1
|
Kim IW, Timmermann A, Kim JE, Rodgers KB, Lee SS, Lee H, Wieder WR. Abrupt increase in Arctic-Subarctic wildfires caused by future permafrost thaw. Nat Commun 2024; 15:7868. [PMID: 39317726 PMCID: PMC11422492 DOI: 10.1038/s41467-024-51471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/07/2024] [Indexed: 09/26/2024] Open
Abstract
Unabated 21st-century climate change will accelerate Arctic-Subarctic permafrost thaw which can intensify microbial degradation of carbon-rich soils, methane emissions, and global warming. The impact of permafrost thaw on future Arctic-Subarctic wildfires and the associated release of greenhouse gases and aerosols is less well understood. Here we present a comprehensive analysis of the effect of future permafrost thaw on land surface processes in the Arctic-Subarctic region using the CESM2 large ensemble forced by the SSP3-7.0 greenhouse gas emission scenario. Analyzing 50 greenhouse warming simulations, which capture the coupling between permafrost, hydrology, and atmosphere, we find that projected rapid permafrost thaw leads to massive soil drying, surface warming, and reduction of relative humidity over the Arctic-Subarctic region. These combined processes lead to nonlinear late-21st-century regime shifts in the coupled soil-hydrology system and rapid intensification of wildfires in western Siberia and Canada.
Collapse
Affiliation(s)
- In-Won Kim
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea.
- Pusan National University, Busan, South Korea.
| | - Axel Timmermann
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea
- Pusan National University, Busan, South Korea
| | - Ji-Eun Kim
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea
- Pusan National University, Busan, South Korea
| | - Keith B Rodgers
- WPI-Advanced Institute for Marine Ecosystem Change, Tohoku University, Sendai, Japan
| | - Sun-Seon Lee
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea
- Pusan National University, Busan, South Korea
| | - Hanna Lee
- Norwegian University of Science and Technology, Trondheim, Norway
| | - William R Wieder
- Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
2
|
Ma Q, Wu Y, Zhang G, Jiang L, Rousseau AN, Zhang W. Quantitative assessment of the key drives shaping the long-term dynamics of geographically isolated wetlands: A case study within the Nenjiang River Basin, Northeast China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:952. [PMID: 39297988 DOI: 10.1007/s10661-024-13116-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024]
Abstract
Geographically isolated wetlands (GIWs) offer a diverse array of ecosystem services and contribute largely to landscape functions. Numerous studies have documented the substantial pressures on wetland ecosystems from both natural changes and human activities worldwide. However, the quantification of these impacts on GIWs remains scarce. This study presents an assessment of the spatiotemporal dynamics of GIWs in the downstream portion of the Nenjiang River Basin, Northeast China, over a 38-year period (1978-2015). We quantitatively evaluated the impacts of anthropogenic activities and natural changes using a five-stage wetland dataset (1978, 1990, 2000, 2008, and 2015) and four-stage (1990, 2000, 2010, and 2015) land use datasets. Our findings indicate that 86% of the GIWs in the study area have vanished, primarily replaced by unused land (28.39%) and farmland (54.90%). Anthropogenic activities were identified as the main cause of wetland loss from 1978 to 2008, whereas natural changes have played a more significant role in recent years of GIWs. Considering the ongoing regional trends of warming and drying, it is imperative to conserve and restore GIWs to maintain their ecosystem services for a broad spectrum of beneficiaries.
Collapse
Affiliation(s)
- Qiusheng Ma
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yanfeng Wu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Guangxin Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Lili Jiang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Alain N Rousseau
- INRS-ETE / Institut National de la Recherche Scientifique - Eau Terre Environnement, 490 Rue de La Couronne, Quebec City, QC, G1K 9A9, Canada
| | - Wenguang Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|
3
|
Zhao R, Shang Y, Jacinthe PA, Li S, Liu G, Wen Z, Wang Z, Yang Q, Fang C, Song K. Variations in surface area and biogeochemistry of subarctic-arctic lakes established through satellite and in-situ observations: An overview of published research from the past 30 years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172797. [PMID: 38679084 DOI: 10.1016/j.scitotenv.2024.172797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Human activities have strongly impacted the global climate, and during the last few decades the global average temperature has risen at a rate faster than at any time on record. High latitude lakes in the subarctic and arctic permafrost regions have particularly been vulnerable given the "Arctic amplification" phenomenon and acceleration in warming rate in the northern hemisphere (0.2-0.8 °C/decade). This paper presents a comprehensive overview of the last 30 years of research investigating how subarctic and Arctic lakes respond to climate warming. The review focused on studies where remote sensing technology was used to quantify these responses. The difference between summer lake water temperature and air temperature varied between 1.7 and 5.4 °C in subarctic lakes and 2.4-3.2 °C in Arctic lakes. Overall, the freezing date of lake ice is generally delayed and the date of lake thawing occurs earlier. Lake surface area (4-48.5 %), and abundance in the subarctic and Arctic region have increased significantly due to rising temperature, permafrost thawing, increased precipitation and other localized surface disturbances. However, in recent years, instances of lake shrinkage (between -0.4 % and -40 %) have also been reported, likely due to riparian overflow, groundwater infiltration and lateral drainage. Furthermore, in subarctic and Arctic lakes, climate change and permafrost thawing would release CO2 and CH4, and alter carbon dynamics in impacted lakes through various interconnected processes which could potentially affect the quality of carbon (terrestrial, algae) entering a lake system. The review also highlighted a potential intersection between permafrost melting and public health through human exposure to long-buried viruses. Subarctic and arctic ecosystems' responses to climate change will continue to be an area of intense research interest, and this review has highlighted priority areas for research and how remote sensing technologies can facilitate the pursuit of such a research agenda.
Collapse
Affiliation(s)
- Ruixue Zhao
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; School of Geomatics and Prospecting Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Yingxin Shang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Pierre-André Jacinthe
- Department of Earth Sciences, Indiana University-Purdue University, Indianapolis, IN 46202, USA
| | - Sijia Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Ge Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Zhidan Wen
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Zijin Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Qian Yang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Chong Fang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Kaishan Song
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; School of Environment and Planning, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
4
|
Wang Z, Shang Y, Li Z, Song K. Analysis of taiga and tundra lake browning trends from 2002 to 2021 using MODIS data. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120576. [PMID: 38513585 DOI: 10.1016/j.jenvman.2024.120576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/22/2023] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
Lakes in taiga and tundra regions may be silently undergoing changes due to global warming. One of those changes is browning in lake color. The browning interacts with the carbon cycle, ecosystem dynamics, and water quality in freshwater systems. However, spatiotemporal variabilities of browning in these regions have not been well documented. Using MODIS remote sensing reflectance at near ultraviolet wavelengths from 2002 to 2021 on the Google Earth Engine platform, we quantified long-term browning trends across 7616 lakes (larger than 10 km2) in taiga and tundra biomes. These lakes showed an overall decreased trend in browning (Theil-Sen Slope = 0.00015), with ∼36% of these lakes showing browning trends, and ∼1% of these lakes showing statistically significant (p-value <0.05) browning trends. The browning trends more likely occurred in small lakes in high latitude, low ground ice content regions, where air temperature increased and precipitation decreased. While temperature is projected to increase in response to climate change, our results provide one means to understand how biogeochemical cycles and ecological dynamics respond to climate change.
Collapse
Affiliation(s)
- Zijin Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingxin Shang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, China
| | - Zuchuan Li
- Division of Natural and Applied Sciences, Duke Kunshan University, Suzhou, 215316, China
| | - Kaishan Song
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, China; School of Environment and Planning, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
5
|
Xu N, Zhang J, Daccache A, Liu C, Ahmadi A, Zhou T, Gou P. Assessing size shifts amidst a warming climate in lakes recharged by the Asian Water Tower through satellite imagery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168770. [PMID: 38007131 DOI: 10.1016/j.scitotenv.2023.168770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/14/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Recent studies indicate that the Asian Water Tower (AWT) is at risk due to climate change, which can negatively impact water and food security in Asia. However, there is a lack of comprehensive information on lakes' spatial and temporal changes in this region. This information is crucial for understanding the risk magnitude and designing strategies. To fill this research gap, we analyzed 89,480 Landsat images from 1977 ± 2 to 2020 ± 2 to investigate the changes in the size of lakes recharged by the AWT. Our findings showed that out of the 209 lakes larger than 50 km2, 176 (84 %) grew during the wet season and 167 (81 %) during the dry season. 74 % of expanded lakes are located in the Inner Tibetan Plateau (TP) and Tarim basins. The lakes that shrank are found mainly in the Helmand, Indus, and Yangtze basins. Over the entire period, the area of shrinkage (55,077.028 km2 in wet season, 53,986.796 km2 in dry) markedly exceeded expansion (13,000.267 km2 in wet, 11,038.805 km2 in dry), with the drastic decline of the Aral Sea being a major contributor to shrinkage, accounting for 90 % of the total loss. From 1990 ± 2 to 2020 ± 2, alpine lakes mostly expanded, plain lakes mostly shrank, with the opposite trend from 1977 ± 2 to 1990 ± 2. Glacial loss and permafrost thawing under global warming in the Inner TP, Tarim Interior, Syr Darya, and Mekong basins were strongly correlated with lake expansion. However, permafrost discontinuities may prevent significant growth of lakes in the Indus and Ganges basins despite increased recharge. Our findings point to the prominence of the risk the lakes recharged by AWT face. Taking immediate action to manage these risks and adaptation is crucial as the AWT retreats and lake recharges are slowed.
Collapse
Affiliation(s)
- Nuo Xu
- Department of Biological and Agricultural Engineering, University of California, Davis 95616, USA; Big Data Technology Research Center, Nanhu Laboratory, Jiaxing 314002, China; Beijing Big Data Advanced Technology Institute, Beijing 100871, China; Key Laboratory of Earth Observation of Hainan Province, Hainan Aerospace Information Research Institute, Sanya 572029, China
| | - Jiahua Zhang
- Remote Sensing Information and Digital Earth Center, College of Computer Science and Technology, Qingdao University, Qingdao 266071, China; Key Laboratory of Earth Observation of Hainan Province, Hainan Aerospace Information Research Institute, Sanya 572029, China.
| | - Andre Daccache
- Department of Biological and Agricultural Engineering, University of California, Davis 95616, USA
| | - Chong Liu
- Piesat Information Technology Co., Ltd., Beijing 100195, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Arman Ahmadi
- Department of Biological and Agricultural Engineering, University of California, Davis 95616, USA
| | - Tianyu Zhou
- Big Data Technology Research Center, Nanhu Laboratory, Jiaxing 314002, China; Beijing Big Data Advanced Technology Institute, Beijing 100871, China
| | - Peng Gou
- Big Data Technology Research Center, Nanhu Laboratory, Jiaxing 314002, China; Beijing Big Data Advanced Technology Institute, Beijing 100871, China.
| |
Collapse
|
6
|
Ran J, Liu L, Zhang G, Shum CK, Qiu J, Hu R, Li J, Peng J, Hwang C, Luan Y, Sun Y, Xu M, Chen D, Ding J, Zhong Y. Contrasting lake changes in Tibet revealed by recent multi-modal satellite observations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168342. [PMID: 37931813 DOI: 10.1016/j.scitotenv.2023.168342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
The limited anthropogenic activities on the Tibetan Plateau make this an ideal natural laboratory to elucidate how climate change impacts lake changes. Previous studies have mainly focused on decadal lake changes, yet their rapid evolutions at short temporal intervals and the associated atmospheric origins remain elusive. Here, we produce a new lake area change dataset at monthly sampling over 2015-2020 from 16,801 satellite images. Our estimates achieve an accuracy of <30 m, as evidenced by in-situ GPS field survey validations of representative lake shorelines. We found contrasting patterns in recent rapid area changes: deaccelerating in the north and accelerating in the south. Such contrasting pattern was unprecedented in the last two decades and is likely caused by recent precipitation anomalies, indicating that lakes in TP may experience a tipping point. Lakes are found to store only a small portion (<5 %) of net precipitation in summer, increased to ∼11 % for years with heavy precipitation, which helps understand the water mass budget for lakes over there. Our study highlights the importance of investigating short-term lake area changes as a climate proxy to study their rapid responses to intra- and inter-annual climate variability.
Collapse
Affiliation(s)
- Jiangjun Ran
- Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Lin Liu
- Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Guoqing Zhang
- State Key Laboratory of Tibetan Plateau Earth System Science, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - C K Shum
- Division of Geodetic Science, School of Earth Sciences, Ohio State University, Columbus, OH, USA; State Key Laboratory of Geodesy and Earth's Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Jiahui Qiu
- Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ruigang Hu
- Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jianping Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES), Key Laboratory of Physical Oceanography, Academy of the Future Ocean, College of Oceanic and Atmospheric Science, Ocean University of China, Qingdao, China; Laboratory for Ocean Dynamics and Climate, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Junhuan Peng
- School of Land Science and Technology, China University of Geosciences, Beijing, China.
| | - Cheinway Hwang
- Department of Civil Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yi Luan
- Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Yue Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES), Key Laboratory of Physical Oceanography, Academy of the Future Ocean, College of Oceanic and Atmospheric Science, Ocean University of China, Qingdao, China; Laboratory for Ocean Dynamics and Climate, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Min Xu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Dingmei Chen
- Shannan Meteorological Service of Tibet, Shannan, China
| | - Jun Ding
- Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yulong Zhong
- School of Geography and Information Engineering, China University of Geosciences (Wuhan), Wuhan, China
| |
Collapse
|
7
|
Romanowicz KJ, Crump BC, Kling GW. Genomic evidence that microbial carbon degradation is dominated by iron redox metabolism in thawing permafrost. ISME COMMUNICATIONS 2023; 3:124. [PMID: 37996661 PMCID: PMC10667234 DOI: 10.1038/s43705-023-00326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Microorganisms drive many aspects of organic carbon cycling in thawing permafrost soils, but the compositional trajectory of the post-thaw microbiome and its metabolic activity remain uncertain, which limits our ability to predict permafrost-climate feedbacks in a warming world. Using quantitative metabarcoding and metagenomic sequencing, we determined relative and absolute changes in microbiome composition and functional gene abundance during thaw incubations of wet sedge tundra collected from northern Alaska, USA. Organic soils from the tundra active-layer (0-50 cm), transition-zone (50-70 cm), and permafrost (70+ cm) depths were incubated under reducing conditions at 4 °C for 30 days to mimic an extended thaw duration. Following extended thaw, we found that iron (Fe)-cycling Gammaproteobacteria, specifically the heterotrophic Fe(III)-reducing Rhodoferax sp. and chemoautotrophic Fe(II)-oxidizing Gallionella sp., increased by 3-5 orders of magnitude in absolute abundance within the transition-zone and permafrost microbiomes, accounting for 65% of community abundance. We also found that the abundance of genes for Fe(III) reduction (e.g., MtrE) and Fe(II) oxidation (e.g., Cyc1) increased concurrently with genes for benzoate degradation and pyruvate metabolism, in which pyruvate is used to generate acetate that can be oxidized, along with benzoate, to CO2 when coupled with Fe(III) reduction. Gene abundance for CH4 metabolism decreased following extended thaw, suggesting dissimilatory Fe(III) reduction suppresses acetoclastic methanogenesis under reducing conditions. Our genomic evidence indicates that microbial carbon degradation is dominated by iron redox metabolism via an increase in gene abundance associated with Fe(III) reduction and Fe(II) oxidation during initial permafrost thaw, likely increasing microbial respiration while suppressing methanogenesis in wet sedge tundra.
Collapse
Affiliation(s)
- Karl J Romanowicz
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Byron C Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | - George W Kling
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Wang R, Guo L, Yang Y, Zheng H, Jia H, Diao B, Li H, Liu J. Thermokarst lake susceptibility assessment using machine learning models in permafrost landscapes of the Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165709. [PMID: 37516190 DOI: 10.1016/j.scitotenv.2023.165709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/02/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023]
Abstract
Ice-rich permafrost thaws in response to rapid Arctic warming, and ground subsidence facilitates the formation of thermokarst lakes. Thermokarst lakes transform the surface energy balance of permafrost, affecting geomorphology, hydrology, ecology, and infrastructure stability, which can further contribute to greenhouse gas emissions. Currently, the spatial distribution of thermokarst lakes at large scales remains a challenging task. Based on multiple high-resolution environmental factors and thermokarst lake inventories, we used machine learning methods to estimate the spatial distributions of present and future thermokarst lake susceptibility (TLS) maps. We also identified key environmental factors of the TLS map. At 1.8 × 106 km2, high and very high susceptible regions were estimated to cover about 10.4 % of the region poleward of 60°N, which were mainly distributed in permafrost-dominated lowland regions. At least 23.9 % of the area of TLS maps was projected to disappear under representative concentration pathway scenarios (RCPs), with increased susceptibility levels in northern Canada. The slope was the key conditioning factor for the occurrence of thermokarst lakes in Arctic permafrost regions. Compared with similar studies, the reliability of the TLS map was further evaluated using probability calibration curve and coefficient of variation (CV). Our results provide a means for assessing the spatial distribution of thermokarst lakes at the circum-Arctic scale but also improve the understanding of their dynamics in response to the climate system.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Environmental Change and Natural Disasters, Ministry of Education, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE), Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Lanlan Guo
- Key Laboratory of Environmental Change and Natural Disasters, Ministry of Education, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE), Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Yuting Yang
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Hao Zheng
- Key Laboratory of Environmental Change and Natural Disasters, Ministry of Education, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE), Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Hong Jia
- Key Laboratory of Environmental Change and Natural Disasters, Ministry of Education, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE), Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Baijian Diao
- Key Laboratory of Environmental Change and Natural Disasters, Ministry of Education, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE), Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Hang Li
- Key Laboratory of Environmental Change and Natural Disasters, Ministry of Education, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE), Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Jifu Liu
- Key Laboratory of Environmental Change and Natural Disasters, Ministry of Education, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE), Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
9
|
Chen Y, Cheng X, Liu A, Chen Q, Wang C. Tracking lake drainage events and drained lake basin vegetation dynamics across the Arctic. Nat Commun 2023; 14:7359. [PMID: 37968270 PMCID: PMC10652023 DOI: 10.1038/s41467-023-43207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Abstract
Widespread lake drainage can lead to large-scale drying in Arctic lake-rich areas, affecting hydrology, ecosystems and permafrost carbon dynamics. To date, the spatio-temporal distribution, driving factors, and post-drainage dynamics of lake drainage events across the Arctic remain unclear. Using satellite remote sensing and surface water products, we identify over 35,000 (~0.6% of all lakes) lake drainage events in the northern permafrost zone between 1984 and 2020, with approximately half being relatively understudied non-thermokarst lakes. Smaller, thermokarst, and discontinuous permafrost area lakes are more susceptible to drainage compared to their larger, non-thermokarst, and continuous permafrost area counterparts. Over time, discontinuous permafrost areas contribute more drained lakes annually than continuous permafrost areas. Following drainage, vegetation rapidly colonizes drained lake basins, with thermokarst drained lake basins showing significantly higher vegetation growth rates and greenness levels than their non-thermokarst counterparts. Under warming, drained lake basins are likely to become more prevalent and serve as greening hotspots, playing an important role in shaping Arctic ecosystems.
Collapse
Affiliation(s)
- Yating Chen
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China.
- Key Laboratory of Comprehensive Observation of Polar Environment (Sun Yat-sen University), Ministry of Education, Zhuhai, 519082, China.
- College of Global Change and Earth System Science, Beijing Normal University, 100875, Beijing, China.
| | - Xiao Cheng
- Key Laboratory of Comprehensive Observation of Polar Environment (Sun Yat-sen University), Ministry of Education, Zhuhai, 519082, China.
- School of Geospatial Engineering and Science, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China.
| | - Aobo Liu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China.
- Key Laboratory of Comprehensive Observation of Polar Environment (Sun Yat-sen University), Ministry of Education, Zhuhai, 519082, China.
- College of Global Change and Earth System Science, Beijing Normal University, 100875, Beijing, China.
| | - Qingfeng Chen
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Chengxin Wang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
- Key Research Institute of Yellow River Civilization and Sustainable Development & Yellow River Civilization by Provincial and Ministerial Co-construction of Collaborative Innovation Center, Henan University, Kaifeng, 475001, China
| |
Collapse
|
10
|
Miller MWC, Lovvorn JR, Graff NR, Stellrecht NC, Plesh SP. Prey availability and foraging activity by tundra-nesting sea ducks: Strong preference for specific wetland types. Ecol Evol 2023; 13:e10375. [PMID: 37745786 PMCID: PMC10511831 DOI: 10.1002/ece3.10375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/13/2023] [Accepted: 07/14/2023] [Indexed: 09/26/2023] Open
Abstract
Wetlands in Arctic tundra support abundant breeding waterbirds. Wetland types differing in area, depth, vegetation, and invertebrate biomass density may vary in importance to birds, and in vulnerability to climate change. We studied availability and use of different wetland types by prelaying females of four species of sea ducks (Mergini) breeding on the Arctic Coastal Plain of Alaska, USA: long-tailed ducks (Clangula hyemalis) and Steller's (Polysticta stelleri), spectacled (Somateria fischeri), and king eiders (Somateria spectabilis). All four species preferred shallow vegetated wetlands versus deeper lakes. The ducks spent almost all their active time feeding, but their occurrence in different wetland types was not affected by the relative biomass density of known prey or of all invertebrates that we sampled combined. Sea ducks strongly preferred wetlands dominated by emergent and submersed Arctophila fulva over those dominated by the sedge Carex aquatilis, despite the much greater number, total area, and invertebrate biomass density of Carex wetlands. The hens depend heavily on local invertebrate prey for protein to produce eggs; thus, their preference for Arctophila wetlands likely reflects greater accessibility of prey in the near-surface canopy and detritus of Arctophila. Such shallow wetlands decreased substantially in number (-17%) and area (-30%) over 62 years before 2013 and appear highly susceptible to further declines with climate warming. Impacts on sea ducks of climate-driven changes in availability of important wetland types will depend on their adaptability in exploiting alternative wetlands.
Collapse
Affiliation(s)
- Micah W. C. Miller
- Department of Zoology and Center for EcologySouthern Illinois UniversityCarbondaleIllinoisUSA
- U.S. Fish and Wildlife Service, Northern Alaska Fish and Wildlife Field OfficeFairbanksAlaskaUSA
| | - James R. Lovvorn
- Department of Zoology and Center for EcologySouthern Illinois UniversityCarbondaleIllinoisUSA
| | - Nathan R. Graff
- U.S. Fish and Wildlife Service, Northern Alaska Fish and Wildlife Field OfficeFairbanksAlaskaUSA
| | - Neesha C. Stellrecht
- U.S. Fish and Wildlife Service, Northern Alaska Fish and Wildlife Field OfficeFairbanksAlaskaUSA
| | - Steven P. Plesh
- Department of Zoology and Center for EcologySouthern Illinois UniversityCarbondaleIllinoisUSA
| |
Collapse
|
11
|
Su Y, Ran Y, Zhang G, Li X. Remotely sensed lake area changes in permafrost regions of the Arctic and the Tibetan Plateau between 1987 and 2017. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163355. [PMID: 37028667 DOI: 10.1016/j.scitotenv.2023.163355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 05/27/2023]
Abstract
Both gradual and abrupt changes in lake surface area in permafrost regions are crucial for understanding the water cycles in cold regions under climate change. However, seasonal changes in lake area in permafrost regions are not available, and their occurrence conditions are still unclear. Based on remotely sensed water body products at a 30 m resolution, this study provides a detailed comparison of lake area changes across seven basins characterized by clear gradients in climatic, topographic and permafrost conditions in the Arctic and Tibetan Plateau between 1987 and 2017. The results show that the maximum surface area of all lakes net increased by 13.45 %. Among them, the seasonal lake area net increased by 28.66 %, but there was also a 2.48 % loss. The permanent lake area net increased by 6.39 %, and the area loss was approximately 3.22 %. The total permanent lake area generally decreased in the Arctic but increased in the Tibetan Plateau. At lake region scale (0.1° grid), the changes in permanent area of contained lakes were divided into four types including no change, homogeneous changes (only expansion or only shrinkage), heterogeneous changes (expansion neighboring shrinkage) and abrupt changes (newforming or vanishing). The lake regions with heterogeneous changes accounted for over one-quarter of all lake regions. All types of changes in lake regions, especially the heterogeneous changes and abrupt changes (e.g., vanishing), occurred more extensively and intensely on low and flat terrain, in high-density lake regions and in warm permafrost regions. These findings indicate that, considering the increase in surface water balance in these river basins, surface water balance alone cannot fully explain changes in permanent lake area in the permafrost region, and the thawing or disappearance of permafrost plays a tipping point effect on the lake changes.
Collapse
Affiliation(s)
- Yang Su
- Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youhua Ran
- Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guoqing Zhang
- National Tibetan Plateau Data Center, State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Li
- National Tibetan Plateau Data Center, State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
12
|
Gürbüz E. Monitoring spatio-temporal changes in wetlands with harmonized image series in Google Earth Engine. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:770. [PMID: 37249669 DOI: 10.1007/s10661-023-11400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
Study of rapidly changing lakes and wetlands with remote sensing methods is critical for understanding the climatic and anthropogenic effects. However, most of the studies search for the change of water body in specific time periods. Although this approach reduces the workload related to downloading and processing a large number of satellite images in computer environment, it actually causes ignoring some critical changes that occurred out of specified time periods. On the other hand, this situation reduces the data volume and the limited data causes problems for the management of water resources. The Google Earth Engine (GEE) platform allows the opportunity to rapidly and practically process large-scale temporal data without downloading. In this study, areal changes in Lake Akşehir in Türkiye, from 1985 to 2020, were calculated and mapped by the GEE as a case. In order to calculate the changes, the Landsat 5 TM, 7 ETM + and 8 OLI&TIRS images were harmonized and created annual mosaics. The Normalized difference water index (NDWI) and the automated water extraction index (AWEI) were applied to these annual mosaics. By this approach, the change in the water area representing a shrank by 87% on average (according to the calculations 91% for the NDWI and 83% for the AWEI) from 1985 to 2020 was assessed practically and rapidly on annual mosaics created from all images between the studied period, instead of assessment based on images taken on only one date in the chosen years as in previous studies. Such an approach will provide time and labour savings and provide more meaningful and uninterrupted data for studies about changes in other wetland areas.
Collapse
Affiliation(s)
- Esra Gürbüz
- Harita Mühendisliği Bölümü, Mühendislik Fakültesi, Aksaray Üniversitesi, 68100, Aksaray, Türkiye.
| |
Collapse
|
13
|
Plesh SP, Lovvorn JR, Miller MWC. Organic matter sources and flows in tundra wetland food webs. PLoS One 2023; 18:e0286368. [PMID: 37235582 DOI: 10.1371/journal.pone.0286368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Arctic lowland tundra is often dominated by wetlands. As numbers and types of these wetlands change with climate warming, their invertebrate biomass and assemblages may also be affected. Increased influx of nutrients and dissolved organic matter (DOM) from thawing peat may alter the relative availability of organic matter (OM) sources, differentially affecting taxa with disparate dependence on those sources. In five shallow wetland types (<40 to 110 cm deep) and in littoral zones of deeper lakes (>150 cm), we used stable isotopes (δ13C, δ15N) to compare contributions of four OM sources (periphytic microalgae, cyanobacteria, macrophytes, peat) to the diets of nine macroinvertebrate taxa. Living macrophytes were not distinguishable isotopically from peat that likely contributed most DOM. Within invertebrate taxa, relative OM contributions were similar among all wetland types except deeper lakes. Physidae snails consumed substantial amounts of OM from cyanobacteria. However, for all other taxa examined, microalgae were the dominant or a major OM source (39-82%, mean 59%) in all wetland types except deeper lakes (20‒62%, mean 31%). Macrophytes and macrophyte-derived peat, likely consumed mostly indirectly as DOM-supported bacteria, ranged from 18‒61% (mean 41%) of ultimate OM sources in all wetland types except deeper lakes (38-80%, mean 69%). Invertebrate consumption of microalgal C may often have involved bacterial intermediates, or a mix of algae with bacteria consuming peat-derived OM. High production of periphyton with very low δ13C values were favored by continuous daylight illuminating shallow depths, high N and P levels, and high CO2 concentrations from bacterial respiration of peat-derived DOM. Although relative OM sources were similar across wetland types except deeper lakes, total invertebrate biomass was much higher in shallow wetlands with emergent vegetation. Impacts of warming on the availability of invertebrate prey to waterbirds will likely depend not on shifts in OM sources, but more on changes in overall number or area of shallow emergent wetlands.
Collapse
Affiliation(s)
- Steven P Plesh
- School of Biological Sciences, Southern Illinois University, Carbondale, Illinois, United States of America
| | - James R Lovvorn
- School of Biological Sciences, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Micah W C Miller
- School of Biological Sciences, Southern Illinois University, Carbondale, Illinois, United States of America
- United States Fish and Wildlife Service, Fairbanks Fish and Wildlife Field Office, Fairbanks, Alaska, United States of America
| |
Collapse
|
14
|
Woolway RI, Sharma S, Smol JP. Lakes in Hot Water: The Impacts of a Changing Climate on Aquatic Ecosystems. Bioscience 2022; 72:1050-1061. [PMID: 36325103 PMCID: PMC9618276 DOI: 10.1093/biosci/biac052] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023] Open
Abstract
Our planet is being subjected to unprecedented climate change, with far-reaching social and ecological repercussions. Below the waterline, aquatic ecosystems are being affected by multiple climate-related and anthropogenic stressors, the combined effects of which are poorly understood and rarely appreciated at the global stage. A striking consequence of climate change on aquatic ecosystems is that many are experiencing shorter periods of ice cover, as well as earlier and longer summer stratified seasons, which often result in a cascade of ecological and environmental consequences, such as warmer summer water temperatures, alterations in lake mixing and water levels, declines in dissolved oxygen, increased likelihood of cyanobacterial algal blooms, and the loss of habitat for native cold-water fisheries. The repercussions of a changing climate include impacts on freshwater supplies, water quality, biodiversity, and the ecosystem benefits that they provide to society.
Collapse
Affiliation(s)
- R Iestyn Woolway
- Department of Meteorology, University of Reading, Reading, England and with the School of Ocean Sciences at Bangor University in Anglesey, Wales
| | - Sapna Sharma
- Department of Biology, York University, Toronto, Ontario, Canada
| | - John P Smol
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
15
|
The Study of Soil Bacterial Diversity and the Influence of Soil Physicochemical Factors in Meltwater Region of Ny-Ålesund, Arctic. Microorganisms 2022; 10:microorganisms10101913. [PMID: 36296189 PMCID: PMC9611652 DOI: 10.3390/microorganisms10101913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Global climate change has caused the changes of the ecological environment in the Arctic region, including sea ice melting, runoff increase, glacial lake expansion, and a typical meltwater area has formed in the Arctic coastal area. In this study, the meltwater areas near six different characteristic areas of Ny-Ålesund in 2018 were taken as the research objects, and high-throughput sequencing of V3–V4 regions of all samples were performed using 16S rDNA. Among the soil samples of six glacial meltwater areas in Ny-Ålesund, Arctic, the meltwater area near the reservoir bay had the highest bacterial abundance, and the meltwater area near the sand had the lowest one. The dominant phyla in soil samples were Proteobacteria, Actinobacteria, Acidobacteria. The NH4+-N content in intertidal soil was higher than that in subtidal soil. Through WGCNA analysis and LEFSE analysis, it was found that the core bacteria significantly related to NH4+-N were basically distributed in the intertidal area. For example, Nitrosomonadaceae, Nitrospira and Sphingomonas were the core bacteria showed significant different abundance in the intertidal area, which have the ability to metabolize NH4+-N. Our findings suggest that NH4+-N plays an important role in soil bacterial community structure in the Arctic meltwater areas.
Collapse
|
16
|
Xu Q, Du Z, Wang L, Xue K, Wei Z, Zhang G, Liu K, Lin J, Lin P, Chen T, Xiao C. The Role of Thermokarst Lake Expansion in Altering the Microbial Community and Methane Cycling in Beiluhe Basin on Tibetan Plateau. Microorganisms 2022; 10:1620. [PMID: 36014037 PMCID: PMC9412574 DOI: 10.3390/microorganisms10081620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most significant environmental changes across the Tibetan Plateau (TP) is the rapid lake expansion. The expansion of thermokarst lakes affects the global biogeochemical cycles and local climate regulation by rising levels, expanding area, and increasing water volumes. Meanwhile, microbial activity contributes greatly to the biogeochemical cycle of carbon in the thermokarst lakes, including organic matter decomposition, soil formation, and mineralization. However, the impact of lake expansion on distribution patterns of microbial communities and methane cycling, especially those of water and sediment under ice, remain unknown. This hinders our ability to assess the true impact of lake expansion on ecosystem services and our ability to accurately investigate greenhouse gas emissions and consumption in thermokarst lakes. Here, we explored the patterns of microorganisms and methane cycling by investigating sediment and water samples at an oriented direction of expansion occurred from four points under ice of a mature-developed thermokarst lake on TP. In addition, the methane concentration of each water layer was examined. Microbial diversity and network complexity were different in our shallow points (MS, SH) and deep points (CE, SH). There are differences of microbial community composition among four points, resulting in the decreased relative abundances of dominant phyla, such as Firmicutes in sediment, Proteobacteria in water, Thermoplasmatota in sediment and water, and increased relative abundance of Actinobacteriota with MS and SH points. Microbial community composition involved in methane cycling also shifted, such as increases in USCγ, Methylomonas, and Methylobacter, with higher relative abundance consistent with low dissolved methane concentration in MS and SH points. There was a strong correlation between changes in microbiota characteristics and changes in water and sediment environmental factors. Together, these results show that lake expansion has an important impact on microbial diversity and methane cycling.
Collapse
Affiliation(s)
- Qian Xu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiheng Du
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lei Wang
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Kai Xue
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Wei
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiahui Lin
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| | - Penglin Lin
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
| | - Cunde Xiao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
17
|
The Outburst of a Lake and Its Impacts on Redistribution of Surface Water Bodies in High-Altitude Permafrost Region. REMOTE SENSING 2022. [DOI: 10.3390/rs14122918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The lakes distributed in permafrost areas on the Tibetan Plateau (TP) have been experiencing significant changes during the past few decades as a result of the climate warming and regional wetting. In September 2011, an outburst occurred on an endorheic lake (Zonag Lake) in the interior of the TP, which caused the spatial expansion of three downstream lakes (Kusai Lake, Haidingnor Lake and Salt Lake) and modified the four independent lake catchments to one basin. In this study, we investigate the changes in surficial areas and water volumes of the outburst lake and related downstream water bodies 10 years after the outburst. Based on the meteorological and satellite data, the reasons for the expansion of downstream lakes were analyzed. Additionally, the importance of the permafrost layer in determining hydrological process on the TP and the influence of from lake expansion on engineering infrastructures were discussed. The results in this study showed the downstream lakes increased both in area and volume after the outburst of the headwater. Meanwhile, we hope to provide a reference about surface water changes and permafrost degradation for the management of lake overflow and flood on the TP in the background of climate warming and wetting.
Collapse
|
18
|
Miller MWC, Lovvorn JR, Graff NR, Stellrecht NC. Use of marine vs. freshwater proteins for egg‐laying and incubation by sea ducks breeding in Arctic tundra. Ecosphere 2022. [DOI: 10.1002/ecs2.4138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Micah W. C. Miller
- School of Biological Sciences Southern Illinois University Carbondale Illinois USA
- U.S. Fish and Wildlife Service Fairbanks Fish and Wildlife Field Office Fairbanks Alaska USA
| | - James R. Lovvorn
- School of Biological Sciences Southern Illinois University Carbondale Illinois USA
| | - Nathan R. Graff
- U.S. Fish and Wildlife Service Fairbanks Fish and Wildlife Field Office Fairbanks Alaska USA
- Department of Biology and Wildlife University of Alaska Fairbanks Fairbanks Alaska USA
| | - Neesha C. Stellrecht
- U.S. Fish and Wildlife Service Fairbanks Fish and Wildlife Field Office Fairbanks Alaska USA
| |
Collapse
|
19
|
Chételat J, McKinney MA, Amyot M, Dastoor A, Douglas TA, Heimbürger-Boavida LE, Kirk J, Kahilainen KK, Outridge PM, Pelletier N, Skov H, St Pierre K, Vuorenmaa J, Wang F. Climate change and mercury in the Arctic: Abiotic interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153715. [PMID: 35149079 DOI: 10.1016/j.scitotenv.2022.153715] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Dramatic environmental shifts are occuring throughout the Arctic from climate change, with consequences for the cycling of mercury (Hg). This review summarizes the latest science on how climate change is influencing Hg transport and biogeochemical cycling in Arctic terrestrial, freshwater and marine ecosystems. As environmental changes in the Arctic continue to accelerate, a clearer picture is emerging of the profound shifts in the climate and cryosphere, and their connections to Hg cycling. Modeling results suggest climate influences seasonal and interannual variability of atmospheric Hg deposition. The clearest evidence of current climate change effects is for Hg transport from terrestrial catchments, where widespread permafrost thaw, glacier melt and coastal erosion are increasing the export of Hg to downstream environments. Recent estimates suggest Arctic permafrost is a large global reservoir of Hg, which is vulnerable to degradation with climate warming, although the fate of permafrost soil Hg is unclear. The increasing development of thermokarst features, the formation and expansion of thaw lakes, and increased soil erosion in terrestrial landscapes are increasing river transport of particulate-bound Hg and altering conditions for aquatic Hg transformations. Greater organic matter transport may also be influencing the downstream transport and fate of Hg. More severe and frequent wildfires within the Arctic and across boreal regions may be contributing to the atmospheric pool of Hg. Climate change influences on Hg biogeochemical cycling remain poorly understood. Seasonal evasion and retention of inorganic Hg may be altered by reduced sea-ice cover and higher chloride content in snow. Experimental evidence indicates warmer temperatures enhance methylmercury production in ocean and lake sediments as well as in tundra soils. Improved geographic coverage of measurements and modeling approaches are needed to better evaluate net effects of climate change and long-term implications for Hg contamination in the Arctic.
Collapse
Affiliation(s)
- John Chételat
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Ottawa, ON K1A 0H3, Canada.
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Marc Amyot
- Groupe de recherche interuniversitaire en limnologie (GRIL), Département de sciences biologiques, Complexe des Sciences, Montréal, QC H2V 0B3, Canada
| | - Ashu Dastoor
- Environment and Climate Change Canada, Air Quality Research Division, Dorval, QC H9P 1J3, Canada
| | - Thomas A Douglas
- U.S. Army Cold Regions Research and Engineering Laboratory, Fort Wainwright, AK 99709, USA
| | - Lars-Eric Heimbürger-Boavida
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
| | - Jane Kirk
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, ON L7S 1A1, Canada
| | - Kimmo K Kahilainen
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, FI-16900 Lammi, Finland
| | - Peter M Outridge
- Geological Survey of Canada, Natural Resources Canada, Ottawa, ON K1A 0E8, Canada
| | - Nicolas Pelletier
- Geography and Environmental Studies, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Henrik Skov
- Department of Environmental Science, iClimate, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Kyra St Pierre
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jussi Vuorenmaa
- Finnish Environment Institute (SYKE), Latokartanonkaari 11, FI-00790 Helsinki, Finland
| | - Feiyue Wang
- Centre for Earth Observation Sciences (CEOS), Dept. of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
20
|
Du Y, Wan W, Li Q, Zhang H, Qian H, Cai J, Wang J, Zheng X. Impacts of climate and human activities on Daihai Lake in a typical semi-arid watershed, Northern China. PLoS One 2022; 17:e0266049. [PMID: 35609017 PMCID: PMC9129052 DOI: 10.1371/journal.pone.0266049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/11/2022] [Indexed: 11/25/2022] Open
Abstract
A rapid shrinkage of Daihai Lake was found in recent decades. The present study analyzed the characteristics of Daihai Lake shrinkage and quantified the contribution of climate and human activities. The results of Mann-Kendall- Sneyers test and moving t-test showed that there was an obvious mutation point of lake level in 2006 and the descending speed of Daihai Lake level post-2006 (-0.46m/a) was 3.22 times that of pre-2006 (-0.14m/a). The centroid of Daihai Lake moved 1365.18 m from southwest to northeast during 1989 ~ 2018 with an average speed of 47.08 m/a. The results of Mann-Kendall trend test revealed that the annual evaporation showed a significant downward trend with a rate of approximately -5.33 mm/a, while no significant trend was found in precipitation. Daihai lake water level showed a very weak relationship with evaporation (r = 0.078, p < 0.01) and precipitation (p>0.05) respectively. Daihai Lake was influenced by human activities mainly from land use/ land cover, building reservoirs, pumping groundwater and directly consuming Daihai Lake water by Daihai power plant (DHPP). It was thought-provoking that DHPP began to consume Daihai lake water in 2006, which was consistent with abrupt change of Daihai lake level. The proportion of human impact was fluctuating upward. Human factors were the main factor of lake water reduction in last 10 years and the 5-year average contribution of human activities to Daihai Lake shrinkage was more than 61.99%. More attention and economic support should be given to prevent the continuous shrinkage of Daihai Lake.
Collapse
Affiliation(s)
- Yajun Du
- Yellow River Engineering Consulting Co., Ltd. (YREC), Zhengzhou, Henan, China
- Key Laboratory of Water Management and Water Security for Yellow River Basin, Ministry of Water Resources (under construction), Basin, China
- School of water and Environment, Chang’an University, Xi’an, Shaanxi, China
| | - Weifeng Wan
- Yellow River Engineering Consulting Co., Ltd. (YREC), Zhengzhou, Henan, China
| | - Qingbo Li
- Yellow River Engineering Consulting Co., Ltd. (YREC), Zhengzhou, Henan, China
| | - Haifeng Zhang
- Yellow River Engineering Consulting Co., Ltd. (YREC), Zhengzhou, Henan, China
| | - Hui Qian
- School of water and Environment, Chang’an University, Xi’an, Shaanxi, China
| | - Jinlong Cai
- Yellow River Engineering Consulting Co., Ltd. (YREC), Zhengzhou, Henan, China
| | - Junzhi Wang
- Yellow River Engineering Consulting Co., Ltd. (YREC), Zhengzhou, Henan, China
| | - Xiaokang Zheng
- Yellow River Engineering Consulting Co., Ltd. (YREC), Zhengzhou, Henan, China
| |
Collapse
|
21
|
Physicochemical Water Quality Indicators in the Neretva River Basin (B&H) With Reference to Ecological Conditions for Endemic Salmonids. EKOLÓGIA (BRATISLAVA) 2022. [DOI: 10.2478/eko-2022-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Due to its natural features, the Neretva River has been interesting throughout its stream for the construction of energy facilities, as well as its tributaries Rama, Trebišnica, Tihaljina, Lištica. Jablanica (1955), HPP Rama (1968), CHE Čapljina (1979), HPP Salakovac (1981), HPP Grabovica (1982), HPP Mostar (1987), HPP Peć Mlini, HPP Mostarsko blato have been built on the Neretva River and its tributaries. HPP. The aim of this paper is to determine the state of chemical and physical parameters of water in reservoirs and streams, as well as the parameters of the aquatic environment in which endemic salmonids previously lived and the possibility of revitalization of these watercourses. The ecological conditions of the Neretva reservoirs for the life of Neretva-endemic fish and the similarity to the conditions in the natural course of Neretva before the construction of the dam were examined. The research was conducted during 2017 and 2018 at several locations in the Neretva river basin (reservoirs and streams).
Collapse
|
22
|
Du TLT, Lee H, Bui DD, Graham LP, Darby SD, Pechlivanidis IG, Leyland J, Biswas NK, Choi G, Batelaan O, Bui TTP, Do SK, Tran TV, Nguyen HT, Hwang E. Streamflow Prediction in Highly Regulated, Transboundary Watersheds Using Multi-Basin Modeling and Remote Sensing Imagery. WATER RESOURCES RESEARCH 2022; 58:e2021WR031191. [PMID: 35866043 PMCID: PMC9286455 DOI: 10.1029/2021wr031191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/23/2021] [Accepted: 03/04/2022] [Indexed: 06/15/2023]
Abstract
Despite the potential of remote sensing for monitoring reservoir operation, few studies have investigated the extent to which reservoir releases can be inferred across different spatial and temporal scales. Through evaluating 21 reservoirs in the highly regulated Greater Mekong region, remote sensing imagery was found to be useful in estimating daily storage volumes for within-year and over-year reservoirs (correlation coefficients [CC] ≥ 0.9, normalized root mean squared error [NRMSE] ≤ 31%), but not for run-of-river reservoirs (CC < 0.4, 40% ≤ NRMSE ≤ 270%). Given a large gap in the number of reservoirs between global and local databases, the proposed framework can improve representation of existing reservoirs in the global reservoir database and thus human impacts in hydrological models. Adopting an Integrated Reservoir Operation Scheme within a multi-basin model was found to overcome the limitations of remote sensing and improve streamflow prediction at ungauged cascade reservoir systems where previous modeling approaches were unsuccessful. As a result, daily regulated streamflow was predicted competently across all types of reservoirs (median values of CC = 0.65, NRMSE = 8%, and Kling-Gupta efficiency [KGE] = 0.55) and downstream hydrological stations (median values of CC = 0.94, NRMSE = 8%, and KGE = 0.81). The findings are valuable for helping to understand the impacts of reservoirs and dams on streamflow and for developing more useful adaptation measures to extreme events in data sparse river basins.
Collapse
Affiliation(s)
- Tien L. T. Du
- Department of Civil and Environmental EngineeringUniversity of HoustonHoustonTXUSA
- Danang Institute for Socio‐Economic DevelopmentDa NangVietnam
| | - Hyongki Lee
- Department of Civil and Environmental EngineeringUniversity of HoustonHoustonTXUSA
| | - Duong D. Bui
- National Center for Water Resources Planning and InvestigationMinistry of Natural Resources and EnvironmentHanoiVietnam
| | - L. Phil Graham
- Swedish Meteorological and Hydrological InstituteNorrköpingSweden
| | - Stephen D. Darby
- School of Geography and Environmental ScienceUniversity of SouthamptonSouthamptonUK
| | | | - Julian Leyland
- School of Geography and Environmental ScienceUniversity of SouthamptonSouthamptonUK
| | - Nishan K. Biswas
- Hydrological Sciences LaboratoryNASA Goodard Space Flight CenterGreenbeltMDUSA
| | - Gyewoon Choi
- International Center for Urban Water Hydroinformatics Research & InnovationIncheonRepublic of Korea
| | | | - Thao T. P. Bui
- Department of Civil and Environmental EngineeringTokyo Metropolitan UniversityTokyoJapan
| | - Son K. Do
- Department of Civil and Environmental EngineeringUniversity of HoustonHoustonTXUSA
| | - Tinh V. Tran
- Department of Water ResourcesHanoi University of Natural Resource and EnvironmentHanoiVietnam
| | - Hoa Thi Nguyen
- Faculty of EnvironmentHanoi University of Mining and GeologyHanoiVietnam
| | - Euiho Hwang
- Water Resources Satellite Research CenterK‐Water InstituteDaejeonRepublic of Korea
| |
Collapse
|
23
|
Ren Z, Ma K, Jia X, Wang Q, Zhang C, Li X. Community Assembly and Co-Occurrence Patterns of Microeukaryotes in Thermokarst Lakes of the Yellow River Source Area. Microorganisms 2022; 10:481. [PMID: 35208934 PMCID: PMC8877526 DOI: 10.3390/microorganisms10020481] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/02/2023] Open
Abstract
Thermokarst lakes are important aquatic ecosystems in cold regions, experiencing several changes due to global warming. However, the fundamental assembly mechanisms of microeukaryotic communities in thermokarst lakes are unknown. In this study, we examined the assembly processes and co-occurrence networks of microeukaryotic communities in sediment and water of thermokarst lakes in the Yellow River Source Area. Sediment microeukaryotic communities had a significantly lower α-diversity but higher β-diversity than water microeukaryotic communities. pH, sediment organic carbon, and total phosphorus significantly affected taxonomic and phylogenetic diversity of sediment communities, while conductivity was a significant driver for water communities. Both sediment and water microeukaryotic communities were strongly governed by dispersal limitation. However, deterministic processes, especially homogenous selection, were more relevant in structuring microeukaryotic communities in water than those in sediment. Changes in total nitrogen and phosphorus in sediment could contribute to shift its microeukaryotic communities from homogeneous selection to stochastic processes. Co-occurrence networks showed that water microeukaryotic communities are more complex and interconnected but have lower modularity than sediment microeukaryotic communities. The water microeukaryotic network had more modules than the sediment microeukaryotic network. These modules were dominated by different taxonomic groups and associated to different environmental variables.
Collapse
Affiliation(s)
- Ze Ren
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; (Q.W.); (C.Z.); (X.L.)
- School of Environment, Beijing Normal University, Beijing 100875, China;
| | - Kang Ma
- School of Environment, Beijing Normal University, Beijing 100875, China;
| | - Xuan Jia
- College of Education for the Future, Beijing Normal University, Zhuhai 519087, China;
| | - Qing Wang
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; (Q.W.); (C.Z.); (X.L.)
- School of Environment, Beijing Normal University, Beijing 100875, China;
| | - Cheng Zhang
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; (Q.W.); (C.Z.); (X.L.)
- School of Engineering Technology, Beijing Normal University, Zhuhai 519087, China
| | - Xia Li
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; (Q.W.); (C.Z.); (X.L.)
- School of Environment, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
24
|
Monitoring Spatio-Temporal Dynamics in the Eastern Plain Lakes of China Using Long-Term MODIS UNWI Index. REMOTE SENSING 2022. [DOI: 10.3390/rs14040985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Monitoring the spatio-temporal dynamics of the Eastern Plain Lake (EPL) is vital to the local environment and economy. However, due to the limitations and efficiency of traditional image formats in storing and processing large amounts of images and optimal threshold adjustments are often necessary for water/non-water separation based on traditional multi-band/spectral water indexes over large areas and in the long-term, previous studies have either been on a short period or mainly focused on water inundation dynamics of several lakes. To address these issues, a multi-dimensional dataset (MDD) storage format was used to efficiently organize more than ~7000 time series composite MODIS images. Furthermore, a universal normalized water index (UNWI) was developed based on full-spectrum information to simplify optimal threshold adjustments. Consequently, the present study analyzed the patterns of spatio-temporal water dynamic patterns and potential driving factors of inundation changes at large lakes (>5 km2) in the EPL during 2000–2020 through MDD and UNWI. In terms of annual inundation patterns, the numbers of lakes that experienced significant (p < 0.05) decreases (17 lakes) and increases (43 lakes) were highest for Class IV lakes among six geographical classes. Variation in intra-annual inundation in Classes I and II is correlated with consumption of chemical fertilizers (CCF), while precipitation accounted for the most change in lake area in Class III. This spatio-temporal analysis of lakes provides a necessary foundation for the sustainable development and continuous investigations of the EPL.
Collapse
|
25
|
Marois C, Girard C, Klanten Y, Vincent WF, Culley AI, Antoniades D. Local Habitat Filtering Shapes Microbial Community Structure in Four Closely Spaced Lakes in the High Arctic. Front Microbiol 2022; 13:779505. [PMID: 35222324 PMCID: PMC8873593 DOI: 10.3389/fmicb.2022.779505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Arctic lakes are experiencing increasingly shorter periods of ice cover due to accelerated warming at northern high latitudes. Given the control of ice cover thickness and duration over many limnological processes, these changes will have pervasive effects. However, due to their remote and extreme locations even first-order data on lake ecology is lacking for many ecosystems. The aim of this study was to characterize and compare the microbial communities of four closely spaced lakes in Stuckberry Valley (northern Ellesmere Island, Canadian Arctic Archipelago), in the coastal margin zone of the Last Ice Area, that differed in their physicochemical, morphological and catchment characteristics. We performed high-throughput amplicon sequencing of the V4 16S rRNA gene to provide inter- and intra-lake comparisons. Two deep (>25 m) and mostly oxygenated lakes showed highly similar community assemblages that were distinct from those of two shallower lakes (<10 m) with anoxic bottom waters. Proteobacteria, Verrucomicrobia, and Planctomycetes were the major phyla present in the four water bodies. One deep lake contained elevated proportions of Cyanobacteria and Thaumarchaeota that distinguished it from the others, while the shallow lakes had abundant communities of predatory bacteria, as well as microbes in their bottom waters that contribute to sulfur and methane cycles. Despite their proximity, our data suggest that local habitat filtering is the primary determinant of microbial diversity in these systems. This study provides the first detailed examination of the microbial assemblages of the Stuckberry lakes system, resulting in new insights into the microbial ecology of the High Arctic.
Collapse
Affiliation(s)
- Catherine Marois
- Département de Biochimie, Microbiologie et Bio-Informatique, Université Laval, Québec, QC, Canada
- Centre d’Études Nordiques (CEN), Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Catherine Girard
- Centre d’Études Nordiques (CEN), Université Laval, Québec, QC, Canada
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Yohanna Klanten
- Centre d’Études Nordiques (CEN), Université Laval, Québec, QC, Canada
- Département de Géographie, Université Laval, Québec, QC, Canada
| | - Warwick F. Vincent
- Centre d’Études Nordiques (CEN), Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Département de Biologie, Université Laval, Québec, QC, Canada
| | - Alexander I. Culley
- Département de Biochimie, Microbiologie et Bio-Informatique, Université Laval, Québec, QC, Canada
- Centre d’Études Nordiques (CEN), Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Dermot Antoniades
- Centre d’Études Nordiques (CEN), Université Laval, Québec, QC, Canada
- Département de Géographie, Université Laval, Québec, QC, Canada
- *Correspondence: Dermot Antoniades,
| |
Collapse
|
26
|
Chen Y, Liu A, Cheng X. Detection of thermokarst lake drainage events in the northern Alaska permafrost region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150828. [PMID: 34627883 DOI: 10.1016/j.scitotenv.2021.150828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/02/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
The rapidly warming Arctic climate is reducing the stability of near-surface permafrost, and the thawing of ice-rich permafrost causes landscape changes known as thermokarst processes. Growing evidence suggests an increasing trend in the frequency and magnitude of thermokarst lake drainage events, which would significantly alter topography and hydrology, affecting ecosystem stability and carbon cycling. Dynamic monitoring of thermokarst lakes through satellite imagery remains a challenging task, as current temporal trend analysis methods have difficulty in accurately detecting when thermokarst lake drainage events occur. In this study, to improve the detection of time series breakpoints, an advanced temporal segmentation and change detection algorithm developed for forest change detection was, for the first time, transposed to monitor thermokarst lake dynamics. Moreover, to filter out spurious signals caused by fluctuations in lake area, we developed a hybrid algorithm to validate the detected thermokarst lake drainage events at the pixel-level and lake object-level, respectively. The method developed in this study demonstrates its effectiveness in detecting thermokarst lake drainage events in Arctic permafrost ecosystems and the potential to monitor the evolution of thermokarst landscapes using Landsat archive. A time-series analysis of changes in the thermokarst lake region of northern Alaska since 2000 using all available Landsat continuous data was performed on the Google Earth Engine platform. In total, 90 drainage lakes larger than 5 ha in size were detected in our study area, nearly a third of which were almost completely drained. As thermokarst lakes drainage represent hotspots of permafrost degradation, we publicly share information on these drained lakes to help select more targeted sites for costly fieldwork and validation activities. This study provides a basis for understanding and quantifying thermokarst lake dynamics in the Arctic permafrost region, which will contribute to the goal of integrating thermokarst processes into earth system models.
Collapse
Affiliation(s)
- Yating Chen
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Aobo Liu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Xiao Cheng
- School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| |
Collapse
|
27
|
Rogers A, Serbin SP, Way DA. Reducing model uncertainty of climate change impacts on high latitude carbon assimilation. GLOBAL CHANGE BIOLOGY 2022; 28:1222-1247. [PMID: 34689389 DOI: 10.1111/gcb.15958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The Arctic-Boreal Region (ABR) has a large impact on global vegetation-atmosphere interactions and is experiencing markedly greater warming than the rest of the planet, a trend that is projected to continue with anticipated future emissions of CO2 . The ABR is a significant source of uncertainty in estimates of carbon uptake in terrestrial biosphere models such that reducing this uncertainty is critical for more accurately estimating global carbon cycling and understanding the response of the region to global change. Process representation and parameterization associated with gross primary productivity (GPP) drives a large amount of this model uncertainty, particularly within the next 50 years, where the response of existing vegetation to climate change will dominate estimates of GPP for the region. Here we review our current understanding and model representation of GPP in northern latitudes, focusing on vegetation composition, phenology, and physiology, and consider how climate change alters these three components. We highlight challenges in the ABR for predicting GPP, but also focus on the unique opportunities for advancing knowledge and model representation, particularly through the combination of remote sensing and traditional boots-on-the-ground science.
Collapse
Affiliation(s)
- Alistair Rogers
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Shawn P Serbin
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Danielle A Way
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, USA
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
28
|
Recent Changes in Groundwater and Surface Water in Large Pan-Arctic River Basins. REMOTE SENSING 2022. [DOI: 10.3390/rs14030607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Surface and groundwater in large pan-Arctic river basins are changing rapidly. High-quality estimates of these changes are challenging because of the limits on the data quality and time span of satellite observations. Here, the term pan-Arctic river refers to the rivers flowing to the Arctic Ocean basin. In this study, we provide a new evaluation of groundwater storage (GWS) changes in the Lena, Ob, Yenisei, Mackenzie and Yukon River basins from the GRACE total water storage anomaly product, in situ runoff, soil moisture form models and a snow water equivalent product that has been significantly improved. Seasonal Trend decomposition using Loess was utilized to obtain trends in GWS. Changes in surface water (SW) between 1984 and 2019 in these basins were also examined based on the Joint Research Centre Global Surface Water Transition data. Results suggested that there were great GWS losses in the North American river basins, totaling approximately −219 km3, and GWS gains in the Siberian river basins, totaling ~340 km3, during 2002–2017. New seasonal and permanent SWs are the primary contributors to the SW transition, accounting for more than 50% of the area of the changed SW in each basin. Changes in the Arctic hydrological system will be more significant and various in the case of rapid and continuous changes in permafrost.
Collapse
|
29
|
Pilot Studies of the Unique Highland Palsa Mire in Western Sayan (Tuva Republic, Russian Federation). ATMOSPHERE 2021. [DOI: 10.3390/atmos13010032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In contrast to the well-studied West Siberian sector of frozen bogs in the Russian Arctic, the frozen mound bogs (so-called “palsas”) on the highlands of Southern Siberia have not yet been studied, but they are suspected to be even more sensitive to ongoing climate change. This article provides the pilot study on palsa mire Kara-Sug in the highland areas of Western Sayan mountain system, Tuva Republic. The study focuses on the current state of palsa mire and surrounding landscapes, providing wide range of ecological characteristics while describing ongoing transformations of natural landscapes under a changing climate. The study used a variety of field and laboratory methods: the integrated landscape-ecological approach, the study of peat deposits, geobotanical analysis, and modern analysis of the chemical composition of water, peat, and soils. The study shows that highland palsa mires are distinguished by their compactness and high variety of cryogenic landforms leading to high floristic and ecosystem diversity compared with lowland palsa mires. This information brings new insights and contributes to a better understanding of extrazonal highland palsa mires, which remain a “white spot” in the global environmental sciences.
Collapse
|
30
|
Li L, Xue B. Methane emissions from northern lakes under climate change: a review. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
AbstractNorthern lakes are important sources of CH4 in the atmosphere under the background of permafrost thaw and winter warming. We synthesize studies on thermokarst lakes, including various carbon sources for CH4 emission and the influence of thermokarst drainage on carbon emission, to show the evasion potential of ancient carbon that stored in the permafrost and CH4 emission dynamics along with thermokarst lake evolution. Besides, we discuss the lake CH4 dynamics in seasonally ice-covered lakes, especially for under-ice CH4 accumulation and emission during spring ice melt and the possible influential factors for CH4 emission in ice-melt period. We summarize the latest findings and point out that further research should be conducted to investigate the possibility of abundant ancient carbon emission from thermokarst lakes under climate warming and quantify the contribution of ice-melt CH4 emission from northern lakes on a large scale.
Collapse
|
31
|
Chen Y, Liu A, Cheng X. Vegetation grows more luxuriantly in Arctic permafrost drained lake basins. GLOBAL CHANGE BIOLOGY 2021; 27:5865-5876. [PMID: 34411382 PMCID: PMC9291482 DOI: 10.1111/gcb.15853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/15/2021] [Indexed: 05/05/2023]
Abstract
As Arctic warming, permafrost thawing, and thermokarst development intensify, increasing evidence suggests that the frequency and magnitude of thermokarst lake drainage events are increasing. Presently, we lack a quantitative understanding of vegetation dynamics in drained lake basins, which is necessary to assess the extent to which plant growth in thawing ecosystems will offset the carbon released from permafrost. In this study, continuous satellite observations were used to detect thermokarst lake drainage events in northern Alaska over the past 20 years, and an advanced temporal segmentation and change detection algorithm allowed us to determine the year of drainage for each lake. Quantitative analysis showed that the greenness (normalized difference vegetation index [NDVI]) of tundra vegetation growing on wet and nutrient-rich lake sediments increased approximately 10 times faster than that of the peripheral vegetation. It takes approximately 5 years (4-6 years for the 25%-75% range) for the drainage lake area to reach the greenness level of the peripheral vegetation. Eventually, the NDVI values of the drained lake basins were 0.15 (or 25%) higher than those of the surrounding areas. In addition, we found less lush vegetation in the floodplain drained lake basins, possibly due to water logging. We further explored the key environmental drivers affecting vegetation dynamics in and around the drained lake basins. The results showed that our multivariate regression model well simulated the growth dynamics of the drainage lake ecosystem ( Radj2=.73 , p < .001) and peripheral vegetation ( Radj2=.68 , p < .001). Among climate variables, moisture variables were more influential than temperature variables, indicating that vegetation growth in this area is susceptible to water stress. Our study provides valuable information for better modeling of vegetation dynamics in thermokarst lake areas and provides new insights into Arctic greening and carbon balance studies as thermokarst lake drainage intensifies.
Collapse
Affiliation(s)
- Yating Chen
- State Key Laboratory of Remote Sensing Science, and College of Global Change and Earth System ScienceBeijing Normal UniversityBeijingChina
- School of Geospatial Engineering and ScienceSun Yat‐Sen UniversityZhuhaiChina
| | - Aobo Liu
- State Key Laboratory of Remote Sensing Science, and College of Global Change and Earth System ScienceBeijing Normal UniversityBeijingChina
- School of Geospatial Engineering and ScienceSun Yat‐Sen UniversityZhuhaiChina
| | - Xiao Cheng
- School of Geospatial Engineering and ScienceSun Yat‐Sen UniversityZhuhaiChina
| |
Collapse
|
32
|
Vulis L, Tejedor A, Zaliapin I, Rowland JC, Foufoula‐Georgiou E. Climate Signatures on Lake And Wetland Size Distributions in Arctic Deltas. GEOPHYSICAL RESEARCH LETTERS 2021; 48:e2021GL094437. [PMID: 35844629 PMCID: PMC9285363 DOI: 10.1029/2021gl094437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 06/15/2023]
Abstract
Understanding how thermokarst lakes on arctic river deltas will respond to rapid warming is critical for projecting how carbon storage and fluxes will change in those vulnerable environments. Yet, this understanding is currently limited partly due to the complexity of disentangling significant interannual variability from the longer-term surface water signatures on the landscape, using the short summertime window of optical spaceborne observations. Here, we rigorously separate perennial lakes from ephemeral wetlands on 12 arctic deltas and report distinct size distributions and climate trends for the two waterbodies. Namely, we find a lognormal distribution for lakes and a power-law distribution for wetlands, consistent with a simple proportionate growth model and inundated topography, respectively. Furthermore, while no trend with temperature is found for wetlands, a statistically significant decreasing trend of mean lake size with warmer temperatures is found, attributed to colder deltas having deeper and thicker permafrost preserving larger lakes.
Collapse
Affiliation(s)
- Lawrence Vulis
- Department of Civil and Environmental EngineeringUniversity of California IrvineIrvineCAUSA
| | - Alejandro Tejedor
- Department of Civil and Environmental EngineeringUniversity of California IrvineIrvineCAUSA
- Department of Science and EngineeringSorbonne University Abu DhabiAbu DhabiUnited Arab Emirates
| | - Ilya Zaliapin
- Department of Mathematics and StatisticsUniversity of Nevada RenoRenoNVUSA
| | - Joel C. Rowland
- Earth and Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosNMUSA
| | - Efi Foufoula‐Georgiou
- Department of Civil and Environmental EngineeringUniversity of California IrvineIrvineCAUSA
- Department of Earth System ScienceUniversity of California IrvineIrvineCAUSA
| |
Collapse
|
33
|
Ren Z, Zhang C, Li X, Ma K, Zhang Z, Feng K, Cui B. Bacterial Communities Present Distinct Co-occurrence Networks in Sediment and Water of the Thermokarst Lakes in the Yellow River Source Area. Front Microbiol 2021; 12:716732. [PMID: 34745028 PMCID: PMC8569892 DOI: 10.3389/fmicb.2021.716732] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Thermokarst lakes are a ubiquitous and important landscape feature in cold regions and are changing tremendously due to the accelerated climate change. In thermokarst lakes, sediment and water are two distinct but highly interconnected habitats, harboring different bacterial communities in terms of taxonomic composition. However, the co-occurrence networks of these bacterial communities remain unclear. Here, we investigate the co-occurrence ecological networks of sediment and water bacterial communities for thermokarst lakes in the Yellow River Source Area on the Qinghai-Tibet Plateau. The results show that the bacterial communities construct distinct co-occurrence networks in sediment and water. The metacommunity network was parsed into four major modules formed by the operational taxonomic units (OTUs) enriched in sediment or water independently, and water-enriched OTUs exhibited much closer interconnections than sediment-enriched OTUs. When considering the sediment and water bacterial networks separately, different topological properties and modular patterns present: the sediment bacterial network was more clustered while the modules less responded to the environmental variables. On the contrary, the water bacterial network was more complex with the OTUs more interconnected and its modules more responded to the environmental variables. Moreover, the results of the structural equation model suggest that, by the influence of environmental variations on individual modules, the water bacterial communities would be more vulnerable under the fact of accelerating climate change. This study provides insights beyond a conventional taxonomic perspective, adding our knowledge of the potential mechanisms structuring bacterial community assembly and improving our prediction of the responses of this fast-changing ecosystem to future climate change.
Collapse
Affiliation(s)
- Ze Ren
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
- School of Environment, Beijing Normal University, Beijing, China
| | - Cheng Zhang
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
- School of Engineering Technology, Beijing Normal University, Zhuhai, China
| | - Xia Li
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
- School of Environment, Beijing Normal University, Beijing, China
| | - Kang Ma
- School of Environment, Beijing Normal University, Beijing, China
| | - Zhe Zhang
- College of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Kexin Feng
- College of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Baoshan Cui
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
- School of Environment, Beijing Normal University, Beijing, China
| |
Collapse
|
34
|
Monitoring the Transformation of Arctic Landscapes: Automated Shoreline Change Detection of Lakes Using Very High Resolution Imagery. REMOTE SENSING 2021. [DOI: 10.3390/rs13142802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Water bodies are a highly abundant feature of Arctic permafrost ecosystems and strongly influence their hydrology, ecology and biogeochemical cycling. While very high resolution satellite images enable detailed mapping of these water bodies, the increasing availability and abundance of this imagery calls for fast, reliable and automatized monitoring. This technical work presents a largely automated and scalable workflow that removes image noise, detects water bodies, removes potential misclassifications from infrastructural features, derives lake shoreline geometries and retrieves their movement rate and direction on the basis of ortho-ready very high resolution satellite imagery from Arctic permafrost lowlands. We applied this workflow to typical Arctic lake areas on the Alaska North Slope and achieved a successful and fast detection of water bodies. We derived representative values for shoreline movement rates ranging from 0.40–0.56 m yr−1 for lake sizes of 0.10 ha–23.04 ha. The approach also gives an insight into seasonal water level changes. Based on an extensive quantification of error sources, we discuss how the results of the automated workflow can be further enhanced by incorporating additional information on weather conditions and image metadata and by improving the input database. The workflow is suitable for the seasonal to annual monitoring of lake changes on a sub-meter scale in the study areas in northern Alaska and can readily be scaled for application across larger regions within certain accuracy limitations.
Collapse
|
35
|
Fine-Resolution Mapping of Pan-Arctic Lake Ice-Off Phenology Based on Dense Sentinel-2 Time Series Data. REMOTE SENSING 2021. [DOI: 10.3390/rs13142742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The timing of lake ice-off regulates biotic and abiotic processes in Arctic ecosystems. Due to the coarse spatial and temporal resolution of available satellite data, previous studies mainly focused on lake-scale investigations of melting/freezing, hindering the detection of subtle patterns within heterogeneous landscapes. To fill this knowledge gap, we developed a new approach for fine-resolution mapping of Pan-Arctic lake ice-off phenology. Using the Scene Classification Layer data derived from dense Sentinel-2 time series images, we estimated the pixel-by-pixel ice break-up end date information by seeking the transition time point when the pixel is completely free of ice. Applying this approach on the Google Earth Engine platform, we mapped the spatial distribution of the break-up end date for 45,532 lakes across the entire Arctic (except for Greenland) for the year 2019. The evaluation results suggested that our estimations matched well with both in situ measurements and an existing lake ice phenology product. Based on the generated map, we estimated that the average break-up end time of Pan-Arctic lakes is 172 ± 13.4 (measured in day of year) for the year 2019. The mapped lake ice-off phenology exhibits a latitudinal gradient, with a linear slope of 1.02 days per degree from 55°N onward. We also demonstrated the importance of lake and landscape characteristics in affecting spring lake ice melting. The proposed approach offers new possibilities for monitoring the seasonal Arctic lake ice freeze–thaw cycle, benefiting the ongoing efforts of combating and adapting to climate change.
Collapse
|
36
|
Cao Y, Fu C, Wang X, Dong L, Yao S, Xue B, Wu H, Wu H. Decoding the dramatic hundred-year water level variations of a typical great lake in semi-arid region of northeastern Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145353. [PMID: 33736389 DOI: 10.1016/j.scitotenv.2021.145353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/05/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Lakes in arid and semi-arid regions are experiencing dramatic variations in water level and volume, which has caused severe ecological and social problems. Long-term study of the lake dynamics in arid/semi-arid regions could provide particular insights into the mechanisms driving lake variations, while hydro-meteorological data were usually limited in these regions, especially before the instrumental period. In the present study, we focused on a typical great lake - Hulun Lake in semi-arid region in northern China, simulated the hydrological processes from 1904 to 2016 using SWAT model, CRUNCEP7 reanalysis data, and sparse records of lake level during 1900s-1950s, and investigated the mechanisms driving the dramatic variations of the lake at the hundred-year time scale. Results illustrated that the simplified Penman equation by Valiantzas (2006) could reproduce the evaporation dynamics of Hulun Lake, with monthly R2 being 0.93-0.95. The long-term simulation since 1904 reproduced runoff dynamics, which were consistent with the dramatic variations of lake level over hundred years. The largest water level increase (~5.0 m in 1950s) and decrease (~4.5 m in 2000s) during 1904-2016 were jointly affected by river runoff, lake evaporation, and precipitation into the lake. Both the positive/negative phase and the multi-decadal trend of PDO clearly influenced the hydrological cycle of Hunlun Lake, especially for the period of 1904-1950 with low lake levels. Overall, the present study provided a methodology for investigating the hundred-year hydrological processes for lakes in semi-arid regions in northeastern Asia.
Collapse
Affiliation(s)
- Yang Cao
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Congsheng Fu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China.
| | - Xiao Wang
- Powerchina Huadong Engineering Corporation Limited, Hangzhou 311122, China
| | - Linyao Dong
- Changjiang River Scientific Research Institute, Changjiang Water Resources Commission, Wuhan 431000, China
| | - Shuchun Yao
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Bin Xue
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huawu Wu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Haohao Wu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
37
|
Emerging mosquitoes (Aedes nigripes) as a resource subsidy for wolf spiders (Pardosa glacialis) in western Greenland. Polar Biol 2021. [DOI: 10.1007/s00300-021-02875-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Surface Water Changes in Dongting Lake from 1975 to 2019 Based on Multisource Remote-Sensing Images. REMOTE SENSING 2021. [DOI: 10.3390/rs13091827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dongting Lake plays an important role in water regulation and biodiversity protection, but it is vulnerable to climate change and human activities. To quantify surface water changes and factors driving them, long-term surface water variation in Dongting Lake was investigated using the multiple spectral indices method based on a decision tree classification for full time-series Landsat and MODIS datasets. Factors influencing surface water changes were explored by combining the annual maximum surface water and annual permanent occurrent water with meteorological and hydrological data. The results showed that both annual maximum surface water and annual permanent water decreased from 1975 to 2019 and the trends of rainfall and runoff at three outlets also changed. The annual maximum surface water surface of Dongting Lake increased during the 1990s due to high rainfall but decreased again after 2000. A significant change in both the hydrological stage and surface water sequence from 1986 to 2019 occurred in 2003, which coincided with the beginning of work to construct the Three Gorges Dam (TGD). The surface water decreased by about 360 km2 and runoff at the three outlets decreased by about 150 × 108 m3 after the impoundment of the TGD, which was likely the main cause of surface water changes after 2003. The area of surface water that changed from permanent water in the pre-TGD period into seasonally occurring water in the post-TGD periods is 209 km2, while the area of surface water that changed from seasonally occurring water in the pre-TGD period into permanent occurrent water in the post-TGD period is 31 km2. Meteorological elements and human activities have had a comprehensive impact on surface water changes in Dongting Lake. Rainfall and temperature account for about one-third of the influence on long-term changes of surface water, and rainfall is the main meteorological driving factor of surface water in the wet season, while temperature is the main factor in the dry season. Runoff at three outlets, four rivers and the Chenglingji explain about half of the change in surface water; the three outlets runoff is mainly affected by human activities and is the main hydrological driving factor of surface water. The monthly maximum surface water fluctuates regularly and Dongting Lake has a strong seasonal characteristic. Indeed, the seasonal changes are significantly altered when drought or flooding occurs, the causes of which are diverse and complex.
Collapse
|
39
|
Abstract
Arctic and boreal regions are undergoing dramatic warming and also possess the world’s highest concentration of lakes. However, ecological changes in lakes are poorly understood. We present a continental-scale trend analysis of satellite lake color in the green wavelengths, which shows declining greenness from 1984 to 2019 in Arctic-boreal lakes across western North America. Annual 30-m Landsat composites indicate lake greenness has decreased by 15%. Our findings show a relationship between lake color, rising air temperatures, and increasing precipitation, supporting the theory that warming may be increasing connectivity between lakes and surrounding landscapes. Overall, our results bring a powerful set of observations in support of the hypothesis that lakes are sentinels for global change in rapidly warming Arctic-boreal ecosystems. The highest concentration of the world’s lakes are found in Arctic-boreal regions [C. Verpoorter, T. Kutser, D. A. Seekell, L. J. Tranvik, Geophys. Res. Lett. 41, 6396–6402 (2014)], and consequently are undergoing the most rapid warming [J. E. Overland et al., Arctic Report Card (2018)]. However, the ecological response of Arctic-boreal lakes to warming remains highly uncertain. Historical trends in lake color from remote sensing observations can provide insights into changing lake ecology, yet have not been examined at the pan-Arctic scale. Here, we analyze time series of 30-m Landsat growing season composites to quantify trends in lake greenness for >4 × 105 waterbodies in boreal and Arctic western North America. We find lake greenness declined overall by 15% from the first to the last decade of analysis within the 6.3 × 106-km2 study region but with significant spatial variability. Greening declines were more likely to be found in areas also undergoing increases in air temperature and precipitation. These findings support the hypothesis that warming has increased connectivity between lakes and the land surface [A. Bring et al., J. Geophys. Res. Biogeosciences 121, 621–649 (2016)], with implications for lake carbon cycling and energy budgets. Our study provides spatially explicit information linking climate to pan-Arctic lake color changes, a finding that will help target future ecological monitoring in remote yet rapidly changing regions.
Collapse
|
40
|
Periglacial Lake Origin Influences the Likelihood of Lake Drainage in Northern Alaska. REMOTE SENSING 2021. [DOI: 10.3390/rs13050852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nearly 25% of all lakes on earth are located at high latitudes. These lakes are formed by a combination of thermokarst, glacial, and geological processes. Evidence suggests that the origin of periglacial lake formation may be an important factor controlling the likelihood of lakes to drain. However, geospatial data regarding the spatial distribution of these dominant Arctic and subarctic lakes are limited or do not exist. Here, we use lake-specific morphological properties using the Arctic Digital Elevation Model (DEM) and Landsat imagery to develop a Thermokarst lake Settlement Index (TSI), which was used in combination with available geospatial datasets of glacier history and yedoma permafrost extent to classify Arctic and subarctic lakes into Thermokarst (non-yedoma), Yedoma, Glacial, and Maar lakes, respectively. This lake origin dataset was used to evaluate the influence of lake origin on drainage between 1985 and 2019 in northern Alaska. The lake origin map and lake drainage datasets were synthesized using five-year seamless Landsat ETM+ and OLI image composites. Nearly 35,000 lakes and their properties were characterized from Landsat mosaics using an object-based image analysis. Results indicate that the pattern of lake drainage varied by lake origin, and the proportion of lakes that completely drained (i.e., >60% area loss) between 1985 and 2019 in Thermokarst (non-yedoma), Yedoma, Glacial, and Maar lakes were 12.1, 9.5, 8.7, and 0.0%, respectively. The lakes most vulnerable to draining were small thermokarst (non-yedoma) lakes (12.7%) and large yedoma lakes (12.5%), while the most resilient were large and medium-sized glacial lakes (4.9 and 4.1%) and Maar lakes (0.0%). This analysis provides a simple remote sensing approach to estimate the spatial distribution of dominant lake origins across variable physiography and surficial geology, useful for discriminating between vulnerable versus resilient Arctic and subarctic lakes that are likely to change in warmer and wetter climates.
Collapse
|
41
|
Mao D, Tian Y, Wang Z, Jia M, Du J, Song C. Wetland changes in the Amur River Basin: Differing trends and proximate causes on the Chinese and Russian sides. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111670. [PMID: 33218828 DOI: 10.1016/j.jenvman.2020.111670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/26/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
According to the United Nations Sustainable Development Goals (SDGs), understanding the extent of wetlands, their change trends and the proximate causes is important for the conservation of wetlands and endangered waterfowls. Here we studied the world's ninth largest river basin, the Amur River Basin (ARB), with a land area of 2.08 million km2. Our objectives were to address the information deficiencies of spatially explicit wetland distributions and their changes and to quantify the proximate causes of these changes in various periods in the ARB. A hybrid approach combining object-based and hierarchical decision-trees classification (HOHC) was applied to Landsat series images to obtain multitemporal land cover datasets from 1980 to 2016. Further quantitative analysis revealed that the ARB held 184,561 km2 of wetlands in 2016, accounting for 9% of the whole basin area. Among these, 59% of the wetlands were identified on the Russian side, while 40% were on the Chinese side, and 1% were on the Mongolian side. The ARB lost 22% of its wetland (52,246 km2) from 1980 to 2016, with a consistent net loss from 1980 to 2010 but an area gain from 2010 to 2016. Human activities dominated the consistent wetland losses on the Chinese side of the ARB, of which cropland expansion was the primary proximate cause of wetland loss (69%). Conversely, the wetlands on the Russian side had consistent losses from 1980 to 2010 followed by a gain from 2010 to 2016, which could be attributed to climate change. These quantified data will inform decision-making on wetland conservation and benefit scientific studies depending on spatially explicit wetland information.
Collapse
Affiliation(s)
- Dehua Mao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jingyuetan Remote Sensing Experiment Station, Chinese Academy of Sciences, Chang Chun, 130102, China
| | - Yanlin Tian
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Zongming Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; National Earth System Science Data Center, Beijing, 100101, China.
| | - Mingming Jia
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jingyuetan Remote Sensing Experiment Station, Chinese Academy of Sciences, Chang Chun, 130102, China
| | - Jia Du
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Changchun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| |
Collapse
|
42
|
Abstract
The Arctic region is the most sensitive region to climate change. Hydrological models are fundamental tools for climate change impact assessment. However, due to the extreme weather conditions, specific hydrological process, and data acquisition challenges in the Arctic, it is crucial to select suitable hydrological model(s) for this region. In this paper, a comprehensive review and comparison of different models is conducted based on recently available studies. The functionality, limitations, and suitability of the potential hydrological models for the Arctic hydrological process are analyzed, including: (1) The surface hydrological models Topoflow, DMHS (deterministic modeling hydrological system), HBV (Hydrologiska Byråns Vattenbalansavdelning), SWAT (soil and water assessment tool), WaSiM (water balance simulation model), ECOMAG (ecological model for applied geophysics), and CRHM (cold regions hydrological model); and (2) the cryo-hydrogeological models ATS (arctic terrestrial simulator), CryoGrid 3, GEOtop, SUTRA-ICE (ice variant of the existing saturated/unsaturated transport model), and PFLOTRAN-ICE (ice variant of the existing massively parallel subsurface flow and reactive transport model). The review finds that Topoflow, HBV, SWAT, ECOMAG, and CRHM are suitable for studying surface hydrology rather than other processes in permafrost environments, whereas DMHS, WaSiM, and the cryo-hydrogeological models have higher capacities for subsurface hydrology, since they take into account the three phase changes of water in the near-surface soil. Of the cryo-hydrogeological models reviewed here, GEOtop, SUTRA-ICE, and PFLOTRAN-ICE are found to be suitable for small-scale catchments, whereas ATS and CryoGrid 3 are potentially suitable for large-scale catchments. Especially, ATS and GEOtop are the first tools that couple surface/subsurface permafrost thermal hydrology. If the accuracy of simulating the active layer dynamics is targeted, DMHS, ATS, GEOtop, and PFLOTRAN-ICE are potential tools compared to the other models. Further, data acquisition is a challenging task for cryo-hydrogeological models due to the complex boundary conditions when compared to the surface hydrological models HBV, SWAT, and CRHM, and the cryo-hydrogeological models are more difficult for non-expert users and more expensive to run compared to other models.
Collapse
|
43
|
Recent Abnormal Hydrologic Behavior of Tibetan Lakes Observed by Multi-Mission Altimeters. REMOTE SENSING 2020. [DOI: 10.3390/rs12182986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inland lakes in the Tibetan Plateau (TP) with closed catchments and minimal human disturbance are an important indicator of climate change. However, the examination of changes in the spatiotemporal patterns of Tibetan lakes, especially water level variations, is limited due to inadequate access to measurements. This obstacle has been improved by the development of satellite altimetry observations. The more recent studies revealed that the trend of central TP to grow decreased or reversed between 2010 and 2016. However, thus far, this trend has not been investigated to determine whether this pattern would last for the following years. This study aims to combine the traditional (launched before 2010, e.g., TOPEX/POSEIDON, ERS-1, ERS-2, Jason-1/-2, and Envisat) and recently advanced (launched after 2010, e.g., SARAL and Sentinel-3) altimetry observations to understand the Tibetan lake changes further in recent years. Therefore, we acquired information on the continuous lake level changes in Tibetan lakes using the lake level sequence integration method based on multisource altimetry satellites. The results revealed that water level changes in 22 examined lakes showed abrupt rises in 2016–2018, but the onsets and magnitudes of the rises varied among the lakes. During the study period, the water levels of the lakes (except Nam Co) revealed a drastic rising tendency with a mean rate of 0.74 m/a, which was remarkably higher than the average rate of water level rise over the period 2010–2015 (approximately 0.28 m/a). Specifically, the water level of the nine lakes in the Northern TP (NTP) displayed a significant rising trend, with an average rate of 0.82 m/a. In the Central TP (CTP), the lake level changes were generally divided into two categories. The water levels for the lakes in the Western CTP rose rapidly, while, in the Eastern CTP, the lake water levels rose slowly, with an average rising rate less than 0.40 m/a. The water levels for the lakes in the Northeastern TP (NETP) and Northwestern TP (NWTP) kept a stable rising tendency. According to the results of the climate analysis, the spatial differences of the lake level rise rates were primarily caused by the spatial and temporal changes of precipitation over the TP.
Collapse
|
44
|
Loiko S, Klimova N, Kuzmina D, Pokrovsky O. Lake Drainage in Permafrost Regions Produces Variable Plant Communities of High Biomass and Productivity. PLANTS 2020; 9:plants9070867. [PMID: 32650600 PMCID: PMC7411715 DOI: 10.3390/plants9070867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/25/2020] [Accepted: 07/07/2020] [Indexed: 11/30/2022]
Abstract
Climate warming, increased precipitation, and permafrost thaw in the Arctic are accompanied by an increase in the frequency of full or partial drainage of thermokarst lakes. After lake drainage, highly productive plant communities on nutrient-rich sediments may develop, thus increasing the influencing greening trends of Arctic tundra. However, the magnitude and extent of this process remain poorly understood. Here we characterized plant succession and productivity along a chronosequence of eight drained thermokarst lakes (khasyreys), located in the low-Arctic tundra of the Western Siberian Lowland (WSL), the largest permafrost peatland in the world. Based on a combination of satellite imagery, archive mapping, and radiocarbon dating, we distinguished early (<50 years), mid (50–200 years), and late (200–2000 years) ecosystem stages depending on the age of drainage. In 48 sites within the different aged khasyreys, we measured plant phytomass and productivity, satellite-derived NDVImax, species composition, soil chemistry including nutrients, and plant elementary composition. The annual aboveground net primary productivity of the early and mid khasyrey ranged from 1134 and 660 g·m−2·y−1, which is two to nine times higher than that of the surrounding tundra. Late stages exhibited three to five times lower plant productivity and these ecosystems were distinctly different from early and mid-stages in terms of peat thickness and pools of soil nitrogen and potassium. We conclude that the main driving factor of the vegetation succession in the khasyreys is the accumulation of peat and the permafrost aggradation. The soil nutrient depletion occurs simultaneously with a decrease in the thickness of the active layer and an increase in the thickness of the peat. The early and mid khasyreys may provide a substantial contribution to the observed greening of the WSL low-Arctic tundra.
Collapse
Affiliation(s)
- Sergey Loiko
- BIO-GEO-CLIM Laboratory, National Research Tomsk State University, Lenina St. 36, 634050 Tomsk, Russia; (N.K.); (D.K.); (O.P.)
- Tomsk Oil and Gas Research and Design Institute (TomskNIPIneft), Prospect Mira 72, 634027 Tomsk, Russia
- Correspondence:
| | - Nina Klimova
- BIO-GEO-CLIM Laboratory, National Research Tomsk State University, Lenina St. 36, 634050 Tomsk, Russia; (N.K.); (D.K.); (O.P.)
- Institute of Monitoring of Climatic and Ecological Systems Siberian Branch of the Russian Academy of Sciences (IMCES SB RAS), Academichesky ave. 10/3, 634055 Tomsk, Russia
| | - Darya Kuzmina
- BIO-GEO-CLIM Laboratory, National Research Tomsk State University, Lenina St. 36, 634050 Tomsk, Russia; (N.K.); (D.K.); (O.P.)
| | - Oleg Pokrovsky
- BIO-GEO-CLIM Laboratory, National Research Tomsk State University, Lenina St. 36, 634050 Tomsk, Russia; (N.K.); (D.K.); (O.P.)
- N. Laverov Federal Center for Integrated Arctic Research, Russian Academy of Sciences, Severnaya Dvina Embankment, 23, 163000 Arkhangelsk, Russia
- Geosciences and Environment Toulouse, UMR 5563 CNRS, 14 Avenue Edouard Belin, 31400 Toulouse, France
| |
Collapse
|
45
|
35 Years of Vegetation and Lake Dynamics in the Pechora Catchment, Russian European Arctic. REMOTE SENSING 2020. [DOI: 10.3390/rs12111863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High-latitude regions are a hot spot of global warming, but the scarce availability of observations often limits the investigation of climate change impacts over these regions. However, the utilization of satellite-based remote sensing data offers new possibilities for such investigations. In the present study, vegetation greening, vegetation moisture and lake distribution derived from medium-resolution satellite imagery were analyzed over the Pechora catchment for the last 35 years. Here, we considered the entire Pechora catchment and the Pechora Delta region, located in the northern part of European Russia, and we investigated the vegetation and lake dynamics over different permafrost zones and across the two major biomes, taiga, and tundra. We also evaluated climate data records from meteorological stations and re-analysis data to find relations between these dynamics and climatic behavior. Considering the Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Moisture Index (NDMI) in the summer, we found a general greening and moistening of the vegetation. While vegetation greenness follows the evolution of summer air temperature with a delay of one year, the vegetation moisture dynamics seems to better concur with annual total precipitation rather than summer precipitation, and also with annual snow water equivalent without lag. Both NDVI and NDMI show a much higher variability across discontinuous permafrost terrain compared to other types. Moreover, the analyses yielded an overall decrease in the area of permanent lakes and a noticeable increase in the area of seasonal lakes. While the first might be related to permafrost thawing, the latter seems to be connected to an increase of annual snow water equivalent. The general consistency between the indices of vegetation greenness and moisture based on satellite imagery and the climate data highlights the efficacy and reliability of combining Landsat satellite data, ERA-Interim reanalysis and meteorological data to monitor temporal dynamics of the land surface in Arctic areas.
Collapse
|
46
|
Heino J, Culp JM, Erkinaro J, Goedkoop W, Lento J, Rühland KM, Smol JP. Abruptly and irreversibly changing Arctic freshwaters urgently require standardized monitoring. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13645] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jani Heino
- Finnish Environment Institute (SYKE) Freshwater Centre Oulu Finland
| | - Joseph M. Culp
- Environment and Climate Change Canada, and Cold Regions Research Centre Wilfrid Laurier University Waterloo ON Canada
| | | | - Willem Goedkoop
- Department of Aquatic Sciences and Assessment Swedish University of Agricultural Sciences Uppsala Sweden
| | - Jennifer Lento
- Canadian Rivers Institute and Department of Biology University of New Brunswick Fredericton NB Canada
| | - Kathleen M. Rühland
- Paleoecological Environmental Assessment and Research Lab (PEARL) Department of Biology Queen's University Kingston ON Canada
| | - John P. Smol
- Paleoecological Environmental Assessment and Research Lab (PEARL) Department of Biology Queen's University Kingston ON Canada
| |
Collapse
|
47
|
Conceptual Models of Gas Accumulation in the Shallow Permafrost of Northern West Siberia and Conditions for Explosive Gas Emissions. GEOSCIENCES 2020. [DOI: 10.3390/geosciences10050195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gas accumulation and pressurized unfrozen rocks under lakes (sublake taliks) subject to freezing in shallow permafrost may lead to explosive gas emissions and the formation of craters. Gas inputs into taliks may have several sources: microbially-mediated recycling of organic matter, dissociation of intrapermafrost gas hydrates, and migration of subpermafrost and deep gases through permeable zones in a deformed crust. The cryogenic concentration of gas increases the pore pressure in the freezing gas-saturated talik. The gradual pressure buildup within the confined talik causes creep (ductile) deformation of the overlying permafrost and produces a mound on the surface. As the pore pressure in the freezing talik surpasses the permafrost strength, the gas-water-soil mixture of the talik erupts explosively and a crater forms where the mound was. The critical pressure in the confined gas-saturated talik (2–2.5 MPa for methane) corresponds to the onset of gas hydrate formation. The conditions of gas accumulation and excess pressure in freezing closed taliks in shallow permafrost, which may be responsible for explosive gas emissions and the formation of craters, are described by several models.
Collapse
|
48
|
The Impact of Permafrost Degradation on Lake Changes in the Endorheic Basin on the Qinghai–Tibet Plateau. WATER 2020. [DOI: 10.3390/w12051287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lakes on the Qinghai–Tibetan Plateau (QTP) have experienced significant changes, especially the prevailing lake expansion since 2000 in the endorheic basin. The influence of permafrost thawing on lake expansion is significant but rarely considered in previous studies. In this study, based on Landsat images and permafrost field data, the spatial-temporal area changes of lakes of more than 5 km2 in the endorheic basin on the QTP during 2000–2017 is examined and the impact of permafrost degradation on lake expansion is discussed. The main results are that permafrost characteristics and its degradation trend have close relationships with lake changes. Lake expansion in the endorheic basin showed a southwest–northeast transition from shrinking to stable to rapidly expanding, which corresponded well with the permafrost distribution from island-discontinuous to seasonally frozen ground to continuous permafrost. A dramatic lake expansion in continuous permafrost showed significant spatial differences; lakes expanded significantly in northern and eastern continuous permafrost with a higher ground ice content but slightly in southern continuous permafrost with a lower ground ice content. This spatial pattern was mainly attributed to the melting of ground ice in shallow permafrost associated with accelerating permafrost degradation. Whereas, some lakes in the southern zones of island-discontinuous permafrost were shrinking, which was mainly because the extended taliks arising from the intensified permafrost degradation have facilitated surface water and suprapermafrost groundwater discharge to subpermafrost groundwater and thereby drained the lakes. Based on observation and simulated data, the melting of ground ice at shallow depths below the permafrost table accounted for 21.2% of the increase in lake volume from 2000 to 2016.
Collapse
|
49
|
In 't Zandt MH, Liebner S, Welte CU. Roles of Thermokarst Lakes in a Warming World. Trends Microbiol 2020; 28:769-779. [PMID: 32362540 DOI: 10.1016/j.tim.2020.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/10/2020] [Accepted: 04/01/2020] [Indexed: 11/27/2022]
Abstract
Permafrost covers a quarter of the northern hemisphere land surface and contains twice the amount of carbon that is currently present in the atmosphere. Future climate change is expected to reduce its near-surface cover by over 90% by the end of the 21st century, leading to thermokarst lake formation. Thermokarst lakes are point sources of carbon dioxide and methane which release long-term carbon stocks into the atmosphere, thereby initiating a positive climate feedback potentially contributing up to a 0.39°C rise of surface air temperatures by 2300. This review describes the potential role of thermokarst lakes in a warming world and the microbial mechanisms that underlie their contributions to the global greenhouse gas budget.
Collapse
Affiliation(s)
- Michiel H In 't Zandt
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands; Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS, Utrecht, the Netherlands
| | - Susanne Liebner
- GFZ German Research Centre for Geosciences, Section 3.7 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany; University of Potsdam, Institute of Biochemistry and Biology, 14469 Potsdam, Germany
| | - Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands; Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands.
| |
Collapse
|
50
|
Vulis L, Tejedor A, Schwenk J, Piliouras A, Rowland J, Foufoula‐Georgiou E. Channel Network Control on Seasonal Lake Area Dynamics in Arctic Deltas. GEOPHYSICAL RESEARCH LETTERS 2020; 47:e2019GL086710. [PMID: 32728305 PMCID: PMC7380309 DOI: 10.1029/2019gl086710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 05/31/2023]
Abstract
The abundant lakes dotting arctic deltas are hotspots of methane emissions and biogeochemical activity, but seasonal variability in lake extents introduces uncertainty in estimates of lacustrine carbon emissions, typically performed at annual or longer time scales. To characterize variability in lake extents, we analyzed summertime lake area loss (i.e., shrinkage) on two deltas over the past 20 years, using Landsat-derived water masks. We find that monthly shrinkage rates have a pronounced structured variability around the channel network with the shrinkage rate systematically decreasing farther away from the channels. This pattern of shrinkage is predominantly attributed to a deeper active layer enhancing near-surface connectivity and storage and greater vegetation density closer to the channels leading to increased evapotranspiration rates. This shrinkage signal, easily extracted from remote sensing observations, may offer the means to constrain estimates of lacustrine methane emissions and to develop process-based estimates of depth to permafrost on arctic deltas.
Collapse
Affiliation(s)
- Lawrence Vulis
- Department of Civil and Environmental EngineeringUniversity of California IrvineIrvineCAUSA
| | - Alejandro Tejedor
- Department of Civil and Environmental EngineeringUniversity of California IrvineIrvineCAUSA
- Department of Science and EngineeringSorbonne University Abu DhabiAbu DhabiUnited Arab Emirates
| | - Jon Schwenk
- Earth and Environmental Sciences Division, Los Alamos National LaboratoryLos AlamosNMUSA
| | - Anastasia Piliouras
- Earth and Environmental Sciences Division, Los Alamos National LaboratoryLos AlamosNMUSA
| | - Joel Rowland
- Earth and Environmental Sciences Division, Los Alamos National LaboratoryLos AlamosNMUSA
| | - Efi Foufoula‐Georgiou
- Department of Civil and Environmental EngineeringUniversity of California IrvineIrvineCAUSA
- Department of Earth System ScienceUniversity of California IrvineIrvineCAUSA
| |
Collapse
|