1
|
Homola M, Büttner CR, Füzik T, Křepelka P, Holbová R, Nováček J, Chaillet ML, Žák J, Grybchuk D, Förster F, Wilson WH, Schroeder DC, Plevka P. Structure and replication cycle of a virus infecting climate-modulating alga Emiliania huxleyi. SCIENCE ADVANCES 2024; 10:eadk1954. [PMID: 38598627 PMCID: PMC11006232 DOI: 10.1126/sciadv.adk1954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
The globally distributed marine alga Emiliania huxleyi has cooling effect on the Earth's climate. The population density of E. huxleyi is restricted by Nucleocytoviricota viruses, including E. huxleyi virus 201 (EhV-201). Despite the impact of E. huxleyi viruses on the climate, there is limited information about their structure and replication. Here, we show that the dsDNA genome inside the EhV-201 virion is protected by an inner membrane, capsid, and outer membrane. EhV-201 virions infect E. huxleyi by using fivefold vertices to bind to and fuse the virus' inner membrane with the cell plasma membrane. Progeny virions assemble in the cytoplasm at the surface of endoplasmic reticulum-derived membrane segments. Genome packaging initiates synchronously with the capsid assembly and completes through an aperture in the forming capsid. The genome-filled capsids acquire an outer membrane by budding into intracellular vesicles. EhV-201 infection induces a loss of surface protective layers from E. huxleyi cells, which enables the continuous release of virions by exocytosis.
Collapse
Affiliation(s)
- Miroslav Homola
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Carina R. Büttner
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tibor Füzik
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Pavel Křepelka
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Radka Holbová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jiří Nováček
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Marten L. Chaillet
- Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Jakub Žák
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Danyil Grybchuk
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Friedrich Förster
- Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - William H. Wilson
- Marine Biological Association, Plymouth, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | | | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Joffe N, Kuhlisch C, Schleyer G, Ahlers NS, Shemi A, Vardi A. Cell-to-cell heterogeneity drives host-virus coexistence in a bloom-forming alga. THE ISME JOURNAL 2024; 18:wrae038. [PMID: 38452203 PMCID: PMC10980834 DOI: 10.1093/ismejo/wrae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Algal blooms drive global biogeochemical cycles of key nutrients and serve as hotspots for biological interactions in the ocean. The massive blooms of the cosmopolitan coccolithophore Emiliania huxleyi are often infected by the lytic E. huxleyi virus, which is a major mortality agent triggering bloom demise. This multi-annual "boom and bust" pattern of E. huxleyi blooms suggests that coexistence is essential for these host-virus dynamics. To investigate host-virus coexistence, we developed a new model system from an E. huxleyi culture that recovered from viral infection. The recovered population coexists with the virus, as host cells continue to divide in parallel to viral production. By applying single-molecule fluorescence in situ hybridization (smFISH) to quantify the fraction of infected cells, and assessing infection-specific lipid biomarkers, we identified a small subpopulation of cells that were infected and produced new virions, whereas most of the host population could resist infection. To further assess population heterogeneity, we generated clonal strain collections using single-cell sorting and subsequently phenotyped their susceptibility to E. huxleyi virus infection. This unraveled substantial cell-to-cell heterogeneity across a continuum of susceptibility to resistance, highlighting that infection outcome may vary depending on the individual cell. These results add a new dimension to our understanding of the complexity of host-virus interactions that are commonly assessed in bulk and described by binary definitions of resistance or susceptibility. We propose that phenotypic heterogeneity drives the host-virus coexistence and demonstrate how the coexistence with a lytic virus provides an ecological advantage for the host by killing competing strains.
Collapse
Affiliation(s)
- Nir Joffe
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Guy Schleyer
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Nadia S Ahlers
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Adva Shemi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
3
|
Zhang L, Meng L, Fang Y, Ogata H, Okazaki Y. Spatiotemporal dynamics of giant viruses within a deep freshwater lake reveal a distinct dark-water community. THE ISME JOURNAL 2024; 18:wrae182. [PMID: 39312489 PMCID: PMC11465185 DOI: 10.1093/ismejo/wrae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/02/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
Giant viruses (GVs) significantly regulate the ecological dynamics of diverse ecosystems. Although metagenomics has expanded our understanding of their diversity and ecological roles played in marine environments, little is known about GVs of freshwater ecosystems. Most previous studies have employed short-read sequencing and therefore resulted in fragmented genomes, hampering accurate assessment of genetic diversity. We sought to bridge this knowledge gap and overcome previous technical limitations. We subjected spatiotemporal (2 depths × 12 months) samples from Lake Biwa to metagenome-assembled genome reconstruction enhanced by long-read metagenomics. This yielded 293 GV metagenome-assembled genomes. Of these, 285 included previously unknown species in five orders of nucleocytoviruses and the first representatives of freshwater mirusviruses, which exhibited marked divergence from marine-derived lineages. The good performance of our long-read metagenomic assembly was demonstrated by the detection of 42 (14.3%) genomes composed of single contigs with completeness values >90%. GVs were partitioned across water depths, with most species specific to either the sunlit epilimnion or the dark hypolimnion. Epilimnion-specific members tended to be transient and exhibit short and intense abundance peaks, in line with the fact that they regulate the surface algal blooms. During the spring bloom, mirusviruses and members of three nucleocytovirus families were among the most abundant viruses. In contrast, hypolimnion-specific ones, including a mirusvirus genome, were typically more persistent in the hypolimnion throughout the water-stratified period, suggesting that they infect hosts specific to the hypolimnion and play previously unexplored ecological roles in dark water microbial ecosystems.
Collapse
Affiliation(s)
- Liwen Zhang
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Lingjie Meng
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yue Fang
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yusuke Okazaki
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
4
|
Balestreri C, Schroeder DC, Sampedro F, Marqués G, Palowski A, Urriola PE, van de Ligt JLG, Yancy HF, Shurson GC. Unexpected thermal stability of two enveloped megaviruses, Emiliania huxleyi virus and African swine fever virus, as measured by viability PCR. Virol J 2024; 21:1. [PMID: 38172919 PMCID: PMC10765680 DOI: 10.1186/s12985-023-02272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The particle structure of Emiliania huxleyi virus (EhV), an algal infecting member of nucleocytoplasmic large DNA viruses (NCLDVs), contains an outer lipid membrane envelope similar to that found in animal viruses such as African swine fever virus (ASFV). Despite both being enveloped NCLDVs, EhV and ASFV are known for their stability outside their host environment. METHOD Here we report for the first time, the application of a viability qPCR (V-qPCR) method to describe the unprecedented and similar virion thermal stability of both EhV and ASFV. This result contradicts the cell culture-based assay method that suggests that virus "infectivity" is lost in a matter of seconds (for EhV) and minutes (for ASFV) at temperature greater than 50 °C. Confocal microscopy and analytical flow cytometry methods was used to validate the V-qPCR data for EhV. RESULTS We observed that both EhV and ASFV particles has unprecedented thermal tolerances. These two NCLDVs are exceptions to the rule that having an enveloped virion anatomy is a predicted weakness, as is often observed in enveloped RNA viruses (i.e., the viruses causing Porcine Reproductive and Respiratory Syndrome (PRRS), COVID-19, Ebola, or seasonal influenza). Using the V-qPCR method, we confirm that no PRRSV particles were detectable after 20 min of exposure to temperatures up to 100 °C. We also show that the EhV particles that remain after 50 °C 20 min exposure was in fact still infectious only after the three blind passages in bioassay experiments. CONCLUSIONS This study raises the possibility that ASFV is not always eliminated or contained after applying time and temperature inactivation treatments in current decontamination or biosecurity protocols. This observation has practical implications for industries involved in animal health and food security. Finally, we propose that EhV could be used as a surrogate for ASFV under certain circumstances.
Collapse
Affiliation(s)
- Cecilia Balestreri
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Declan C Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Fernando Sampedro
- Environmental Health Sciences Division, University of Minnesota, St. Paul, MN, 55455, USA
| | - Guillermo Marqués
- Department of Neuroscience, University Imaging Centers, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Amanda Palowski
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Pedro E Urriola
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Animal Science, University of Minnesota, St. Paul, MN, 55108, USA
| | | | - Haile F Yancy
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, MD, 20708, USA
| | - Gerald C Shurson
- Department of Animal Science, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
5
|
Thomy J, Sanchez F, Prioux C, Yau S, Xu Y, Mak J, Sun R, Piganeau G, Yung CCM. Unveiling Prasinovirus diversity and host specificity through targeted enrichment in the South China Sea. ISME COMMUNICATIONS 2024; 4:ycae109. [PMID: 39296779 PMCID: PMC11408933 DOI: 10.1093/ismeco/ycae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/16/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024]
Abstract
Unicellular green picophytoplankton from the Mamiellales order are pervasive in marine ecosystems and susceptible to infections by prasinoviruses, large double-stranded DNA viruses within the Nucleocytoviricota phylum. We developed a double-stranded DNA virus enrichment and shotgun sequencing method, and successfully assembled 80 prasinovirus genomes from 43 samples in the South China Sea. Our research delivered the first direct estimation of 94% accuracy in correlating genome similarity to host range. Stirkingly, our analyses uncovered unexpected host-switching across diverse algal lineages, challenging the existing paradigms of host-virus co-speciation and revealing the dynamic nature of viral evolution. We also detected six instances of horizontal gene transfer between prasinoviruses and their hosts, including a novel alternative oxidase. Additionally, diversifying selection on a major capsid protein suggests an ongoing co-evolutionary arms race. These insights not only expand our understanding of prasinovirus genomic diversity but also highlight the intricate evolutionary mechanisms driving their ecological success and shaping broader virus-host interactions in marine environments.
Collapse
Affiliation(s)
- Julie Thomy
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, F-66650 Banyuls/Mer, France
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawai'i at Mānoa, Honolulu, HI 96822, United States
| | - Frederic Sanchez
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), UMR 7232, Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Camille Prioux
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, F-66650 Banyuls/Mer, France
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC 98000, Principality of Monaco
| | - Sheree Yau
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Yangbing Xu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Julian Mak
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ruixian Sun
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Gwenael Piganeau
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, F-66650 Banyuls/Mer, France
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Charmaine C M Yung
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
6
|
Minch B, Akter S, Weinheimer A, Rahman MS, Parvez MAK, Rezwana Rahman S, Ahmed MF, Moniruzzaman M. Phylogenetic diversity and functional potential of large and cell-associated viruses in the Bay of Bengal. mSphere 2023; 8:e0040723. [PMID: 37902318 PMCID: PMC10732071 DOI: 10.1128/msphere.00407-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE The BoB, the world's largest bay, is of significant economic importance to surrounding countries, particularly Bangladesh, which heavily relies on its coastal resources. Concurrently, the BoB holds substantial ecological relevance due to the region's high vulnerability to climate change-induced impacts. Yet, our understanding of the BoB's microbiome in relation to marine food web and biogeochemical cycling remains limited. Particularly, there are little or no data on the viral diversity and host association in the BoB. We examined the viral community in two distinct BoB coastal regions to reveal a multitude of viral species interacting with a wide range of microbial hosts, some of which play key roles in coastal biogeochemical cycling or potential pathogens. Furthermore, we demonstrate that the BoB coast harbors a diverse community of large and giant viruses, underscoring the importance of investigating understudied environments to discover novel viral lineages with complex metabolic capacities.
Collapse
Affiliation(s)
- Benjamin Minch
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, USA
| | - Salma Akter
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | | | - M. Shaminur Rahman
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
| | | | | | - Md Firoz Ahmed
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - Mohammad Moniruzzaman
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, USA
| |
Collapse
|
7
|
Wheeler GL, Sturm D, Langer G. Gephyrocapsa huxleyi (Emiliania huxleyi) as a model system for coccolithophore biology. JOURNAL OF PHYCOLOGY 2023; 59:1123-1129. [PMID: 37983837 DOI: 10.1111/jpy.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/22/2023]
Abstract
Coccolithophores are the most abundant calcifying organisms in modern oceans and are important primary producers in many marine ecosystems. Their ability to generate a cellular covering of calcium carbonate plates (coccoliths) plays a major role in marine biogeochemistry and the global carbon cycle. Coccolithophores also play an important role in sulfur cycling through the production of the climate-active gas dimethyl sulfide. The primary model organism for coccolithophore research is Emiliania huxleyi, now named Gephyrocapsa huxleyi. G. huxleyi has a cosmopolitan distribution, occupying coastal and oceanic environments across the globe, and is the most abundant coccolithophore in modern oceans. Research in G. huxleyi has identified many aspects of coccolithophore biology, from cell biology to ecological interactions. In this perspective, we summarize the key advances made using G. huxleyi and examine the emerging tools for research in this model organism. We discuss the key steps that need to be taken by the research community to advance G. huxleyi as a model organism and the suitability of other species as models for specific aspects of coccolithophore biology.
Collapse
Affiliation(s)
- Glen L Wheeler
- The Marine Biological Association of the United Kingdom, The Laboratory, Plymouth, UK
| | - Daniela Sturm
- The Marine Biological Association of the United Kingdom, The Laboratory, Plymouth, UK
- School of Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Gerald Langer
- Institute of Environmental Science and Technology (ICTA-UAB), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Murúa P, Garvetto A, Egan S, Gachon CMM. The Reemergence of Phycopathology: When Algal Biology Meets Ecology and Biosecurity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:231-255. [PMID: 37253694 DOI: 10.1146/annurev-phyto-020620-120425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Viruses, bacteria, and eukaryotic symbionts interact with algae in a variety of ways to cause disease complexes, often shaping marine and freshwater ecosystems. The advent of phyconomy (a.k.a. seaweed agronomy) represents a need for a greater understanding of algal disease interactions, where underestimated cryptic diversity and lack of phycopathological basis are prospective constraints for algal domestication. Here, we highlight the limited yet increasing knowledge of algal pathogen biodiversity and the ecological interaction with their algal hosts. Finally, we discuss how ecology and cultivation experience contribute to and reinforce aquaculture practice, with the potential to reshape biosecurity policies of seaweed cultivation worldwide.
Collapse
Affiliation(s)
- Pedro Murúa
- Instituto de Acuicultura, Universidad Austral de Chile-Sede Puerto Montt, Los Lagos, Chile;
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom
| | - Andrea Garvetto
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom
- Institute of Microbiology, Universität Innsbruck, Innsbruck, Tyrol, Austria
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Claire M M Gachon
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom
- Muséum National d'Histoire Naturelle, CNRS, Paris, France
| |
Collapse
|
9
|
Moniruzzaman M, Erazo Garcia MP, Farzad R, Ha AD, Jivaji A, Karki S, Sheyn U, Stanton J, Minch B, Stephens D, Hancks DC, Rodrigues RAL, Abrahao JS, Vardi A, Aylward FO. Virologs, viral mimicry, and virocell metabolism: the expanding scale of cellular functions encoded in the complex genomes of giant viruses. FEMS Microbiol Rev 2023; 47:fuad053. [PMID: 37740576 PMCID: PMC10583209 DOI: 10.1093/femsre/fuad053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023] Open
Abstract
The phylum Nucleocytoviricota includes the largest and most complex viruses known. These "giant viruses" have a long evolutionary history that dates back to the early diversification of eukaryotes, and over time they have evolved elaborate strategies for manipulating the physiology of their hosts during infection. One of the most captivating of these mechanisms involves the use of genes acquired from the host-referred to here as viral homologs or "virologs"-as a means of promoting viral propagation. The best-known examples of these are involved in mimicry, in which viral machinery "imitates" immunomodulatory elements in the vertebrate defense system. But recent findings have highlighted a vast and rapidly expanding array of other virologs that include many genes not typically found in viruses, such as those involved in translation, central carbon metabolism, cytoskeletal structure, nutrient transport, vesicular trafficking, and light harvesting. Unraveling the roles of virologs during infection as well as the evolutionary pathways through which complex functional repertoires are acquired by viruses are important frontiers at the forefront of giant virus research.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Maria Paula Erazo Garcia
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Roxanna Farzad
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Anh D Ha
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Abdeali Jivaji
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Sangita Karki
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Uri Sheyn
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Joshua Stanton
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Benjamin Minch
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Danae Stephens
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, United States
| | - Rodrigo A L Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Jonatas S Abrahao
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
10
|
Stonik VA, Stonik IV. Carbohydrate-Containing Low Molecular Weight Metabolites of Microalgae. Mar Drugs 2023; 21:427. [PMID: 37623708 PMCID: PMC10456119 DOI: 10.3390/md21080427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Microalgae are abundant components of the biosphere rich in low molecular weight carbohydrate-containing natural products (glycoconjugates). Glycoconjugates take part in the processes of photosynthesis, provide producers with important biological molecules, influence other organisms and are known by their biological activities. Some of them, for example, glycosylated toxins and arsenicals, are detrimental and can be transferred via food chains into higher organisms, including humans. So far, the studies on a series of particular groups of microalgal glycoconjugates were not comprehensively discussed in special reviews. In this review, a special focus is given to glycoconjugates' isolation, structure determination, properties and approaches to search for new bioactive metabolites. Analysis of literature data concerning structures, functions and biological activities of ribosylated arsenicals, galactosylated and sulfoquinovosylated lipids, phosphoglycolipids, glycoside derivatives of toxins, and other groups of glycoconjugates was carried out and discussed. Recent studies were fundamental in the discovery of a great variety of new carbohydrate-containing metabolites and their biological activities in defining the role of microalgal viral infections in regulating microalgal blooms as well as in the detection of glycoconjugates with potent immunomodulatory properties. Those discoveries support growing interest in these molecules.
Collapse
Affiliation(s)
- Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia;
| | - Inna V. Stonik
- A.V. Zhurmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, 690041 Vladivostok, Russia
| |
Collapse
|
11
|
Lobb B, Shapter A, Doxey AC, Nissimov JI. Functional Profiling and Evolutionary Analysis of a Marine Microalgal Virus Pangenome. Viruses 2023; 15:v15051116. [PMID: 37243202 DOI: 10.3390/v15051116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Phycodnaviridae are large double-stranded DNA viruses, which facilitate studies of host-virus interactions and co-evolution due to their prominence in algal infection and their role in the life cycle of algal blooms. However, the genomic interpretation of these viruses is hampered by a lack of functional information, stemming from the surprising number of hypothetical genes of unknown function. It is also unclear how many of these genes are widely shared within the clade. Using one of the most extensively characterized genera, Coccolithovirus, as a case study, we combined pangenome analysis, multiple functional annotation tools, AlphaFold structural modeling, and literature analysis to compare the core and accessory pangenome and assess support for novel functional predictions. We determined that the Coccolithovirus pangenome shares 30% of its genes with all 14 strains, making up the core. Notably, 34% of its genes were found in at most three strains. Core genes were enriched in early expression based on a transcriptomic dataset of Coccolithovirus EhV-201 algal infection, were more likely to be similar to host proteins than the non-core set, and were more likely to be involved in vital functions such as replication, recombination, and repair. In addition, we generated and collated annotations for the EhV representative EhV-86 from 12 different annotation sources, building up information for 142 previously hypothetical and putative membrane proteins. AlphaFold was further able to predict structures for 204 EhV-86 proteins with a modelling accuracy of good-high. These functional clues, combined with generated AlphaFold structures, provide a foundational framework for the future characterization of this model genus (and other giant viruses) and a further look into the evolution of the Coccolithovirus proteome.
Collapse
Affiliation(s)
- Briallen Lobb
- Department of Biology, University of Waterloo, 200 University Ave. West., Waterloo, ON N2L 3G1, Canada
| | - Anson Shapter
- Department of Biology, University of Waterloo, 200 University Ave. West., Waterloo, ON N2L 3G1, Canada
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, 200 University Ave. West., Waterloo, ON N2L 3G1, Canada
| | - Jozef I Nissimov
- Department of Biology, University of Waterloo, 200 University Ave. West., Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
12
|
Giant Viruses as a Source of Novel Enzymes for Biotechnological Application. Pathogens 2022; 11:pathogens11121453. [PMID: 36558786 PMCID: PMC9787589 DOI: 10.3390/pathogens11121453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The global demand for industrial enzymes has been increasing in recent years, and the search for new sources of these biological products is intense, especially in microorganisms. Most known viruses have limited genetic machinery and, thus, have been overlooked by the enzyme industry for years. However, a peculiar group of viruses breaks this paradigm. Giant viruses of the phylum Nucleocytoviricota infect protists (i.e., algae and amoebae) and have complex genomes, reaching up to 2.7 Mb in length and encoding hundreds of genes. Different giant viruses have robust metabolic machinery, especially those in the Phycodnaviridae and Mimiviridae families. In this review, we present some peculiarities of giant viruses that infect protists and discuss why they should be seen as an outstanding source of new enzymes. We revisited the genomes of representatives of different groups of giant viruses and put together information about their enzymatic machinery, highlighting several genes to be explored in biotechnology involved in carbohydrate metabolism, DNA replication, and RNA processing, among others. Finally, we present additional evidence based on structural biology using chitinase as a model to reinforce the role of giant viruses as a source of novel enzymes for biotechnological application.
Collapse
|
13
|
Speciale I, Notaro A, Abergel C, Lanzetta R, Lowary TL, Molinaro A, Tonetti M, Van Etten JL, De Castro C. The Astounding World of Glycans from Giant Viruses. Chem Rev 2022; 122:15717-15766. [PMID: 35820164 PMCID: PMC9614988 DOI: 10.1021/acs.chemrev.2c00118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 12/12/2022]
Abstract
Viruses are a heterogeneous ensemble of entities, all sharing the need for a suitable host to replicate. They are extremely diverse, varying in morphology, size, nature, and complexity of their genomic content. Typically, viruses use host-encoded glycosyltransferases and glycosidases to add and remove sugar residues from their glycoproteins. Thus, the structure of the glycans on the viral proteins have, to date, typically been considered to mimick those of the host. However, the more recently discovered large and giant viruses differ from this paradigm. At least some of these viruses code for an (almost) autonomous glycosylation pathway. These viral genes include those that encode the production of activated sugars, glycosyltransferases, and other enzymes able to manipulate sugars at various levels. This review focuses on large and giant viruses that produce carbohydrate-processing enzymes. A brief description of those harboring these features at the genomic level will be discussed, followed by the achievements reached with regard to the elucidation of the glycan structures, the activity of the proteins able to manipulate sugars, and the organic synthesis of some of these virus-encoded glycans. During this progression, we will also comment on many of the challenging questions on this subject that remain to be addressed.
Collapse
Affiliation(s)
- Immacolata Speciale
- Department
of Agricultural Sciences, University of
Napoli, Via Università
100, 80055 Portici, Italy
| | - Anna Notaro
- Department
of Agricultural Sciences, University of
Napoli, Via Università
100, 80055 Portici, Italy
- Centre
National de la Recherche Scientifique, Information Génomique
& Structurale, Aix-Marseille University, Unité Mixte de Recherche
7256, IMM, IM2B, 13288 Marseille, Cedex 9, France
| | - Chantal Abergel
- Centre
National de la Recherche Scientifique, Information Génomique
& Structurale, Aix-Marseille University, Unité Mixte de Recherche
7256, IMM, IM2B, 13288 Marseille, Cedex 9, France
| | - Rosa Lanzetta
- Department
of Chemical Sciences, University of Napoli, Via Cintia 4, 80126 Napoli, Italy
| | - Todd L. Lowary
- Institute
of Biological Chemistry, Academia Sinica, Academia Road, Section 2, Nangang 11529, Taipei, Taiwan
| | - Antonio Molinaro
- Department
of Chemical Sciences, University of Napoli, Via Cintia 4, 80126 Napoli, Italy
| | - Michela Tonetti
- Department
of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, 16132 Genova, Italy
| | - James L. Van Etten
- Nebraska
Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900, United States
- Department
of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, United States
| | - Cristina De Castro
- Department
of Agricultural Sciences, University of
Napoli, Via Università
100, 80055 Portici, Italy
| |
Collapse
|
14
|
Locke H, Bidle KD, Thamatrakoln K, Johns CT, Bonachela JA, Ferrell BD, Wommack KE. Marine viruses and climate change: Virioplankton, the carbon cycle, and our future ocean. Adv Virus Res 2022; 114:67-146. [PMID: 39492214 DOI: 10.1016/bs.aivir.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interactions between marine viruses and microbes are a critical part of the oceanic carbon cycle. The impacts of virus-host interactions range from short-term disruptions in the mobility of microbial biomass carbon to higher trophic levels through cell lysis (i.e., the viral shunt) to long-term reallocation of microbial biomass carbon to the deep sea through accelerating the biological pump (i.e., the viral shuttle). The biogeochemical backdrop of the ocean-the physical, chemical, and biological landscape-influences the likelihood of both virus-host interactions and particle formation, and the fate and flow of carbon. As climate change reshapes the oceanic landscape through large-scale shifts in temperature, circulation, stratification, and acidification, virus-mediated carbon flux is likely to shift in response. Dynamics in the directionality and magnitude of changes in how, where, and when viruses mediate the recycling or storage of microbial biomass carbon is largely unknown. Integrating viral infection dynamics data obtained from experimental models and field systems, with particle motion microphysics and global observations of oceanic biogeochemistry, into improved ecosystem models will enable viral oceanographers to better predict the role of viruses in marine carbon cycling in the future ocean.
Collapse
Affiliation(s)
- Hannah Locke
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States
| | - Kay D Bidle
- Rutgers Univ., Dept. of Marine & Coastal Sciences, New Brunswick, NJ, United States
| | | | - Christopher T Johns
- Rutgers Univ., Dept. of Marine & Coastal Sciences, New Brunswick, NJ, United States
| | - Juan A Bonachela
- Rutgers Univ., Dept. of Ecology, Evolution & Natural Resources, New Brunswick, NJ, United States
| | - Barbra D Ferrell
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States
| | - K Eric Wommack
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States.
| |
Collapse
|
15
|
Aylward FO, Moniruzzaman M. Viral Complexity. Biomolecules 2022; 12:1061. [PMID: 36008955 PMCID: PMC9405923 DOI: 10.3390/biom12081061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/18/2022] Open
Abstract
Although traditionally viewed as streamlined and simple, discoveries over the last century have revealed that viruses can exhibit surprisingly complex physical structures, genomic organization, ecological interactions, and evolutionary histories. Viruses can have physical dimensions and genome lengths that exceed many cellular lineages, and their infection strategies can involve a remarkable level of physiological remodeling of their host cells. Virus-virus communication and widespread forms of hyperparasitism have been shown to be common in the virosphere, demonstrating that dynamic ecological interactions often shape their success. And the evolutionary histories of viruses are often fraught with complexities, with chimeric genomes including genes derived from numerous distinct sources or evolved de novo. Here we will discuss many aspects of this viral complexity, with particular emphasis on large DNA viruses, and provide an outlook for future research.
Collapse
Affiliation(s)
- Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mohammad Moniruzzaman
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Coral Gables, FL 33149, USA;
| |
Collapse
|
16
|
Brahim Belhaouari D, Pires De Souza GA, Lamb DC, Kelly SL, Goldstone JV, Stegeman JJ, Colson P, La Scola B, Aherfi S. Metabolic arsenal of giant viruses: Host hijack or self-use? eLife 2022; 11:e78674. [PMID: 35801640 PMCID: PMC9270025 DOI: 10.7554/elife.78674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 12/11/2022] Open
Abstract
Viruses generally are defined as lacking the fundamental properties of living organisms in that they do not harbor an energy metabolism system or protein synthesis machinery. However, the discovery of giant viruses of amoeba has fundamentally challenged this view because of their exceptional genome properties, particle sizes and encoding of the enzyme machinery for some steps of protein synthesis. Although giant viruses are not able to replicate autonomously and still require a host for their multiplication, numerous metabolic genes involved in energy production have been recently detected in giant virus genomes from many environments. These findings have further blurred the boundaries that separate viruses and living organisms. Herein, we summarize information concerning genes and proteins involved in cellular metabolic pathways and their orthologues that have, surprisingly, been discovered in giant viruses. The remarkable diversity of metabolic genes described in giant viruses include genes encoding enzymes involved in glycolysis, gluconeogenesis, tricarboxylic acid cycle, photosynthesis, and β-oxidation. These viral genes are thought to have been acquired from diverse biological sources through lateral gene transfer early in the evolution of Nucleo-Cytoplasmic Large DNA Viruses, or in some cases more recently. It was assumed that viruses are capable of hijacking host metabolic networks. But the giant virus auxiliary metabolic genes also may represent another form of host metabolism manipulation, by expanding the catalytic capabilities of the host cells especially in harsh environments, providing the infected host cells with a selective evolutionary advantage compared to non-infected cells and hence favoring the viral replication. However, the mechanism of these genes' functionality remains unclear to date.
Collapse
Affiliation(s)
- Djamal Brahim Belhaouari
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), IHU Méditerranée Infection, Marseille, France, Aix-Marseille UniversitéMarseilleFrance
| | - Gabriel Augusto Pires De Souza
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), IHU Méditerranée Infection, Marseille, France, Aix-Marseille UniversitéMarseilleFrance
| | - David C Lamb
- Faculty of Medicine, Health and Life Sciences, Institute of Life Science, Swansea UniversitySwanseaUnited Kingdom
| | - Steven L Kelly
- Faculty of Medicine, Health and Life Sciences, Institute of Life Science, Swansea UniversitySwanseaUnited Kingdom
| | - Jared V Goldstone
- Biology Department, Woods Hole Oceanographic InstitutionWoods HoleUnited States
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic InstitutionWoods HoleUnited States
| | - Philippe Colson
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), IHU Méditerranée Infection, Marseille, France, Aix-Marseille UniversitéMarseilleFrance
- Assistance Publique - Hôpitaux de Marseille (AP-HM)MarseilleFrance
| | - Bernard La Scola
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), IHU Méditerranée Infection, Marseille, France, Aix-Marseille UniversitéMarseilleFrance
- Assistance Publique - Hôpitaux de Marseille (AP-HM)MarseilleFrance
| | - Sarah Aherfi
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), IHU Méditerranée Infection, Marseille, France, Aix-Marseille UniversitéMarseilleFrance
- Assistance Publique - Hôpitaux de Marseille (AP-HM)MarseilleFrance
| |
Collapse
|
17
|
Structural organization, evolution, and distribution of viral pyrimidine dimer-DNA glycosylases. Biophys Rev 2022; 14:923-932. [DOI: 10.1007/s12551-022-00972-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/31/2022] [Indexed: 12/18/2022] Open
|
18
|
Khalifeh D, Neveu E, Fasshauer D. Megaviruses contain various genes encoding for eukaryotic vesicle trafficking factors. Traffic 2022; 23:414-425. [PMID: 35701729 PMCID: PMC9546365 DOI: 10.1111/tra.12860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/02/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022]
Abstract
Many intracellular pathogens, such as bacteria and large viruses, enter eukaryotic cells via phagocytosis, then replicate and proliferate inside the host. To avoid degradation in the phagosomes, they have developed strategies to modify vesicle trafficking. Although several strategies of bacteria have been characterized, it is not clear whether viruses also interfere with the vesicle trafficking of the host. Recently, we came across SNARE proteins encoded in the genomes of several bacteria of the order Legionellales. These pathogenic bacteria may use SNAREs to interfere with vesicle trafficking, since SNARE proteins are the core machinery for vesicle fusion during transport. They assemble into membrane-bridging SNARE complexes that bring membranes together. We now have also discovered SNARE proteins in the genomes of diverse giant viruses. Our biochemical experiments showed that these proteins are able to form SNARE complexes. We also found other key trafficking factors that work together with SNAREs such as NSF, SM, and Rab proteins encoded in the genomes of giant viruses, suggesting that viruses can make use of a large genetic repertoire of trafficking factors. Most giant viruses possess different collections, suggesting that these factors entered the viral genome multiple times. In the future, the molecular role of these factors during viral infection need to be studied.
Collapse
Affiliation(s)
- Dany Khalifeh
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Emilie Neveu
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Dirk Fasshauer
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Fromm A, Schatz D, Ben-Dor S, Feldmesser E, Vardi A. Complete Genome Sequence of Emiliania huxleyi Virus Strain M1, Isolated from an Induced E. huxleyi Bloom in Bergen, Norway. Microbiol Resour Announc 2022; 11:e0007122. [PMID: 35438544 PMCID: PMC9119043 DOI: 10.1128/mra.00071-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Emiliania huxleyi virus strain M1 (EhVM1), a large double-stranded DNA virus from the family Phycodnaviridae, was isolated from an Emiliania huxleyi bloom during a mesocosm experiment in Raunefjorden, Bergen, Norway. Here, we report its complete genome, composed of one full contig.
Collapse
Affiliation(s)
- Amir Fromm
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ester Feldmesser
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
20
|
Yakubovskaya E, Zaliznyak T, Martínez JM, Taylor GT. Raman Microspectroscopy Goes Viral: Infection Dynamics in the Cosmopolitan Microalga, Emiliania huxleyi. Front Microbiol 2021; 12:686287. [PMID: 34795644 PMCID: PMC8593419 DOI: 10.3389/fmicb.2021.686287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
Emiliania huxleyi is a cosmopolitan member of the marine phytoplankton. This species’ capacities for carbon sequestration and sulfur mobilization make it a key player in oceanic biogeochemical cycles that influence climate on a planetary scale. Seasonal E. huxleyi blooms are abruptly terminated by viral epidemics caused by a clade of large DNA viruses collectively known as coccolithoviruses (EhVs). EhVs thereby mediate a significant part of material and energy fluxes associated with E. huxleyi population dynamics. In this study, we use spontaneous Raman microspectroscopy to perform label-free and non-invasive measurements of the macromolecular composition of individual virions and E. huxleyi host cells. Our novel autofluorescence suppression protocol enabled spectroscopic visualization of evolving macromolecular redistributions in individual E. huxleyi cells at different stages of EhV infection. Material transfer from E. huxleyi hosts to single EhV-163 virions was confirmed by combining stable isotope probing (SIP) experiments with Raman microspectroscopy. Inheritance of the host cells’ 13C-enriched isotopic signature was quantified based on red shifts of Raman peaks characteristic of phenylalanine’s phenyl ring. Two-dimensional Raman mapping of EhV-infected E. huxleyi cells revealed that the compact region producing an intense Raman DNA signal (i.e., the nucleus) in healthy E. huxleyi cells becomes diffuse during the first hours of infection. Raman DNA emissions integrated throughout individual cells decreased during the infection cycle. Our observations are consistent with EhV-163 degrading the host’s nuclear DNA, scavenging released nucleotides for its own genome replication, and shedding newly-produced virions prior to host lysis via budding.
Collapse
Affiliation(s)
- Elena Yakubovskaya
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Tatiana Zaliznyak
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| | | | - Gordon T Taylor
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
21
|
Aylward FO, Moniruzzaman M, Ha AD, Koonin EV. A phylogenomic framework for charting the diversity and evolution of giant viruses. PLoS Biol 2021; 19:e3001430. [PMID: 34705818 PMCID: PMC8575486 DOI: 10.1371/journal.pbio.3001430] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/08/2021] [Accepted: 09/29/2021] [Indexed: 11/22/2022] Open
Abstract
Large DNA viruses of the phylum Nucleocytoviricota have recently emerged as important members of ecosystems around the globe that challenge traditional views of viral complexity. Numerous members of this phylum that cannot be classified within established families have recently been reported, and there is presently a strong need for a robust phylogenomic and taxonomic framework for these viruses. Here, we report a comprehensive phylogenomic analysis of the Nucleocytoviricota, present a set of giant virus orthologous groups (GVOGs) together with a benchmarked reference phylogeny, and delineate a hierarchical taxonomy within this phylum. We show that the majority of Nucleocytoviricota diversity can be partitioned into 6 orders, 32 families, and 344 genera, substantially expanding the number of currently recognized taxonomic ranks for these viruses. We integrate our results within a taxonomy that has been adopted for all viruses to establish a unifying framework for the study of Nucleocytoviricota diversity, evolution, and environmental distribution. Giant viruses have transformed our understanding of viral complexity, but we lack a framework for examining their diversity in the biosphere. This study presents a phylogenomic resource for charting the diversity, ecology, and evolution of giant viruses.
Collapse
Affiliation(s)
- Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| | - Mohammad Moniruzzaman
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Anh D. Ha
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
22
|
Ha AD, Moniruzzaman M, Aylward FO. High Transcriptional Activity and Diverse Functional Repertoires of Hundreds of Giant Viruses in a Coastal Marine System. mSystems 2021; 6:e0029321. [PMID: 34254826 PMCID: PMC8407384 DOI: 10.1128/msystems.00293-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Viruses belonging to the Nucleocytoviricota phylum are globally distributed and include members with notably large genomes and complex functional repertoires. Recent studies have shown that these viruses are particularly diverse and abundant in marine systems, but the magnitude of actively replicating Nucleocytoviricota present in ocean habitats remains unclear. In this study, we compiled a curated database of 2,431 Nucleocytoviricota genomes and used it to examine the gene expression of these viruses in a 2.5-day metatranscriptomic time-series from surface waters of the California Current. We identified 145 viral genomes with high levels of gene expression, including 90 Imitervirales and 49 Algavirales viruses. In addition to recovering high expression of core genes involved in information processing that are commonly expressed during viral infection, we also identified transcripts of diverse viral metabolic genes from pathways such as glycolysis, the TCA cycle, and the pentose phosphate pathway, suggesting that virus-mediated reprogramming of central carbon metabolism is common in oceanic surface waters. Surprisingly, we also identified viral transcripts with homology to actin, myosin, and kinesin domains, suggesting that viruses may use these gene products to manipulate host cytoskeletal dynamics during infection. We performed phylogenetic analysis on the virus-encoded myosin and kinesin proteins, which demonstrated that most belong to deep-branching viral clades, but that others appear to have been acquired from eukaryotes more recently. Our results highlight a remarkable diversity of active Nucleocytoviricota in a coastal marine system and underscore the complex functional repertoires expressed by these viruses during infection. IMPORTANCE The discovery of giant viruses has transformed our understanding of viral complexity. Although viruses have traditionally been viewed as filterable infectious agents that lack metabolism, giant viruses can reach sizes rivalling cellular lineages and possess genomes encoding central metabolic processes. Recent studies have shown that giant viruses are widespread in aquatic systems, but the activity of these viruses and the extent to which they reprogram host physiology in situ remains unclear. Here, we show that numerous giant viruses consistently express central metabolic enzymes in a coastal marine system, including components of glycolysis, the TCA cycle, and other pathways involved in nutrient homeostasis. Moreover, we found expression of several viral-encoded actin, myosin, and kinesin genes, indicating viral manipulation of the host cytoskeleton during infection. Our study reveals a high activity of giant viruses in a coastal marine system and indicates they are a diverse and underappreciated component of microbial diversity in the ocean.
Collapse
Affiliation(s)
- Anh D. Ha
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
23
|
Murakoshi Y, Shimeki T, Honda D, Takao Y. Draft Genome Sequence of Sicyoidochytrium minutum DNA Virus Strain 001. Microbiol Resour Announc 2021; 10:e0041821. [PMID: 34110234 PMCID: PMC8354545 DOI: 10.1128/mra.00418-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/25/2021] [Indexed: 11/20/2022] Open
Abstract
Sicyoidochytrium minutum DNA virus strain 001 (SmDNAV 001) is a double-stranded DNA (dsDNA) virus that infects the marine fungoid protist Sicyoidochytrium minutum. We report the draft genome sequence of SmDNAV 001. The 236,345-bp genome contained 358 coding sequences (CDSs) and 3 tRNA-coding sequences.
Collapse
Affiliation(s)
- Yumi Murakoshi
- Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, Japan
| | - Takayuki Shimeki
- Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, Japan
| | - Daiske Honda
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Hyogo, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe, Hyogo, Japan
| | - Yoshitake Takao
- Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, Japan
| |
Collapse
|
24
|
Quantitative Assessment of Nucleocytoplasmic Large DNA Virus and Host Interactions Predicted by Co-occurrence Analyses. mSphere 2021; 6:6/2/e01298-20. [PMID: 33883262 PMCID: PMC8546719 DOI: 10.1128/msphere.01298-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nucleocytoplasmic large DNA viruses (NCLDVs) are highly diverse and abundant in marine environments. However, the knowledge of their hosts is limited because only a few NCLDVs have been isolated so far. Taking advantage of the recent large-scale marine metagenomics census, in silico host prediction approaches are expected to fill the gap and further expand our knowledge of virus-host relationships for unknown NCLDVs. In this study, we built co-occurrence networks of NCLDVs and eukaryotic taxa to predict virus-host interactions using Tara Oceans sequencing data. Using the positive likelihood ratio to assess the performance of host prediction for NCLDVs, we benchmarked several co-occurrence approaches and demonstrated an increase in the odds ratio of predicting true positive relationships 4-fold compared to random host predictions. To further refine host predictions from high-dimensional co-occurrence networks, we developed a phylogeny-informed filtering method, Taxon Interaction Mapper, and showed it further improved the prediction performance by 12-fold. Finally, we inferred virophage-NCLDV networks to corroborate that co-occurrence approaches are effective for predicting interacting partners of NCLDVs in marine environments.IMPORTANCE NCLDVs can infect a wide range of eukaryotes, although their life cycle is less dependent on hosts compared to other viruses. However, our understanding of NCLDV-host systems is highly limited because few of these viruses have been isolated so far. Co-occurrence information has been assumed to be useful to predict virus-host interactions. In this study, we quantitatively show the effectiveness of co-occurrence inference for NCLDV host prediction. We also improve the prediction performance with a phylogeny-guided method, which leads to a concise list of candidate host lineages for three NCLDV families. Our results underpin the usage of co-occurrence approaches for the metagenomic exploration of the ecology of this diverse group of viruses.
Collapse
|
25
|
A persistent giant algal virus, with a unique morphology, encodes an unprecedented number of genes involved in energy metabolism. J Virol 2021; 95:JVI.02446-20. [PMID: 33536167 PMCID: PMC8103676 DOI: 10.1128/jvi.02446-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Viruses have long been viewed as entities possessing extremely limited metabolic capacities. Over the last decade, however, this view has been challenged, as metabolic genes have been identified in viruses possessing large genomes and virions-the synthesis of which is energetically demanding. Here, we unveil peculiar phenotypic and genomic features of Prymnesium kappa virus RF01 (PkV RF01), a giant virus of the Mimiviridae family. We found that this virus encodes an unprecedented number of proteins involved in energy metabolism, such as all four succinate dehydrogenase (SDH) subunits (A-D) as well as key enzymes in the β-oxidation pathway. The SDHA gene was transcribed upon infection, indicating that the viral SDH is actively used by the virus- potentially to modulate its host's energy metabolism. We detected orthologous SDHA and SDHB genes in numerous genome fragments from uncultivated marine Mimiviridae viruses, which suggests that the viral SDH is widespread in oceans. PkV RF01 was less virulent compared with other cultured prymnesioviruses, a phenomenon possibly linked to the metabolic capacity of this virus and suggestive of relatively long co-evolution with its hosts. It also has a unique morphology, compared to other characterized viruses in the Mimiviridae family. Finally, we found that PkV RF01 is the only alga-infecting Mimiviridae virus encoding two aminoacyl-tRNA synthetases and enzymes corresponding to an entire base-excision repair pathway, as seen in heterotroph-infecting Mimiviridae These Mimiviridae encoded-enzymes were found to be monophyletic and branching at the root of the eukaryotic tree of life. This placement suggests that the last common ancestor of Mimiviridae was endowed with a large, complex genome prior to the divergence of known extant eukaryotes.IMPORTANCE Viruses on Earth are tremendously diverse in terms of morphology, functionality, and genomic composition. Over the last decade, the conceptual gap separating viruses and cellular life has tightened because of the detection of metabolic genes in viral genomes that express complex virus phenotypes upon infection. Here, we describe Prymnesium kappa virus RF01, a large alga-infecting virus with a unique morphology, an atypical infection profile, and an unprecedented number of genes involved in energy metabolism (such as the tricarboxylic (TCA) cycle and the β-oxidation pathway). Moreover, we show that the gene corresponding to one of these enzymes (the succinate dehydrogenase subunit A) is transcribed during infection and is widespread among marine viruses. This discovery provides evidence that a virus has the potential to actively regulate energy metabolism with its own gene.
Collapse
|
26
|
Aylward FO, Moniruzzaman M. ViralRecall-A Flexible Command-Line Tool for the Detection of Giant Virus Signatures in 'Omic Data. Viruses 2021; 13:v13020150. [PMID: 33498458 PMCID: PMC7909515 DOI: 10.3390/v13020150] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/07/2021] [Accepted: 01/18/2021] [Indexed: 01/06/2023] Open
Abstract
Giant viruses are widespread in the biosphere and play important roles in biogeochemical cycling and host genome evolution. Also known as nucleo-cytoplasmic large DNA viruses (NCLDVs), these eukaryotic viruses harbor the largest and most complex viral genomes known. Studies have shown that NCLDVs are frequently abundant in metagenomic datasets, and that sequences derived from these viruses can also be found endogenized in diverse eukaryotic genomes. The accurate detection of sequences derived from NCLDVs is therefore of great importance, but this task is challenging owing to both the high level of sequence divergence between NCLDV families and the extraordinarily high diversity of genes encoded in their genomes, including some encoding for metabolic or translation-related functions that are typically found only in cellular lineages. Here, we present ViralRecall, a bioinformatic tool for the identification of NCLDV signatures in ‘omic data. This tool leverages a library of giant virus orthologous groups (GVOGs) to identify sequences that bear signatures of NCLDVs. We demonstrate that this tool can effectively identify NCLDV sequences with high sensitivity and specificity. Moreover, we show that it can be useful both for removing contaminating sequences in metagenome-assembled viral genomes as well as the identification of eukaryotic genomic loci that derived from NCLDV. ViralRecall is written in Python 3.5 and is freely available on GitHub: https://github.com/faylward/viralrecall.
Collapse
|
27
|
Zhang E, Wu S, Cai W, Zeng J, Li J, Li G, Liu J. Validation of superior reference genes for qRT-PCR and Western blot analyses in marine Emiliania huxleyi-virus model system. J Appl Microbiol 2020; 131:257-271. [PMID: 33275816 DOI: 10.1111/jam.14958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/19/2020] [Accepted: 11/29/2020] [Indexed: 11/30/2022]
Abstract
AIMS To search for a set of reference genes for reliable gene expression analysis in the globally important marine coccolithophore Emiliania huxleyi-virus model system. METHODS AND RESULTS Fifteen housekeeping genes (CDKA, CYP15, EFG3, POLAI, RPL30, RPL13, SAMS, COX1, GPB1-2, HSP90, TUA, TUB, UBA1, CAM3 and GAPDH) were evaluated for their stability as potential reference genes for qRT-PCR using ΔCt, geNorm, NormFinder, Bestkeeper and RefFinder software. CDKA, TUA and TUB genes were tested as loading controls for Western blot in the same sample panel. Additionally, target genes associated with cell apoptosis, that is metacaspase genes, were applied to validate the selection of reference genes. The analysis results demonstrated that putative housekeeping genes exhibited significant variations in both mRNA and protein content during virus infection. After a comprehensive analysis with all the algorithms, CDKA and GAPDH were recommended as the most stable reference genes for E huxleyi virus (EhV) infection treatments. For Western blot, significant variation was seen for TUA and TUB, whereas CDKA was stably expressed, consistent with the results of qRT-PCR. CONCLUSIONS CDKA and GAPDH are the best choice for gene and protein expression analysis than the other candidate reference genes under EhV infection conditions. SIGNIFICANCE AND IMPACT OF THE STUDY The stable internal control genes identified in this work will help to improve the accuracy and reliability of gene expression analysis and gain insight into complex E. huxleyi-EhV interaction regulatory networks.
Collapse
Affiliation(s)
- E Zhang
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - S Wu
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - W Cai
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - J Zeng
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - J Li
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - G Li
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - J Liu
- College of Food and Bioengineering, Jimei University, Xiamen, China
| |
Collapse
|
28
|
Ziegler AC, Müller T, Gräler MH. Sphingosine 1-phosphate in sepsis and beyond: Its role in disease tolerance and host defense and the impact of carrier molecules. Cell Signal 2020; 78:109849. [PMID: 33249088 DOI: 10.1016/j.cellsig.2020.109849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/29/2022]
Abstract
Sphingosine 1-phosphate (S1P) is an important immune modulator responsible for physiological cellular responses like lymphocyte development and function, positioning and emigration of T and B cells and cytokine secretion. Recent reports indicate that S1P does not only regulate immunity, but can also protect the function of organs by inducing disease tolerance. S1P also influences the replication of certain pathogens, and sphingolipids are also involved in pathogen recognition and killing. Certain carrier molecules for S1P like serum albumin and high density lipoproteins contribute to the regulation of S1P effects. They are able to associate with S1P and modulate its signaling properties. Similar to S1P, both carrier molecules are also decreased in sepsis patients and likely contribute to sepsis pathology and severity. In this review, we will introduce the concept of disease tolerance and the involvement of S1P. We will also discuss the contribution of S1P and its precursor sphingosine to host defense mechanisms against pathogens. Finally, we will summarize current data demonstrating the influence of carrier molecules for differential S1P signaling. The presented data may lead to new strategies for the prevention and containment of sepsis.
Collapse
Affiliation(s)
- Anke C Ziegler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07740 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany
| | - Tina Müller
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07740 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07740 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07740 Jena, Germany.
| |
Collapse
|
29
|
Sun TW, Yang CL, Kao TT, Wang TH, Lai MW, Ku C. Host Range and Coding Potential of Eukaryotic Giant Viruses. Viruses 2020; 12:E1337. [PMID: 33233432 PMCID: PMC7700475 DOI: 10.3390/v12111337] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Giant viruses are a group of eukaryotic double-stranded DNA viruses with large virion and genome size that challenged the traditional view of virus. Newly isolated strains and sequenced genomes in the last two decades have substantially advanced our knowledge of their host diversity, gene functions, and evolutionary history. Giant viruses are now known to infect hosts from all major supergroups in the eukaryotic tree of life, which predominantly comprises microbial organisms. The seven well-recognized viral clades (taxonomic families) have drastically different host range. Mimiviridae and Phycodnaviridae, both with notable intrafamilial genome variation and high abundance in environmental samples, have members that infect the most diverse eukaryotic lineages. Laboratory experiments and comparative genomics have shed light on the unprecedented functional potential of giant viruses, encoding proteins for genetic information flow, energy metabolism, synthesis of biomolecules, membrane transport, and sensing that allow for sophisticated control of intracellular conditions and cell-environment interactions. Evolutionary genomics can illuminate how current and past hosts shape viral gene repertoires, although it becomes more obscure with divergent sequences and deep phylogenies. Continued works to characterize giant viruses from marine and other environments will further contribute to our understanding of their host range, coding potential, and virus-host coevolution.
Collapse
Affiliation(s)
- Tsu-Wang Sun
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Chia-Ling Yang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
| | - Tzu-Tong Kao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
| | - Tzu-Haw Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
| | - Ming-Wei Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
| | - Chuan Ku
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
30
|
Moniruzzaman M, Weinheimer AR, Martinez-Gutierrez CA, Aylward FO. Widespread endogenization of giant viruses shapes genomes of green algae. Nature 2020; 588:141-145. [PMID: 33208937 DOI: 10.1038/s41586-020-2924-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/01/2020] [Indexed: 12/21/2022]
Abstract
Endogenous viral elements (EVEs)-viruses that have integrated their genomes into those of their hosts-are prevalent in eukaryotes and have an important role in genome evolution1,2. The vast majority of EVEs that have been identified to date are small genomic regions comprising a few genes2, but recent evidence suggests that some large double-stranded DNA viruses may also endogenize into the genome of the host1. Nucleocytoplasmic large DNA viruses (NCLDVs) have recently become of great interest owing to their large genomes and complex evolutionary origins3-6, but it is not yet known whether they are a prominent component of eukaryotic EVEs. Here we report the widespread endogenization of NCLDVs in diverse green algae; these giant EVEs reached sizes greater than 1 million base pairs and contained as many as around 10% of the total open reading frames in some genomes, substantially increasing the scale of known viral genes in eukaryotic genomes. These endogenized elements often shared genes with host genomic loci and contained numerous spliceosomal introns and large duplications, suggesting tight assimilation into host genomes. NCLDVs contain large and mosaic genomes with genes derived from multiple sources, and their endogenization represents an underappreciated conduit of new genetic material into eukaryotic lineages that can substantially impact genome composition.
Collapse
Affiliation(s)
| | | | | | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
31
|
Ku C, Sheyn U, Sebé-Pedrós A, Ben-Dor S, Schatz D, Tanay A, Rosenwasser S, Vardi A. A single-cell view on alga-virus interactions reveals sequential transcriptional programs and infection states. SCIENCE ADVANCES 2020; 6:eaba4137. [PMID: 32490206 PMCID: PMC7239649 DOI: 10.1126/sciadv.aba4137] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/10/2020] [Indexed: 05/12/2023]
Abstract
The discovery of giant viruses infecting eukaryotes from diverse ecosystems has revolutionized our understanding of the evolution of viruses and their impact on protist biology, yet knowledge on their replication strategies and transcriptome regulation remains limited. Here, we profile single-cell transcriptomes of the globally distributed microalga Emiliania huxleyi and its specific giant virus during infection. We detected profound heterogeneity in viral transcript levels among individual cells. Clustering single cells based on viral expression profiles enabled reconstruction of the viral transcriptional trajectory. Reordering cells along this path unfolded highly resolved viral genetic programs composed of genes with distinct promoter elements that orchestrate sequential expression. Exploring host transcriptome dynamics across the viral infection states revealed rapid and selective shutdown of protein-encoding nuclear transcripts, while the plastid and mitochondrial transcriptomes persisted into later stages. Single-cell RNA-seq opens a new avenue to unravel the life cycle of giant viruses and their unique hijacking strategies.
Collapse
Affiliation(s)
- Chuan Ku
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Uri Sheyn
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Arnau Sebé-Pedrós
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Shilo Rosenwasser
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
32
|
Exploration of the propagation of transpovirons within Mimiviridae reveals a unique example of commensalism in the viral world. ISME JOURNAL 2019; 14:727-739. [PMID: 31822788 PMCID: PMC7031253 DOI: 10.1038/s41396-019-0565-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 01/27/2023]
Abstract
Acanthamoeba-infecting Mimiviridae are giant viruses with dsDNA genome up to 1.5 Mb. They build viral factories in the host cytoplasm in which the nuclear-like virus-encoded functions take place. They are themselves the target of infections by 20-kb-dsDNA virophages, replicating in the giant virus factories and can also be found associated with 7-kb-DNA episomes, dubbed transpovirons. Here we isolated a virophage (Zamilon vitis) and two transpovirons respectively associated to B- and C-clade mimiviruses. We found that the virophage could transfer each transpoviron provided the host viruses were devoid of a resident transpoviron (permissive effect). If not, only the resident transpoviron originally isolated from the corresponding virus was replicated and propagated within the virophage progeny (dominance effect). Although B- and C-clade viruses devoid of transpoviron could replicate each transpoviron, they did it with a lower efficiency across clades, suggesting an ongoing process of adaptive co-evolution. We analysed the proteomes of host viruses and virophage particles in search of proteins involved in this adaptation process. This study also highlights a unique example of intricate commensalism in the viral world, where the transpoviron uses the virophage to propagate and where the Zamilon virophage and the transpoviron depend on the giant virus to replicate, without affecting its infectious cycle.
Collapse
|
33
|
Needham DM, Poirier C, Hehenberger E, Jiménez V, Swalwell JE, Santoro AE, Worden AZ. Targeted metagenomic recovery of four divergent viruses reveals shared and distinctive characteristics of giant viruses of marine eukaryotes. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190086. [PMID: 31587639 PMCID: PMC6792449 DOI: 10.1098/rstb.2019.0086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Giant viruses have remarkable genomic repertoires-blurring the line with cellular life-and act as top-down controls of eukaryotic plankton. However, to date only six cultured giant virus genomes are available from the pelagic ocean. We used at-sea flow cytometry with staining and sorting designed to target wild predatory eukaryotes, followed by DNA sequencing and assembly, to recover novel giant viruses from the Pacific Ocean. We retrieved four 'PacV' partial genomes that range from 421 to 1605 Kb, with 13 contigs on average, including the largest marine viral genomic assembly reported to date. Phylogenetic analyses indicate that three of the new viruses span a clade with deep-branching members of giant Mimiviridae, incorporating the Cafeteria roenbergensis virus, the uncultivated terrestrial Faunusvirus, one PacV from a choanoflagellate and two PacV with unclear hosts. The fourth virus, oPacV-421, is phylogenetically related to viruses that infect haptophyte algae. About half the predicted proteins in each PacV have no matches in NCBI nr (e-value < 10-5), totalling 1735 previously unknown proteins; the closest affiliations of the other proteins were evenly distributed across eukaryotes, prokaryotes and viruses of eukaryotes. The PacVs encode many translational proteins and two encode eukaryotic-like proteins from the Rh family of the ammonium transporter superfamily, likely influencing the uptake of nitrogen during infection. cPacV-1605 encodes a microbial viral rhodopsin (VirR) and the biosynthesis pathway for the required chromophore, the second finding of a choanoflagellate-associated virus that encodes these genes. In co-collected metatranscriptomes, 85% of cPacV-1605 genes were expressed, with capsids, heat shock proteins and proteases among the most highly expressed. Based on orthologue presence-absence patterns across the PacVs and other eukaryotic viruses, we posit the observed viral groupings are connected to host lifestyles as heterotrophs or phototrophs. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- David M. Needham
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - Camille Poirier
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| | - Elisabeth Hehenberger
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| | - Valeria Jiménez
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - Jarred E. Swalwell
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- School of Oceanography, University of Washington, Box 357940, Seattle, WA 98195, USA
| | - Alyson E. Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Alexandra Z. Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| |
Collapse
|
34
|
Zimmerman AE, Howard-Varona C, Needham DM, John SG, Worden AZ, Sullivan MB, Waldbauer JR, Coleman ML. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat Rev Microbiol 2019; 18:21-34. [PMID: 31690825 DOI: 10.1038/s41579-019-0270-x] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 12/23/2022]
Abstract
Ecosystems are controlled by 'bottom-up' (resources) and 'top-down' (predation) forces. Viral infection is now recognized as a ubiquitous top-down control of microbial growth across ecosystems but, at the same time, cell death by viral predation influences, and is influenced by, resource availability. In this Review, we discuss recent advances in understanding the biogeochemical impact of viruses, focusing on how metabolic reprogramming of host cells during lytic viral infection alters the flow of energy and nutrients in aquatic ecosystems. Our synthesis revealed several emerging themes. First, viral infection transforms host metabolism, in part through virus-encoded metabolic genes; the functions performed by these genes appear to alleviate energetic and biosynthetic bottlenecks to viral production. Second, viral infection depends on the physiological state of the host cell and on environmental conditions, which are challenging to replicate in the laboratory. Last, metabolic reprogramming of infected cells and viral lysis alter nutrient cycling and carbon export in the oceans, although the net impacts remain uncertain. This Review highlights the need for understanding viral infection dynamics in realistic physiological and environmental contexts to better predict their biogeochemical consequences.
Collapse
Affiliation(s)
- Amy E Zimmerman
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | | | - David M Needham
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Seth G John
- Department of Earth Science, University of Southern California, Los Angeles, CA, USA
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.,Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH, USA.,Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, USA
| | - Jacob R Waldbauer
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Maureen L Coleman
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
35
|
Zeng J, Liu S, Cai W, Jiang H, Lu X, Li G, Li J, Liu J. Emerging lipidome patterns associated with marine Emiliania huxleyi-virus model system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:521-528. [PMID: 31254817 DOI: 10.1016/j.scitotenv.2019.06.284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
Emiliania huxleyi (Coccolithophore) plays a prominent role in the global carbon cycle and in climate processes. The annual collapse of massive E. huxleyi blooms in the marine environment has been shown to be frequently linked to viral control. These host-virus interactions shape the evolution and dynamics of oceanic microscale ecosystems, yet we still understand little of the molecular mechanism of these virus-mediated processes. Here, we present a detailed characterization of the lipidome of E. huxleyi BOF92 strain, both of uninfected cells and those infected with its specific lytic virus EhV-99B1. Non-targeted lipidomics analysis was performed in order to evaluate the dynamic alterations underlying virus-induced metabolic remodeling. The host lipidome (both lipid content and composition) significantly changed in response to the viral infection. The most statistically significant differential lipids were screened as potential biomarkers for assessing E. huxleyi population sensitivity to EhV infection. Our results reveal that the remodeling of lipid metabolism that underlies the pathogenesis of this infection primarily involved sphingolipid, glycerolipid and fatty acid metabolic pathways. Our study provides insights into how viruses shape their hosts metabolism to support their unique life cycle and a lipid-based chemical arms race during host-virus dynamic interactions in a marine environment.
Collapse
Affiliation(s)
- Jun Zeng
- College of Food and Bioengineering, Jimei University, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Sishangyu Liu
- College of Food and Bioengineering, Jimei University, Xiamen 361021, China
| | - Weicong Cai
- College of Food and Bioengineering, Jimei University, Xiamen 361021, China
| | - Hanrui Jiang
- College of Food and Bioengineering, Jimei University, Xiamen 361021, China
| | - Xue Lu
- College of Food and Bioengineering, Jimei University, Xiamen 361021, China
| | - Guiling Li
- College of Food and Bioengineering, Jimei University, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Jian Li
- College of Food and Bioengineering, Jimei University, Xiamen 361021, China
| | - Jingwen Liu
- College of Food and Bioengineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China.
| |
Collapse
|
36
|
A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc Natl Acad Sci U S A 2019; 116:20574-20583. [PMID: 31548428 PMCID: PMC6789865 DOI: 10.1073/pnas.1907517116] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Giant viruses are remarkable for their large genomes, often rivaling those of small bacteria, and for having genes thought exclusive to cellular life. Most isolated to date infect nonmarine protists, leaving their strategies and prevalence in marine environments largely unknown. Using eukaryotic single-cell metagenomics in the Pacific, we discovered a Mimiviridae lineage of giant viruses, which infects choanoflagellates, widespread protistan predators related to metazoans. The ChoanoVirus genomes are the largest yet from pelagic ecosystems, with 442 of 862 predicted proteins lacking known homologs. They are enriched in enzymes for modifying organic compounds, including degradation of chitin, an abundant polysaccharide in oceans, and they encode 3 divergent type-1 rhodopsins (VirR) with distinct evolutionary histories from those that capture sunlight in cellular organisms. One (VirRDTS) is similar to the only other putative rhodopsin from a virus (PgV) with a known host (a marine alga). Unlike the algal virus, ChoanoViruses encode the entire pigment biosynthesis pathway and cleavage enzyme for producing the required chromophore, retinal. We demonstrate that the rhodopsin shared by ChoanoViruses and PgV binds retinal and pumps protons. Moreover, our 1.65-Å resolved VirRDTS crystal structure and mutational analyses exposed differences from previously characterized type-1 rhodopsins, all of which come from cellular organisms. Multiple VirR types are present in metagenomes from across surface oceans, where they are correlated with and nearly as abundant as a canonical marker gene from Mimiviridae Our findings indicate that light-dependent energy transfer systems are likely common components of giant viruses of photosynthetic and phagotrophic unicellular marine eukaryotes.
Collapse
|
37
|
Nissimov JI, Talmy D, Haramaty L, Fredricks HF, Zelzion E, Knowles B, Eren AM, Vandzura R, Laber CP, Schieler BM, Johns CT, More KD, Coolen MJL, Follows MJ, Bhattacharya D, Van Mooy BAS, Bidle KD. Biochemical diversity of glycosphingolipid biosynthesis as a driver of Coccolithovirus competitive ecology. Environ Microbiol 2019; 21:2182-2197. [PMID: 31001863 DOI: 10.1111/1462-2920.14633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/15/2019] [Indexed: 11/29/2022]
Abstract
Coccolithoviruses (EhVs) are large, double-stranded DNA-containing viruses that infect the single-celled, marine coccolithophore Emiliania huxleyi. Given the cosmopolitan nature and global importance of E. huxleyi as a bloom-forming, calcifying, photoautotroph, E. huxleyi-EhV interactions play a key role in oceanic carbon biogeochemistry. Virally-encoded glycosphingolipids (vGSLs) are virulence factors that are produced by the activity of virus-encoded serine palmitoyltransferase (SPT). Here, we characterize the dynamics, diversity and catalytic production of vGSLs in an array of EhV strains in relation to their SPT sequence composition and explore the hypothesis that they are a determinant of infectivity and host demise. vGSL production and diversity was positively correlated with increased virulence, virus replication rate and lytic infection dynamics in laboratory experiments, but they do not explain the success of less-virulent EhVs in natural EhV communities. The majority of EhV-derived SPT amplicon sequences associated with infected cells in the North Atlantic derived from slower infecting, less virulent EhVs. Our lab-, field- and mathematical model-based data and simulations support ecological scenarios whereby slow-infecting, less-virulent EhVs successfully compete in North Atlantic populations of E. huxleyi, through either the preferential removal of fast-infecting, virulent EhVs during active infection or by having access to a broader host range.
Collapse
Affiliation(s)
- Jozef I Nissimov
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA.,Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, Scotland, UK
| | - David Talmy
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| | - Liti Haramaty
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Helen F Fredricks
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Ehud Zelzion
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ben Knowles
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - A Murat Eren
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, Massachusetts, 02543, USA.,Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Rebecca Vandzura
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Christien P Laber
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Brittany M Schieler
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Christopher T Johns
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Kuldeep D More
- WA-Organic and Isotope Geochemistry Centre, School of Earth and Planetary Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Marco J L Coolen
- WA-Organic and Isotope Geochemistry Centre, School of Earth and Planetary Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Michael J Follows
- Department of Earth, Atmosphere and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Benjamin A S Van Mooy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Kay D Bidle
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
38
|
Goode AG, Fields DM, Archer SD, Martínez Martínez J. Physiological responses of Oxyrrhis marina to a diet of virally infected Emiliania huxleyi. PeerJ 2019; 7:e6722. [PMID: 31041150 PMCID: PMC6476294 DOI: 10.7717/peerj.6722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 03/05/2019] [Indexed: 11/29/2022] Open
Abstract
The coccolithophore Emiliania huxleyi forms some of the largest phytoplankton blooms in the ocean. The rapid demise of these blooms has been linked to viral infections. E. huxleyi abundance, distribution, and nutritional status make them an important food source for the heterotrophic protists which are classified as microzooplankton in marine food webs. In this study we investigated the fate of E. huxleyi (CCMP 374) infected with virus strain EhV-86 in a simple predator-prey interaction. The ingestion rates of Oxyrrhis marina were significantly lower (between 26.9 and 50.4%) when fed virus-infected E. huxleyi cells compared to non-infected cells. Despite the lower ingestion rates, O. marina showed significantly higher growth rates (between 30 and 91.3%) when fed infected E. huxleyi cells, suggesting higher nutritional value and/or greater assimilation of infected E. huxleyi cells. No significant differences were found in O. marina cell volumes or fatty acids profiles. These results show that virally infected E. huxleyi support higher growth rates of single celled heterotrophs and in addition to the “viral shunt” hypothesis, viral infections may also divert more carbon to mesozooplankton grazers.
Collapse
Affiliation(s)
- Andrew G Goode
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States of America.,School of Marine Sciences, University of Maine, Orono, ME, United States of America
| | - David M Fields
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States of America
| | - Stephen D Archer
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States of America
| | | |
Collapse
|
39
|
Unmasking cellular response of a bloom-forming alga to viral infection by resolving expression profiles at a single-cell level. PLoS Pathog 2019; 15:e1007708. [PMID: 31017983 PMCID: PMC6502432 DOI: 10.1371/journal.ppat.1007708] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/06/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022] Open
Abstract
Infection by large dsDNA viruses can lead to a profound alteration of host transcriptome and metabolome in order to provide essential building blocks to support the high metabolic demand for viral assembly and egress. Host response to viral infection can typically lead to diverse phenotypic outcome that include shift in host life cycle and activation of anti-viral defense response. Nevertheless, there is a major bottleneck to discern between viral hijacking strategies and host defense responses when averaging bulk population response. Here we study the interaction between Emiliania huxleyi, a bloom-forming alga, and its specific virus (EhV), an ecologically important host-virus model system in the ocean. We quantified host and virus gene expression on a single-cell resolution during the course of infection, using automatic microfluidic setup that captures individual algal cells and multiplex quantitate PCR. We revealed high heterogeneity in viral gene expression among individual cells. Simultaneous measurements of expression profiles of host and virus genes at a single-cell level allowed mapping of infected cells into newly defined infection states and allowed detection specific host response in a subpopulation of infected cell which otherwise masked by the majority of the infected population. Intriguingly, resistant cells emerged during viral infection, showed unique expression profiles of metabolic genes which can provide the basis for discerning between viral resistant and susceptible cells within heterogeneous populations in the marine environment. We propose that resolving host-virus arms race at a single-cell level will provide important mechanistic insights into viral life cycles and will uncover host defense strategies. Almost all of our current understanding of the molecular mechanisms that govern host-pathogen interactions in the ocean is derived from experiments carried out at the population level, neglecting any heterogeneity. Here we used a single cell approach to unmask the phenotypic heterogeneity produced within infected populations of the cosmopolitan bloom-forming alga Emiliania huxleyi by its specific lytic virus. We found high variability in expression of viral genes among individual cells. This heterogeneity was used to map cells into their infection state and allowed to uncover a yet unrecognized host response. We also provide evidence that variability in host metabolic states provided a sensitive tool to decipher between susceptible and resistant cells.
Collapse
|
40
|
In plaque-mass spectrometry imaging of a bloom-forming alga during viral infection reveals a metabolic shift towards odd-chain fatty acid lipids. Nat Microbiol 2019; 4:527-538. [PMID: 30718847 PMCID: PMC6420086 DOI: 10.1038/s41564-018-0336-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 12/04/2018] [Indexed: 01/02/2023]
Abstract
Tapping into the metabolic cross-talk between a host and its virus can reveal unique strategies employed during infection. Viral infection is a dynamic process that generates an evolving metabolic landscape. Gaining a continuous view into the infection process is highly challenging and is limited by current metabolomics approaches, which typically measure the average of the entire population at various stages of infection. Here, we took an innovative approach to study the metabolic basis of host-virus interactions between the bloom-forming alga Emiliania huxleyi and its specific virus. We combined a classical method in virology, the plaque assay, with advanced mass spectrometry imaging (MSI), an approach we termed ‘in plaque-MSI’. Taking advantage of the spatial characteristics of the plaque, we mapped the metabolic landscape induced during infection in a high spatiotemporal resolution, unfolding the infection process in a continuous manner. Further unsupervised spatially-aware clustering, combined with known lipid biomarkers, revealed a systematic metabolic shift during infection towards lipids containing the odd-chain fatty acid pentadecanoic acid (C15:0). Applying ‘in plaque-MSI’ might facilitate the discovery of bioactive compounds that mediate the chemical arms race of host-virus interactions in diverse model systems.
Collapse
|
41
|
Stonik VA, Stonik IV. Sterol and Sphingoid Glycoconjugates from Microalgae. Mar Drugs 2018; 16:E514. [PMID: 30563009 PMCID: PMC6315552 DOI: 10.3390/md16120514] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/27/2018] [Accepted: 12/14/2018] [Indexed: 11/16/2022] Open
Abstract
Microalgae are well known as primary producers in the hydrosphere. As sources of natural products, microalgae are attracting major attention due to the potential of their practical applications as valuable food constituents, raw material for biofuels, drug candidates, and components of drug delivery systems. This paper presents a short review of a low-molecular-weight steroid and sphingolipid glycoconjugates, with an analysis of the literature on their structures, functions, and bioactivities. The discussed data on sterols and the corresponding glycoconjugates not only demonstrate their structural diversity and properties, but also allow for a better understanding of steroid biogenesis in some echinoderms, mollusks, and other invertebrates which receive these substances from food and possibly from their microalgal symbionts. In another part of this review, the structures and biological functions of sphingolipid glycoconjugates are discussed. Their role in limiting microalgal blooms as a result of viral infections is emphasized.
Collapse
Affiliation(s)
- Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia.
| | - Inna V Stonik
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Str, 17, 690041 Vladivostok, Russia.
| |
Collapse
|
42
|
Pollier J, Vancaester E, Kuzhiumparambil U, Vickers CE, Vandepoele K, Goossens A, Fabris M. A widespread alternative squalene epoxidase participates in eukaryote steroid biosynthesis. Nat Microbiol 2018; 4:226-233. [DOI: 10.1038/s41564-018-0305-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/24/2018] [Indexed: 11/09/2022]
|
43
|
Lomora M, Shumate D, Rahman AA, Pandit A. Therapeutic Applications of Phytoplankton, with an Emphasis on Diatoms and Coccolithophores. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mihai Lomora
- SFI Centre For Research in Medical Devices (CÚRAM); National University of Ireland; Galway Ireland
| | - David Shumate
- SFI Centre For Research in Medical Devices (CÚRAM); National University of Ireland; Galway Ireland
- Georgia Institute of Technology; Atlanta GA 30332 USA
| | - Asrizal Abdul Rahman
- SFI Centre For Research in Medical Devices (CÚRAM); National University of Ireland; Galway Ireland
| | - Abhay Pandit
- SFI Centre For Research in Medical Devices (CÚRAM); National University of Ireland; Galway Ireland
| |
Collapse
|
44
|
Harrison PJ, Dunn T, Campopiano DJ. Sphingolipid biosynthesis in man and microbes. Nat Prod Rep 2018; 35:921-954. [PMID: 29863195 PMCID: PMC6148460 DOI: 10.1039/c8np00019k] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Indexed: 12/20/2022]
Abstract
A new review covering up to 2018 Sphingolipids are essential molecules that, despite their long history, are still stimulating interest today. The reasons for this are that, as well as playing structural roles within cell membranes, they have also been shown to perform a myriad of cell signalling functions vital to the correct function of eukaryotic and prokaryotic organisms. Indeed, sphingolipid disregulation that alters the tightly-controlled balance of these key lipids has been closely linked to a number of diseases such as diabetes, asthma and various neuropathologies. Sphingolipid biogenesis, metabolism and regulation is mediated by a large number of enzymes, proteins and second messengers. There appears to be a core pathway common to all sphingolipid-producing organisms but recent studies have begun to dissect out important, species-specific differences. Many of these have only recently been discovered and in most cases the molecular and biochemical details are only beginning to emerge. Where there is a direct link from classic biochemistry to clinical symptoms, a number a drug companies have undertaken a medicinal chemistry campaign to try to deliver a therapeutic intervention to alleviate a number of diseases. Where appropriate, we highlight targets where natural products have been exploited as useful tools. Taking all these aspects into account this review covers the structural, mechanistic and regulatory features of sphingolipid biosynthetic and metabolic enzymes.
Collapse
Affiliation(s)
- Peter J. Harrison
- School of Chemistry
, University of Edinburgh
,
David Brewster Road
, Edinburgh
, EH9 3FJ
, UK
.
| | - Teresa M. Dunn
- Department of Biochemistry and Molecular Biology
, Uniformed Services University
,
Bethesda
, Maryland
20814
, USA
| | - Dominic J. Campopiano
- School of Chemistry
, University of Edinburgh
,
David Brewster Road
, Edinburgh
, EH9 3FJ
, UK
.
| |
Collapse
|
45
|
Johns CT, Grubb AR, Nissimov JI, Natale F, Knapp V, Mui A, Fredricks HF, Van Mooy BAS, Bidle KD. The mutual interplay between calcification and coccolithovirus infection. Environ Microbiol 2018; 21:1896-1915. [PMID: 30043404 PMCID: PMC7379532 DOI: 10.1111/1462-2920.14362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/15/2018] [Accepted: 07/11/2018] [Indexed: 11/30/2022]
Abstract
Two prominent characteristics of marine coccolithophores are their secretion of coccoliths and their susceptibility to infection by coccolithoviruses (EhVs), both of which display variation among cells in culture and in natural populations. We examined the impact of calcification on infection by challenging a variety of Emiliania huxleyi strains at different calcification states with EhVs of different virulence. Reduced cellular calcification was associated with increased infection and EhV production, even though calcified cells and associated coccoliths had significantly higher adsorption coefficients than non-calcified (naked) cells. Sialic acid glycosphingolipids, molecules thought to mediate EhV infection, were generally more abundant in calcified cells and enriched in purified, sorted coccoliths, suggesting a biochemical link between calcification and adsorption rates. In turn, viable EhVs impacted cellular calcification absent of lysis by inducing dramatic shifts in optical side scatter signals and a massive release of detached coccoliths in a subpopulation of cells, which could be triggered by resuspension of healthy, calcified host cells in an EhV-free, 'induced media'. Our findings show that calcification is a key component of the E. huxleyi-EhV arms race and an aspect that is critical both to the modelling of these host-virus interactions in the ocean and interpreting their impact on the global carbon cycle.
Collapse
Affiliation(s)
- Christopher T Johns
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Austin R Grubb
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Jozef I Nissimov
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Frank Natale
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Viki Knapp
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA.,University of South Carolina, Honors College, Columbia, SC, 29208, USA
| | - Alwin Mui
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Helen F Fredricks
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Benjamin A S Van Mooy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Kay D Bidle
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
46
|
Nissimov JI, Vandzura R, Johns CT, Natale F, Haramaty L, Bidle KD. Dynamics of transparent exopolymer particle production and aggregation during viral infection of the coccolithophore, Emiliania huxleyi. Environ Microbiol 2018; 20:2880-2897. [PMID: 29921002 DOI: 10.1111/1462-2920.14261] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 11/30/2022]
Abstract
Emiliania huxleyi produces calcium carbonate (CaCO3 ) coccoliths and transparent exopolymer particles (TEP), sticky, acidic carbohydrates that facilitate aggregation. E. huxleyi's extensive oceanic blooms are often terminated by coccolithoviruses (EhVs) with the transport of cellular debris and associated particulate organic carbon (POC) to depth being facilitated by TEP-bound 'marine snow' aggregates. The dynamics of TEP production and particle aggregation in response to EhV infection are poorly understood. Using flow cytometry, spectrophotometry and FlowCam visualization of alcian blue (AB)-stained aggregates, we assessed TEP production and the size spectrum of aggregates for E. huxleyi possessing different degrees of calcification and cellular CaCO3 :POC mass ratios, when challenged with two EhVs (EhV207 and EhV99B1). FlowCam imaging also qualitatively assessed the relative amount of AB-stainable TEP (i.e., blue:red ratio of each particle). We show significant increases in TEP during early phase EhV207-infection (∼ 24 h) of calcifying strains and a shift towards large aggregates following EhV99B1-infection. We also observed the formation of large aggregates with low blue:red ratios, suggesting that other exopolymer substances contribute towards aggregation. Our findings show the potential for virus infection and the associated response of their hosts to impact carbon flux dynamics and provide incentive to explore these dynamics in natural populations.
Collapse
Affiliation(s)
- Jozef I Nissimov
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road New Brunswick, NJ, USA
| | - Rebecca Vandzura
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road New Brunswick, NJ, USA
| | - Christopher T Johns
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road New Brunswick, NJ, USA
| | - Frank Natale
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road New Brunswick, NJ, USA
| | - Liti Haramaty
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road New Brunswick, NJ, USA
| | - Kay D Bidle
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road New Brunswick, NJ, USA
| |
Collapse
|
47
|
Flaviani F, Schroeder DC, Lebret K, Balestreri C, Highfield AC, Schroeder JL, Thorpe SE, Moore K, Pasckiewicz K, Pfaff MC, Rybicki EP. Distinct Oceanic Microbiomes From Viruses to Protists Located Near the Antarctic Circumpolar Current. Front Microbiol 2018; 9:1474. [PMID: 30065704 PMCID: PMC6056678 DOI: 10.3389/fmicb.2018.01474] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
Microbes occupy diverse ecological niches and only through recent advances in next generation sequencing technologies have the true microbial diversity been revealed. Furthermore, lack of perceivable marine barriers to genetic dispersal (i.e., mountains or islands) has allowed the speculation that organisms that can be easily transported by currents and therefore proliferate everywhere. That said, ocean currents are now commonly being recognized as barriers for microbial dispersal. Here we analyzed samples collected from a total of six stations, four located in the Indian Ocean, and two in the Southern Ocean. Amplicon sequencing was used to characterize both prokaryotic and eukaryotic plankton communities, while shotgun sequencing was used for the combined environmental DNA (eDNA), microbial eDNA (meDNA), and viral fractions. We found that Cyanobacteria dominated the prokaryotic component in the South-West Indian Ocean, while γ-Proteobacteria dominated the South-East Indian Ocean. A combination of γ- and α-Proteobacteria dominated the Southern Ocean. Alveolates dominated almost exclusively the eukaryotic component, with variation in the ratio of Protoalveolata and Dinoflagellata depending on station. However, an increase in haptophyte relative abundance was observed in the Southern Ocean. Similarly, the viral fraction was dominated by members of the order Caudovirales across all stations; however, a higher presence of nucleocytoplasmic large DNA viruses (mainly chloroviruses and mimiviruses) was observed in the Southern Ocean. To our knowledge, this is the first that a statistical difference in the microbiome (from viruses to protists) between the subtropical Indian and Southern Oceans. We also show that not all phylotypes can be found everywhere, and that meDNA is not a suitable resource for monitoring aquatic microbial diversity.
Collapse
Affiliation(s)
- Flavia Flaviani
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa.,Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, United Kingdom
| | - Declan C Schroeder
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, United Kingdom.,School of Biological Sciences, University of Reading, Reading, United Kingdom.,College of Veterinary Medicine, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Karen Lebret
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, United Kingdom.,Limnology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Cecilia Balestreri
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, United Kingdom
| | - Andrea C Highfield
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, United Kingdom
| | - Joanna L Schroeder
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, United Kingdom
| | - Sally E Thorpe
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | - Karen Moore
- Exeter Sequencing Service, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Konrad Pasckiewicz
- Exeter Sequencing Service, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Maya C Pfaff
- Department of Environmental Affairs, Oceans and Coasts, Cape Town, South Africa
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
48
|
Echeveste P, Croot P, von Dassow P. Differences in the sensitivity to Cu and ligand production of coastal vs offshore strains of Emiliania huxleyi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:1673-1680. [PMID: 29056389 DOI: 10.1016/j.scitotenv.2017.10.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/24/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Copper is an essential trace metal for different physiological processes in phytoplankton, being either a limiting or toxic element depending on its bioavailability, which may induce local physiological adaptations. Atmospheric Cu deposition to the oceans can negatively impact phytoplankton growth, with the most Cu-sensitive phytoplankton exhibiting differences based on coastal vs oceanic origin. The goal of this work was to analyze sensitivity to Cu toxicity of the cosmopolitan marine calcifying phytoplankton, Emiliania huxleyi, exploring what factors determine intraspecific variability in sensitivity. We compared 17 strains isolated from coastal and open ocean waters of the Eastern South Pacific (ESP), the Mediterranean Sea, and the Tasman Sea. Offshore strains were as sensitive to Cu than coastal strains. Sensitivity to Cu was explained well by predicted depositional inputs of atmospheric Cu in the ESP both for coastal and offshore strains, but not when considered globally. The variability in Cu-sensitivity was also due to the production of organic Cu-ligands (CL), being the most productive strains the most tolerant to Cu at constitutive levels. When exposed to 100nM Cu, E. huxleyi produced significantly higher amounts of CL, especially coastal strains, but CL production did not correlate to observed EC50s.
Collapse
Affiliation(s)
- Pedro Echeveste
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute of Oceanography, Chile; Instituto de Ciencias Naturales Alexander von Humboldt, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile.
| | - Peter Croot
- Earth and Ocean Sciences, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Peter von Dassow
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute of Oceanography, Chile
| |
Collapse
|
49
|
Abstract
Viruses infect all kingdoms of marine life from bacteria to whales. Viruses in the world's oceans play important roles in the mortality of phytoplankton, and as drivers of evolution and biogeochemical cycling. They shape host population abundance and distribution and can lead to the termination of algal blooms. As discoveries about this huge reservoir of genetic and biological diversity grow, our understanding of the major influences viruses exert in the global marine environment continues to expand. This chapter discusses the key discoveries that have been made to date about marine viruses and the current direction of this field of research.
Collapse
Affiliation(s)
- Karen D Weynberg
- School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
50
|
Moniruzzaman M, Gann ER, Wilhelm SW. Infection by a Giant Virus (AaV) Induces Widespread Physiological Reprogramming in Aureococcus anophagefferens CCMP1984 - A Harmful Bloom Algae. Front Microbiol 2018; 9:752. [PMID: 29725322 PMCID: PMC5917014 DOI: 10.3389/fmicb.2018.00752] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/03/2018] [Indexed: 01/05/2023] Open
Abstract
While viruses with distinct phylogenetic origins and different nucleic acid types can infect and lyse eukaryotic phytoplankton, “giant” dsDNA viruses have been found to be associated with important ecological processes, including the collapse of algal blooms. However, the molecular aspects of giant virus–host interactions remain largely unknown. Aureococcus anophagefferens virus (AaV), a giant virus in the Mimiviridae clade, is known to play a critical role in regulating the fate of brown tide blooms caused by the pelagophyte Aureococcus anophagefferens. To understand the physiological response of A. anophagefferens CCMP1984 upon AaV infection, we studied the transcriptomic landscape of this host–virus pair over an entire infection cycle using a RNA-sequencing approach. A massive transcriptional response of the host was evident as early as 5 min post-infection, with modulation of specific processes likely related to both host defense mechanism(s) and viral takeover of the cell. Infected Aureococcus showed a relative suppression of host-cell transcripts associated with photosynthesis, cytoskeleton formation, fatty acid, and carbohydrate biosynthesis. In contrast, host cell processes related to protein synthesis, polyamine biosynthesis, cellular respiration, transcription, and RNA processing were overrepresented compared to the healthy cultures at different stages of the infection cycle. A large number of redox active host-selenoproteins were overexpressed, which suggested that viral replication and assembly progresses in a highly oxidative environment. The majority (99.2%) of annotated AaV genes were expressed at some point during the infection cycle and demonstrated a clear temporal–expression pattern and an increasing relative expression for the majority of the genes through the time course. We detected a putative early promoter motif for AaV, which was highly similar to the early promoter elements of two other Mimiviridae members, indicating some degree of evolutionary conservation of gene regulation within this clade. This large-scale transcriptome study provides insights into the Aureococcus cells infected by a giant virus and establishes a foundation to test hypotheses regarding metabolic and regulatory processes critical for AaV and other Mimiviridae members.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA, United States
| | - Eric R Gann
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Steven W Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|