1
|
Pritchard FG, Jordan CJC, Verlet JRR. Probing photochemical dynamics using electronic vs vibrational sum-frequency spectroscopy: The case of the hydrated electron at the water/air interface. J Chem Phys 2024; 161:170901. [PMID: 39484892 DOI: 10.1063/5.0235875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024] Open
Abstract
Photo-dynamics can proceed differently at the water/air interface compared to in the respective bulk phases. Second-order non-linear spectroscopy is capable of selectively probing the dynamics of species in such an environment. However, certain conclusions drawn from vibrational and electronic sum-frequency generation spectroscopies do not agree as is the case for the formation and structure of hydrated electrons at the interface. This Perspective aims to highlight these apparent discrepancies, how they can be reconciled, suggests how the two techniques complement one another, and outline the value of performing both techniques on the same system.
Collapse
Affiliation(s)
- Faith G Pritchard
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Caleb J C Jordan
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
2
|
Borrelli W, Guardado Sandoval JL, Mei KJ, Schwartz BJ. Roles of H-Bonding and Hydride Solvation in the Reaction of Hydrated (Di)electrons with Water to Create H 2 and OH . J Chem Theory Comput 2024; 20. [PMID: 39110603 PMCID: PMC11360129 DOI: 10.1021/acs.jctc.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024]
Abstract
Even though single hydrated electrons (ehyd-'s) are stable in liquid water, two hydrated electrons can bimolecularly react with water to create H2 and hydroxide: ehyd- + ehyd- + 2H2O → H2 + 2OH-. The rate of this reaction has an unusual temperature and isotope dependence as well as no dependence on ionic strength, which suggests that cosolvation of two electrons as a single hydrated dielectron (e2,hyd2-) might be an important intermediate in the mechanism of this reaction. Here, we present an ab initio density functional theory study of this reaction to better understand the potential properties, reactivity, and experimental accessibility of hydrated dielectrons. Our simulations create hydrated dielectrons by first simulating single ehyd-'s and then injecting a second electron, providing a well-defined time zero for e2,hyd2- formation and offering insight into a potential experimental route to creating dielectrons and optically inducing the reaction. We find that e2,hyd2- immediately forms in every member of our ensemble of trajectories, allowing us to study the molecular mechanism of H2 and OH- formation. The subsequent reaction involves separate proton transfer steps with a generally well-defined hydride subintermediate. The time scales for both proton transfer steps are quite broad, with the first proton transfer step spanning times over a few ps, while the second proton transfer step varies over ∼150 fs. We find that the first proton transfer rate is dictated by whether or not the reacting water is part of an H-bond chain that allows the newly created OH- to rapidly move by Grotthuss-type proton hopping to minimize electrostatic repulsion with H-. The second proton transfer step depends significantly on the degree of solvation of H-, leading to a wide range of reactive geometries where the two waters involved can lie either across the dielectron cavity or more adjacent to each other. This also allows the two proton transfer events to take place either effectively concertedly or sequentially, explaining differing views that have been presented in the literature.
Collapse
Affiliation(s)
- William
R. Borrelli
- Department of Chemistry & Biochemistry, University of California, Los Angeles Los Angeles, California 90095-1569, United
States
| | - José L. Guardado Sandoval
- Department of Chemistry & Biochemistry, University of California, Los Angeles Los Angeles, California 90095-1569, United
States
| | - Kenneth J. Mei
- Department of Chemistry & Biochemistry, University of California, Los Angeles Los Angeles, California 90095-1569, United
States
| | - Benjamin J. Schwartz
- Department of Chemistry & Biochemistry, University of California, Los Angeles Los Angeles, California 90095-1569, United
States
| |
Collapse
|
3
|
Clarke CJ, Verlet JRR. Dynamics of Anions: From Bound to Unbound States and Everything In Between. Annu Rev Phys Chem 2024; 75:89-110. [PMID: 38277700 DOI: 10.1146/annurev-physchem-090722-125031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Gas-phase anions present an ideal playground for the exploration of excited-state dynamics. They offer control in terms of the mass, extent of solvation, internal temperature, and conformation. The application of a range of ion sources has opened the field to a vast array of anionic systems whose dynamics are important in areas ranging from biology to star formation. Here, we review recent experimental developments in the field of anion photodynamics, demonstrating the detailed insight into photodynamical and electron-capture processes that can be uncovered. We consider the electronic and nuclear ultrafast dynamics of electronically bound excited states along entire reaction coordinates; electronically unbound states showing that photochemical concepts, such as chromophores and Kasha's rule, are transferable to electron-driven chemistry; and nonvalence states that straddle the interface between bound and unbound states. Finally, we consider likely developments that are sure to keep the field of anion dynamics buoyant and impactful.
Collapse
Affiliation(s)
- Connor J Clarke
- Department of Chemistry, Durham University, Durham, United Kingdom;
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham, United Kingdom;
| |
Collapse
|
4
|
Sedmidubská B, Kočišek J. Interaction of low-energy electrons with radiosensitizers. Phys Chem Chem Phys 2024; 26:9112-9136. [PMID: 38376461 DOI: 10.1039/d3cp06003a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
We provide an experimentalist's perspective on the present state-of-the-art in the studies of low-energy electron interactions with common radiosensitizers, including compounds used in combined chemo-radiation therapy and their model systems. Low-energy electrons are important secondary species formed during the interaction of ionizing radiation with matter. Their role in the radiation chemistry of living organisms has become an important topic for more than 20 years. With the increasing number of works and reviews in the field, we would like to focus here on a very narrow area of compounds that have been shown to have radio-sensitizing properties on the one hand, and high reactivity towards low-energy electrons on the other hand. Gas phase experiments studying electron attachment to isolated molecules and environmental effects on reaction dynamics are reviewed for modified DNA components, nitroimidazoles, and organometallics. In the end, we provide a perspective on the future directions that may be important for transferring the fundamental knowledge about the processes induced by low-energy electrons into practice in the field of rational design of agents for concomitant chemo-radiation therapy.
Collapse
Affiliation(s)
- Barbora Sedmidubská
- J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, 182223 Prague, Czech Republic.
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 11519 Prague, Czech Republic
- Institut de Chimie Physique, UMR 8000 CNRS and Faculté des sciences d'Orsay, Université Paris Saclay, F-91405 Orsay Cedex, France
| | - Jaroslav Kočišek
- J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, 182223 Prague, Czech Republic.
| |
Collapse
|
5
|
Mato J, Willow SY, Werhahn JC, Xantheas SS. The Back Door to the Surface Hydrated Electron. J Phys Chem Lett 2023; 14:8221-8226. [PMID: 37672781 DOI: 10.1021/acs.jpclett.3c01479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
We use a Mg+ metal to extend the size regime of aqueous clusters to extrapolate to the bulk limit of the vertical detachment energy (VDE) of the solvated electron to >3,200, a value between 1 to over 2 orders of magnitude larger than the one previously measured experimentally or computed theoretically. We relate the VDE to the energy difference between the Mg+(H2O)n and Mg2+(H2O)n systems and the metal's second ionization potential. The extrapolated bulk VDEs of the localized surface electron, which moves away from the metal as n increases, are 1.89 ± 0.01 eV for semiempirical (n ∼ 3,200; PM6-D3H4) and 1.73 ± 0.03 eV (n ∼ 150; HF) and 1.83 ± 0.02 eV (n ∼ 150; MP2) for ab initio, in excellent agreement with the 1.6-1.8 eV range of experimental results. The VDEs converge from above (larger values) to the bulk limit, in a manner that is qualitatively opposite from previous studies and experiments lacking a charged metal, a fact justifying the "back door" approach to the solvated electron.
Collapse
Affiliation(s)
- Joani Mato
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS J7-10, Richland, Washington 99352, United States
| | - Soohaeng Yoo Willow
- Department of Energy Science, Sungkyunkwan University, Seobu-ro 2066, Suwon 16419, Republic of Korea
| | - Jasper C Werhahn
- Department of Physics E11, Technical University of Munich, James-Franck-Strasse, D-85748 Garching, Germany
| | - Sotiris S Xantheas
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS J7-10, Richland, Washington 99352, United States
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
van der Linde C, Ončák M, Cunningham EM, Tang WK, Siu CK, Beyer MK. Surface or Internal Hydration - Does It Really Matter? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:337-354. [PMID: 36744598 PMCID: PMC9983018 DOI: 10.1021/jasms.2c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The precise location of an ion or electron, whether it is internally solvated or residing on the surface of a water cluster, remains an intriguing question. Subtle differences in the hydrogen bonding network may lead to a preference for one or the other. Here we discuss spectroscopic probes of the structure of gas-phase hydrated ions in combination with quantum chemistry, as well as H/D exchange as a means of structure elucidation. With the help of nanocalorimetry, we look for thermochemical signatures of surface vs internal solvation. Examples of strongly size-dependent reactivity are reviewed which illustrate the influence of surface vs internal solvation on unimolecular rearrangements of the cluster, as well as on the rate and product distribution of ion-molecule reactions.
Collapse
Affiliation(s)
- Christian van der Linde
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020Innsbruck, Austria
| | - Milan Ončák
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020Innsbruck, Austria
| | - Ethan M. Cunningham
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020Innsbruck, Austria
| | - Wai Kit Tang
- Institute
of Research Management and Services (IPPP), Research and Innovation
Management Complex, University of Malaya, Kuala Lumpur50603, Malaysia
| | - Chi-Kit Siu
- Department
of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, PR China
| | - Martin K. Beyer
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020Innsbruck, Austria
| |
Collapse
|
7
|
Jiang Y, Cai Z, Yuan Q, Cao W, Hu Z, Sun H, Wang XB, Sun Z. Highly Structured Water Networks in Microhydrated Dodecaborate Clusters. J Phys Chem Lett 2022; 13:11787-11794. [PMID: 36516831 DOI: 10.1021/acs.jpclett.2c03537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We report a combined photoelectron spectroscopy and theoretical investigation of a series of size-selected hydrated closo-dodecaborate clusters B12X122-·nH2O (X = H, F, or I; n = 1-6). Distinct structural arrangements of water clusters from monomer to hexamer can be achieved by using different B12X122- bases, illustrating the evident solute specificity. Because B-H···H-O dihydrogen bonds are stronger than O···H-O hydrogen bonds in water, the added water molecules are arranged in a unified binding mode by forming highly structured water networks manipulated by B12H122-. As a comparison, the hydrated B12F122- clusters display similar water evolution for n values of 1 and 2 but different binding modes for larger clusters, while water networks in B12I122- share similarities with the free water clusters. This finding provides a consistent picture of the structural diversity of hydrogen bonding networks in microhydrated dodecaborates and a molecular-level understanding of microsolvation dynamics in aqueous borate chemistry.
Collapse
Affiliation(s)
- Yanrong Jiang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Zhaojie Cai
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Qinqin Yuan
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| | - Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
8
|
Solti D, Chapkin KD, Renard D, Bayles A, Clark BD, Wu G, Zhou J, Tsai AL, Kürti L, Nordlander P, Halas NJ. Plasmon-Generated Solvated Electrons for Chemical Transformations. J Am Chem Soc 2022; 144:20183-20189. [DOI: 10.1021/jacs.2c07768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David Solti
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Kyle D. Chapkin
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - David Renard
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Aaron Bayles
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Benjamin D. Clark
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Gang Wu
- Department of Internal Medicine, The University of Texas McGovern Medical School, Houston, Texas 77030, United States
| | - Jingyi Zhou
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Ah-Lim Tsai
- Department of Internal Medicine, The University of Texas McGovern Medical School, Houston, Texas 77030, United States
| | - László Kürti
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Peter Nordlander
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Naomi J. Halas
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
9
|
Ahmadi S. Hydrated electrons and cluster science. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Sanov A. Intermolecular interactions in cluster anions. INT REV PHYS CHEM 2021. [DOI: 10.1080/0144235x.2021.1983292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Andrei Sanov
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
11
|
Narvaez WA, Schwartz BJ. Ab Initio Simulations of Poorly and Well Equilibrated (CH 3CN) n- Cluster Anions: Assigning Experimental Photoelectron Peaks to Surface-Bound Electrons and Solvated Monomer and Dimer Anions. J Phys Chem A 2021; 125:7685-7693. [PMID: 34432443 DOI: 10.1021/acs.jpca.1c05855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Excess electrons in liquid acetonitrile are of particular interest because they exist in two different forms in equilibrium: they can be present as traditional solvated electrons in a cavity, and they can form some type of solvated molecular anion. Studies of small acetonitrile cluster anions in the gas phase show two isomers with distinct vertical detachment energies, and it is tempting to presume that the two gas-phase cluster anion isomers are precursors of the two excess electron species present in bulk solution. In this paper, we perform DFT-based ab initio molecular dynamics simulations of acetonitrile cluster anions to understand the electronic species that are present and why they have different binding energies. Using a long-range-corrected density functional that was optimally tuned to describe acetonitrile cluster anion structures, we have theoretically explored the chemistry of (CH3CN)n- cluster anions with sizes n = 5, 7, and 10. Because the temperature of the experimental cluster anions is not known, we performed two sets of simulations that investigated how the way in which the cluster anions are prepared affects the excess electron binding motif: one set of simulations simply attached excess electrons to neutral (CH3CN)n clusters, providing little opportunity for the clusters to relax in the presence of the excess electron, while the other set allowed the cluster anions to thermally equilibrate near room temperature. We find that both sets of simulations show three distinct electron binding motifs: electrons can attach to the surface of the cluster (dipole-bound) or be present either as solvated monomer anions, CH3CN-, or as solvated molecular dimer anions, (CH3CN)2-. All three species have higher binding energies at larger cluster sizes. Thermal equilibration strongly favors the formation of the valence-bound molecular anions relative to surface-bound excess electrons, and the dimer anion becomes more stable than the monomer anion and surface-bound species as the cluster size increases. The calculated photoelectron spectra from our simulations in which there was poor thermal equilibration are in good agreement with experiment, suggesting assignment of the two experimental cluster anion isomers as the surface-bound electron and the solvated molecular dimer anion. The simulations also suggest that the shoulder seen experimentally on the low-energy isomer's detachment peak is not part of a vibronic progression but instead results from molecular monomer anions. Nowhere in the size range that we explore do we see evidence for a nonvalence, cavity-bound interior-solvated electron, indicating that this species is likely only accessible at larger sizes with good thermal equilibration.
Collapse
Affiliation(s)
- Wilberth A Narvaez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Benjamin J Schwartz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
12
|
Brito BGA, Verde EL, Hai GQ, Cândido L. Probing the ground-state structural transition in small lithium clusters by quantum Monte Carlo simulations. J Mol Model 2021; 27:207. [PMID: 34169387 DOI: 10.1007/s00894-021-04810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/31/2021] [Indexed: 11/26/2022]
Abstract
The ground-state structural transition in small lithium clusters Lin (n = 4 - 6) is analyzed based on the many-body expansion of the interaction energy using the total energy calculated by the fixed-node diffusion Monte Carlo (FN-DMC) simulations. The results show that the transition from 2D to 3D structure occurs through an intricate competition of attractive and repulsive interaction energies. As the structure dimensionality increases from 2D to 3D, the electron-correlation contribution to the interaction energy in the isomer of the ground-state structure is always the largest.
Collapse
Affiliation(s)
- B G A Brito
- Departamento de Física, Instituto de Ciências Exatas e Naturais e Educação (ICENE), Universidade Federal do Triângulo Mineiro - UFTM, 38064-200, Uberaba, MG, Brazil
| | - E L Verde
- Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, 3500, Pontal do Araguaia, MT, Brazil
| | - G-Q Hai
- Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970, São Carlos, SP, Brazil
| | - L Cândido
- Instituto de Física, Universidade Federal de Goiás - UFG, 74001-970, Goiânia, GO, Brazil.
| |
Collapse
|
13
|
Dauletyarov Y, Sanov A. Weak covalent interactions and anionic charge-sharing polymerisation in cluster environments. Phys Chem Chem Phys 2021; 23:11596-11610. [PMID: 33982051 DOI: 10.1039/d1cp01213d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discuss the formation of weak covalent bonds leading to anionic charge-sharing dimerisation or polymerisation in microscopic cluster environments. The covalent bonding between cluster building blocks is described in terms of coherent charge sharing, conceptualised using a coupled-monomers molecular-orbital model. The model assumes first-order separability of the inter- and intra-monomer bonding structures. Combined with a Hückel-style formalism adapted to weak covalent and solvation interactions, it offers insight into the competition between the two types of forces and illuminates the properties of the inter-monomer orbitals responsible for charge-sharing dimerisation and polymerisation. Under typical conditions, the cumulative effect of solvation obstructs the polymerisation, limiting the size of covalently bound core anions.
Collapse
Affiliation(s)
- Yerbolat Dauletyarov
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, USA.
| | - Andrei Sanov
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, USA.
| |
Collapse
|
14
|
Bie C, Yu H, Cheng B, Ho W, Fan J, Yu J. Design, Fabrication, and Mechanism of Nitrogen-Doped Graphene-Based Photocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003521. [PMID: 33458902 DOI: 10.1002/adma.202003521] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/13/2020] [Indexed: 06/12/2023]
Abstract
Solving energy and environmental problems through solar-driven photocatalysis is an attractive and challenging topic. Hence, various types of photocatalysts have been developed successively to address the demands of photocatalysis. Graphene-based materials have elicited considerable attention since the discovery of graphene. As a derivative of graphene, nitrogen-doped graphene (NG) particularly stands out. Nitrogen atoms can break the undifferentiated structure of graphene and open the bandgap while endowing graphene with an uneven electron density distribution. Therefore, NG retains nearly all the advantages of original graphene and is equipped with several novel properties, ensuring infinite possibilities for NG-based photocatalysis. This review introduces the atomic and band structures of NG, summarizes in situ and ex situ synthesis methods, highlights the mechanism and advantages of NG in photocatalysis, and outlines its applications in different photocatalysis directions (primarily hydrogen production, CO2 reduction, pollutant degradation, and as photoactive ingredient). Lastly, the central challenges and possible improvements of NG-based photocatalysis in the future are presented. This study is expected to learn from the past and achieve progress toward the future for NG-based photocatalysis.
Collapse
Affiliation(s)
- Chuanbiao Bie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| | - Huogen Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Bei Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wingkei Ho
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N. T., Hong Kong, 999077, P. R. China
| | - Jiajie Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| |
Collapse
|
15
|
Li G, Wang C, Zheng HJ, Wang TT, Xie H, Yang XM, Jiang L. Infrared spectroscopy of neutral clusters based on a vacuum ultraviolet free electron laser. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2101018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-jun Zheng
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-tong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xue-ming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
16
|
Infrared spectroscopic study of hydrogen bonding topologies in the smallest ice cube. Nat Commun 2020; 11:5449. [PMID: 33116144 PMCID: PMC7595032 DOI: 10.1038/s41467-020-19226-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/21/2020] [Indexed: 12/03/2022] Open
Abstract
The water octamer with its cubic structure consisting of six four-membered rings presents an excellent cluster system for unraveling the cooperative interactions driven by subtle changes in the hydrogen-bonding topology. Despite prediction of many distinct structures, it has not been possible to extract the structural information encoded in their vibrational spectra because this requires size-selectivity of the neutral clusters with sufficient resolution to identify the contributions of the different isomeric forms. Here we report the size-specific infrared spectra of the isolated cold, neutral water octamer using a scheme based on threshold photoionization using a tunable vacuum ultraviolet free electron laser. A plethora of sharp vibrational bands features are observed. Theoretical analysis of these patterns reveals the coexistence of five cubic isomers, including two with chirality. The relative energies of these structures are found to reflect topology-dependent, delocalized multi-center hydrogen-bonding interactions. These results demonstrate that even with a common structural motif, the degree of cooperativity among the hydrogen-bonding network creates a hierarchy of distinct species. The implications of these results on possible metastable forms of ice are speculated. Spectroscopic studies of water clusters provide insight into the hydrogen bond structure of water and ice. The authors measure infrared spectra of neutral water octamers using a threshold photoionization technique based on a tunable vacuum-UV free electron laser, identifying two cubic isomers in addition to those previously observed.
Collapse
|
17
|
Lapointe F, Wolf M, Campen RK, Tong Y. Probing the Birth and Ultrafast Dynamics of Hydrated Electrons at the Gold/Liquid Water Interface via an Optoelectronic Approach. J Am Chem Soc 2020; 142:18619-18627. [PMID: 32954719 PMCID: PMC7596759 DOI: 10.1021/jacs.0c08289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The hydrated electron
has fundamental and practical significance
in radiation and radical chemistry, catalysis, and radiobiology. While
its bulk properties have been extensively studied, its behavior at
solid/liquid interfaces is still unclear due to the lack of effective
tools to characterize this short-lived species in between two condensed
matter layers. In this study, we develop a novel optoelectronic technique
for the characterization of the birth and structural evolution of
solvated electrons at the metal/liquid interface with a femtosecond
time resolution. Using this tool, we record for the first time the
transient spectra (in a photon energy range from 0.31 to 1.85 eV) in situ with a time resolution of 50 fs revealing several
novel aspects of their properties at the interface. Especially the
transient species show state-dependent optical transition behaviors
from being isotropic in the hot state to perpendicular to the surface
in the trapped and solvated states. The technique will enable a better
understanding of hot electron driven reactions at electrochemical
interfaces.
Collapse
Affiliation(s)
- François Lapointe
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Martin Wolf
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - R Kramer Campen
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.,Faculty of Physics, University of Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg, Germany
| | - Yujin Tong
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.,Faculty of Physics, University of Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg, Germany
| |
Collapse
|
18
|
Infrared spectroscopy of neutral water clusters at finite temperature: Evidence for a noncyclic pentamer. Proc Natl Acad Sci U S A 2020; 117:15423-15428. [PMID: 32541029 DOI: 10.1073/pnas.2000601117] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Infrared spectroscopic study of neutral water clusters is crucial to understanding of the hydrogen-bonding networks in liquid water and ice. Here we report infrared spectra of size-selected neutral water clusters, (H2O) n (n = 3-6), in the OH stretching vibration region, based on threshold photoionization using a tunable vacuum ultraviolet free-electron laser. Distinct OH stretch vibrational fundamentals observed in the 3,500-3,600-cm-1 region of (H2O)5 provide unique spectral signatures for the formation of a noncyclic pentamer, which coexists with the global-minimum cyclic structure previously identified in the gas phase. The main features of infrared spectra of the pentamer and hexamer, (H2O) n (n = 5 and 6), span the entire OH stretching band of liquid water, suggesting that they start to exhibit the richness and diversity of hydrogen-bonding networks in bulk water.
Collapse
|
19
|
Zhang B, Yu Y, Zhang Z, Zhang YY, Jiang S, Li Q, Yang S, Hu HS, Zhang W, Dai D, Wu G, Li J, Zhang DH, Yang X, Jiang L. Infrared Spectroscopy of Neutral Water Dimer Based on a Tunable Vacuum Ultraviolet Free Electron Laser. J Phys Chem Lett 2020; 11:851-855. [PMID: 31944117 DOI: 10.1021/acs.jpclett.9b03683] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Infrared (IR) spectroscopy provides detailed structural and dynamical information on clusters at the fingerprint level. Herein, we demonstrate the capability of a tunable vacuum ultraviolet free electron laser (VUV-FEL) for selective detection of a wide variety of neutral water clusters and for recording the size-dependent IR spectra. The present technique does not require the presence of an ultraviolet chromophore or a dipole moment and is generally applicable for IR spectroscopy of neutral clusters free from confinement. To show the features of our technique, we report here the IR spectra of neutral water dimer in the OH stretch region, providing benchmarks for theoretical study of the accurate description of hydrogen bonding structures involved in liquid water and ice. Quantum mechanical calculations on a 12-dimensional ab initio potential energy surface are utilized to simulate the anharmonic vibrational spectra of water dimer. These results help to resolve the controversy of the exact vibrational assignment of each band feature of the water dimer.
Collapse
Affiliation(s)
- Bingbing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials , Dalian Institute of Chemical Physics , Chinese Academy of Sciences, 457 Zhongshan Road , Dalian 116023 , China
| | - Yong Yu
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials , Dalian Institute of Chemical Physics , Chinese Academy of Sciences, 457 Zhongshan Road , Dalian 116023 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials , Dalian Institute of Chemical Physics , Chinese Academy of Sciences, 457 Zhongshan Road , Dalian 116023 , China
| | - Yang-Yang Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Shukang Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials , Dalian Institute of Chemical Physics , Chinese Academy of Sciences, 457 Zhongshan Road , Dalian 116023 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Qinming Li
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials , Dalian Institute of Chemical Physics , Chinese Academy of Sciences, 457 Zhongshan Road , Dalian 116023 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Shuo Yang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials , Dalian Institute of Chemical Physics , Chinese Academy of Sciences, 457 Zhongshan Road , Dalian 116023 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Han-Shi Hu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Weiqing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials , Dalian Institute of Chemical Physics , Chinese Academy of Sciences, 457 Zhongshan Road , Dalian 116023 , China
| | - Dongxu Dai
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials , Dalian Institute of Chemical Physics , Chinese Academy of Sciences, 457 Zhongshan Road , Dalian 116023 , China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials , Dalian Institute of Chemical Physics , Chinese Academy of Sciences, 457 Zhongshan Road , Dalian 116023 , China
| | - Jun Li
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry , Tsinghua University , Beijing 100084 , China
- Department of Chemistry, School of Science , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials , Dalian Institute of Chemical Physics , Chinese Academy of Sciences, 457 Zhongshan Road , Dalian 116023 , China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials , Dalian Institute of Chemical Physics , Chinese Academy of Sciences, 457 Zhongshan Road , Dalian 116023 , China
- Department of Chemistry, School of Science , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials , Dalian Institute of Chemical Physics , Chinese Academy of Sciences, 457 Zhongshan Road , Dalian 116023 , China
| |
Collapse
|
20
|
Svoboda V, Michiels R, LaForge AC, Med J, Stienkemeier F, Slavíček P, Wörner HJ. Real-time observation of water radiolysis and hydrated electron formation induced by extreme-ultraviolet pulses. SCIENCE ADVANCES 2020; 6:eaaz0385. [PMID: 32010776 PMCID: PMC6968931 DOI: 10.1126/sciadv.aaz0385] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/26/2019] [Indexed: 05/17/2023]
Abstract
The dominant pathway of radiation damage begins with the ionization of water. Thus far, however, the underlying primary processes could not be conclusively elucidated. Here, we directly study the earliest steps of extreme ultraviolet (XUV)-induced water radiolysis through one-photon excitation of large water clusters using time-resolved photoelectron imaging. Results are presented for H2O and D2O clusters using femtosecond pump pulses centered at 133 or 80 nm. In both excitation schemes, hydrogen or proton transfer is observed to yield a prehydrated electron within 30 to 60 fs, followed by its solvation in 0.3 to 1.0 ps and its decay through geminate recombination on a ∼10-ps time scale. These results are interpreted by comparison with detailed multiconfigurational non-adiabatic ab-initio molecular dynamics calculations. Our results provide the first comprehensive picture of the primary steps of radiation chemistry and radiation damage and demonstrate new approaches for their study with unprecedented time resolution.
Collapse
Affiliation(s)
- Vít Svoboda
- Laboratory of Physical Chemistry, ETH-Zürich, 8093 Zürich, Switzerland
| | - Rupert Michiels
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - Aaron C. LaForge
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - Jakub Med
- Department of Physical chemistry, UCT Prague, 16628 Prague, Czech Republic
| | | | - Petr Slavíček
- Department of Physical chemistry, UCT Prague, 16628 Prague, Czech Republic
| | - Hans Jakob Wörner
- Laboratory of Physical Chemistry, ETH-Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
21
|
Herburger A, Barwa E, Ončák M, Heller J, van der Linde C, Neumark DM, Beyer MK. Probing the Structural Evolution of the Hydrated Electron in Water Cluster Anions (H 2O) n-, n ≤ 200, by Electronic Absorption Spectroscopy. J Am Chem Soc 2019; 141:18000-18003. [PMID: 31651160 PMCID: PMC6856957 DOI: 10.1021/jacs.9b10347] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Electronic
absorption spectra of water cluster anions (H2O)n–, n ≤
200, at T = 80 K are obtained by photodissociation
spectroscopy and compared with simulations from literature and experimental
data for bulk hydrated electrons. Two almost isoenergetic electron
binding motifs are seen for cluster sizes 20 ≤ n ≤ 40, which are assigned to surface and partially embedded
isomers. With increasing cluster size, the surface isomer becomes
less populated, and for n ≥ 50, the partially
embedded isomer prevails. The absorption shifts to the blue, reaching
a plateau at n ≈ 100. In this size range,
the absorption spectrum is similar to that of the bulk hydrated electron
but is slightly red-shifted; spectral moment analysis indicates that
these clusters are reasonable model systems for hydrated electrons
near the liquid–vacuum interface.
Collapse
Affiliation(s)
- Andreas Herburger
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| | - Erik Barwa
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| | - Jakob Heller
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| | - Daniel M Neumark
- Department of Chemistry , University of California , Berkeley , California 94720 , United States.,Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| |
Collapse
|
22
|
Chen Z, Tian H, Li H, Li J, Hong R, Sheng F, Wang C, Gu C. Application of surfactant modified montmorillonite with different conformation for photo-treatment of perfluorooctanoic acid by hydrated electrons. CHEMOSPHERE 2019; 235:1180-1188. [PMID: 31561309 DOI: 10.1016/j.chemosphere.2019.07.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a class of highly persistent contaminants with high bioaccumulation and toxicity. Our previous studies showed that perfluorooctanoic acid (PFOA) can be completely defluorinated under UV irradiation in organo-montmorillonite/indole acetic acid (IAA) system. However, there is still lack of information for the degradation mechanism and the test for wastewater treatment. Here, we systematically investigated the defluorination reaction in the presence of different organo-montmorillonites and found that the degradation process was apparently controlled by the configuration of surfactants. In hexadecyltrimethyl ammonium (HDTMA)-modified montmorillonite, HDTMA exists as a tilt conformation and isolated clay interlayer from the aqueous solution, protecting hydrated electrons generated by photo-irradiation of IAA from quenching by oxygen. Defluorination hydrogenation process was the dominant degradation pathway. While in poly-4-vinylpyridine-co-styrene (PVPcoS)-modified montmorillonite, due to the multiple charges of PVPcoS, a flat conformation parallel to clay surface was expected. Hydroxyl radicals, which were generated by the reaction of hydrated electrons with oxygen molecules diffused into clay interlayer, are also involved in the degradation process. Our results further demonstrate that mixture modified montmorillonite could combine the advantages of both modifications, thus showing superior reactivity even for actual industrial wastewater without any pretreatment. This technique would have great potential for treatment of actual wastewater.
Collapse
Affiliation(s)
- Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Haoting Tian
- Shandong Provincial Key Laboratory of Water and Soil Conservation & Environmental Protection, College of Resource and Environment, Linyi University, Linyi, 276005, PR China
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, United States
| | - JianSheng Li
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ran Hong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Feng Sheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Chao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
23
|
Hydrodynamic and physicochemical phenomena in liquid droplets under the action of nanosecond spark discharges: A review. Adv Colloid Interface Sci 2019; 271:101986. [PMID: 31325652 DOI: 10.1016/j.cis.2019.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/02/2019] [Accepted: 07/06/2019] [Indexed: 12/17/2022]
Abstract
This review presents experimental studies of phenomena occurring in droplets of various liquids under the effect of nanosecond spark discharges. Inorganic liquids and liquids of biological origin are considered here. Attention is payed to hydrodynamic and physico-chemical phenomena in droplets, including a movement of sessile droplets on a substrate under the effect of the discharges, internal flows in droplets (excited by the discharges), plasma capillary phenomena, features of the droplets drying under the effect of the discharges, traces (patterns) left by the droplets, exposed to the discharges, on the substrates etc.
Collapse
|
24
|
Taxer T, Ončák M, Barwa E, van der Linde C, Beyer MK. Electronic spectroscopy and nanocalorimetry of hydrated magnesium ions [Mg(H 2O) n] +, n = 20-70: spontaneous formation of a hydrated electron? Faraday Discuss 2019; 217:584-600. [PMID: 30994636 PMCID: PMC6677030 DOI: 10.1039/c8fd00204e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/07/2018] [Indexed: 11/26/2022]
Abstract
Hydrated singly charged magnesium ions [Mg(H2O)n]+ are thought to consist of an Mg2+ ion and a hydrated electron for n > 15. This idea is based on mass spectra, which exhibit a transition from [MgOH(H2O)n-1]+ to [Mg(H2O)n]+ around n = 15-22, black-body infrared radiative dissociation, and quantum chemical calculations. Here, we present photodissociation spectra of size-selected [Mg(H2O)n]+ in the range of n = 20-70 measured for photon energies of 1.0-5.0 eV. The spectra exhibit a broad absorption from 1.4 to 3.2 eV, with two local maxima around 1.7-1.8 eV and 2.1-2.5 eV, depending on cluster size. The spectra shift slowly from n = 20 to n = 50, but no significant change is observed for n = 50-70. Quantum chemical modeling of the spectra yields several candidates for the observed absorptions, including five- and six-fold coordinated Mg2+ with a hydrated electron in its immediate vicinity, as well as a solvent-separated Mg2+/e- pair. The photochemical behavior resembles that of the hydrated electron, with barrierless interconversion into the ground state following the excitation.
Collapse
Affiliation(s)
- Thomas Taxer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Erik Barwa
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| |
Collapse
|
25
|
Pizzochero M, Ambrosio F, Pasquarello A. Picture of the wet electron: a localized transient state in liquid water. Chem Sci 2019; 10:7442-7448. [PMID: 32180919 PMCID: PMC7053762 DOI: 10.1039/c8sc05101a] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 06/18/2019] [Indexed: 11/21/2022] Open
Abstract
A transient state of the excess electron in liquid water preceding the development of the solvation shell, the so-called wet electron, has been invoked to explain spectroscopic observations, but its binding energy and atomic structure have remained highly elusive. Here, we carry out hybrid functional molecular dynamics to unveil the ultrafast solvation mechanism leading to the hydrated electron. In the pre-hydrated regime, the electron is found to repeatedly switch between a quasi-free electron state in the conduction band and a localized state with a binding energy of 0.26 eV, which we assign to the wet electron. This transient state self-traps in a region of the liquid which extends up to ∼4.5 Å and involves a severe disruption of the hydrogen-bond network. Our picture provides an unprecedented view on the nature of the wet electron, which is instrumental to understanding the properties of this fundamental species in liquid water.
Collapse
Affiliation(s)
- Michele Pizzochero
- Chaire de Physique Numérique de la Matière Condensée (C3MP) , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Francesco Ambrosio
- Chaire de Simulation à l'Echelle Atomique (CSEA) , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Alfredo Pasquarello
- Chaire de Simulation à l'Echelle Atomique (CSEA) , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
26
|
LaForge AC, Michiels R, Bohlen M, Callegari C, Clark A, von Conta A, Coreno M, Di Fraia M, Drabbels M, Huppert M, Finetti P, Ma J, Mudrich M, Oliver V, Plekan O, Prince KC, Shcherbinin M, Stranges S, Svoboda V, Wörner HJ, Stienkemeier F. Real-Time Dynamics of the Formation of Hydrated Electrons upon Irradiation of Water Clusters with Extreme Ultraviolet Light. PHYSICAL REVIEW LETTERS 2019; 122:133001. [PMID: 31012607 DOI: 10.1103/physrevlett.122.133001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Indexed: 06/09/2023]
Abstract
Free electrons in a polar liquid can form a bound state via interaction with the molecular environment. This so-called hydrated electron state in water is of fundamental importance, e.g., in cellular biology or radiation chemistry. Hydrated electrons are highly reactive radicals that can either directly interact with DNA or enzymes, or form highly excited hydrogen (H^{*}) after being captured by protons. Here, we investigate the formation of the hydrated electron in real-time employing extreme ultraviolet femtosecond pulses from a free electron laser, in this way observing the initial steps of the hydration process. Using time-resolved photoelectron spectroscopy we find formation timescales in the low picosecond range and resolve the prominent dynamics of forming excited hydrogen states.
Collapse
Affiliation(s)
- A C LaForge
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - R Michiels
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - M Bohlen
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - C Callegari
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - A Clark
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - A von Conta
- Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - M Coreno
- ISM-CNR, Istituto di Struttura della Materia, LD2 Unit, 34149 Trieste, Italy
| | - M Di Fraia
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - M Drabbels
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - M Huppert
- Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - P Finetti
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - J Ma
- Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - M Mudrich
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - V Oliver
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - O Plekan
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - K C Prince
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - M Shcherbinin
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - S Stranges
- Department of Chemistry and Drug Technologies, University Sapienza, 00185 Rome, Italy, and Tasc IOM-CNR, Basovizza, Trieste, Italy
| | - V Svoboda
- Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - H J Wörner
- Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - F Stienkemeier
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Institute of Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
27
|
Tyson AL, Verlet JRR. On the Mechanism of Phenolate Photo-Oxidation in Aqueous Solution. J Phys Chem B 2019; 123:2373-2379. [PMID: 30768899 DOI: 10.1021/acs.jpcb.8b11766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photo-oxidation dynamics following ultraviolet (257 nm) excitation of the phenolate anion in aqueous solution is studied using broadband (550-950 nm) transient absorption spectroscopy. A clear signature from electron ejection is observed on a sub-picosecond timescale, followed by cooling dynamics and the decay of the signal to a constant offset that is assigned to the hydrated electron. The dynamics are compared to the charge-transfer-to-solvent dynamics from iodide at the same excitation wavelength and are shown to be very similar to these. This is in stark contrast to a previous study on the phenolate anion excited at 266 nm, in which electron emission was observed over longer timescales. We account for the differences using a simple Marcus picture for electron emission in which the electron tunneling rate depends sensitively on the initial excitation energy. After electron emission, a contact pair is formed which undergoes geminate recombination and dissociation to form the free hydrated electron at rates that are slightly faster than those for the iodide system. Our results show that, although the underlying chemical physics of electron emission differs between iodide and phenolate, the observed dynamics can appear very similar.
Collapse
Affiliation(s)
| | - Jan R R Verlet
- Department of Chemistry , Durham University , Durham DH1 3LE , U.K
| |
Collapse
|
28
|
Abstract
A cavity or excluded-volume structure best explains the experimental properties of the aqueous or “hydrated” electron.
Collapse
Affiliation(s)
- John M. Herbert
- Department of Chemistry & Biochemistry
- The Ohio State University
- Columbus
- USA
| |
Collapse
|
29
|
Sun CQ. Aqueous charge injection: solvation bonding dynamics, molecular nonbond interactions, and extraordinary solute capabilities. INT REV PHYS CHEM 2018. [DOI: 10.1080/0144235x.2018.1544446] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chang Q. Sun
- EBEAM, Yangtze Normal University, Chongqing, People's Republic of China
- NOVITAS, EEE, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
30
|
Zho CC, Vlček V, Neuhauser D, Schwartz BJ. Thermal Equilibration Controls H-Bonding and the Vertical Detachment Energy of Water Cluster Anions. J Phys Chem Lett 2018; 9:5173-5178. [PMID: 30129761 DOI: 10.1021/acs.jpclett.8b02152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
One of the outstanding puzzles in the photoelectron spectroscopy of water anion clusters, which serve as precursors to the hydrated electron, is that the excess electron has multiple vertical detachment energies (VDEs), with different groups seeing different distributions of VDEs. We have studied the photoelectron spectroscopy of water cluster anions using simulation techniques designed to mimic the different ways that water cluster anions are produced experimentally. Our simulations take advantage of density functional theory-based Born-Oppenheimer molecular dynamics with an optimally tuned range-separated hybrid functional that is shown to give outstanding accuracy for calculating electron binding energies for this system. We find that our simulations are able to accurately reproduce the experimentally observed VDEs for cluster anions of different sizes, with different VDE distributions observed depending on how the water cluster anions are prepared. For cluster anion sizes up to 20 water molecules, we see that the excess electron always resides on the surface of the cluster and that the different discrete VDEs result from the discrete number of hydrogen bonds made to the electron by water molecules on the surface. Clusters that are less thermally equilibrated have surface waters that tend to make single H-bonds to the electron, resulting in lower VDEs, while clusters that are more thermally equilibrated have surface waters that prefer to make two H-bonds to the electron, resulting in higher VDEs.
Collapse
Affiliation(s)
- Chen-Chen Zho
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095-1569 , United States
| | - Vojtěch Vlček
- Department of Chemistry and Biochemistry , University of California, Santa Barbara , Santa Barbara , California 93106 , United States
| | - Daniel Neuhauser
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095-1569 , United States
| | - Benjamin J Schwartz
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095-1569 , United States
| |
Collapse
|
31
|
Zhang L, Tian H, Hong R, Wang C, Wang Y, Peng A, Gu C. Photodegradation of atrazine in the presence of indole-3-acetic acid and natural montmorillonite clay minerals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:793-801. [PMID: 29778815 DOI: 10.1016/j.envpol.2018.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/19/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) is a commonly used agricultural herbicide that, as a result, is frequently detected in surface and ground water. In this study, we provide evidence of the photo-oxidation of atrazine under environmentally relevant conditions, specifically, in the presence of natural montmorillonite clay and the ubiquitous phytohormone indole-3-acetic acid (IAA). The reaction is initiated by the generation of hydrated electrons from the photo-ionization of IAA. These electrons react with protons and dissolved oxygen to form hydroxyl radicals, which promote the further degradation of atrazine. Montmorillonite strongly enhances the yield of hydrated electrons and prolongs their lifetime, by stabilizing radical cations through electrostatic attraction by the negative charges embedded in the clay. Moreover, by providing a confined space, montmorillonite markedly increases the probability of contact between atrazine and the active radicals. Other factors strongly influencing the degradation process are the solution pH, the type of exchangeable cations present in the clay interlayer, and the hydration status of montmorillonite. Since both IAA and montmorillonite clay are widely distributed in the environment, the proposed reaction is predicted to play an important role in the degradation of atrazine and perhaps other potentially persistent organic contaminants.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Haoting Tian
- Shandong Provincial Key Laboratory of Water and Soil Conservation & Environmental Protection, College of Resource and Environment, Linyi University, Linyi 276005, PR China
| | - Ran Hong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Chao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Anping Peng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
32
|
Wang Y, Guo H, Zheng Q, Saidi WA, Zhao J. Tuning Solvated Electrons by Polar-Nonpolar Oxide Heterostructure. J Phys Chem Lett 2018; 9:3049-3056. [PMID: 29767527 DOI: 10.1021/acs.jpclett.8b00938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Solvated electron states at the oxide/aqueous interface represent the lowest energy charge-transfer pathways, thereby playing an important role in photocatalysis and electronic device applications. However, their energies are usually higher than the conduction band minimum (CBM), which makes the solvated electrons difficult to utilize in charge-transfer processes. Thus it is essential to stabilize the energy of the solvated electron states. Taking LaAlO3/SrTiO3 (LAO/STO) oxide heterostructure with H2O-adsorbed monolayer as a prototypical system, we show using DFT and ab initio time-dependent nonadiabatic molecular dynamics simulation that the energy and dynamics of solvated electrons can be tuned by the electric field in the polar-nonpolar oxide heterostructure. In particular, for LAO/STO with p-type interface, the CBM is contributed by the solvated electron state when LAO is thicker than four unit cells. Furthermore, the solvated electron band minimum can be partially occupied when LAO is thicker than eight unit cells. We propose that the tunability of solvated electron states can be achieved on polar-nonpolar oxide heterostructure surfaces as well as on ferroelectric oxides, which is important for charge and proton transfer at oxide/aqueous interfaces.
Collapse
Affiliation(s)
- Yanan Wang
- ICQD/Hefei National Laboratory for Physical Sciences at Microscale and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences and Department of Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Hongli Guo
- ICQD/Hefei National Laboratory for Physical Sciences at Microscale and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences and Department of Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education , Wuhan University , Wuhan 430072 , China
| | - Qijing Zheng
- ICQD/Hefei National Laboratory for Physical Sciences at Microscale and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences and Department of Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Wissam A Saidi
- Department of Mechanical Engineering and Materials Science , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Jin Zhao
- ICQD/Hefei National Laboratory for Physical Sciences at Microscale and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences and Department of Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
- Department of Physics and Astronomy , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
- Synergetic Innovation Center of Quantum Information & Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
33
|
Pshenichnyuk SA, Modelli A, Komolov AS. Interconnections between dissociative electron attachment and electron-driven biological processes. INT REV PHYS CHEM 2018. [DOI: 10.1080/0144235x.2018.1461347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Stanislav A. Pshenichnyuk
- Institute of Molecule and Crystal Physics – Subdivision of the Ufa Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - Alberto Modelli
- Dipartimento di Chimica ‘G. Ciamician’, Università di Bologna, Bologna, Italy
- Centro Interdipartimentale di Ricerca in Scienze Ambientali, Ravenna, Italy
| | - Alexei S. Komolov
- Department of Solid State Electronics, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
34
|
Tian H, Gu C. Effects of different factors on photodefluorination of perfluorinated compounds by hydrated electrons in organo-montmorillonite system. CHEMOSPHERE 2018; 191:280-287. [PMID: 29040942 DOI: 10.1016/j.chemosphere.2017.10.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/23/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
Perfluorinated compounds (PFCs) are considered as the most recalcitrant organic contaminants. Our previous research has shown that PFCs can be completely defluorinated in the UV/organoclay/3-indole acetic acid system, however, the factors that could affect the degradation of PFCs, are still not clear. In this study, we further investigated the effect of different indole derivatives and organo-modified montmorillonite on the degradation of perfluooctanoic acid (PFOA). Based on multiple linear regression analysis, our results clearly indicate that hydrated electron yields of indole derivatives, adsorption of PFOA and indole derivatives on organo-montmorillonite contributed independently to the degradation of PFOA. In addition, the results also show that the presence of humic substance (even at 10 mg C L-1) would not significantly suppress the degradation process due to the strong adsorption of humic substance on the organo-montmorillonite surface. This study would provide more information to design an efficient and environment-friendly system for degradation of PFCs, and this technique will have great potential for treatment of persistent contaminants under mild reaction conditions.
Collapse
Affiliation(s)
- Haoting Tian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Shandong Provincial Key Laboratory of Water and Soil Conservation & Environmental Protection, College of Resource and Environment, Linyi University, Linyi 276005, PR China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
35
|
Giri S, Parida R, Jana M, Gutiérrez-Oliva S, Toro-Labbe A. Insights into the Mechanism of Ground and Excited State Double Proton Transfer Reaction in Formic Acid Dimer. J Phys Chem A 2017; 121:9531-9543. [PMID: 29154544 DOI: 10.1021/acs.jpca.7b09819] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism of ground and excited state double proton transfer reaction in formic acid dimer has been analyzed with the help of reaction force and the reaction electronic flux. The separation of reaction electronic flux in terms of electronic activity and reactivity, NBO, and dual descriptor lends additional support for the mechanism. Interestingly we found that the ground state double proton transfer mechanism is concerted synchronic, whereas the excited state double proton transfer is concerted asynchronic in nature.
Collapse
Affiliation(s)
- Santanab Giri
- Department of Chemistry, National Institute of Technology , Rourkela, Orissa 769008, India
| | - Rakesh Parida
- Department of Chemistry, National Institute of Technology , Rourkela, Orissa 769008, India
| | - Madhurima Jana
- Department of Chemistry, National Institute of Technology , Rourkela, Orissa 769008, India
| | - Soledad Gutiérrez-Oliva
- Laboratorio de Química Teórica Computacional (QTC), Facultad de Química, Pontificia Universidad Católica de Chile , Casilla 306, Correo 22, Santiago, Chile
| | - Alejandro Toro-Labbe
- Laboratorio de Química Teórica Computacional (QTC), Facultad de Química, Pontificia Universidad Católica de Chile , Casilla 306, Correo 22, Santiago, Chile
| |
Collapse
|
36
|
Radhakrishnan S, Mieres-Perez J, Gudipati MS, Sander W. Photoinduced Reversible Electron Transfer Between the Benzhydryl Radical and Benzhydryl Cation in Amorphous Water–Ice. J Phys Chem A 2017; 121:6405-6412. [DOI: 10.1021/acs.jpca.7b05466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Soumya Radhakrishnan
- Lehrstuhl
für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Joel Mieres-Perez
- Lehrstuhl
für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Murthy S. Gudipati
- Science
Division, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Wolfram Sander
- Lehrstuhl
für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
37
|
Zho CC, Farr EP, Glover WJ, Schwartz BJ. Temperature dependence of the hydrated electron’s excited-state relaxation. I. Simulation predictions of resonance Raman and pump-probe transient absorption spectra of cavity and non-cavity models. J Chem Phys 2017; 147:074503. [DOI: 10.1063/1.4985905] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Chen-Chen Zho
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California,
90095-1569, USA
| | - Erik P. Farr
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California,
90095-1569, USA
| | - William J. Glover
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California,
90095-1569, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- NYU Shanghai, 1555 Century Avenue,
Shanghai 200135, China
| | - Benjamin J. Schwartz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California,
90095-1569, USA
| |
Collapse
|
38
|
Heiles S, Cooper RJ, DiTucci MJ, Williams ER. Sequential water molecule binding enthalpies for aqueous nanodrops containing a mono-, di- or trivalent ion and between 20 and 500 water molecules. Chem Sci 2017; 8:2973-2982. [PMID: 28451364 PMCID: PMC5380113 DOI: 10.1039/c6sc04957e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/26/2017] [Indexed: 12/16/2022] Open
Abstract
Sequential water molecule binding enthalpies, ΔHn,n-1, are important for a detailed understanding of competitive interactions between ions, water and solute molecules, and how these interactions affect physical properties of ion-containing nanodrops that are important in aerosol chemistry. Water molecule binding enthalpies have been measured for small clusters of many different ions, but these values for ion-containing nanodrops containing more than 20 water molecules are scarce. Here, ΔHn,n-1 values are deduced from high-precision ultraviolet photodissociation (UVPD) measurements as a function of ion identity, charge state and cluster size between 20-500 water molecules and for ions with +1, +2 and +3 charges. The ΔHn,n-1 values are obtained from the number of water molecules lost upon photoexcitation at a known wavelength, and modeling of the release of energy into the translational, rotational and vibrational motions of the products. The ΔHn,n-1 values range from 36.82 to 50.21 kJ mol-1. For clusters containing more than ∼250 water molecules, the binding enthalpies are between the bulk heat of vaporization (44.8 kJ mol-1) and the sublimation enthalpy of bulk ice (51.0 kJ mol-1). These values depend on ion charge state for clusters with fewer than 150 water molecules, but there is a negligible dependence at larger size. There is a minimum in the ΔHn,n-1 values that depends on the cluster size and ion charge state, which can be attributed to the competing effects of ion solvation and surface energy. The experimental ΔHn,n-1 values can be fit to the Thomson liquid drop model (TLDM) using bulk ice parameters. By optimizing the surface tension and temperature change of the logarithmic partial pressure for the TLDM, the experimental sequential water molecule binding enthalpies can be fit with an accuracy of ±3.3 kJ mol-1 over the entire range of cluster sizes.
Collapse
Affiliation(s)
- Sven Heiles
- Department of Chemistry , University of California , Berkeley B42 Hildebrand Hall , Berkeley , California 94720-1460 , USA . ; Tel: +1-510-643-7161
| | - Richard J Cooper
- Department of Chemistry , University of California , Berkeley B42 Hildebrand Hall , Berkeley , California 94720-1460 , USA . ; Tel: +1-510-643-7161
| | - Matthew J DiTucci
- Department of Chemistry , University of California , Berkeley B42 Hildebrand Hall , Berkeley , California 94720-1460 , USA . ; Tel: +1-510-643-7161
| | - Evan R Williams
- Department of Chemistry , University of California , Berkeley B42 Hildebrand Hall , Berkeley , California 94720-1460 , USA . ; Tel: +1-510-643-7161
| |
Collapse
|
39
|
Zhang C, Bu Y. Efficient floating diffuse functions for accurate characterization of the surface-bound excess electrons in water cluster anions. Phys Chem Chem Phys 2017; 19:2816-2825. [PMID: 28067363 DOI: 10.1039/c6cp07628a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, the effect of diffuse function types (atom-centered diffuse functions versus floating functions and s-type versus p-type diffuse functions) on the structures and properties of three representative water cluster anions featuring a surface-bound excess electron is studied and we find that an effective combination of such two kinds of diffuse functions can not only reduce the computational cost but also, most importantly, considerably improve the accuracy of results and even avoid incorrect predictions of spectra and the EE shape. Our results indicate that (a) simple augmentation of atom-centered diffuse functions is beneficial for the vertical detachment energy convergence, but it leads to very poor descriptions for the singly occupied molecular orbital (SOMO) and lowest unoccupied molecular orbital (LUMO) distributions of the water cluster anions featuring a surface-bound excess electron and thus a significant ultraviolet spectrum redshift; (b) the ghost-atom-based floating diffuse functions can not only contribute to accurate electronic calculations of the ground state but also avoid poor and even incorrect descriptions of the SOMO and the LUMO induced by excessive augmentation of atom-centered diffuse functions; (c) the floating functions can be realized by ghost atoms and their positions could be determined through an optimization routine along the dipole moment vector direction. In addition, both the s- and p-type floating functions are necessary to supplement in the basis set which are responsible for the ground (s-type character) and excited (p-type character) states of the surface-bound excess electron, respectively. The exponents of the diffuse functions should also be determined to make the diffuse functions cover the main region of the excess electron distribution. Note that excessive augmentation of such diffuse functions is redundant and even can lead to unreasonable LUMO characteristics.
Collapse
Affiliation(s)
- Changzhe Zhang
- Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China.
| | - Yuxiang Bu
- Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China.
| |
Collapse
|
40
|
Zho CC, Schwartz BJ. Time-Resolved Photoelectron Spectroscopy of the Hydrated Electron: Comparing Cavity and Noncavity Models to Experiment. J Phys Chem B 2016; 120:12604-12614. [PMID: 27973828 DOI: 10.1021/acs.jpcb.6b07852] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chen-Chen Zho
- Department of Chemistry and
Biochemistry University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Benjamin J. Schwartz
- Department of Chemistry and
Biochemistry University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
41
|
Tian H, Gao J, Li H, Boyd SA, Gu C. Complete Defluorination of Perfluorinated Compounds by Hydrated Electrons Generated from 3-Indole-acetic-acid in Organomodified Montmorillonite. Sci Rep 2016; 6:32949. [PMID: 27608658 PMCID: PMC5017190 DOI: 10.1038/srep32949] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/16/2016] [Indexed: 11/09/2022] Open
Abstract
Here we describe a unique process that achieves complete defluorination and decomposition of perfluorinated compounds (PFCs) which comprise one of the most recalcitrant and widely distributed classes of toxic pollutant chemicals found in natural environments. Photogenerated hydrated electrons derived from 3-indole-acetic-acid within an organomodified clay induce the reductive defluorination of co-sorbed PFCs. The process proceeds to completion within a few hours under mild reaction conditions. The organomontmorillonite clay promotes the formation of highly reactive hydrated electrons by stabilizing indole radical cations formed upon photolysis, and prevents their deactivation by reaction with protons or oxygen. In the constrained interlayer regions of the clay, hydrated electrons and co-sorbed PFCs are brought in close proximity thereby increasing the probability of reaction. This novel green chemistry provides the basis for in situ and ex situ technologies to treat one of the most troublesome, recalcitrant and ubiquitous classes of environmental contaminants, i.e., PFCs, utilizing innocuous reagents, naturally occurring materials and mild reaction conditions.
Collapse
Affiliation(s)
- Haoting Tian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Juan Gao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, P. R. China
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, United States
| | - Stephen A Boyd
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, United States
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
42
|
Coles JP, Houriez C, Meot-Ner Mautner M, Masella M. Extrapolating Single Organic Ion Solvation Thermochemistry from Simulated Water Nanodroplets. J Phys Chem B 2016; 120:9402-9. [PMID: 27420562 DOI: 10.1021/acs.jpcb.6b02486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We compute the ion/water interaction energies of methylated ammonium cations and alkylated carboxylate anions solvated in large nanodroplets of 10 000 water molecules using 10 ns molecular dynamics simulations and an all-atom polarizable force-field approach. Together with our earlier results concerning the solvation of these organic ions in nanodroplets whose molecular sizes range from 50 to 1000, these new data allow us to discuss the reliability of extrapolating absolute single-ion bulk solvation energies from small ion/water droplets using common power-law functions of cluster size. We show that reliable estimates of these energies can be extrapolated from a small data set comprising the results of three droplets whose sizes are between 100 and 1000 using a basic power-law function of droplet size. This agrees with an earlier conclusion drawn from a model built within the mean spherical framework and paves the road toward a theoretical protocol to systematically compute the solvation energies of complex organic ions.
Collapse
Affiliation(s)
- Jonathan P Coles
- Exascale Computing Research Lab , Campus Teratec, 2 rue de la Piquetterie, 91680 Bruyères-le-Châtel, France.,Université de Versailles Saint-Quentin-en-Yvelines , 55 avenue de Paris, 78000 Versailles, France
| | - Céline Houriez
- CTP - Centre Thermodynamique des Procédés, MINES ParisTech, PSL Research University , 35 rue Saint-Honoré, 77300 Fontainebleau, France
| | - Michael Meot-Ner Mautner
- Department of Chemistry, Virginia Commonwealth University , Richmond, Virginia 23284-2006, United States.,Department of Chemistry, University of Canterbury , Christchurch 8001, New Zealand
| | - Michel Masella
- Laboratoire de Biologie Structurale et Radiobiologie, Service de Bioénergétique, Biologie Structurale et Mécanismes, Institut de Biologie et de Technologies de Saclay , CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|
43
|
Coons MP, You ZQ, Herbert JM. The Hydrated Electron at the Surface of Neat Liquid Water Appears To Be Indistinguishable from the Bulk Species. J Am Chem Soc 2016; 138:10879-86. [DOI: 10.1021/jacs.6b06715] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marc P. Coons
- Department of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zhi-Qiang You
- Department of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M. Herbert
- Department of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
44
|
Zhang C, Bu Y. Benchmark calculations of excess electrons in water cluster cavities: balancing the addition of atom-centered diffuse functions versus floating diffuse functions. Phys Chem Chem Phys 2016; 18:23812-21. [PMID: 27522987 DOI: 10.1039/c6cp04224d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diffuse functions have been proved to be especially crucial for the accurate characterization of excess electrons which are usually bound weakly in intermolecular zones far away from the nuclei. To examine the effects of diffuse functions on the nature of the cavity-shaped excess electrons in water cluster surroundings, both the HOMO and LUMO distributions, vertical detachment energies (VDEs) and visible absorption spectra of two selected (H2O)24(-) isomers are investigated in the present work. Two main types of diffuse functions are considered in calculations including the Pople-style atom-centered diffuse functions and the ghost-atom-based floating diffuse functions. It is found that augmentation of atom-centered diffuse functions contributes to a better description of the HOMO (corresponding to the VDE convergence), in agreement with previous studies, but also leads to unreasonable diffuse characters of the LUMO with significant red-shifts in the visible spectra, which is against the conventional point of view that the more the diffuse functions, the better the results. The issue of designing extra floating functions for excess electrons has also been systematically discussed, which indicates that the floating diffuse functions are necessary not only for reducing the computational cost but also for improving both the HOMO and LUMO accuracy. Thus, the basis sets with a combination of partial atom-centered diffuse functions and floating diffuse functions are recommended for a reliable description of the weakly bound electrons. This work presents an efficient way for characterizing the electronic properties of weakly bound electrons accurately by balancing the addition of atom-centered diffuse functions and floating diffuse functions and also by balancing the computational cost and accuracy of the calculated results, and thus is very useful in the relevant calculations of various solvated electron systems and weakly bound anionic systems.
Collapse
Affiliation(s)
- Changzhe Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.
| | | |
Collapse
|
45
|
Anstöter CS, Bull JN, Verlet JR. Ultrafast dynamics of temporary anions probed through the prism of photodetachment. INT REV PHYS CHEM 2016. [DOI: 10.1080/0144235x.2016.1203522] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Akhgarnusch A, Tang WK, Zhang H, Siu CK, Beyer MK. Charge transfer reactions between gas-phase hydrated electrons, molecular oxygen and carbon dioxide at temperatures of 80-300 K. Phys Chem Chem Phys 2016; 18:23528-37. [PMID: 27498686 DOI: 10.1039/c6cp03324e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recombination reactions of gas-phase hydrated electrons (H2O)n˙(-) with CO2 and O2, as well as the charge exchange reaction of CO2˙(-)(H2O)n with O2, were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry in the temperature range T = 80-300 K. Comparison of the rate constants with collision models shows that CO2 reacts with 50% collision efficiency, while O2 reacts considerably slower. Nanocalorimetry yields internally consistent results for the three reactions. Converted to room temperature condensed phase, this yields hydration enthalpies of CO2˙(-) and O2˙(-), ΔHhyd(CO2˙(-)) = -334 ± 44 kJ mol(-1) and ΔHhyd(O2˙(-)) = -404 ± 28 kJ mol(-1). Quantum chemical calculations show that the charge exchange reaction proceeds via a CO4˙(-) intermediate, which is consistent with a fully ergodic reaction and also with the small efficiency. Ab initio molecular dynamics simulations corroborate this picture and indicate that the CO4˙(-) intermediate has a lifetime significantly above the ps regime.
Collapse
Affiliation(s)
- Amou Akhgarnusch
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | | | | | | | | |
Collapse
|
47
|
Elkins MH, Williams HL, Neumark DM. Isotope effect on hydrated electron relaxation dynamics studied with time-resolved liquid jet photoelectron spectroscopy. J Chem Phys 2016; 144:184503. [DOI: 10.1063/1.4948546] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Madeline H. Elkins
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Holly L. Williams
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Daniel M. Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
48
|
Guo Y, Ding Z, Sun L, Li J, Meng S, Lu X. Inducing Transient Charge State of a Single Water Cluster on Cu(111) Surface. ACS NANO 2016; 10:4489-4495. [PMID: 27007702 DOI: 10.1021/acsnano.6b00230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The hydrated electron on solid surface is a crucial species to interfacial chemistry. We present a joint low-temperature scanning tunneling microscopy and density functional theory investigation to explore the existence of a transient hydrated electron state induced by injecting tunneling electrons into a single water nonamer cluster on Cu(111) surface. The directional diffusion of water cluster under the Coulomb repulsive potential has been observed as evidence for the emergence of the transient hydrated electron. A critical structure transformation in water cluster for the emergence of hydrated electron has been identified. A charging mechanism has been proposed based on density functional theory calculation and scanning tunneling microscope results.
Collapse
Affiliation(s)
- Yang Guo
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| | - Zijing Ding
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| | - Lihuan Sun
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| | - Jianmei Li
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| | - Sheng Meng
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
- Collaborative Innovation Center of Quantum Matter , Beijing 100190, People's Republic of China
| | - Xinghua Lu
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
- Collaborative Innovation Center of Quantum Matter , Beijing 100190, People's Republic of China
| |
Collapse
|
49
|
Chaban VV, Prezhdo OV. Electron Solvation in Liquid Ammonia: Lithium, Sodium, Magnesium, and Calcium as Electron Sources. J Phys Chem B 2016; 120:2500-6. [PMID: 26886153 DOI: 10.1021/acs.jpcb.6b00412] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A free electron in solution, known as a solvated electron, is the smallest possible anion. Alkali and alkaline earth atoms serve as electron donors in solvents that mediate outer-sphere electron transfer. We report herein ab initio molecular dynamics simulations of lithium, sodium, magnesium, and calcium in liquid ammonia at 250 K. By analyzing the electronic properties and the ionic and solvation structures and dynamics, we systematically characterize these metals as electron donors and ammonia molecules as electron acceptors. We show that the solvated metal strongly modifies the properties of its solvation shells and that the observed effect is metal-specific. Specifically, the radius and charge exhibit major impacts. The single solvated electron present in the alkali metal systems is distributed more uniformly among the solvent molecules of each metal's two solvation shells. In contrast, alkaline earth metals favor a less uniform distribution of the electron density. Alkali and alkaline earth atoms are coordinated by four and six NH3 molecules, respectively. The smaller atoms, Li and Mg, are stronger electron donors than Na and Ca. This result is surprising, as smaller atoms in a column of the periodic table have higher ionization potentials. However, it can be explained by stronger electron donor-acceptor interactions between the smaller atoms and the solvent molecules. The structure of the first solvation shell is sharpest for Mg, which has a large charge and a small radius. Solvation is weakest for Na, which has a small charge and a large radius. Weak solvation leads to rapid dynamics, as reflected in the diffusion coefficients of NH3 molecules of the first two solvation shells and the Na atom. The properties of the solvated electrons established in the present study are important for radiation chemistry, synthetic chemistry, condensed-matter charge transfer, and energy sources.
Collapse
Affiliation(s)
- Vitaly V Chaban
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo , 12231-280 São José dos Campos, SP Brazil
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
50
|
Sugiyama A, Morimoto R, Osaka T, Mogi I, Asanuma M, Miura M, Oshikiri Y, Yamauchi Y, Aogaki R. Lifetime of Ionic Vacancy Created in Redox Electrode Reaction Measured by Cyclotron MHD Electrode. Sci Rep 2016; 6:19795. [PMID: 26791269 PMCID: PMC4726188 DOI: 10.1038/srep19795] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/18/2015] [Indexed: 11/09/2022] Open
Abstract
The lifetimes of ionic vacancies created in ferricyanide-ferrocyanide redox reaction have been first measured by means of cyclotron magnetohydrodynamic electrode, which is composed of coaxial cylinders partly exposed as electrodes and placed vertically in an electrolytic solution under a vertical magnetic field, so that induced Lorentz force makes ionic vacancies circulate together with the solution along the circumferences. At low magnetic fields, due to low velocities, ionic vacancies once created become extinct on the way of returning, whereas at high magnetic fields, in enhanced velocities, they can come back to their initial birthplaces. Detecting the difference between these two states, we can measure the lifetime of ionic vacancy. As a result, the lifetimes of ionic vacancies created in the oxidation and reduction are the same, and the intrinsic lifetime is 1.25 s, and the formation time of nanobubble from the collision of ionic vacancies is 6.5 ms.
Collapse
Affiliation(s)
- Atsushi Sugiyama
- Research Organization for Nano and Life Innovation, Waseda University, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Ryoichi Morimoto
- Saitama Prefectural Showa Water Filtration Plant, Kasukabe, Saitama 344-0113, Japan
| | - Tetsuya Osaka
- Research Organization for Nano and Life Innovation, Waseda University, Shinjuku-ku, Tokyo 162-0041, Japan.,School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Iwao Mogi
- Institute for Materials Research, Tohoku University, Sendai, Sendai 980-8577, Japan
| | - Miki Asanuma
- Yokohama Harbor Polytechnic College, Naka-ku, Yokohama 231-0811, Japan
| | - Makoto Miura
- Hokkaido Polytechnic College, Otaru, Hokkaido 047-0292, Japan
| | - Yoshinobu Oshikiri
- Yamagata College of Industry and Technology, Matsuei, Yamagata 990-2473, Japan
| | - Yusuke Yamauchi
- School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan.,National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Ryoichi Aogaki
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan.,Polytechnic University, Sumida-ku, Tokyo 130-0026, Japan
| |
Collapse
|