1
|
Willemsen A, Manzano-Marín A, Horn M. Novel High-Quality Amoeba Genomes Reveal Widespread Codon Usage Mismatch Between Giant Viruses and Their Hosts. Genome Biol Evol 2025; 17:evae271. [PMID: 39760805 PMCID: PMC11702301 DOI: 10.1093/gbe/evae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2024] [Indexed: 01/07/2025] Open
Abstract
The need for high-quality protist genomes has prevented in-depth computational and experimental studies of giant virus-host interactions. In addition, our current knowledge of host range is highly biased due to the few hosts used to isolate novel giant viruses. This study presents 6 high-quality amoeba genomes from known and potential giant virus hosts belonging to 2 distinct eukaryotic clades: Amoebozoa and Discoba. We employ their genomic data to investigate the predictability of giant virus host range. Using a combination of long- and short-read sequencing, we obtained highly contiguous and complete genomes of Acanthamoeba castellanii, Acanthamoeba griffini, Acanthamoeba terricola, Naegleria clarki, Vermamoeba vermiformis, and Willaertia magna, contributing to the collection of sequences for the eukaryotic tree of life. We found that the 6 amoebae have distinct codon usage patterns and that, contrary to other virus groups, giant viruses often have different and even opposite codon usage with their known hosts. Conversely, giant viruses with matching codon usage are frequently not known to infect or replicate in these hosts. Interestingly, analyses of integrated viral sequences in the amoeba host genomes reveal potential novel virus-host associations. Matching of codon usage preferences is often used to predict virus-host pairs. However, with the broad-scale analyses performed in this study, we demonstrate that codon usage alone appears to be a poor predictor of host range for giant viruses infecting amoeba. We discuss the potential strategies that giant viruses employ to ensure high viral fitness in nonmatching hosts. Moreover, this study emphasizes the need for more high-quality protist genomes. Finally, the amoeba genomes presented in this study set the stage for future experimental studies to better understand how giant viruses interact with different host species.
Collapse
Affiliation(s)
- Anouk Willemsen
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna 1030, Austria
| | - Alejandro Manzano-Marín
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna 1030, Austria
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna 1030, Austria
| |
Collapse
|
2
|
Hancks DC. An Evolutionary Framework Exploiting Virologs and Their Host Origins to Inform Poxvirus Protein Functions. Methods Mol Biol 2025; 2860:257-272. [PMID: 39621273 DOI: 10.1007/978-1-0716-4160-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Poxviruses represent evolutionary successful infectious agents. As a family, poxviruses can infect a wide variety of species including humans, fish, and insects. While many other viruses are species-specific, an individual poxvirus species is often capable of infecting diverse hosts and cell types. For example, the prototypical poxvirus, vaccinia, is well known to infect numerous human cell types but can also infect cells from divergent hosts like frog neurons. Notably, poxvirus infections result in both detrimental human and animal diseases. The most infamous disease linked to a poxvirus is smallpox caused by variola virus. Poxviruses are large double-stranded DNA viruses, which uniquely replicate in the cytoplasm of cells. The model poxvirus genome encodes ~200 nonoverlapping protein-coding open reading frames (ORFs). Poxvirus gene products impact various biological processes like the production of virus particles, the host range of infectivity, and disease pathogenesis. In addition, poxviruses and their gene products have biomedical application with several species commonly engineered for use as vaccines and oncolytic virotherapy. Nevertheless, we still have an incomplete understanding of the functions associated with many poxvirus genes. In this chapter, we outline evolutionary insights that can complement ongoing studies of poxvirus gene functions and biology, which may serve to elucidate new molecular activities linked to this biomedically relevant class of viruses.
Collapse
Affiliation(s)
- Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Yoshioka S, Kurazono H, Ohshita K, Fukui K, Takemura M, Kato SI, Ohnishi K, Yano T, Wakamatsu T. The HNH endonuclease domain of the giant virus MutS7 specifically binds to branched DNA structures with single-stranded regions. DNA Repair (Amst) 2024; 145:103804. [PMID: 39742574 DOI: 10.1016/j.dnarep.2024.103804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/03/2025]
Abstract
Most giant viruses including Mimiviridae family build large viral factories within the host cytoplasms. These giant viruses are presumed to possess specific genes that enable the rapid and massive replication of their large double-stranded DNA genomes within viral factories. It has been revealed that a functionally uncharacterized protein, MutS7, is expressed during the operational phase of the viral factory. MutS7 contains an N-terminal mismatched DNA-binding domain, which is similar to the mismatched DNA-recognizing protein MutS1, and a unique C-terminal HNH endonuclease domain absent in other MutS family proteins. MutS7 gene of the genus Mimivirus of the family Mimiviridae is encoded in the locus that is responsible for resistance against infection of a virophage. In the present study, we characterized the MutS7 HNH domain of Mimivirus shirakomae. The HNH domain preferentially bound to branched DNA structures containing single-stranded regions, especially the displacement-loop structure, which is a primary intermediate in homologous/homeologous recombination, rather than to linear DNAs and branched DNAs lacking single-stranded regions. However, the HNH domain exhibited no endonuclease activity. The site-directed mutagenesis analysis revealed that the Cys4-type zinc finger of the HNH domain was not essential, but was important for the DNA binding. Given that giant virus MutS7 contains a mismatch-binding domain in addition to the HNH domain, we propose that giant virus MutS7 may suppress homeologous recombination in the viral factory.
Collapse
Affiliation(s)
- Satoshi Yoshioka
- Agriculture and Marine Science Program, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Hirochika Kurazono
- Agriculture and Marine Science Program, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Koki Ohshita
- Agricultural Science, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kenji Fukui
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
| | - Masaharu Takemura
- Department of Mathematics and Science Education, Graduate School of Science, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Shin-Ichiro Kato
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Takato Yano
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
| | - Taisuke Wakamatsu
- Agriculture and Marine Science Program, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan; Agricultural Science, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
4
|
Abrahão JS. Revisiting the concept of giant viruses. Microbes Infect 2024:105467. [PMID: 39725022 DOI: 10.1016/j.micinf.2024.105467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Giant viruses have fascinated the scientific community due to their immense particles and extensive genomes. A significant surge of interest in the field has been observed over the past 20 years following the discovery of mimiviruses, the first amoeba-infecting viruses described. However, with the discovery of new amoeba viruses and those from other protists, the concept of "giant viruses" has become increasingly controversial in the scientific literature. This commentary revisits the historical and conceptual foundations of the term "giant virus" and explores its implications for virology.
Collapse
Affiliation(s)
- Jônatas Santos Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
5
|
Morioka K, Fujieda A, Takemura M. Visualization of giant Mimivirus in a movie for biology classrooms. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2024; 25:e0013824. [PMID: 39513724 PMCID: PMC11636218 DOI: 10.1128/jmbe.00138-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/20/2024] [Indexed: 11/15/2024]
Abstract
We have developed a new observation chamber for Mimivirus-infected Acanthamoeba to create dynamic visual teaching materials for virus education suitable for high school and university biology courses. We conducted experiments and captured a movie showcasing the infection process of Acanthamoeba cells by mimiviruses. In this educational film, we successfully recorded the active movement of healthy Acanthamoeba cells across the surface of a culture flask under an agarose gel. After Mimivirus infection, the movement of the Acanthamoeba cells gradually slowed and eventually stopped. This cessation coincided with the development of the Mimivirus virion factory, which began producing new virions on the surface of the host cells. Moreover, we captured continuous footage of a single cell throughout the viral proliferation process, thereby illustrating the viral proliferation in real time. This educational movie, which visually demonstrates the proliferation of Mimivirus within host cells, acts as an effective teaching tool. Moreover, it enhances students' understanding of virus proliferation mechanisms and highlights the biological significance of viruses, their impact on host cell fate, and their role in ecosystems.
Collapse
Affiliation(s)
| | | | - Masaharu Takemura
- Department of Mathematics and Science Education, Graduate School of Science, Tokyo University of Science, Shinjuku, Tokyo, Japan
| |
Collapse
|
6
|
Plante M. A new symbiotic, holistic and gradualist model proposal for the concept of "living organism". Theory Biosci 2024:10.1007/s12064-024-00429-0. [PMID: 39636364 DOI: 10.1007/s12064-024-00429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/09/2024] [Indexed: 12/07/2024]
Abstract
In biology, the concept of "living organism" has traditionally been based on the smallest level of organization comprising all the necessary and essential characteristics of life: the cell. Today, this concept is being challenged by the analysis of ambiguous biological entities, located both below and above the level of the living cell, which exhibit some of the characteristics of living organisms. This situation has given rise to an epistemological pluralism of the concepts of "organism", "individual" and "living", for which no clear and unanimous definition has yet been accepted. The aim of this manuscript is to explore new ideas and perspectives for defining the concept of "living organism", in order to eliminate a certain level of pluralism that could generate confusion, particularly in the pragmatic context of biological research. First, I expose the dualism of the concepts of "organism" and "individual" and suggest a fusion of these concepts in order to eliminate a certain level of pluralism. In doing so, I develop a symbiotic and holistic definition of the concept of "living organism", which includes different structural levels of the organism: molecular, cellular and ecosystems. Second, I present the epistemological problem of the concept of "living", which is closely related to the concepts of "organism" and "individual", by analyzing the list and gradational types of definition. In doing so, I propose a new symbiotic, holistic and gradualist model of the concept of "living organism", using a gradation of several properties of the living applied to the different structural levels of the organism developed previously (molecular, cellular, ecosystems).
Collapse
Affiliation(s)
- Mirco Plante
- Biology Department, Collège Montmorency, 475 Boulevard de l'Avenir, Laval, QC, H7N 5H9, Canada.
- Institut National de la Recherche Scientifique - Centre Armand-Frappier, Santé Biotechnologie, 531 Boul des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
7
|
Witt ASA, Carvalho JVRP, Serafim MSM, Arias NEC, Rodrigues RAL, Abrahão JS. The GC% landscape of the Nucleocytoviricota. Braz J Microbiol 2024; 55:3373-3387. [PMID: 39180708 PMCID: PMC11711839 DOI: 10.1007/s42770-024-01496-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Genomic studies on sequence composition employ various approaches, such as calculating the proportion of guanine and cytosine within a given sequence (GC% content), which can shed light on various aspects of the organism's biology. In this context, GC% can provide insights into virus-host relationships and evolution. Here, we present a comprehensive gene-by-gene analysis of 61 representatives belonging to the phylum Nucleocytoviricota, which comprises viruses with the largest genomes known in the virosphere. Parameters were evaluated not only based on the average GC% of a given viral species compared to the entire phylum but also considering gene position and phylogenetic history. Our results reveal that while some families exhibit similar GC% among their representatives (e.g., Marseilleviridae), others such as Poxviridae, Phycodnaviridae, and Mimiviridae have members with discrepant GC% values, likely reflecting adaptation to specific biological cycles and hosts. Interestingly, certain genes located at terminal regions or within specific genomic clusters show GC% values distinct from the average, suggesting recent acquisition or unique evolutionary pressures. Horizontal gene transfer and the presence of potential paralogs were also assessed in genes with the most discrepant GC% values, indicating multiple evolutionary histories. Taken together, to the best of our knowledge, this study represents the first global and gene-by-gene analysis of GC% distribution and profiles within genomes of Nucleocytoviricota members, highlighting their diversity and identifying potential new targets for future studies.
Collapse
Affiliation(s)
- Amanda Stéphanie Arantes Witt
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Mateus Sá Magalhães Serafim
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nidia Esther Colquehuanca Arias
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Araújo Lima Rodrigues
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jônatas Santos Abrahão
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Hsu T, Talley MJ, Yang P, Geiselhoeringer A, Yang C, Gorla A, Rahman MJ, Silva L, Chen D, Yang B. Identification of infectious viruses for risk-based virus testing of CHO unprocessed bulk using next-generation sequencing. Biotechnol Prog 2024; 40:e3485. [PMID: 39051853 DOI: 10.1002/btpr.3485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/24/2024] [Indexed: 07/27/2024]
Abstract
It is important to increase manufacturing speed to make medicines more widely available. One bottleneck for CHO-based drug substance release is the in vitro viral (IVV) cell-based assay on unprocessed bulk. To increase process speed, we evaluate the suitability of replacing the IVV cell-based assay with next-generation sequencing (NGS). First, we outline how NGS is currently used in the pharmaceutical industry, and how it may apply to CHO virus testing. Second, we examine CHO virus contamination history. Since prior virus contaminants can replicate in the production bioreactor, we perform a literature search and classify 159 viruses as high, medium, low, or unknown risk based on their ability to infect CHO cells. Overall, the risk of virus contamination during the CHO manufacturing process is low. Only six viruses were reported to have contaminated CHO bioprocesses over the past several decades, and were primarily caused by fetal bovine serum or cell culture components. These virus contamination events can be mitigated through limitation and control of raw materials, combined with virus testing and virus clearance technologies. The list of CHO infectious viruses provides a starting framework for virus safety risk assessment and NGS development. Furthermore, ICH Q5A (R2) includes NGS as a molecular method for adventitious agent testing, paving a path forward for modernizing CHO virus testing.
Collapse
Affiliation(s)
- Tiffany Hsu
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Mary Jo Talley
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Ping Yang
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Angela Geiselhoeringer
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Cindy Yang
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Aditya Gorla
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - M Julhasur Rahman
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Lindsey Silva
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Dayue Chen
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Bin Yang
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| |
Collapse
|
9
|
Williams AD, Leung VW, Tang JW, Hidekazu N, Suzuki N, Clarke AC, Pearce DA, Lam TTY. Ancient environmental microbiomes and the cryosphere. Trends Microbiol 2024:S0966-842X(24)00253-1. [PMID: 39487079 DOI: 10.1016/j.tim.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 11/04/2024]
Abstract
In this review, we delineate the unique set of characteristics associated with cryosphere environments (namely, ice and permafrost) which present both challenges and opportunities for studying ancient environmental microbiomes (AEMs). In a field currently reliant on several assumptions, we discuss the theoretical and empirical feasibility of recovering microbial nucleic acids (NAs) from ice and permafrost with varying degrees of antiquity. We also summarize contamination control best practices and highlight considerations for the latest approaches, including shotgun metagenomics, and downstream bioinformatic authentication approaches. We review the adoption of existing software and provide an overview of more recently published programs, with reference to their suitability for AEM studies. Finally, we summarize outstanding challenges and likely future directions for AEM research.
Collapse
Affiliation(s)
- Alexander D Williams
- Laboratory of Data Discovery for Health Limited (D(2)4H), 12/F, Building 19W, 19 Science Park West Avenue, Hong Kong Science Park, Hong Kong Special Administrative Region of China; State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China.
| | - Vivian W Leung
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Julian W Tang
- Respiratory Sciences, University of Leicester, Leicester, UK; Clinical Microbiology, University Hospitals of Leicester, Leicester, UK
| | - Nishimura Hidekazu
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Chuou 2-20-1, Kurashiki, Okayama 710-0046, Japan
| | - Andrew C Clarke
- School of Biosciences, University of Nottingham, College Road, Sutton Bonington, LE12 5RD, UK
| | - David A Pearce
- Department of Applied Science, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Newcastle, NE1 8ST, UK; British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Tommy Tsan-Yuk Lam
- Laboratory of Data Discovery for Health Limited (D(2)4H), 12/F, Building 19W, 19 Science Park West Avenue, Hong Kong Science Park, Hong Kong Special Administrative Region of China; State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
10
|
Bickels Nuri R, Feldmesser E, Fridmann-Sirkis Y, Keren-Shaul H, Nevo R, Minsky A, Reich Z. Acanthamoeba polyphaga de novo transcriptome and its dynamics during Mimivirus infection. Sci Rep 2024; 14:25894. [PMID: 39472705 PMCID: PMC11522460 DOI: 10.1038/s41598-024-76078-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Mimivirus bradfordmassiliense (Mimivirus) is a giant virus that infects Acanthamoeba species - opportunistic human pathogens. Long- and short-read sequencing were used to generate a de novo transcriptome of the host and followed the dynamics of both host and virus transcriptomes over the course of infection. The assembled transcriptome of the host included 22,604 transcripts and 13,043 genes, with N50 = 2,372 nucleotides. Functional enrichment analysis revealed major changes in the host transcriptome, namely, enrichment in downregulated genes associated with cytoskeleton homeostasis and DNA replication, repair, and nucleotide synthesis. These modulations, together with those implicated by other enriched processes, indicate cell cycle arrest, which was demonstrated experimentally. We also observed upregulation of host genes associated with transcription, secretory pathways and, as reported here for the first time, peroxisomes and the ubiquitin-proteasome system. In Mimivirus, the early stages of infection were marked by upregulated genes related to DNA replication, transcription, translation, and nucleotide metabolism, and in later stages, enrichment in genes associated with lipid metabolism, carbohydrates, and proteases. Some of the changes observed in the amoebal transcriptome likely point to Mimivirus infection causing dismantling of host cytoskeleton and translocation of endoplasmic reticulum membranes to viral factory areas.
Collapse
Affiliation(s)
- Reut Bickels Nuri
- Departments of Chemical and Structural Biology and Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| | - Ester Feldmesser
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yael Fridmann-Sirkis
- Protein Analysis Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Hadas Keren-Shaul
- Genomics unit, Department of Life Sciences Core Facilities- The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Reinat Nevo
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Abraham Minsky
- Department of Chemical and Structural biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Ziv Reich
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
11
|
Thomy J, Schvarcz CR, McBeain KA, Edwards KF, Steward GF. Eukaryotic viruses encode the ribosomal protein eL40. NPJ VIRUSES 2024; 2:51. [PMID: 39464202 PMCID: PMC11499249 DOI: 10.1038/s44298-024-00060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024]
Abstract
Viruses in the phylum Nucleocytoviricota are large, complex and have an exceptionally diverse metabolic repertoire. Some encode hundreds of products involved in the translation of mRNA into protein, but none was known to encode any of the proteins in ribosomes, the central engines of translation. With the discovery of the eL40 gene in FloV-SA2, we report the first example of a eukaryotic virus encoding a ribosomal protein and show that this gene is also present and expressed in other uncultivated marine giant viruses. FloV-SA2 also encodes a "group II" viral rhodopsin, a viral light-activated protein of unknown function previously only reported in metagenomes. FloV-SA2 is thus a valuable model system for investigating new mechanisms by which viruses manipulate eukaryotic cell metabolism.
Collapse
Affiliation(s)
- Julie Thomy
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Christopher R. Schvarcz
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Kelsey A. McBeain
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Kyle F. Edwards
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Grieg F. Steward
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
| |
Collapse
|
12
|
Eren AM, Banfield JF. Modern microbiology: Embracing complexity through integration across scales. Cell 2024; 187:5151-5170. [PMID: 39303684 PMCID: PMC11450119 DOI: 10.1016/j.cell.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Microbes were the only form of life on Earth for most of its history, and they still account for the vast majority of life's diversity. They convert rocks to soil, produce much of the oxygen we breathe, remediate our sewage, and sustain agriculture. Microbes are vital to planetary health as they maintain biogeochemical cycles that produce and consume major greenhouse gases and support large food webs. Modern microbiologists analyze nucleic acids, proteins, and metabolites; leverage sophisticated genetic tools, software, and bioinformatic algorithms; and process and integrate complex and heterogeneous datasets so that microbial systems may be harnessed to address contemporary challenges in health, the environment, and basic science. Here, we consider an inevitably incomplete list of emergent themes in our discipline and highlight those that we recognize as the archetypes of its modern era that aim to address the most pressing problems of the 21st century.
Collapse
Affiliation(s)
- A Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity, 26129 Oldenburg, Germany; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany; Marine Biological Laboratory, Woods Hole, MA, USA; Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA, USA; Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA; Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Department of Environmental Science Policy, and Management, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
13
|
Chase EE, Truchon AR, Creasey BA, Wilhelm SW. Time of day of infection shapes development of a eukaryotic algal-Nucleocytoviricota virocell. FEMS Microbiol Ecol 2024; 100:fiae123. [PMID: 39271456 PMCID: PMC11451476 DOI: 10.1093/femsec/fiae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024] Open
Abstract
Aureococcus anophagefferens forms a model host-virus system with the "giant virus" Kratosvirus quantuckense. Studies to define its ribocell (uninfected) and virocell (virus-infected) forms are needed as these states co-occur during algal blooms. Previously, a link between light-derived energy, virus particle production, and virocell formation was noted. We explored how the time of day (morning, midday, or late day) of virus-host contact shaped virocell ontogeny. In parallel, we explored the dependence on light-derived energy in this mixotrophic plankter by inhibiting photosystem II, testing the role of heterotrophic energy in infection dynamics. Using flow cytometry and photochemical assessments, we examined the physiology of infected cells and controls, and estimated virus particle production. We observed differences between ribocell and virocell response to treatments, including reductions in virus particle production during reduced light duration) and PSII inhibition (i.e. "forced heterotrophy"). This work demonstrates the importance of light in shaping the fate of infected cells and provides insight into factors that constrain in situ blooms. Most significantly, we show that time of the solar day when a virus and host come into contact influences viral particle production, and therefore bloom dynamics; a factor that needs to be considered in bloom modeling work.
Collapse
Affiliation(s)
- Emily E Chase
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Alexander R Truchon
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Brooke A Creasey
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Steven W Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| |
Collapse
|
14
|
Sharma D, Chakraborty S. RNA editing sites and triplet usage in exomes of bat RNA virus genomes of the family Paramyxoviridae. Microb Pathog 2024; 194:106796. [PMID: 39025379 DOI: 10.1016/j.micpath.2024.106796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Bats contain a diverse spectrum of viral species in their bodies. The RNA virus family Paramyxoviridae tends to infect several vertebrate species, which are accountable for a variety of devastating infections in both humans and animals. Viruses of this kind include measles, mumps, and Hendra. Some synonymous codons are favoured over others in mRNAs during gene-to-protein synthesis process. Such phenomenon is termed as codon usage bias (CUB). Our research emphasized many aspects that shape the CUB of genes in the Paramyxoviridae family found in bats. Here, the nitrogenous base A occurred the most. AT was found to be abundant in the coding sequences of the Paramyxoviridae family. RSCU data revealed that A or T ending codons occurred more frequently than predicted. Furthermore, 3 overrepresented codons (CAT, AGA, and GCA) and 7 underrepresented codons (CCG, TCG, CGC, CGG, CGT, GCG and ACG) were detected in the viral genomes. Correspondence analysis, neutrality plot, and parity plots highlight the combined impact of mutational pressure and natural selection on CUB. The neutrality plot of GC12 against GC3 yielded a regression coefficient value of 0.366, indicating that natural selection had a significant (63.4 %) impact. Moreover, RNA editing analysis was done, which revealed the highest frequency of C to T mutations. The results of our research revealed the pattern of codon usage and RNA editing sites in Paramyxoviridae genomes.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India.
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
15
|
Kijima S, Hikida H, Delmont TO, Gaïa M, Ogata H. Complex Genomes of Early Nucleocytoviruses Revealed by Ancient Origins of Viral Aminoacyl-tRNA Synthetases. Mol Biol Evol 2024; 41:msae149. [PMID: 39099254 PMCID: PMC11304981 DOI: 10.1093/molbev/msae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/27/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs), also known as tRNA ligases, are essential enzymes in translation. Owing to their functional essentiality, these enzymes are conserved in all domains of life and used as informative markers to trace the evolutionary history of cellular organisms. Unlike cellular organisms, viruses generally lack aaRSs because of their obligate parasitic nature, but several large and giant DNA viruses in the phylum Nucleocytoviricota encode aaRSs in their genomes. The discovery of viral aaRSs led to the idea that the phylogenetic analysis of aaRSs can shed light on ancient viral evolution. However, conflicting results have been reported from previous phylogenetic studies: one posited that nucleocytoviruses recently acquired their aaRSs from their host eukaryotes, while another hypothesized that the viral aaRSs have ancient origins. Here, we investigated 4,168 nucleocytovirus genomes, including metagenome-assembled genomes (MAGs) derived from large-scale metagenomic studies. In total, we identified 780 viral aaRS sequences in 273 viral genomes. We generated and examined phylogenetic trees of these aaRSs with a large set of cellular sequences to trace evolutionary relationships between viral and cellular aaRSs. The analyses suggest that the origins of some viral aaRSs predate the last common eukaryotic ancestor. Inside viral aaRS clades, we identify intricate evolutionary trajectories of viral aaRSs with horizontal transfers, losses, and displacements. Overall, these results suggest that ancestral nucleocytoviruses already developed complex genomes with an expanded set of aaRSs in the proto-eukaryotic era.
Collapse
Affiliation(s)
- Soichiro Kijima
- Chemical Life Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Hiroyuki Hikida
- Chemical Life Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tom O Delmont
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057 Evry, France
| | - Morgan Gaïa
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057 Evry, France
| | - Hiroyuki Ogata
- Chemical Life Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
16
|
Nunes GHP, Oliveira JDS, Essus VA, Guimarães AJ, Pontes B, Cortines JR. Cytopathic effects in Mimivirus infection: understanding the kinetics of virus-cell interaction. Mem Inst Oswaldo Cruz 2024; 119:e230186. [PMID: 39045993 DOI: 10.1590/0074-02760230186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 05/10/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Giant viruses have brought new insights into different aspects of virus-cell interactions. The resulting cytopathic effects from these interactions are one of the main aspects of infection assessment in a laboratory routine, mainly reflecting on the morphological features of an infected cell. OBJECTIVES In this work, we follow the entire kinetics of the cytopathic effect in cells infected by viruses of the Mimiviridae family, spatiotemporally quantifying typical features such as cell roundness, loss of motility, decrease in cell area and cell lysis. METHODS Infections by Acanthamoeba polyphaga mimivirus (APMV), Tupanvirus (TPV) and M4 were carried out at multiplicity of infection (MOI) 1 and MOI 10 in Acanthamoeba castellanii. Monitoring of infections was carried out using time lapse microscopy for up to 72 hours. The images were analyzed using ImageJ software. FINDINGS The data obtained indicate that APMV is the slowest virus in inducing the cytopathic effects of rounding, decrease in cell area, mobility and cell lysis. However, it is the only virus whose MOI increase accelerates the lysis process of infected cells. In turn, TPV and M4 rapidly induce morphological and behavioral changes. MAIN CONCLUSIONS Our results indicate that mimiviruses induce different temporal responses within the host cell and that it is possible to use these kinetic data to facilitate the understanding of infection by these viruses.
Collapse
Affiliation(s)
- Gabriel Henrique Pereira Nunes
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Virologia, Laboratório de Virologia e Espectrometria de Massas, Rio de Janeiro, RJ, Brasil
| | - Juliana Dos Santos Oliveira
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Virologia, Laboratório de Virologia e Espectrometria de Massas, Rio de Janeiro, RJ, Brasil
| | - Victor Alejandro Essus
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Virologia, Laboratório de Virologia e Espectrometria de Massas, Rio de Janeiro, RJ, Brasil
| | - Allan J Guimarães
- Universidade Federal Fluminense, Instituto Biomédico, Departamento de Microbiologia e Parasitologia, Niterói, RJ, Brasil
| | - Bruno Pontes
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas & Centro Nacional de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brasil
| | - Juliana Reis Cortines
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Virologia, Laboratório de Virologia e Espectrometria de Massas, Rio de Janeiro, RJ, Brasil
- University of Connecticut, Department of Chemistry, Storrs, CT, USA
| |
Collapse
|
17
|
Yutin N, Mutz P, Krupovic M, Koonin EV. Mriyaviruses: small relatives of giant viruses. mBio 2024; 15:e0103524. [PMID: 38832788 PMCID: PMC11253617 DOI: 10.1128/mbio.01035-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 06/05/2024] Open
Abstract
The phylum Nucleocytoviricota consists of large and giant viruses that range in genome size from about 100 kilobases (kb) to more than 2.5 megabases. Here, using metagenome mining followed by extensive phylogenomic analysis and protein structure comparison, we delineate a distinct group of viruses with double-stranded (ds) DNA genomes in the range of 35-45 kb that appear to be related to the Nucleocytoviricota. In phylogenetic trees of the conserved double jelly-roll major capsid proteins (MCPs) and DNA packaging ATPases, these viruses do not show affinity to any particular branch of the Nucleocytoviricota and accordingly would comprise a class which we propose to name "Mriyaviricetes" (after Ukrainian "mriya," dream). Structural comparison of the MCP suggests that, among the extant virus lineages, mriyaviruses are the closest one to the ancestor of the Nucleocytoviricota. In the phylogenetic trees, mriyaviruses split into two well-separated branches, the family Yaraviridae and proposed new family "Gamadviridae." The previously characterized members of these families, yaravirus and Pleurochrysis sp. endemic viruses, infect amoeba and haptophytes, respectively. The genomes of the rest of the mriyaviruses were assembled from metagenomes from diverse environments, suggesting that mriyaviruses infect various unicellular eukaryotes. Mriyaviruses lack DNA polymerase, which is encoded by all other members of the Nucleocytoviricota, and RNA polymerase subunits encoded by all cytoplasmic viruses among the Nucleocytoviricota, suggesting that they replicate in the host cell nuclei. All mriyaviruses encode a HUH superfamily endonuclease that is likely to be essential for the initiation of virus DNA replication via the rolling circle mechanism. IMPORTANCE The origin of giant viruses of eukaryotes that belong to the phylum Nucleocytoviricota is not thoroughly understood and remains a matter of major interest and debate. Here, we combine metagenome database searches with extensive protein sequence and structure analysis to describe a distinct group of viruses with comparatively small genomes of 35-45 kilobases that appear to comprise a distinct class within the phylum Nucleocytoviricota that we provisionally named "Mriyaviricetes." Mriyaviruses appear to be the closest identified relatives of the ancestors of the Nucleocytoviricota. Analysis of proteins encoded in mriyavirus genomes suggests that they replicate their genome via the rolling circle mechanism that is unusual among viruses with double-stranded DNA genomes and so far not described for members of Nucleocytoviricota.
Collapse
Affiliation(s)
- Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Pascal Mutz
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Zheng J, Zeng J, Long H, Chen J, Liu K, Chen Y, Du X. Recombination and selection trajectory of the monkeypox virus during its adaptation in the human population. J Med Virol 2024; 96:e29825. [PMID: 39049554 DOI: 10.1002/jmv.29825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Monkeypox, caused by the monkeypox virus (MPXV), was historically confined to West and Central Africa but has now spread globally. Recombination and selection play crucial roles in the evolutionary adaptation of MPXV; however, the evolution of MPXV and its relationship with the recent, ground-breaking monkeypox epidemic remains poorly understood. To gain insights into the evolutionary dynamics of MPXV, comprehensive in silico recombination and selection analyses were conducted based on MPXV whole genome sequence data. Three types of recombination were identified: five ancestor-sharing interspecies recombination events, six specific interspecies recombination events and four intraspecies recombination events. The results highlight the prevalent occurrence of recombination in MPXV, with 73.3% occurring in variable regions of the genome. Selection analysis was performed from three dimensions: proteins around recombination regions, proteins from recombinant ancestors and MPXV branches, and whole-genome gene analysis. Results revealed 2 and 7 proteins under positive selection in the first two dimensions, respectively. These proteins are mainly involved in infection immunity, apoptosis regulation and viral virulence. Whole-genome analysis detected 25 genes under positive selection, mainly associated with immune response and viral regulation. Understanding their evolutionary patterns will help predict and prevent cross-species transmission, zoonotic outbreaks and potential human epidemics.
Collapse
Affiliation(s)
- Jialu Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jinfeng Zeng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Haoyu Long
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jian Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Kaijie Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yixiong Chen
- Department of Infectious Disease Prevention, Bao'an Center for Disease Control and Prevention, Shenzhen, P.R. China
| | - Xiangjun Du
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory of Pathogenic Microbes & Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Wen Q, Yin X, Moming A, Liu G, Jiang B, Wang J, Fan Z, Sajjad W, Ge Y, Kang S, Shen S, Deng F. Viral communities locked in high elevation permafrost up to 100 m in depth on the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172829. [PMID: 38692332 DOI: 10.1016/j.scitotenv.2024.172829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
Permafrost serves as a natural cold reservoir for viral communities. However, little is known about the viromes in deep permafrost soil, as most studies of permafrost were restricted to shallow areas. Here, permafrost soil samples of up to 100 m in depth were collected from two sites in the Tuotuo River permafrost area on the Tibetan Plateau. We investigated the viral composition in these permafrost soil samples and analyzed the relationship of viral composition and diversity along with depths. Our study revealed that greater permafrost thickness corresponds to higher diversity within the viral community. Bacteriophages were found to be the dominant viral communities, with "kill the winner" dynamics observed within the Siphoviridae and Myoviridae. The abundance and diversity of viral communities may follow a potential pattern along soil layers and depths, influenced by pH, trace elements, and permafrost thickness. Notably, strong correlations were discovered between the content of inorganic elements, including B, Mg, Cr, Bi, Ti, Na, Ni, and Cu, and the viral composition. Moreover, we discovered highly conserved sequences of giant viruses at depth of 10, 20, and 50 m in permafrost, which play a crucial role in evolutionary processes. These findings provide valuable insights into the viral community patterns from shallow to 100-m-depth in high-elevation permafrost, offering crucial data support for the formulation of strategies for permafrost thaw caused by climate change and anthropogenic activities.
Collapse
Affiliation(s)
- Qian Wen
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiufeng Yin
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China
| | - Abulimiti Moming
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Guanyue Liu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China
| | - Boyong Jiang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Jun Wang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Zhaojun Fan
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China
| | - Yingying Ge
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| | - Shu Shen
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China; Hubei Jiangxia Laboratory, 430200 Wuhan, China.
| | - Fei Deng
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China.
| |
Collapse
|
20
|
Fan S, Shen Y, Qian L. Social life of free-living amoebae in aquatic environment- comprehensive insights into interactions of free-living amoebae with neighboring microorganisms. Front Microbiol 2024; 15:1382075. [PMID: 38962117 PMCID: PMC11220160 DOI: 10.3389/fmicb.2024.1382075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Free-living amoebae (FLA) are prevalent in nature and man-made environments, and they can survive in harsh conditions by forming cysts. Studies have discovered that some FLA species are able to show pathogenicity to human health, leading to severe infections of central nervous systems, eyes, etc. with an extremely low rate of recovery. Therefore, it is imperative to establish a surveillance framework for FLA in environmental habitats. While many studies investigated the risks of independent FLA, interactions between FLA and surrounding microorganisms determined microbial communities in ecosystems and further largely influenced public health. Here we systematically discussed the interactions between FLA and different types of microorganisms and corresponding influences on behaviors and health risks of FLA in the environment. Specifically, bacteria, viruses, and eukaryotes can interact with FLA and cause either enhanced or inhibited effects on FLA infectivity, along with microorganism community changes. Therefore, considering the co-existence of FLA and other microorganisms in the environment is of great importance for reducing environmental health risks.
Collapse
Affiliation(s)
| | | | - Li Qian
- Department of Civil and Environmental Engineering, School of Engineering and Applied Science, The George Washington University, Washington, DC, United States
| |
Collapse
|
21
|
Maio N, Heffner AL, Rouault TA. Iron‑sulfur clusters in viral proteins: Exploring their elusive nature, roles and new avenues for targeting infections. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119723. [PMID: 38599324 PMCID: PMC11139609 DOI: 10.1016/j.bbamcr.2024.119723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Viruses have evolved complex mechanisms to exploit host factors for replication and assembly. In response, host cells have developed strategies to block viruses, engaging in a continuous co-evolutionary battle. This dynamic interaction often revolves around the competition for essential resources necessary for both host cell and virus replication. Notably, iron, required for the biosynthesis of several cofactors, including iron‑sulfur (FeS) clusters, represents a critical element in the ongoing competition for resources between infectious agents and host. Although several recent studies have identified FeS cofactors at the core of virus replication machineries, our understanding of their specific roles and the cellular processes responsible for their incorporation into viral proteins remains limited. This review aims to consolidate our current knowledge of viral components that have been characterized as FeS proteins and elucidate how viruses harness these versatile cofactors to their benefit. Its objective is also to propose that viruses may depend on incorporation of FeS cofactors more extensively than is currently known. This has the potential to revolutionize our understanding of viral replication, thereby carrying significant implications for the development of strategies to target infections.
Collapse
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | - Audrey L Heffner
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Alfonso P, Butković A, Fernández R, Riesgo A, Elena SF. Unveiling the hidden viromes across the animal tree of life: insights from a taxonomic classification pipeline applied to invertebrates of 31 metazoan phyla. mSystems 2024; 9:e0012424. [PMID: 38651902 PMCID: PMC11097642 DOI: 10.1128/msystems.00124-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Invertebrates constitute the majority of animal species on Earth, including most disease-causing agents or vectors, with more diverse viromes when compared to vertebrates. Recent advancements in high-throughput sequencing have significantly expanded our understanding of invertebrate viruses, yet this knowledge remains biased toward a few well-studied animal lineages. In this study, we analyze invertebrate DNA and RNA viromes for 31 phyla using 417 publicly available RNA-Seq data sets from diverse environments in the marine-terrestrial and marine-freshwater gradients. This study aims to (i) estimate virome compositions at the family level for the first time across the animal tree of life, including the first exploration of the virome in several phyla, (ii) quantify the diversity of invertebrate viromes and characterize the structure of invertebrate-virus infection networks, and (iii) investigate host phylum and habitat influence on virome differences. Results showed that a set of few viral families of eukaryotes, comprising Retroviridae, Flaviviridae, and several families of giant DNA viruses, were ubiquitous and highly abundant. Nevertheless, some differences emerged between phyla, revealing for instance a less diverse virome in Ctenophora compared to the other animal phyla. Compositional analysis of the viromes showed that the host phylum explained over five times more variance in composition than its habitat. Moreover, significant similarities were observed between the viromes of some phylogenetically related phyla, which could highlight the influence of co-evolution in shaping invertebrate viromes.IMPORTANCEThis study significantly enhances our understanding of the global animal virome by characterizing the viromes of previously unexamined invertebrate lineages from a large number of animal phyla. It showcases the great diversity of viromes within each phylum and investigates the role of habitat shaping animal viral communities. Furthermore, our research identifies dominant virus families in invertebrates and distinguishes phyla with analogous viromes. This study sets the road toward a deeper understanding of the virome across the animal tree of life.
Collapse
Affiliation(s)
- Pau Alfonso
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Paterna, València, Spain
| | - Anamarija Butković
- Institut Pasteur, Université Paris Cité, CNRS UMR6047 Archaeal Virology Unit, Paris, France
| | - Rosa Fernández
- Instituto de Biología Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Ana Riesgo
- Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
- Department of Life Sciences, Natural History Museum of London, London, United Kingdom
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Paterna, València, Spain
- The Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
23
|
Akashi M, Takemura M, Suzuki S. Continuous year-round isolation of giant viruses from brackish shoreline soils. Front Microbiol 2024; 15:1402690. [PMID: 38756730 PMCID: PMC11096492 DOI: 10.3389/fmicb.2024.1402690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Giant viruses, categorized under Nucleocytoviricota, are believed to exist ubiquitously in natural environments. However, comprehensive reports on isolated giant viruses remain scarce, with limited information available on unrecoverable strains, viral proliferation sites, and natural hosts. Previously, the author highlighted Pandoravirus hades, Pandoravirus persephone, and Mimivirus sp. styx, isolated from brackish water soil, as potential hotspots for giant virus multiplication. This study presents findings from nearly a year of monthly sampling within the same brackish water region after isolating the three aforementioned strains. This report details the recurrent isolation of a wide range of giant viruses. Each month, four soil samples were randomly collected from an approximately 5 × 10 m plot, comprising three soil samples and one water sample containing sediment from the riverbed. Acanthamoeba castellanii was used as a host for virus isolation. These efforts consistently yielded at least one viral species per month, culminating in a total of 55 giant virus isolates. The most frequently isolated species was Mimiviridae (24 isolates), followed by Marseilleviridae (23 isolates), Pandoravirus (6 isolates), and singular isolates of Pithovirus and Cedratvirus. Notably, viruses were not consistently isolated from any of the four samples every month, with certain sites yielding no viruses. Cluster analysis based on isolate numbers revealed that soil samples from May and water and sediment samples from January produced the highest number of viral strains. These findings underscore brackish coastal soil as a significant site for isolating numerous giant viruses, highlighting the non-uniform distribution along coastlines.
Collapse
Affiliation(s)
- Motohiro Akashi
- Department of Science and Technology, Faculty of Science and Technology, Seikei University, Tokyo, Japan
| | - Masaharu Takemura
- Institute of Arts and Sciences, Tokyo University of Science, Tokyo, Japan
| | - Seiichi Suzuki
- Department of Science and Technology, Faculty of Science and Technology, Seikei University, Tokyo, Japan
| |
Collapse
|
24
|
Alempic JM, Bisio H, Villalta A, Santini S, Lartigue A, Schmitt A, Bugnot C, Notaro A, Belmudes L, Adrait A, Poirot O, Ptchelkine D, De Castro C, Couté Y, Abergel C. Functional redundancy revealed by the deletion of the mimivirus GMC-oxidoreductase genes. MICROLIFE 2024; 5:uqae006. [PMID: 38659623 PMCID: PMC11042495 DOI: 10.1093/femsml/uqae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
The mimivirus 1.2 Mb genome was shown to be organized into a nucleocapsid-like genomic fiber encased in the nucleoid compartment inside the icosahedral capsid. The genomic fiber protein shell is composed of a mixture of two GMC-oxidoreductase paralogs, one of them being the main component of the glycosylated layer of fibrils at the surface of the virion. In this study, we determined the effect of the deletion of each of the corresponding genes on the genomic fiber and the layer of surface fibrils. First, we deleted the GMC-oxidoreductase, the most abundant in the genomic fiber, and determined its structure and composition in the mutant. As expected, it was composed of the second GMC-oxidoreductase and contained 5- and 6-start helices similar to the wild-type fiber. This result led us to propose a model explaining their coexistence. Then we deleted the GMC-oxidoreductase, the most abundant in the layer of fibrils, to analyze its protein composition in the mutant. Second, we showed that the fitness of single mutants and the double mutant were not decreased compared with the wild-type viruses under laboratory conditions. Third, we determined that deleting the GMC-oxidoreductase genes did not impact the glycosylation or the glycan composition of the layer of surface fibrils, despite modifying their protein composition. Because the glycosylation machinery and glycan composition of members of different clades are different, we expanded the analysis of the protein composition of the layer of fibrils to members of the B and C clades and showed that it was different among the three clades and even among isolates within the same clade. Taken together, the results obtained on two distinct central processes (genome packaging and virion coating) illustrate an unexpected functional redundancy in members of the family Mimiviridae, suggesting this may be the major evolutionary force behind their giant genomes.
Collapse
Affiliation(s)
- Jean-Marie Alempic
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (IGS), Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B, IOM), 13288 Marseille Cedex 9, France
| | - Hugo Bisio
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (IGS), Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B, IOM), 13288 Marseille Cedex 9, France
| | - Alejandro Villalta
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (IGS), Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B, IOM), 13288 Marseille Cedex 9, France
| | - Sébastien Santini
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (IGS), Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B, IOM), 13288 Marseille Cedex 9, France
| | - Audrey Lartigue
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (IGS), Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B, IOM), 13288 Marseille Cedex 9, France
| | - Alain Schmitt
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (IGS), Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B, IOM), 13288 Marseille Cedex 9, France
| | - Claire Bugnot
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (IGS), Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B, IOM), 13288 Marseille Cedex 9, France
| | - Anna Notaro
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Lucid Belmudes
- Univ. Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Annie Adrait
- Univ. Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Olivier Poirot
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (IGS), Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B, IOM), 13288 Marseille Cedex 9, France
| | - Denis Ptchelkine
- Aix–Marseille University, Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257 (IM2B), 13288 Marseille Cedex 9, France
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Yohann Couté
- Univ. Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Chantal Abergel
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (IGS), Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B, IOM), 13288 Marseille Cedex 9, France
| |
Collapse
|
25
|
Upadhyay M, Nair D, Moseley GW, Srivastava S, Kondabagil K. Giant Virus Global Proteomics Innovation: Comparative Evaluation of In-Gel and In-Solution Digestion Methods. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:170-181. [PMID: 38621149 DOI: 10.1089/omi.2024.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
With their unusually large genome and particle sizes, giant viruses (GVs) defy the conventional definition of viruses. Although most GVs isolated infect unicellular protozoans, such as amoeba, studies in the last decade have established their much wider prevalence infecting most eukaryotic supergroups and some giant viral families with the potential to be human pathogens. Their complexity, almost autonomous life cycle, and enigmatic evolution necessitate the study of GVs. The accurate assessment of GV proteome is a veritable challenge. We have compared the coverage of global protein identification using different methods for GVs isolated in Mumbai, Mimivirus Bombay (MVB), Powai Lake Megavirus (PLMV), and Kurlavirus (KV), along with two previously studied GVs, Acanthamoeba polyphaga Mimivirus (APMV) and Marseillevirus (MV). Our study shows that the simultaneous use of in-gel and in-solution digestion methods can significantly increase the coverage of protein identification in the global proteome analysis of purified GV particles. Combining the two methods of analyses, we identified an additional 72 proteins in APMV and 114 in MV compared with what have been previously reported. Similarly, proteomes of MVB, PLMV, and KV were analyzed, and a total of 242 proteins in MVB, 287 proteins in PLMV, and 174 proteins in KV were identified. Our results suggest that a combined methodology of in-gel and in-solution methods is more efficient and opens up new avenues for innovation in global proteome analysis of GVs. Future planetary health research on GVs can benefit from consideration of a broader range of proteomics methodologies as illustrated by the present study.
Collapse
Affiliation(s)
- Monica Upadhyay
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Divya Nair
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Gregory W Moseley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
26
|
Yutin N, Mutz P, Krupovic M, Koonin EV. Mriyaviruses: Small Relatives of Giant Viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582850. [PMID: 38529486 PMCID: PMC10962738 DOI: 10.1101/2024.02.29.582850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The phylum Nucleocytoviricota consists of large and giant viruses that range in genome size from about 100 kilobases (kb) to more than 2.5 megabases. Here, using metagenome mining followed by extensive phylogenomic analysis and protein structure comparison, we delineate a distinct group of viruses with double-stranded (ds) DNA genomes in the range of 35-45 kb that appear to be related to the Nucleocytoviricota. In phylogenetic trees of the conserved double jelly-roll major capsid proteins (MCP) and DNA packaging ATPases, these viruses do not show affinity to any particular branch of the Nucleocytoviricota and accordingly would comprise a class which we propose to name "Mriyaviricetes" (after Ukrainian Mriya, dream). Structural comparison of the MCP suggests that, among the extant virus lineages, mriyaviruses are the closest one to the ancestor of the Nucleocytoviricota. In the phylogenetic trees, mriyaviruses split into two well-separated branches, the family Yaraviridae and proposed new family "Gamadviridae". The previously characterized members of these families, Yaravirus and Pleurochrysis sp. endemic viruses, infect amoeba and haptophytes, respectively. The genomes of the rest of the mriyaviruses were assembled from metagenomes from diverse environments, suggesting that mriyaviruses infect various unicellular eukaryotes. Mriyaviruses lack DNA polymerase, which is encoded by all other members of the Nucleocytoviricota, and RNA polymerase subunits encoded by all cytoplasmic viruses among the Nucleocytoviricota, suggesting that they replicate in the host cell nuclei. All mriyaviruses encode a HUH superfamily endonuclease that is likely to be essential for the initiation of virus DNA replication via the rolling circle mechanism.
Collapse
Affiliation(s)
- Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Pascal Mutz
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris 75015, France
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| |
Collapse
|
27
|
Simón D, Ramos N, Lamolle G, Musto H. Two decades ago, giant viruses were discovered: the fall of an old paradigm. Front Microbiol 2024; 15:1356711. [PMID: 38463488 PMCID: PMC10920292 DOI: 10.3389/fmicb.2024.1356711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024] Open
Affiliation(s)
- Diego Simón
- Laboratorio de Genómica Evolutiva, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Montevideo, Uruguay
- Laboratorio de Virología Molecular, Facultad de Ciencias, Centro de Investigaciones Nucleares, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Natalia Ramos
- Sección Virología, Departamento de Biología Celular y Molecular, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Guillermo Lamolle
- Laboratorio de Genómica Evolutiva, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Montevideo, Uruguay
| | - Héctor Musto
- Laboratorio de Genómica Evolutiva, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Montevideo, Uruguay
| |
Collapse
|
28
|
Nino Barreat JG, Katzourakis A. Ecological and evolutionary dynamics of cell-virus-virophage systems. PLoS Comput Biol 2024; 20:e1010925. [PMID: 38377113 PMCID: PMC10906902 DOI: 10.1371/journal.pcbi.1010925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2024] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
Microbial eukaryotes, giant viruses and virophages form a unique hyperparasitic system. Virophages are parasites of the virus transcription machinery and can interfere with virus replication, resulting in a benefit to the eukaryotic host population. Surprisingly, virophages can integrate into the genomes of their cell or virus hosts, and have been shown to reactivate during coinfection. This raises questions about the role of integration in the dynamics of cell-virus-virophage systems. We use mathematical models and computational simulations to understand the effect of virophage integration on populations of cells and viruses. We also investigate multicellularity and programmed cell-death (PCD) as potential antiviral defence strategies used by cells. We found that virophages which enter the cell independently of the host virus, such as Mavirus, are expected to integrate commonly into the genomes of their cell hosts. Our models suggest that integrations from virophages without an independent mode of entry like Sputnik, are less likely to become fixed in the cell host population. Alternatively, we found that Sputnik virophages can stably persist integrated in the virus population, as long as they do not completely inhibit virus replication. We also show that increasing virophage inhibition can stabilise oscillatory dynamics, which may explain the long-term persistence of viruses and virophages in the environment. Our results demonstrate that inhibition by virophages and multicellularity are effective antiviral strategies that may act in synergy against viral infection in microbial species.
Collapse
Affiliation(s)
| | - Aris Katzourakis
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Zong G, Desfougères Y, Portela-Torres P, Kwon YU, Saiardi A, Shears SB, Wang H. Biochemical and structural characterization of an inositol pyrophosphate kinase from a giant virus. EMBO J 2024; 43:462-480. [PMID: 38216735 PMCID: PMC10897400 DOI: 10.1038/s44318-023-00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 01/14/2024] Open
Abstract
Kinases that synthesize inositol phosphates (IPs) and pyrophosphates (PP-IPs) control numerous biological processes in eukaryotic cells. Herein, we extend this cellular signaling repertoire to viruses. We have biochemically and structurally characterized a minimalist inositol phosphate kinase (i.e., TvIPK) encoded by Terrestrivirus, a nucleocytoplasmic large ("giant") DNA virus (NCLDV). We show that TvIPK can synthesize inositol pyrophosphates from a range of scyllo- and myo-IPs, both in vitro and when expressed in yeast cells. We present multiple crystal structures of enzyme/substrate/nucleotide complexes with individual resolutions from 1.95 to 2.6 Å. We find a heart-shaped ligand binding pocket comprising an array of positively charged and flexible side chains, underlying the observed substrate diversity. A crucial arginine residue in a conserved "G-loop" orients the γ-phosphate of ATP to allow substrate pyrophosphorylation. We highlight additional conserved catalytic and architectural features in TvIPK, and support their importance through site-directed mutagenesis. We propose that NCLDV inositol phosphate kinases may have assisted evolution of inositol pyrophosphate signaling, and we discuss the potential biogeochemical significance of TvIPK in soil niches.
Collapse
Affiliation(s)
- Guangning Zong
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Yann Desfougères
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Paloma Portela-Torres
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Yong-Uk Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK.
| | - Stephen B Shears
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| | - Huanchen Wang
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
30
|
Zhang L, Meng L, Fang Y, Ogata H, Okazaki Y. Spatiotemporal dynamics of giant viruses within a deep freshwater lake reveal a distinct dark-water community. THE ISME JOURNAL 2024; 18:wrae182. [PMID: 39312489 PMCID: PMC11465185 DOI: 10.1093/ismejo/wrae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/02/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
Giant viruses (GVs) significantly regulate the ecological dynamics of diverse ecosystems. Although metagenomics has expanded our understanding of their diversity and ecological roles played in marine environments, little is known about GVs of freshwater ecosystems. Most previous studies have employed short-read sequencing and therefore resulted in fragmented genomes, hampering accurate assessment of genetic diversity. We sought to bridge this knowledge gap and overcome previous technical limitations. We subjected spatiotemporal (2 depths × 12 months) samples from Lake Biwa to metagenome-assembled genome reconstruction enhanced by long-read metagenomics. This yielded 293 GV metagenome-assembled genomes. Of these, 285 included previously unknown species in five orders of nucleocytoviruses and the first representatives of freshwater mirusviruses, which exhibited marked divergence from marine-derived lineages. The good performance of our long-read metagenomic assembly was demonstrated by the detection of 42 (14.3%) genomes composed of single contigs with completeness values >90%. GVs were partitioned across water depths, with most species specific to either the sunlit epilimnion or the dark hypolimnion. Epilimnion-specific members tended to be transient and exhibit short and intense abundance peaks, in line with the fact that they regulate the surface algal blooms. During the spring bloom, mirusviruses and members of three nucleocytovirus families were among the most abundant viruses. In contrast, hypolimnion-specific ones, including a mirusvirus genome, were typically more persistent in the hypolimnion throughout the water-stratified period, suggesting that they infect hosts specific to the hypolimnion and play previously unexplored ecological roles in dark water microbial ecosystems.
Collapse
Affiliation(s)
- Liwen Zhang
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Lingjie Meng
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yue Fang
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yusuke Okazaki
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
31
|
Philippe N, Shukla A, Abergel C, Bisio H. Genetic manipulation of giant viruses and their host, Acanthamoeba castellanii. Nat Protoc 2024; 19:3-29. [PMID: 37964008 DOI: 10.1038/s41596-023-00910-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/25/2023] [Indexed: 11/16/2023]
Abstract
Giant viruses (GVs) provide an unprecedented source of genetic innovation in the viral world and are thus, besides their importance in basic and environmental virology, in the spotlight for bioengineering advances. Their host, Acanthamoeba castellanii, is an accidental human pathogen that acts as a natural host and environmental reservoir of other human pathogens. Tools for genetic manipulation of viruses and host were lacking. Here, we provide a detailed method for genetic manipulation of A. castellanii and the GVs it plays host to by using CRISPR-Cas9 or homologous recombination. We detail the steps of vector preparation (4 d), transfection of amoeba cells (1 h), infection (1 h), selection (5 d for viruses, 2 weeks for amoebas) and cloning of recombinant viruses (4 d) or amoebas (2 weeks). This procedure takes ~3 weeks or 1 month for the generation of recombinant viruses or amoebas, respectively. This methodology allows the generation of stable gene modifications, which was not possible by using RNA silencing, the only previously available reverse genetic tool. We also include detailed sample-preparation steps for protein localization by immunofluorescence (4 h), western blotting (4 h), quantification of viral particles by optical density (15 min), calculation of viral lethal dose 50 (7 d) and quantification of DNA replication by quantitative PCR (4 h) to allow efficient broad phenotyping of recombinant organisms. This methodology allows the function of thousands of ORFan genes present in GVs, as well as the complex pathogen-host, pathogen-pathogen or pathogen-symbiont interactions in A. castellanii, to be studied in vivo.
Collapse
Affiliation(s)
- Nadege Philippe
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Genomique & Structurale, Unite Mixte de Recherche 7256 (Institut de Microbiologie de la Mediterranee, FR3479, IM2B), Marseille, France
| | - Avi Shukla
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Genomique & Structurale, Unite Mixte de Recherche 7256 (Institut de Microbiologie de la Mediterranee, FR3479, IM2B), Marseille, France
| | - Chantal Abergel
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Genomique & Structurale, Unite Mixte de Recherche 7256 (Institut de Microbiologie de la Mediterranee, FR3479, IM2B), Marseille, France.
| | - Hugo Bisio
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Genomique & Structurale, Unite Mixte de Recherche 7256 (Institut de Microbiologie de la Mediterranee, FR3479, IM2B), Marseille, France.
| |
Collapse
|
32
|
Jung Y, Mitsuhashi T, Sato S, Senda M, Senda T, Fujita M. Function and Structure of a Terpene Synthase Encoded in a Giant Virus Genome. J Am Chem Soc 2023; 145:25966-25970. [PMID: 38010834 DOI: 10.1021/jacs.3c10603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Giant viruses are nonstandard viruses with large particles and genomes. While previous studies have shown that their genomes contain various sequences of interest, their genes related specifically to natural product biosynthesis remain unexplored. Here we analyze the function and structure of a terpene synthase encoded by the gene of a giant virus. The enzyme is phylogenetically separated from the terpene synthases of cellular organisms; however, heterologous gene expression revealed that it still functions as a terpene synthase and produces a cyclic terpene from a farnesyl diphosphate precursor. Crystallographic analysis revealed its protein structure, which is relatively compact but retains essential motifs of the terpene synthases. We thus suggest that like cellular organisms, giant viruses produce and utilize natural products for their ecological strategies.
Collapse
Affiliation(s)
- Youngcheol Jung
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab, Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Takaaki Mitsuhashi
- Division of Advanced Molecular Science, Institute for Molecular Science (IMS), Okazaki, Aichi 444-8787, Japan
| | - Sota Sato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab, Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
- Division of Advanced Molecular Science, Institute for Molecular Science (IMS), Okazaki, Aichi 444-8787, Japan
| | - Miki Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab, Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
- Division of Advanced Molecular Science, Institute for Molecular Science (IMS), Okazaki, Aichi 444-8787, Japan
- Tokyo College, Institutes for Advanced Study, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| |
Collapse
|
33
|
Talbert PB, Henikoff S, Armache KJ. Giant variations in giant virus genome packaging. Trends Biochem Sci 2023; 48:1071-1082. [PMID: 37777391 DOI: 10.1016/j.tibs.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023]
Abstract
Giant viruses (Nucleocytoviricota) have a largely conserved lifecycle, yet how they cram their large genomes into viral capsids is mostly unknown. The major capsid protein and the packaging ATPase (pATPase) comprise a highly conserved morphogenesis module in giant viruses, yet some giant viruses dispense with an icosahedral capsid, and others encode multiple versions of pATPases, including conjoined ATPase doublets, or encode none. Some giant viruses have acquired DNA-condensing proteins to compact their genomes, including sheath-like structures encasing folded DNA or densely packed viral nucleosomes that show a resemblance to eukaryotic nucleosomes at the telomeres. Here, we review what is known and unknown about these ATPases and condensing proteins, and place these variations in the context of viral lifecycles.
Collapse
Affiliation(s)
- Paul B Talbert
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Karim-Jean Armache
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
34
|
Vogel J, de Lorenzo V. EAM highlights in FEMS 2023: from the Petri dish to planet Earth. MICROLIFE 2023; 4:uqad045. [PMID: 38107236 PMCID: PMC10723851 DOI: 10.1093/femsml/uqad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 12/19/2023]
Abstract
On 9-13 July 2023, the 10th FEMS Congress took place in Hamburg, Germany. As part of this major event in European microbiology, the European Academy of Microbiology (EAM) organized two full sessions. One of these sessions aimed to highlight the research of four recently elected EAM fellows and saw presentations on bacterial group behaviours and development of resistance to antibiotics, as well as on new RNA viruses including bacteriophages and giant viruses of amoebae. The other session included five frontline environmental microbiologists who showcased real-world examples of how human activities have disrupted the balance in microbial ecosystems, not just to assess the current situation but also to explore fresh approaches for coping with external disturbances. Both sessions were very well attended, and no doubt helped to gain the EAM and its fellows more visibility.
Collapse
Affiliation(s)
- Jörg Vogel
- Helmholtz Center for Infection Research, Helmholtz Institute for RNA-based Infection Research and Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Victor de Lorenzo
- Systems Biology Department, National Center of Biotechnology CSIC, Madrid, Spain
| |
Collapse
|
35
|
Hikida H, Okazaki Y, Zhang R, Nguyen TT, Ogata H. A rapid genome-wide analysis of isolated giant viruses using MinION sequencing. Environ Microbiol 2023; 25:2621-2635. [PMID: 37543720 DOI: 10.1111/1462-2920.16476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/20/2023] [Indexed: 08/07/2023]
Abstract
Following the discovery of Acanthamoeba polyphaga mimivirus, diverse giant viruses have been isolated. However, only a small fraction of these isolates have been completely sequenced, limiting our understanding of the genomic diversity of giant viruses. MinION is a portable and low-cost long-read sequencer that can be readily used in a laboratory. Although MinION provides highly error-prone reads that require correction through additional short-read sequencing, recent studies assembled high-quality microbial genomes only using MinION sequencing. Here, we evaluated the accuracy of MinION-only genome assemblies for giant viruses by re-sequencing a prototype marseillevirus. Assembled genomes presented over 99.98% identity to the reference genome with a few gaps, demonstrating a high accuracy of the MinION-only assembly. As a proof of concept, we de novo assembled five newly isolated viruses. Average nucleotide identities to their closest known relatives suggest that the isolates represent new species of marseillevirus, pithovirus and mimivirus. The assembly of subsampled reads demonstrated that their taxonomy and genomic composition could be analysed at the 50× sequencing coverage. We also identified a pithovirus gene whose homologues were detected only in metagenome-derived relatives. Collectively, we propose that MinION-only assembly is an effective approach to rapidly perform a genome-wide analysis of isolated giant viruses.
Collapse
Affiliation(s)
- Hiroyuki Hikida
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Yusuke Okazaki
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Ruixuan Zhang
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Thi Tuyen Nguyen
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
36
|
de Aquino ILM, Barcelos MG, Machado TB, Serafim MSM, Abrahão JS. Surface fibrils on the particles of nucleocytoviruses: A review. Exp Biol Med (Maywood) 2023; 248:2045-2052. [PMID: 37955170 PMCID: PMC10800130 DOI: 10.1177/15353702231208410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023] Open
Abstract
The capsid has a central role in viruses' life cycle. Although one of its major functions is to protect the viral genome, the capsid may be composed of elements that, at some point, promote interaction with host cells and trigger infection. Considering the scenario of multiple origins of viruses along the viral evolution, a substantial number of capsid shapes, sizes, and symmetries have been described. In this context, capsids of giant viruses (GV) that infect protists have drawn the attention of the scientific community, especially in the last 20 years, specifically for having bacterial-like dimensions with hundreds of different proteins and exclusive features. For instance, the surface fibrils present on the mimivirus capsid are one of the most intriguing features of the known virosphere. They are 150-nm-long structures attached to a 450-nm capsid, resulting in a particle with a hairy appearance. Surface fibrils have also been described in the capsids of other nucleocytoviruses, although they may differ substantially among them. In this mini review for non-experts, we compile the most important available information on surface fibrils of nucleocytoviruses, discussing their putative functions, composition, length, organization, and origins.
Collapse
Affiliation(s)
- Isabella Luiza Martins de Aquino
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Matheus Gomes Barcelos
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Talita Bastos Machado
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Mateus Sá Magalhães Serafim
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| |
Collapse
|
37
|
Campillo-Balderas JA, Lazcano A, Cottom-Salas W, Jácome R, Becerra A. Pangenomic Analysis of Nucleo-Cytoplasmic Large DNA Viruses. I: The Phylogenetic Distribution of Conserved Oxygen-Dependent Enzymes Reveals a Capture-Gene Process. J Mol Evol 2023; 91:647-668. [PMID: 37526693 PMCID: PMC10598087 DOI: 10.1007/s00239-023-10126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 06/21/2023] [Indexed: 08/02/2023]
Abstract
The Nucleo-Cytoplasmic Large DNA Viruses (NCLDVs) infect a wide range of eukaryotic species, including amoeba, algae, fish, amphibia, arthropods, birds, and mammals. This group of viruses has linear or circular double-stranded DNA genomes whose size spans approximately one order of magnitude, from 100 to 2500 kbp. The ultimate origin of this peculiar group of viruses remains an open issue. Some have argued that NCLDVs' origin may lie in a bacteriophage ancestor that increased its genome size by subsequent recruitment of eukaryotic and bacterial genes. Others have suggested that NCLDVs families originated from cells that underwent an irreversible process of genome reduction. However, the hypothesis that a number of NCLDVs sequences have been recruited from the host genomes has been largely ignored. In the present work, we have performed pangenomic analyses of each of the seven known NCLDVs families. We show that these families' core- and shell genes have cellular homologs, supporting possible escaping-gene events as part of its evolution. Furthermore, the detection of sequences that belong to two protein families (small chain ribonucleotide reductase and Erv1/Air) and to one superfamily [2OG-Fe(II) oxygenases] that are for distribution in all NCLDVs core and shell clusters encoding for oxygen-dependent enzymes suggests that the highly conserved core these viruses originated after the Proterozoic Great Oxidation Event that transformed the terrestrial atmosphere 2.4-2.3 Ga ago.
Collapse
Affiliation(s)
- J A Campillo-Balderas
- Facultad de Ciencias, UNAM, Cd. Universitaria, Apdo. Postal 70-407, 04510, Mexico City, DF, Mexico
| | - A Lazcano
- Facultad de Ciencias, UNAM, Cd. Universitaria, Apdo. Postal 70-407, 04510, Mexico City, DF, Mexico
- El Colegio Nacional, Donceles 104, Centro Histórico, 06020, Mexico City, CP, Mexico
| | - W Cottom-Salas
- Facultad de Ciencias, UNAM, Cd. Universitaria, Apdo. Postal 70-407, 04510, Mexico City, DF, Mexico
- Escuela Nacional Preparatoria, Plantel 8 Miguel E. Schulz, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - R Jácome
- Facultad de Ciencias, UNAM, Cd. Universitaria, Apdo. Postal 70-407, 04510, Mexico City, DF, Mexico
| | - A Becerra
- Facultad de Ciencias, UNAM, Cd. Universitaria, Apdo. Postal 70-407, 04510, Mexico City, DF, Mexico.
| |
Collapse
|
38
|
Moniruzzaman M, Erazo Garcia MP, Farzad R, Ha AD, Jivaji A, Karki S, Sheyn U, Stanton J, Minch B, Stephens D, Hancks DC, Rodrigues RAL, Abrahao JS, Vardi A, Aylward FO. Virologs, viral mimicry, and virocell metabolism: the expanding scale of cellular functions encoded in the complex genomes of giant viruses. FEMS Microbiol Rev 2023; 47:fuad053. [PMID: 37740576 PMCID: PMC10583209 DOI: 10.1093/femsre/fuad053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023] Open
Abstract
The phylum Nucleocytoviricota includes the largest and most complex viruses known. These "giant viruses" have a long evolutionary history that dates back to the early diversification of eukaryotes, and over time they have evolved elaborate strategies for manipulating the physiology of their hosts during infection. One of the most captivating of these mechanisms involves the use of genes acquired from the host-referred to here as viral homologs or "virologs"-as a means of promoting viral propagation. The best-known examples of these are involved in mimicry, in which viral machinery "imitates" immunomodulatory elements in the vertebrate defense system. But recent findings have highlighted a vast and rapidly expanding array of other virologs that include many genes not typically found in viruses, such as those involved in translation, central carbon metabolism, cytoskeletal structure, nutrient transport, vesicular trafficking, and light harvesting. Unraveling the roles of virologs during infection as well as the evolutionary pathways through which complex functional repertoires are acquired by viruses are important frontiers at the forefront of giant virus research.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Maria Paula Erazo Garcia
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Roxanna Farzad
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Anh D Ha
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Abdeali Jivaji
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Sangita Karki
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Uri Sheyn
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Joshua Stanton
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Benjamin Minch
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Danae Stephens
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, United States
| | - Rodrigo A L Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Jonatas S Abrahao
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
39
|
Lad SB, Upadhyay M, Thorat P, Nair D, Moseley GW, Srivastava S, Pradeepkumar PI, Kondabagil K. Biochemical Reconstitution of the Mimiviral Base Excision Repair Pathway. J Mol Biol 2023; 435:168188. [PMID: 37380013 DOI: 10.1016/j.jmb.2023.168188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
Viruses are believed to be the obligate intracellular parasites that only carry genes essential for infecting and hijacking the host cell machinery. However, a recently discovered group of viruses belonging to the phylum nucleocytovirocota, also known as the nucleo-cytoplasmic large DNA viruses (NCLDVs), possess a number of genes that code for proteins predicted to be involved in metabolism, and DNA replication, and repair. In the present study, first, using proteomics of viral particles, we show that several proteins required for the completion of the DNA base excision repair (BER) pathway are packaged within the virions of Mimivirus as well as related viruses while they are absent from the virions of Marseillevirus and Kurlavirus that are NCLDVs with smaller genomes. We have thoroughly characterized three putative base excision repair enzymes from Mimivirus, a prototype NCLDV and successfully reconstituted the BER pathway using the purified recombinant proteins. The mimiviral uracil-DNA glycosylase (mvUDG) excises uracil from both ssDNA and dsDNA, a novel finding contrary to earlier studies. The putative AP-endonuclease (mvAPE) specifically cleaves at the abasic site created by the glycosylase while also exhibiting the 3'-5' exonuclease activity. The Mimivirus polymerase X protein (mvPolX) can bind to gapped DNA substrates and perform single nucleotide gap-filling followed by downstream strand displacement. Furthermore, we show that when reconstituted in vitro, mvUDG, mvAPE, and mvPolX function cohesively to repair a uracil-containing DNA predominantly by long patch BER and together, may participate in the BER pathway during the early phase of Mimivirus life-cycle.
Collapse
Affiliation(s)
- Shailesh B Lad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India. https://twitter.com/shailesh2603
| | - Monica Upadhyay
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India; Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia. https://twitter.com/upadhyaymonica
| | - Pracheta Thorat
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Divya Nair
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Gregory W Moseley
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India. https://twitter.com/sanjeeva_IITB
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India. https://twitter.com/pradeepkumarpi
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| |
Collapse
|
40
|
Prosdocimi F, Cortines JR, José MV, Farias ST. Decoding viruses: An alternative perspective on their history, origins and role in nature. Biosystems 2023; 231:104960. [PMID: 37437771 DOI: 10.1016/j.biosystems.2023.104960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/14/2023]
Abstract
This article provides an alternative perspective on viruses, exploring their origins, ecology, and evolution. Viruses are recognized as the most prevalent biological entities on Earth, permeating nearly all environments and forming the virosphere-a significant biological layer. They play a crucial role in regulating bacterial populations within ecosystems and holobionts, influencing microbial communities and nutrient recycling. Viruses are also key drivers of molecular evolution, actively participating in the maintenance and regulation of ecosystems and cellular organisms. Many eukaryotic genomes contain genomic elements with viral origins, which contribute to organismal equilibrium and fitness. Viruses are involved in the generation of species-specific orphan genes, facilitating adaptation and the development of unique traits in biological lineages. They have been implicated in the formation of vital structures like the eukaryotic nucleus and the mammalian placenta. The presence of virus-specific genes absent in cellular organisms suggests that viruses may pre-date cellular life. Like progenotes, viruses are ribonucleoprotein entities with simpler capsid architectures compared to proteolipidic membranes. This article presents a comprehensive scenario describing major transitions in prebiotic evolution and proposes that viruses emerged prior to the Last Universal Common Ancestor (LUCA) during the progenote era. However, it is important to note that viruses do not form a monophyletic clade, and many viral taxonomic groups originated more recently as reductions of cellular structures. Thus, viral architecture should be seen as an ancient and evolutionarily stable strategy adopted by biological systems. The goal of this article is to reshape perceptions of viruses, highlighting their multifaceted significance in the complex tapestry of life and fostering a deeper understanding of their origins, ecological impact, and evolutionary dynamics.
Collapse
Affiliation(s)
- Francisco Prosdocimi
- Laboratório de Biologia Teórica e de Sistemas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Juliana Reis Cortines
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - Marco V José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CDMX, Mexico
| | - Sávio Torres Farias
- Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil; Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds, LS7 3RB, UK
| |
Collapse
|
41
|
Gaïa M, Forterre P. From Mimivirus to Mirusvirus: The Quest for Hidden Giants. Viruses 2023; 15:1758. [PMID: 37632100 PMCID: PMC10458455 DOI: 10.3390/v15081758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Our perception of viruses has been drastically evolving since the inception of the field of virology over a century ago. In particular, the discovery of giant viruses from the Nucleocytoviricota phylum marked a pivotal moment. Their previously concealed diversity and abundance unearthed an unprecedented complexity in the virus world, a complexity that called for new definitions and concepts. These giant viruses underscore the intricate interactions that unfold over time between viruses and their hosts, and are themselves suspected to have played a significant role as a driving force in the evolution of eukaryotes since the dawn of this cellular domain. Whether they possess exceptional relationships with their hosts or whether they unveil the actual depths of evolutionary connections between viruses and cells otherwise hidden in smaller viruses, the attraction giant viruses exert on the scientific community and beyond continues to grow. Yet, they still hold surprises. Indeed, the recent identification of mirusviruses connects giant viruses to herpesviruses, each belonging to distinct viral realms. This discovery substantially broadens the evolutionary landscape of Nucleocytoviricota. Undoubtedly, the years to come will reveal their share of surprises.
Collapse
Affiliation(s)
- Morgan Gaïa
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75012 Paris, France
| | - Patrick Forterre
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
- Département de Microbiologie, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
42
|
Queiroz VF, Carvalho JVRP, de Souza FG, Lima MT, Santos JD, Rocha KLS, de Oliveira DB, Araújo JP, Ullmann LS, Rodrigues RAL, Abrahão JS. Analysis of the Genomic Features and Evolutionary History of Pithovirus-Like Isolates Reveals Two Major Divergent Groups of Viruses. J Virol 2023; 97:e0041123. [PMID: 37395647 PMCID: PMC10373538 DOI: 10.1128/jvi.00411-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/09/2023] [Indexed: 07/04/2023] Open
Abstract
New representatives of the phylum Nucleocytoviricota have been rapidly described in the last decade. Despite this, not all viruses of this phylum are allocated to recognized taxonomic families, as is the case for orpheovirus, pithovirus, and cedratvirus, which form the proposed family Pithoviridae. In this study, we performed comprehensive comparative genomic analyses of 8 pithovirus-like isolates, aiming to understand their common traits and evolutionary history. Structural and functional genome annotation was performed de novo for all the viruses, which served as a reference for pangenome construction. The synteny analysis showed substantial differences in genome organization between these viruses, with very few and short syntenic blocks shared between orpheovirus and its relatives. It was possible to observe an open pangenome with a significant increase in the slope when orpheovirus was added, alongside a decrease in the core genome. Network analysis placed orpheovirus as a distant and major hub with a large fraction of unique clusters of orthologs, indicating a distant relationship between this virus and its relatives, with only a few shared genes. Additionally, phylogenetic analyses of strict core genes shared with other viruses of the phylum reinforced the divergence of orpheovirus from pithoviruses and cedratviruses. Altogether, our results indicate that although pithovirus-like isolates share common features, this group of ovoid-shaped giant viruses presents substantial differences in gene contents, genomic architectures, and the phylogenetic history of several core genes. Our data indicate that orpheovirus is an evolutionarily divergent viral entity, suggesting its allocation to a different viral family, Orpheoviridae. IMPORTANCE Giant viruses that infect amoebae form a monophyletic group named the phylum Nucleocytoviricota. Despite being genomically and morphologically very diverse, the taxonomic categories of some clades that form this phylum are not yet well established. With advances in isolation techniques, the speed at which new giant viruses are described has increased, escalating the need to establish criteria to define the emerging viral taxa. In this work, we performed a comparative genomic analysis of representatives of the putative family Pithoviridae. Based on the dissimilarity of orpheovirus from the other viruses of this putative family, we propose that orpheovirus be considered a member of an independent family, Orpheoviridae, and suggest criteria to demarcate families consisting of ovoid-shaped giant viruses.
Collapse
Affiliation(s)
- Victória F. Queiroz
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - João Victor R. P. Carvalho
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda G. de Souza
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maurício T. Lima
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliane D. Santos
- Laboratório de Doenças Infecciosas e Parasitárias, Programa de pós graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Kamila L. S. Rocha
- Laboratório de Doenças Infecciosas e Parasitárias, Programa de pós graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Danilo B. de Oliveira
- Laboratório de Doenças Infecciosas e Parasitárias, Programa de pós graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - João Pessoa Araújo
- Laboratório de Virologia, Departamento de Microbiologia e Imunologia, Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Leila Sabrina Ullmann
- Laboratório de Virologia, Departamento de Microbiologia e Imunologia, Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
- Laboratório de Virologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Rodrigo A. L. Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jônatas S. Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
43
|
Tekle YI, Tran H, Wang F, Singla M, Udu I. Omics of an Enigmatic Marine Amoeba Uncovers Unprecedented Gene Trafficking from Giant Viruses and Provides Insights into Its Complex Life Cycle. MICROBIOLOGY RESEARCH 2023; 14:656-672. [PMID: 37752971 PMCID: PMC10521059 DOI: 10.3390/microbiolres14020047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
Amoebozoa include lineages of diverse ecology, behavior, and morphology. They are assumed to encompass members with the largest genome sizes of all living things, yet genomic studies in the group are limited. Trichosphaerium, a polymorphic, multinucleate, marine amoeba with a complicated life cycle, has puzzled experts for over a century. In an effort to explore the genomic diversity and investigate extraordinary behavior observed among the Amoebozoa, we used integrated omics approaches to study this enigmatic marine amoeba. Omics data, including single-cell transcriptomics and cytological data, demonstrate that Trichosphaerium sp. possesses the complete meiosis toolkit genes. These genes are expressed in life stages of the amoeba including medium and large cells. The life cycle of Trichosphaerium sp. involves asexual processes via binary fission and multiple fragmentation of giant cells, as well as sexual-like processes involving genes implicated in sexual reproduction and polyploidization. These findings are in stark contrast to a life cycle previously reported for this amoeba. Despite the extreme morphological plasticity observed in Trichosphaerium, our genomic data showed that populations maintain a species-level intragenomic variation. A draft genome of Trichosphaerium indicates elevated lateral gene transfer (LGT) from bacteria and giant viruses. Gene trafficking in Trichosphaerium is the highest within Amoebozoa and among the highest in microbial eukaryotes.
Collapse
Affiliation(s)
- Yonas I. Tekle
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314, USA
| | - Hanh Tran
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314, USA
| | - Fang Wang
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314, USA
| | - Mandakini Singla
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314, USA
| | - Isimeme Udu
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314, USA
| |
Collapse
|
44
|
W B Jr M, A S R, P M, F B. Cellular and Natural Viral Engineering in Cognition-Based Evolution. Commun Integr Biol 2023; 16:2196145. [PMID: 37153718 PMCID: PMC10155641 DOI: 10.1080/19420889.2023.2196145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/23/2023] [Indexed: 05/10/2023] Open
Abstract
Neo-Darwinism conceptualizes evolution as the continuous succession of predominately random genetic variations disciplined by natural selection. In that frame, the primary interaction between cells and the virome is relegated to host-parasite dynamics governed by selective influences. Cognition-Based Evolution regards biological and evolutionary development as a reciprocating cognition-based informational interactome for the protection of self-referential cells. To sustain cellular homeorhesis, cognitive cells collaborate to assess the validity of ambiguous biological information. That collective interaction involves coordinate measurement, communication, and active deployment of resources as Natural Cellular Engineering. These coordinated activities drive multicellularity, biological development, and evolutionary change. The virome participates as the vital intercessory among the cellular domains to ensure their shared permanent perpetuation. The interactions between the virome and the cellular domains represent active virocellular cross-communications for the continual exchange of resources. Modular genetic transfers between viruses and cells carry bioactive potentials. Those exchanges are deployed as nonrandom flexible tools among the domains in their continuous confrontation with environmental stresses. This alternative framework fundamentally shifts our perspective on viral-cellular interactions, strengthening established principles of viral symbiogenesis. Pathogenesis can now be properly appraised as one expression of a range of outcomes between cells and viruses within a larger conceptual framework of Natural Viral Engineering as a co-engineering participant with cells. It is proposed that Natural Viral Engineering should be viewed as a co-existent facet of Natural Cellular Engineering within Cognition-Based Evolution.
Collapse
Affiliation(s)
- Miller W B Jr
- Banner Health Systems - Medicine, Paradise Valley, Arizona, AZ, USA
| | - Reber A S
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Marshall P
- Department of Engineering, Evolution 2.0, Oak Park, IL, USA
| | - Baluška F
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| |
Collapse
|
45
|
Abstract
Soil viruses are highly abundant and have important roles in the regulation of host dynamics and soil ecology. Climate change is resulting in unprecedented changes to soil ecosystems and the life forms that reside there, including viruses. In this Review, we explore our current understanding of soil viral diversity and ecology, and we discuss how climate change (such as extended and extreme drought events or more flooding and altered precipitation patterns) is influencing soil viruses. Finally, we provide our perspective on future research needs to better understand how climate change will impact soil viral ecology.
Collapse
Affiliation(s)
- Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Ruonan Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
46
|
Ha AD, Moniruzzaman M, Aylward FO. Assessing the biogeography of marine giant viruses in four oceanic transects. ISME COMMUNICATIONS 2023; 3:43. [PMID: 37120676 PMCID: PMC10148842 DOI: 10.1038/s43705-023-00252-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Viruses of the phylum Nucleocytoviricota are ubiquitous in ocean waters and play important roles in shaping the dynamics of marine ecosystems. In this study, we leveraged the bioGEOTRACES metagenomic dataset collected across the Atlantic and Pacific Oceans to investigate the biogeography of these viruses in marine environments. We identified 330 viral genomes, including 212 in the order Imitervirales and 54 in the order Algavirales. We found that most viruses appeared to be prevalent in shallow waters (<150 m), and that viruses of the Mesomimiviridae (Imitervirales) and Prasinoviridae (Algavirales) are by far the most abundant and diverse groups in our survey. Five mesomimiviruses and one prasinovirus are particularly widespread in oligotrophic waters; annotation of these genomes revealed common stress response systems, photosynthesis-associated genes, and oxidative stress modulation genes that may be key to their broad distribution in the pelagic ocean. We identified a latitudinal pattern in viral diversity in one cruise that traversed the North and South Atlantic Ocean, with viral diversity peaking at high latitudes of the northern hemisphere. Community analyses revealed three distinct Nucleocytoviricota communities across latitudes, categorized by latitudinal distance towards the equator. Our results contribute to the understanding of the biogeography of these viruses in marine systems.
Collapse
Affiliation(s)
- Anh D Ha
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Mohammad Moniruzzaman
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, USA.
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
47
|
Weitao T, Grandinetti G, Guo P. Revolving ATPase motors as asymmetrical hexamers in translocating lengthy dsDNA via conformational changes and electrostatic interactions in phi29, T7, herpesvirus, mimivirus, E. coli, and Streptomyces. EXPLORATION (BEIJING, CHINA) 2023; 3:20210056. [PMID: 37324034 PMCID: PMC10191066 DOI: 10.1002/exp.20210056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/28/2022] [Indexed: 06/17/2023]
Abstract
Investigations of the parallel architectures of biomotors in both prokaryotic and eukaryotic systems suggest a similar revolving mechanism in the use of ATP to drive translocation of the lengthy double-stranded (ds)DNA genomes. This mechanism is exemplified by the dsDNA packaging motor of bacteriophage phi29 that operates through revolving but not rotating dsDNA to "Push through a one-way valve". This unique and novel revolving mechanism discovered in phi29 DNA packaging motor was recently reported in other systems including the dsDNA packaging motor of herpesvirus, the dsDNA ejecting motor of bacteriophage T7, the plasmid conjugation machine TraB in Streptomyces, the dsDNA translocase FtsK of gram-negative bacteria, and the genome-packaging motor in mimivirus. These motors exhibit an asymmetrical hexameric structure for transporting the genome via an inch-worm sequential action. This review intends to delineate the revolving mechanism from a perspective of conformational changes and electrostatic interactions. In phi29, the positively charged residues Arg-Lys-Arg in the N-terminus of the connector bind the negatively charged interlocking domain of pRNA. ATP binding to an ATPase subunit induces the closed conformation of the ATPase. The ATPase associates with an adjacent subunit to form a dimer facilitated by the positively charged arginine finger. The ATP-binding induces a positive charging on its DNA binding surface via an allostery mechanism and thus the higher affinity for the negatively charged dsDNA. ATP hydrolysis induces an expanded conformation of the ATPase with a lower affinity for dsDNA due to the change of the surface charge, but the (ADP+Pi)-bound subunit in the dimer undergoes a conformational change that repels dsDNA. The positively charged lysine rings of the connector attract dsDNA stepwise and periodically to keep its revolving motion along the channel wall, thus maintaining the one-way translocation of dsDNA without reversal and sliding out. The finding of the presence of the asymmetrical hexameric architectures of many ATPases that use the revolving mechanism may provide insights into the understanding of translocation of the gigantic genomes including chromosomes in complicated systems without coiling and tangling to speed up dsDNA translocation and save energy.
Collapse
Affiliation(s)
- Tao Weitao
- UT Southwestern Medical CenterCenter for the Genetics of Host DefenseDallasTXUSA
- College of Science and MathematicsSouthwest Baptist UniversityBolivarMOUSA
| | - Giovanna Grandinetti
- Center for Electron Microscopy and AnalysisThe Ohio State UniversityColumbusOHUSA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and NanomedicineDivision of Pharmaceutics and Pharmacology, College of PharmacyDorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of MedicineThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
48
|
Volpe E, Errani F, Mandrioli L, Ciulli S. Advances in Viral Aquatic Animal Disease Knowledge: The Molecular Methods' Contribution. BIOLOGY 2023; 12:biology12030466. [PMID: 36979158 PMCID: PMC10045235 DOI: 10.3390/biology12030466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Aquaculture is the fastest-growing food-producing sector, with a global production of 122.6 million tonnes in 2020. Nonetheless, aquatic animal production can be hampered by the occurrence of viral diseases. Furthermore, intensive farming conditions and an increasing number of reared fish species have boosted the number of aquatic animals' pathogens that researchers have to deal with, requiring the quick development of new detection and study methods for novel unknown pathogens. In this respect, the molecular tools have significantly contributed to investigating thoroughly the structural constituents of fish viruses and providing efficient detection methods. For instance, next-generation sequencing has been crucial in reassignment to the correct taxonomic family, the sturgeon nucleo-cytoplasmic large DNA viruses, a group of viruses historically known, but mistakenly considered as iridoviruses. Further methods such as in situ hybridisation allowed objectifying the role played by the pathogen in the determinism of disease, as the cyprinid herpesvirus 2, ostreid herpesvirus 1 and betanodaviruses. Often, a combination of molecular techniques is crucial to understanding the viral role, especially when the virus is detected in a new aquatic animal species. With this paper, the authors would critically revise the scientific literature, dealing with the molecular techniques employed hitherto to study the most relevant finfish and shellfish viral pathogens.
Collapse
Affiliation(s)
- Enrico Volpe
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| | - Francesca Errani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| | - Luciana Mandrioli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| | - Sara Ciulli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| |
Collapse
|
49
|
Mayers KMJ, Kuhlisch C, Basso JTR, Saltvedt MR, Buchan A, Sandaa RA. Grazing on Marine Viruses and Its Biogeochemical Implications. mBio 2023; 14:e0192121. [PMID: 36715508 PMCID: PMC9973340 DOI: 10.1128/mbio.01921-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Viruses are the most abundant biological entities in the ocean and show great diversity in terms of size, host specificity, and infection cycle. Lytic viruses induce host cell lysis to release their progeny and thereby redirect nutrients from higher to lower trophic levels. Studies continue to show that marine viruses can be ingested by nonhost organisms. However, not much is known about the role of viral particles as a nutrient source and whether they possess a nutritional value to the grazing organisms. This review seeks to assess the elemental composition and biogeochemical relevance of marine viruses, including roseophages, which are a highly abundant group of bacteriophages in the marine environment. We place a particular emphasis on the phylum Nucleocytoviricota (NCV) (formerly known as nucleocytoplasmic large DNA viruses [NCLDVs]), which comprises some of the largest viral particles in the marine plankton that are well in the size range of prey for marine grazers. Many NCVs contain lipid membranes in their capsid that are rich carbon and energy sources, which further increases their nutritional value. Marine viruses may thus be an important nutritional component of the marine plankton, which can be reintegrated into the classical food web by nonhost organism grazing, a process that we coin the "viral sweep." Possibilities for future research to resolve this process are highlighted and discussed in light of current technological advancements.
Collapse
Affiliation(s)
- Kyle M. J. Mayers
- Environment and Climate Division, NORCE Norwegian Research Centre, Bergen, Norway
| | - Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jonelle T. R. Basso
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | | | - Alison Buchan
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | - Ruth-Anne Sandaa
- Department of Microbiology, University of Bergen, Bergen, Norway
| |
Collapse
|
50
|
Alempic JM, Lartigue A, Goncharov AE, Grosse G, Strauss J, Tikhonov AN, Fedorov AN, Poirot O, Legendre M, Santini S, Abergel C, Claverie JM. An Update on Eukaryotic Viruses Revived from Ancient Permafrost. Viruses 2023; 15:564. [PMID: 36851778 PMCID: PMC9958942 DOI: 10.3390/v15020564] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
One quarter of the Northern hemisphere is underlain by permanently frozen ground, referred to as permafrost. Due to climate warming, irreversibly thawing permafrost is releasing organic matter frozen for up to a million years, most of which decomposes into carbon dioxide and methane, further enhancing the greenhouse effect. Part of this organic matter also consists of revived cellular microbes (prokaryotes, unicellular eukaryotes) as well as viruses that have remained dormant since prehistorical times. While the literature abounds on descriptions of the rich and diverse prokaryotic microbiomes found in permafrost, no additional report about "live" viruses have been published since the two original studies describing pithovirus (in 2014) and mollivirus (in 2015). This wrongly suggests that such occurrences are rare and that "zombie viruses" are not a public health threat. To restore an appreciation closer to reality, we report the preliminary characterizations of 13 new viruses isolated from seven different ancient Siberian permafrost samples, one from the Lena river and one from Kamchatka cryosol. As expected from the host specificity imposed by our protocol, these viruses belong to five different clades infecting Acanthamoeba spp. but not previously revived from permafrost: Pandoravirus, Cedratvirus, Megavirus, and Pacmanvirus, in addition to a new Pithovirus strain.
Collapse
Affiliation(s)
- Jean-Marie Alempic
- IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489), Institut Microbiologie, Bioénergies et Biotechnologie, and Institut Origines, CNRS, Aix Marseille University, 13288 Marseille, France
| | - Audrey Lartigue
- IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489), Institut Microbiologie, Bioénergies et Biotechnologie, and Institut Origines, CNRS, Aix Marseille University, 13288 Marseille, France
| | - Artemiy E. Goncharov
- Department of Molecular Microbiology, Institute of Experimental Medicine, Department of Epidemiology, Parasitology and Disinfectology, Northwestern State Medical Mechnikov University, Saint Petersburg 195067, Russia
| | - Guido Grosse
- Permafrost Research Section, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 14473 Potsdam, Germany
- Institute of Geosciences, University of Potsdam, 14478 Potsdam, Germany
| | - Jens Strauss
- Permafrost Research Section, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 14473 Potsdam, Germany
| | - Alexey N. Tikhonov
- Laboratory of Theriology, Zoological Institute of Russian Academy of Science, Saint Petersburg 199034, Russia
| | | | - Olivier Poirot
- IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489), Institut Microbiologie, Bioénergies et Biotechnologie, and Institut Origines, CNRS, Aix Marseille University, 13288 Marseille, France
| | - Matthieu Legendre
- IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489), Institut Microbiologie, Bioénergies et Biotechnologie, and Institut Origines, CNRS, Aix Marseille University, 13288 Marseille, France
| | - Sébastien Santini
- IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489), Institut Microbiologie, Bioénergies et Biotechnologie, and Institut Origines, CNRS, Aix Marseille University, 13288 Marseille, France
| | - Chantal Abergel
- IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489), Institut Microbiologie, Bioénergies et Biotechnologie, and Institut Origines, CNRS, Aix Marseille University, 13288 Marseille, France
| | - Jean-Michel Claverie
- IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489), Institut Microbiologie, Bioénergies et Biotechnologie, and Institut Origines, CNRS, Aix Marseille University, 13288 Marseille, France
| |
Collapse
|