment of computational models for inferring on the (patho)physiological and cognitive mechanisms that generate behavioural and neuroimaging responses. This paper discusses the rationale behind a computational approach to neuroimaging-based single-subject inference, focusing on its potential for characterising disease mechanisms in individual subjects and mapping these characterisations to clinical predictions. Following an overview of two main approaches - Bayesian model selection and generative embedding - which can link computational models to individual predictions, we review how these methods accommodate heterogeneity in psychiatric and neurological spectrum disorders, help avoid erroneous interpretations of neuroimaging data, and establish a link between a mechanistic, model-based approach and the statistical perspectives afforded by machine learning.
Collapse
Affiliation(s)
- K E Stephan
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland; Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N 3BG, UK; Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - F Schlagenhauf
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, 10115 Berlin, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, 04130 Leipzig, Germany
| | - Q J M Huys
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland; Department of Psychiatry, Psychosomatics and Psychotherapy, Hospital of Psychiatry, University of Zurich, Switzerland
| | - S Raman
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland
| | - E A Aponte
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland
| | - K H Brodersen
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland
| | - L Rigoux
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland; Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - R J Moran
- Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N 3BG, UK; Virgina Institute of Technology, USA
| | - J Daunizeau
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland; ICM Paris, France
| | - R J Dolan
- Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N 3BG, UK; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
| | - K J Friston
- Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N 3BG, UK
| | - A Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, 10115 Berlin, Germany; Humboldt Universität zu Berlin, Berlin School of Mind and Brain, 10115 Berlin, Germany
| |
Collapse
|
48
|
Mišić B, Sporns O. From regions to connections and networks: new bridges between brain and behavior. Curr Opin Neurobiol 2016; 40:1-7. [PMID: 27209150 DOI: 10.1016/j.conb.2016.05.003] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/04/2016] [Indexed: 12/11/2022]
Abstract
Connections and interactions among distributed brain areas are increasingly recognized as the basis for cognitive operations and a diverse repertoire of behaviors. Analytic advances have allowed for brain connectivity to be represented and quantified at multiple levels: from single connections to communities and networks. This review traces the trajectory of network neuroscience, focusing on how connectivity patterns can be related to cognition and behavior. As recent initiatives for open science provide access to imaging and phenotypic data with great detail and depth, we argue that approaches capable of directly modeling multivariate relationships between brain and behavior will become increasingly important in the field.
Collapse
Affiliation(s)
- Bratislav Mišić
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada H3A 2B4; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Network Science Institute, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
49
|
Wu X, Jung RE, Zhang H. Neural underpinnings of divergent production of rules in numerical analogical reasoning. Biol Psychol 2016; 117:170-178. [DOI: 10.1016/j.biopsycho.2016.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 02/09/2016] [Accepted: 03/20/2016] [Indexed: 10/22/2022]
|
50
|
Functional and anatomical basis for brain plasticity in facial palsy rehabilitation using the masseteric nerve. J Plast Reconstr Aesthet Surg 2016; 69:417-26. [DOI: 10.1016/j.bjps.2015.10.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/07/2015] [Accepted: 10/21/2015] [Indexed: 11/20/2022]
|