1
|
Dey RK, Kumari R, Patra R, Soni DK, Biswas R, Patnaik S, Ghosh D. MicroRNA-129-5p-mediated translational repression of microglial ROCK1 leads to enhanced phagocytosis. J Biol Chem 2025:110293. [PMID: 40419128 DOI: 10.1016/j.jbc.2025.110293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 05/08/2025] [Accepted: 05/22/2025] [Indexed: 05/28/2025] Open
Abstract
ROCK1 plays an important role in phagocytosis by inducing cytoskeletal rearrangement. Although the transcriptional regulation of ROCK1 is known but its post-transcriptional regulation is underexplored. We intended to find a mechanism of microglial phagocytosis through possible post-transcriptional regulation of ROCK1. The study identified miR-129-5p as a regulator of microglial phagocytosis following exposure to an environmental stressor, arsenic, combining in silico analysis, mutational analysis, in vitro experiments, and validation in Balb/c mouse model. The in silico analysis and in vitro studies with mouse primary neonatal microglia, BV2 microglia, ex vivo microglia and human microglial cell line CHME3 revealed that arsenic exposure increases microglial phagocytic activity. Arsenic exposure was also observed to increase the level of miR-129-5p and consequently decreases the level of ROCK1 protein. In vitro experiments and mutational analysis confirmed the in silico predicted binding site of miR-129-5p on the 3'UTR of ROCK1 and also confirmed the shuttling of ROCK1 mRNA into the cytoplasmic-processing body (p-body) in mouse microglia. Downstream to ROCK1, Rac1 has also been studied to pinpoint the partners in the signaling axis. The role of miR-129-5p in microglial phagocytosis was studied in vitro and validated in vivo in BALB/c mouse by stereotactically injecting anti-miR-129-5p and assessing the phagocytosis in ex vivo microglia and co-localization of Iba1 and PSD95 in brain cryosection. Finally, experiments with arsenic, anti-miR-129-5p, ROCK1 & Rac1 siRNA in various combinations confirmed the miR-129-5p→ROCK1→Rac1→Phagocytosis signaling axis. Overall, the study revealed miR-129-5p as an important regulator of microglial phagocytosis with potential implication in synaptic plasticity and neurodegenerative complications.
Collapse
Affiliation(s)
- Rajib Kumar Dey
- Immunotoxicology Laboratory, Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ranjana Kumari
- Immunotoxicology Laboratory, Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Roni Patra
- Immunotoxicology Laboratory, Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dharmendra Kumar Soni
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Roopa Biswas
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Satyakam Patnaik
- Drug and Chemical Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Debabrata Ghosh
- Immunotoxicology Laboratory, Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Shirzad S, Eterafi M, Karimi Z, Barazesh M. MicroRNAs involved in colorectal cancer, a rapid mini-systematic review. BMC Cancer 2025; 25:934. [PMID: 40413456 DOI: 10.1186/s12885-025-14343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 05/16/2025] [Indexed: 05/27/2025] Open
Abstract
INTRODUCTION Colorectal cancer (CRC) involves the uncontrolled proliferation of glandular epithelial cells in the colon or rectum. The high mortality rate associated with CRC has driven extensive research into innovative diagnostic and therapeutic strategies. Among these, microRNAs (miRNA) have gained attention for their crucial role in regulating various cellular processes that contribute to the initiation, progression, and metastasis of CRC. METHOD This systematic review aimed to assess the roles of various miRNAs in CRC by analyzing multiple studies. The PICO framework was followed to structure the study regarding miRNA involved in CRC development and progression compared to normal cases. The outcomes were measured according miRNAs impact on CRC progression, survival rates, and treatment response. Systematic review of studies published from 2000 to November 2023 were included. Data were collected from prominent databases, including Google Scholar, PubMed, ScienceDirect, Irandoc, SID, and Magiran, covering studies from 2000 to November 2023. Studies were managed using EndNote for citation management, and duplicates were removed. The remaining studies were evaluated based on predefined inclusion and exclusion criteria. RESULTS In our review, we categorized 28 miRNAs based on their potential tumor suppressor or oncogenic effects in CRC progression. Among them, 14 miRNAs were highlighted as important based on the assessment using TCGA data, with miR-200a also showing a significant effect on patient survival. CONCLUSION This study compiled and analyzed validated miRNAs associated with CRC progression. The findings suggest the potential of these miRNAs as non-invasive biomarkers, which may be used alone or in combination with traditional tumor markers for improved diagnostic and prognostic applications in CRC. This review contributes novel insights by updating the current understanding and offering a comprehensive evaluation of miRNAs in CRC.
Collapse
Affiliation(s)
- Sogol Shirzad
- Students Research Committee, Gerash University of Medical Sciences, Gerash, Iran
- Medical Biotechnology Group, Gerash University of Medical Sciences, Gerash, Iran
| | - Majid Eterafi
- Students Research Committee, Gerash University of Medical Sciences, Gerash, Iran
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zeinab Karimi
- Medical Biotechnology Group, Gerash University of Medical Sciences, Gerash, Iran.
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran.
| | - Mahdi Barazesh
- Medical Biotechnology Group, Gerash University of Medical Sciences, Gerash, Iran
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
3
|
Paulsen K, Chan R, Gay L, Ma Z. KSHV miRNAs target STING to evade innate immunity and facilitate KSHV lytic reactivation from latency. Cell Rep 2025; 44:115741. [PMID: 40413741 DOI: 10.1016/j.celrep.2025.115741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/10/2025] [Accepted: 05/05/2025] [Indexed: 05/27/2025] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) employs various strategies to evade host immune surveillance and maintain lifelong latency. The cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) DNA sensing pathway is a key innate immunity pathway that detects viral DNA and restricts KSHV lytic replication upon reactivation from latency. Here, we identify three KSHV microRNAs (miRNAs), miR-K12-6-3p, miR-K12-7-3p, and miR-K12-11-3p, that directly bind to STING1 mRNA to repress its translation and inhibit downstream immune signaling. Exogenous delivery of these KSHV miRNAs led to decreased STING expression and attenuated cGAS/STING signaling in response to STING agonist stimulation. Conversely, genetic deletion of these KSHV miRNAs rescued STING and interferon-stimulated gene expression in latent KSHV cell lines, delaying KSHV lytic reactivation and reducing KSHV lytic gene expression. These findings shed light on the immune evasion strategy of KSHV miRNA-mediated STING repression, representing the discovery of viral miRNAs that target STING.
Collapse
Affiliation(s)
- Kimberly Paulsen
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Rosenna Chan
- Department of Microbiology & Cell Science, University of Florida, Gainesville, FL, USA
| | - Lauren Gay
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Zhe Ma
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA; UF Health Cancer Center, Gainesville, FL, USA.
| |
Collapse
|
4
|
Ju J. Challenges and opportunities in microRNA-based cancer therapeutics. Cell Rep Med 2025; 6:102057. [PMID: 40239629 PMCID: PMC12047499 DOI: 10.1016/j.xcrm.2025.102057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 04/18/2025]
Abstract
The 2024 Nobel Prize honored groundbreaking microRNA (miRNA) discoveries that unveiled the critical functions of miRNAs in fundamental biology and human health. Despite promising therapeutic potential, there are no Food and Drug Administration (FDA)-approved miRNA-based cancer therapies. This commentary discusses the progress and challenges of miRNA-based cancer therapeutics and their potential impact on future clinical oncology.
Collapse
Affiliation(s)
- Jingfang Ju
- Department of Pathology, Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook, NY 11794-8691, USA.
| |
Collapse
|
5
|
Ray S, Roychowdhury S, Chakrabarty Y, Banerjee S, Hobbs A, Chattopadhyay K, Mukherjee K, Bhattacharyya SN. HuR prevents amyloid beta-induced phase separation of miRNA-bound Ago2 to RNA-processing bodies. Structure 2025; 33:753-770.e5. [PMID: 40056914 DOI: 10.1016/j.str.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/18/2024] [Accepted: 02/11/2025] [Indexed: 04/06/2025]
Abstract
Phase separation into membrane-less organelles regulates protein activity in eukaryotic cells. miRNA-repressed mRNAs and Ago proteins localize to RNA-processing bodies (P-bodies), which are subcellular structures formed by several RNA-binding and regulatory proteins. Ago2, the essential miRNA-binding protein, forms a complex with miRNAs to repress protein synthesis by binding to mRNAs and targeting them to P-bodies. However, factors controlling Ago2 and miRNA-repressed mRNA compartmentalization into P-bodies are not fully understood. We developed a detergent-permeabilized cell-based assay system to observe the phase separation of exogenously added Ago2 into P-bodies in vitro. We observed that miRNA binding to Ago2 is essential for its localization to P-bodies, which is also ATP dependent. Osmolarity and salt concentration also affect Ago2 compartmentalization to P-bodies. Amyloid beta oligomers enhance Ago2 targeting to P-bodies by slowing down cellular Ago2 dynamics and inhibiting mTORC1 activity. However, the RNA-binder HuR disrupts P-body targeting by "sponging" out Ago2-associated miRNAs.
Collapse
Affiliation(s)
- Sritama Ray
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sumangal Roychowdhury
- Protein Folding & Dynamics Laboratory, Structural Biology & Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Yogaditya Chakrabarty
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India; Division of Biology, California Institute of Technology, California, CA 91125, USA
| | - Saikat Banerjee
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Alisiara Hobbs
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, NE 68198, USA
| | - Krishnananda Chattopadhyay
- Protein Folding & Dynamics Laboratory, Structural Biology & Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Kamalika Mukherjee
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India; Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska , NE 68198, USA.
| | - Suvendra N Bhattacharyya
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, NE 68198, USA.
| |
Collapse
|
6
|
Cieplak-Rotowska MK, Dadlez M, Niedzwiecka A. Exploring the CNOT1(800-999) HEAT Domain and Its Interactions with Tristetraprolin (TTP) as Revealed by Hydrogen/Deuterium Exchange Mass Spectrometry. Biomolecules 2025; 15:403. [PMID: 40149939 PMCID: PMC11939966 DOI: 10.3390/biom15030403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
CNOT1, a key scaffold in the CCR4-NOT complex, plays a critical role in mRNA decay, particularly in the regulation of inflammatory responses through its interaction with tristetraprolin. A fragment of the middle part of CNOT1 (residues 800-999) is an example of an α-helical HEAT-like repeat domain. The HEAT motif is an evolutionarily conserved motif present in scaffolding and transport proteins across a wide range of organisms. Using hydrogen/deuterium exchange mass spectrometry (HDX MS), a method that has not been widely explored in the context of HEAT repeats, we analysed the structural dynamics of wild-type CNOT1(800-999) and its two double point mutants (E893A/Y900A, E893Q/Y900H) to find the individual contributions of these CNOT1 residues to the molecular recognition of tristetraprolin (TTP). Our results show that the differences in the interactions of CNOT1(800-999) variants with the TTP peptide fragment are due to the absence of the critical residues resulting from point mutations and not due to the perturbation of the protein structure. Nevertheless, the HDX MS was able to detect slight local changes in structural dynamics induced by protein point mutations, which are usually neglected in studies of intermolecular interactions.
Collapse
Affiliation(s)
- Maja K. Cieplak-Rotowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, PL-02089 Warsaw, Poland;
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Michał Dadlez
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, PL-02106 Warsaw, Poland;
| | - Anna Niedzwiecka
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| |
Collapse
|
7
|
Emerson JI, Shi W, Paredes-Larios J, Walker WG, Hutton JE, Cristea IM, Marzluff WF, Conlon FL. X-Chromosome-Linked miRNAs Regulate Sex Differences in Cardiac Physiology. Circ Res 2025; 136:258-275. [PMID: 39772608 PMCID: PMC11781965 DOI: 10.1161/circresaha.124.325447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Males and females exhibit distinct anatomic and functional characteristics of the heart, predisposing them to specific disease states. METHODS We identified microRNAs (miRNAs/miR) with sex-differential expression in mouse hearts. RESULTS Four conserved miRNAs are present in a single locus on the X-chromosome and are expressed at higher levels in females than males. We show miRNA, miR-871, is responsible for decreased expression of the protein SRL (sarcalumenin) in females. SRL is involved in calcium signaling, and we show it contributes to differences in electrophysiology between males and females. miR-871 overexpression mimics the effects of the cardiac physiology of conditional cardiomyocyte-specific Srl-null mice. Inhibiting miR-871 with an antagomir in females shortened ventricular repolarization. The human orthologue of miR-871, miR-888, coevolved with the SRL 3' untranslated region and regulates human SRL. CONCLUSIONS These data highlight the importance of sex-differential miRNA mechanisms in mediating sex-specific functions and their potential relevance to human cardiac diseases.
Collapse
Affiliation(s)
- James I. Emerson
- Department of Biochemistry & Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Wei Shi
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jose Paredes-Larios
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - William G. Walker
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Josiah E. Hutton
- Department of Molecular Biology, Princeton University, Lew Thomas Laboratory, Princeton, NJ 08544, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lew Thomas Laboratory, Princeton, NJ 08544, USA
| | - William F. Marzluff
- Department of Biochemistry & Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Frank L. Conlon
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Science, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Gao Y, Takenaka K, Xu SM, Cheng Y, Janitz M. Recent advances in investigation of circRNA/lncRNA-miRNA-mRNA networks through RNA sequencing data analysis. Brief Funct Genomics 2025; 24:elaf005. [PMID: 40251826 PMCID: PMC12008121 DOI: 10.1093/bfgp/elaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 04/21/2025] Open
Abstract
Non-coding RNAs (ncRNAs) are RNA molecules that are transcribed from DNA but are not translated into proteins. Studies over the past decades have revealed that ncRNAs can be classified into small RNAs, long non-coding RNAs and circular RNAs by genomic size and structure. Accumulated evidences have eludicated the critical roles of these non-coding transcripts in regulating gene expression through transcription and translation, thereby shaping cellular function and disease pathogenesis. Notably, recent studies have investigated the function of ncRNAs as competitive endogenous RNAs (ceRNAs) that sequester miRNAs and modulate mRNAs expression. The ceRNAs network emerges as a pivotal regulatory function, with significant implications in various diseases such as cancer and neurodegenerative disease. Therefore, we highlighted multiple bioinformatics tools and databases that aim to predict ceRNAs interaction. Furthermore, we discussed limitations of using current technologies and potential improvement for ceRNAs network detection. Understanding of the dynamic interplay within ceRNAs may advance the biological comprehension, as well as providing potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yulan Gao
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Gate 11 via Botany St, Sydney, NSW 2052, Australia
| | - Konii Takenaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Gate 11 via Botany St, Sydney, NSW 2052, Australia
| | - Si-Mei Xu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Gate 11 via Botany St, Sydney, NSW 2052, Australia
| | - Yuning Cheng
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Gate 11 via Botany St, Sydney, NSW 2052, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Gate 11 via Botany St, Sydney, NSW 2052, Australia
| |
Collapse
|
9
|
Lanzillotti MB, Brodbelt JS. Progress in Tandem Mass Spectrometry Data Analysis for Nucleic Acids. MASS SPECTROMETRY REVIEWS 2025. [PMID: 39797409 DOI: 10.1002/mas.21923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025]
Abstract
Mass spectrometry (MS) has become a critical tool in the characterization of covalently modified nucleic acids. Well-developed bottom-up approaches, where nucleic acids are digested with an endonuclease and the resulting oligonucleotides are separated before MS and MS/MS analysis, provide substantial insight into modified nucleotides in biological and synthetic nucleic. Top-down MS presents an alternative approach where the entire nucleic acid molecule is introduced to the mass spectrometer intact and then fragmented by MS/MS. Current top-down MS workflows have incorporated automated, on-line HPLC workflows to enable rapid desalting of nucleic acid samples for facile mass analysis without complication from adduction. Furthermore, optimization of MS/MS parameters utilizing collision, electron, or photon-based activation methods have enabled effective bond cleavage throughout the phosphodiester backbone while limiting secondary fragmentation, allowing characterization of progressively larger (~100 nt) nucleic acids and localization of covalent modifications. Development of software applications to perform automated identification of fragment ions has accelerated the broader adoption of mass spectrometry for analysis of nucleic acids. This review focuses on progress in tandem mass spectrometry for characterization of nucleic acids with particular emphasis on the software tools that have proven critical for advancing the field.
Collapse
|
10
|
Bahramiazar P, Abdollahzade N, Tartibian B, Ahmadiasl N, Yaghoob Nezhad F. The Role of Estrogen in Brain MicroRNAs Regulation. Adv Pharm Bull 2024; 14:819-835. [PMID: 40190672 PMCID: PMC11970499 DOI: 10.34172/apb.39216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 04/09/2025] Open
Abstract
Purpose This review aims to elucidate the role of estrogen-sensitive microRNAs (miRNAs) in modulating brain functions and disorders, highlighting the protective effects of estrogen on the central nervous system. Methods A comprehensive literature review was conducted, examining the relationship between estrogen, miRNAs, and cognitive health. The study focused on experimental data comparing cognitive impairments between genders and the mechanisms of estrogen's effects on brain function. Results Cognitive impairments are less prevalent in women of reproductive age compared to men, indicating estrogen's neuroprotective role. Estrogen modulates gene expression through specific receptors, while miRNAs regulate approximately 30% of protein-coding genes in mammals. These miRNAs play critical roles in synaptic plasticity and neuronal survival. The review identifies several estrogen-sensitive miRNAs and their potential involvement in brain disorders. Conclusion The interplay between estrogen and miRNAs offers valuable insights into the molecular mechanisms underlying cognitive health and disease. Understanding these relationships may lead to novel therapeutic strategies for addressing various brain disorders, particularly those associated with hormonal changes and aging.
Collapse
Affiliation(s)
- Peyvand Bahramiazar
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naseh Abdollahzade
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Bakhtyar Tartibian
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Allameh Tabataba’i University, Tehran, Iran
| | - Naser Ahmadiasl
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
11
|
Safieddine A, Benassy MN, Bonte T, Slimani F, Pourcelot O, Kress M, Ernoult-Lange M, Courel M, Coleno E, Imbert A, Laine A, Godebert AM, Vinit A, Blugeon C, Chevreux G, Gautheret D, Walter T, Bertrand E, Bénard M, Weil D. Cell-cycle-dependent mRNA localization in P-bodies. Mol Cell 2024; 84:4191-4208.e7. [PMID: 39368464 DOI: 10.1016/j.molcel.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/05/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
Understanding the dynamics of RNA targeting to membraneless organelles is essential to disentangle their functions. Here, we investigate how P-bodies (PBs) evolve during cell-cycle progression in HEK293 cells. PB purification across the cell cycle uncovers widespread changes in their RNA content, partly uncoupled from cell-cycle-dependent changes in RNA expression. Single-molecule fluorescence in situ hybridization (FISH) shows various mRNA localization patterns in PBs peaking in G1, S, or G2, with examples illustrating the timely capture of mRNAs in PBs when their encoded protein becomes dispensable. Rather than directly reflecting absence of translation, cyclic mRNA localization in PBs can be controlled by RBPs, such as HuR in G2, and by RNA features. Indeed, while PB mRNAs are AU rich at all cell-cycle phases, they are specifically longer in G1, possibly related to post-mitotic PB reassembly. Altogether, our study supports a model where PBs are more than a default location for excess untranslated mRNAs.
Collapse
Affiliation(s)
- Adham Safieddine
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France.
| | - Marie-Noëlle Benassy
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Thomas Bonte
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, 75006 Paris, France; Institut Curie, PSL University, 75005 Paris, France; INSERM, U900, 75005 Paris, France
| | - Floric Slimani
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34090 Montpellier, France
| | - Oriane Pourcelot
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34090 Montpellier, France
| | - Michel Kress
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Michèle Ernoult-Lange
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Maïté Courel
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Emeline Coleno
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34090 Montpellier, France
| | - Arthur Imbert
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, 75006 Paris, France
| | - Antoine Laine
- Institute for Integrative Biology of the Cell, UMR 9198, CEA, CNRS, Université Paris-Saclay, 91190 Gif-Sur-Yvette, France
| | - Annie Munier Godebert
- Research Center Saint-Antoine (CRSA), CISA Flow Cytometry Facility, UMRS 938, Sorbonne University, F-75012 Paris, France
| | - Angelique Vinit
- Research Center Saint-Antoine (CRSA), CISA Flow Cytometry Facility, UMRS 938, Sorbonne University, F-75012 Paris, France
| | - Corinne Blugeon
- GenomiqueENS, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Guillaume Chevreux
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Daniel Gautheret
- Institute for Integrative Biology of the Cell, UMR 9198, CEA, CNRS, Université Paris-Saclay, 91190 Gif-Sur-Yvette, France
| | - Thomas Walter
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, 75006 Paris, France; Institut Curie, PSL University, 75005 Paris, France; INSERM, U900, 75005 Paris, France
| | - Edouard Bertrand
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34090 Montpellier, France
| | - Marianne Bénard
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Dominique Weil
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, 75005 Paris, France.
| |
Collapse
|
12
|
Zhang J, Xie B, He H, Gao H, Liao F, Fu H, Liao Y. Target-assisted self-cleavage DNAzyme electrochemical biosensor for MicroRNA detection with signal amplification. Chem Commun (Camb) 2024; 60:12904-12907. [PMID: 39415671 DOI: 10.1039/d4cc04190a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In this work, we reported an electrochemical biosensor with target-assisted self-cleavage DNAzyme function for signal amplified detection of miRNA. The target-recycling amplification led to significant signal enhancement and thus offers high detection sensitivity.
Collapse
Affiliation(s)
- Juan Zhang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, China West Normal University, Nanchong, Sichuan 637000, China.
| | - Benting Xie
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, China West Normal University, Nanchong, Sichuan 637000, China.
| | - Haonan He
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, China West Normal University, Nanchong, Sichuan 637000, China.
| | - Hejun Gao
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, China West Normal University, Nanchong, Sichuan 637000, China.
| | - Fang Liao
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, China West Normal University, Nanchong, Sichuan 637000, China.
| | - Hongquan Fu
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, China West Normal University, Nanchong, Sichuan 637000, China.
| | - Yunwen Liao
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, China West Normal University, Nanchong, Sichuan 637000, China.
| |
Collapse
|
13
|
Mullan CW, Summer L, Lopez-Giraldez F, Tobiasova Z, Manes TD, Yasothan S, Song G, Jane-Wit D, Saltzman WM, Pober JS. IL-1β Induces Human Endothelial Surface Expression of IL-15 by Relieving let-7c-3p Suppression of Protein Translation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1338-1348. [PMID: 39302113 PMCID: PMC11493510 DOI: 10.4049/jimmunol.2400331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
Expression of IL-15 on the surface of human graft endothelial cells (ECs) bound to the IL-15Rα subunit can increase the activation of CTLs, potentiating allograft rejection. Our previous work showed that surface expression of this protein complex could be induced by alloantibody-mediated complement activation through increased IL-1β synthesis, secretion, and autocrine/paracrine IL-1-mediated activation of NF-κB. In this article, we report that cultured human ECs express eight differently spliced IL-15 transcripts. Remarkably, IL-1β does not alter the expression level of any IL-15 transcript but induces surface expression independently of RNA polymerase II-mediated transcription while requiring new protein translation. Mechanistically, IL-1β causes an NF-κB-mediated reduction in the level of microRNA Let-7c-3p, thereby relieving a block of translation of IL-15 surface protein. Let7c-3p anti-miR can induce EC surface expression of IL-15/IL-15Rα in the absence of complement activation or of IL-1, enabling IL-15 transpresentation to boost CD8 T cell activation. Because of the complexity we have uncovered in IL-15 regulation, we recommend caution in interpreting increased total IL-15 mRNA or protein levels as a surrogate for transpresentation.
Collapse
Affiliation(s)
- Clancy W Mullan
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
- Department of Surgery, Yale School of Medicine, New Haven, CT
| | - Luanna Summer
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Francesc Lopez-Giraldez
- Department of Genetics, Yale School of Medicine, New Haven, CT
- Yale Center for Genome Analysis, Yale School of Medicine, West Haven, CT
| | - Zuzana Tobiasova
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Thomas D Manes
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Shruthi Yasothan
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Guiyu Song
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Daniel Jane-Wit
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Department of Cardiology, VA Connecticut Healthcare System, West Haven, CT
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT
- Department of Dermatology, Yale University, New Haven, CT
| | - Jordan S Pober
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
14
|
Feng H, Wei B, Xie X, Li P, Shen X. The potential up-regulation risk of 3' UTR SNP (rs10787760 G > A) for the VAX1 gene is associated with NSCLP in the northwest Chinese population. Gene 2024; 922:148458. [PMID: 38608796 DOI: 10.1016/j.gene.2024.148458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/18/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
AIMS To investigate the association between single nucleotide polymorphisms (SNPs) in 3'UTR region of VAX1, SYT14 and PAX7 genes and the risk of non-syndromic cleft palate (NSCLP) in a northwest Chinese population. MAIN METHODS A case-control study was conducted in 406 normal controls and 399 NSCLP patients. Using iMLDRTM genotyping technology, eight SNPs of three genes ((rs10787760, rs7086344 at VAX1), (rs1010113, rs851114, and rs485874 at PAX7), and (rs61820397, rs4609425, rs12133399 at SYT14)) were genotyped to investigate the differences in alleles and genotype distribution frequencies between NSCLP patients and healthy controls. RNA Folding Form software was used to predict RNA secondary structure and expression vectors were constructed to explore the function of the relevant SNP. The effect of SNP polymorphism of gene transcription and translation was assessed using qPCR and Western blot analysis. KEY FINDINGS Among the eight SNPs of three genes, rs10787760 of VAX1 gene was found to be associated with an increased risk of NSCLP (OR = 1.341, CI = 1.004-1.790) and the GA genotype of rs10787760 increased the risk of cleft lip and/or palate (CL/P) about 1.42 times (p < 0.05), and carrying the A allele might increase the risk of NSCL/P in male (OR = 1.356, 95 % CI = 1.010-1.823). But there was no association observed with cleft palate only (CPO). Cell function experiments revealed that the G to A mutation in rs10787760 up-regulated GFP-VAX1 transcriptional level by 2.39 and 3.13 times in two cell lines respectively, and enhance the protein expression of the VAX1 gene further. RNA secondary structure study showed that the rs10787760 (G > A) had two different secondary structures in 3'UTR region. SIGNIFICANCE The rs10787760 variant in the 3'UTR region of VAX1 gene is associated with CL/P in northwest Chinese population. We hypothesize that the machanism of it might be caused by the RNA differenct fold in the 3'UTR region caused by the polymorphism of the gene. LEVEL OF EVIDENCE Original Reports.
Collapse
Affiliation(s)
- Huan Feng
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bing Wei
- Donggang Branch of the First Hospital of Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Peiqiang Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xi Shen
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
15
|
Yamagishi R, Inagaki H, Suzuki J, Hosoda N, Sugiyama H, Tomita K, Hotta T, Hoshino SI. Concerted action of ataxin-2 and PABPC1-bound mRNA poly(A) tail in the formation of stress granules. Nucleic Acids Res 2024; 52:9193-9209. [PMID: 38869059 PMCID: PMC11347130 DOI: 10.1093/nar/gkae497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Stress induces global stabilization of the mRNA poly(A) tail (PAT) and the assembly of untranslated poly(A)-tailed mRNA into mRNPs that accumulate in stress granules (SGs). While the mechanism behind stress-induced global PAT stabilization has recently emerged, the biological significance of PAT stabilization under stress remains elusive. Here, we demonstrate that stress-induced PAT stabilization is a prerequisite for SG formation. Perturbations in PAT length impact SG formation; PAT shortening, achieved by overexpressing mRNA deadenylases, inhibits SG formation, whereas PAT lengthening, achieved by overexpressing their dominant negative mutants or downregulating deadenylases, promotes it. PABPC1, which specifically binds to the PAT, is crucial for SG formation. Complementation analyses reveal that the PABC/MLLE domain of PABPC1, responsible for binding PAM2 motif-containing proteins, plays a key role. Among them, ataxin-2 is a known SG component. A dominant-negative approach reveals that the PAM2 motif of ataxin-2 is essential for SG formation. Notably, ataxin-2 increases stress sensitivity, lowering the threshold for SG formation, probably by promoting the aggregation of PABPC1-bound mRNA. The C-terminal region is responsible for the self-aggregation of ataxin-2. These findings underscore the critical roles of mRNA PAT, PABPC1 and ataxin-2 in SG formation and provide mechanistic insights into this process.
Collapse
Affiliation(s)
- Ryota Yamagishi
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Hiroto Inagaki
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Jun Suzuki
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Nao Hosoda
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Haruka Sugiyama
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Kazunori Tomita
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Takashi Hotta
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Shin-ichi Hoshino
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| |
Collapse
|
16
|
Killips B, Heaton EJB, Augusto L, Omsland A, Gilk SD. Coxiella burnetii inhibits nuclear translocation of TFEB, the master transcription factor for lysosomal biogenesis. J Bacteriol 2024; 206:e0015024. [PMID: 39057917 PMCID: PMC11340324 DOI: 10.1128/jb.00150-24] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Coxiella burnetii is a highly infectious, Gram-negative, obligate intracellular bacterium and the causative agent of human Q fever. The Coxiella Containing Vacuole (CCV) is a modified phagolysosome that forms through fusion with host endosomes and lysosomes. While an initial acidic pH < 4.7 is essential to activate Coxiella metabolism, the mature, growth-permissive CCV has a luminal pH of ~5.2 that remains stable throughout infection. Inducing CCV acidification to a lysosomal pH (~4.7) causes Coxiella degradation, suggesting that Coxiella regulates CCV pH. Supporting this hypothesis, Coxiella blocks host lysosomal biogenesis, leading to fewer host lysosomes available to fuse with the CCV. Host cell lysosome biogenesis is primarily controlled by the transcription factor EB (TFEB), which binds Coordinated Lysosomal Expression And Regulation (CLEAR) motifs upstream of genes involved in lysosomal biogenesis and function. TFEB is a member of the microphthalmia/transcription factor E (MiT/TFE) protein family, which also includes MITF, TFE3, and TFEC. This study examines the roles of MiT/TFE proteins during Coxiella infection. We found that in cells lacking TFEB, both Coxiella growth and CCV size increase. Conversely, TFEB overexpression or expression in the absence of other family members leads to significantly less bacterial growth and smaller CCVs. TFE3 and MITF do not appear to play a significant role during Coxiella infection. Surprisingly, we found that Coxiella actively blocks TFEB nuclear translocation in a Type IV Secretion System-dependent manner, thus decreasing lysosomal biogenesis. Together, these results suggest that Coxiella inhibits TFEB nuclear translocation to limit lysosomal biogenesis, thus avoiding further CCV acidification through CCV-lysosomal fusion. IMPORTANCE The obligate intracellular bacterial pathogen Coxiella burnetii causes the zoonotic disease Q fever, which is characterized by a debilitating flu-like illness in acute cases and life-threatening endocarditis in patients with chronic disease. While Coxiella survives in a unique lysosome-like vacuole called the Coxiella Containing Vacuole (CCV), the bacterium inhibits lysosome biogenesis as a mechanism to avoid increased CCV acidification. Our results establish that transcription factor EB (TFEB), a member of the microphthalmia/transcription factor E (MiT/TFE) family of transcription factors that regulate lysosomal gene expression, restricts Coxiella infection. Surprisingly, Coxiella blocks TFEB translocation from the cytoplasm to the nucleus, thus downregulating the expression of lysosomal genes. These findings reveal a novel bacterial mechanism to regulate lysosomal biogenesis.
Collapse
Affiliation(s)
- Brigham Killips
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Emily J. Bremer Heaton
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Leonardo Augusto
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Anders Omsland
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Stacey D. Gilk
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
17
|
Sekar V, Mármol-Sánchez E, Kalogeropoulos P, Stanicek L, Sagredo EA, Widmark A, Doukoumopoulos E, Bonath F, Biryukova I, Friedländer MR. Detection of transcriptome-wide microRNA-target interactions in single cells with agoTRIBE. Nat Biotechnol 2024; 42:1296-1302. [PMID: 37735263 PMCID: PMC11324520 DOI: 10.1038/s41587-023-01951-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/15/2023] [Indexed: 09/23/2023]
Abstract
MicroRNAs (miRNAs) exert their gene regulatory effects on numerous biological processes based on their selection of target transcripts. Current experimental methods available to identify miRNA targets are laborious and require millions of cells. Here we have overcome these limitations by fusing the miRNA effector protein Argonaute2 to the RNA editing domain of ADAR2, allowing the detection of miRNA targets transcriptome-wide in single cells. miRNAs guide the fusion protein to their natural target transcripts, causing them to undergo A>I editing, which can be detected by sensitive single-cell RNA sequencing. We show that agoTRIBE identifies functional miRNA targets, which are supported by evolutionary sequence conservation. In one application of the method we study microRNA interactions in single cells and identify substantial differential targeting across the cell cycle. AgoTRIBE also provides transcriptome-wide measurements of RNA abundance and allows the deconvolution of miRNA targeting in complex tissues at the single-cell level.
Collapse
Affiliation(s)
- Vaishnovi Sekar
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Emilio Mármol-Sánchez
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Panagiotis Kalogeropoulos
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Laura Stanicek
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Eduardo A Sagredo
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Albin Widmark
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Franziska Bonath
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Inna Biryukova
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
18
|
Kane E, Mak TC, Latreille M. MicroRNA-7 regulates endocrine progenitor delamination and endocrine cell mass in developing pancreatic islets. iScience 2024; 27:110332. [PMID: 39055950 PMCID: PMC11269303 DOI: 10.1016/j.isci.2024.110332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
β-cell replenishment in patients with diabetes through cadaveric islet transplantation has been successful; however, it requires long-term immunosuppression and suitable islet donors are scarce. Stepwise in vitro differentiation of pluripotent stem cells into β-cells represents a viable alternative, but limitations in our current understanding of in vivo islet endocrine differentiation constrains its clinical use. Here, we show that microRNA-7 (miR-7) is highly expressed in embryonic pancreatic endocrine progenitors. Genetic deletion of the miR-7 gene family in endocrine progenitors leads to reduced islet endocrine cell mass, due to endocrine progenitors failing to delaminate from the epithelial plexus. This is associated with a reduction in neurogenin-3 levels and increased expression of Sry-box transcription factor 9. Further, we observe that a significant number of endocrine progenitors lacking miR-7 differentiate into ductal cells. Our study suggests that increasing miR-7 expression could improve efficiency of in vitro differentiation and augment stem cell-derived β-cell terminal maturity.
Collapse
Affiliation(s)
- Eva Kane
- MRC Laboratory of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Tracy C.S. Mak
- MRC Laboratory of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Mathieu Latreille
- MRC Laboratory of Medical Sciences, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
19
|
Zhang J, Zhan C, Fan J, Wu D, Zhang R, Wu D, Chen X, Lu Y, Li M, Lin M, Gong J, Jiang D. Structural insights into double-stranded RNA recognition and transport by SID-1. Nat Struct Mol Biol 2024; 31:1095-1104. [PMID: 38664565 DOI: 10.1038/s41594-024-01276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 03/14/2024] [Indexed: 07/20/2024]
Abstract
RNA uptake by cells is critical for RNA-mediated gene interference (RNAi) and RNA-based therapeutics. In Caenorhabditis elegans, RNAi is systemic as a result of SID-1-mediated double-stranded RNA (dsRNA) across cells. Despite the functional importance, the underlying mechanisms of dsRNA internalization by SID-1 remain elusive. Here we describe cryogenic electron microscopy structures of SID-1, SID-1-dsRNA complex and human SID-1 homologs SIDT1 and SIDT2, elucidating the structural basis of dsRNA recognition and import by SID-1. The homodimeric SID-1 homologs share conserved architecture, but only SID-1 possesses the molecular determinants within its extracellular domains for distinguishing dsRNA from single-stranded RNA and DNA. We show that the removal of the long intracellular loop between transmembrane helix 1 and 2 attenuates dsRNA uptake and systemic RNAi in vivo, suggesting a possible endocytic mechanism of SID-1-mediated dsRNA internalization. Our study provides mechanistic insights into dsRNA internalization by SID-1, which may facilitate the development of dsRNA applications based on SID-1.
Collapse
Affiliation(s)
- Jiangtao Zhang
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Chunhua Zhan
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junping Fan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Dian Wu
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruixue Zhang
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy Agricultural Sciences, Beijing, China
| | - Di Wu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyao Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Lu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Lin
- Food Laboratory of Zhongyuan, College of Agriculture, Henan University, Kaifeng, Henan, China
| | - Jianke Gong
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Daohua Jiang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
20
|
Yao GS, Fu LM, Dai JS, Chen JW, Liu KZ, Liang H, Wang Z, Deng Q, Wang JY, Jin MY, Chen W, Fang Y, Luo JH, Cao JZ, Wei JH. Exploring the oncogenic potential of circSOD2 in clear cell renal cell carcinoma: a novel positive feedback loop. J Transl Med 2024; 22:596. [PMID: 38926764 PMCID: PMC11209967 DOI: 10.1186/s12967-024-05290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/09/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Existing studies have found that circular RNAs (circRNAs) act as sponges for micro RNAs (miRNAs) to control downstream genes. However, the specific functionalities and mechanisms of circRNAs in human clear cell renal cell carcinoma (ccRCC) have yet to be thoroughly investigated. METHODS Patient cohorts from online databases were used to screen candidate circRNAs, while another cohort from our hospital was obtained for validation. CircSOD2 was identified as a potential oncogenic target, and its relevant characteristics were investigated during ccRCC progression through various assays. A positive feedback loop containing downstream miRNA and its target gene were identified using bioinformatics and validated by luciferase reporter assays, RNA pull-down, and high-throughput sequencing. RESULTS CircSOD2 expression was elevated in tumor samples and significantly correlated with overall survival (OS) and the tumor stage of ccRCC patients, which appeared in the enhanced proliferation, invasion, and migration of tumor cells. Through competitive binding to circSOD2, miR-532-3p can promote the expression of PAX5 and the progression of ccRCC, and such regulation can be salvaged by miR-532-3p inhibitor. CONCLUSION A novel positive feedback loop, PAX5/circSOD2/miR-532-3p/PAX5 was identified in the study, indicating that the loop may play an important role in the diagnosis and prognostic prediction in ccRCC patients.
Collapse
Affiliation(s)
- Gao-Sheng Yao
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Liang-Min Fu
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Jun-Shang Dai
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jin-Wei Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Ke-Zhi Liu
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Hui Liang
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhu Wang
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Qiong Deng
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Jie-Yan Wang
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Mei-Yu Jin
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Yong Fang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China.
| | - Jun-Hang Luo
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China.
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Jia-Zheng Cao
- Department of Urology, Affiliated Jiangmen Hospital of Sun Yat-Sen University, No.23 Haibang Street, Jiangmen, 529030, Guangdong, China.
| | - Jin-Huan Wei
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
21
|
Yu S, Li Y, Lu X, Han Z, Li C, Yuan X, Guo D. The regulatory role of miRNA and lncRNA on autophagy in diabetic nephropathy. Cell Signal 2024; 118:111144. [PMID: 38493883 DOI: 10.1016/j.cellsig.2024.111144] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes that causes glomerular sclerosis and end-stage renal disease, leading to ascending morbidity and mortality in diabetic patients. Excessive accumulation of aberrantly modified proteins or damaged organelles, such as advanced glycation end-products, dysfunctional mitochondria, and inflammasomes is associated with the pathogenesis of DN. As one of the main degradation pathways, autophagy recycles toxic substances to maintain cellular homeostasis and autophagy dysregulation plays a crucial role in DN progression. MicroRNA (miRNA) and long non-coding RNA (lncRNA) are non-coding RNA (ncRNA) molecules that regulate gene expression and have been implicated in both physiological and pathological conditions. Recent studies have revealed that autophagy-regulating miRNA and lncRNA have been involved in pathological processes of DN, including renal cell injury, mitochondrial dysfunction, inflammation, and renal fibrosis. This review summarizes the role of autophagy in DN and emphasizes the modulation of miRNA and lncRNA on autophagy during disease progression, for the development of promising interventions by targeting these ncRNAs in this disease.
Collapse
Affiliation(s)
- Siming Yu
- Department of Nephrology II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150036, China
| | - Yue Li
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xinxin Lu
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Zehui Han
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Chunsheng Li
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xingxing Yuan
- Heilongjiang University of Chinese Medicine, Harbin 150040, China; Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150006, China
| | - Dandan Guo
- Department of Cardiology, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150001, China.
| |
Collapse
|
22
|
Kappari L, Dasireddy JR, Applegate TJ, Selvaraj RK, Shanmugasundaram R. MicroRNAs: exploring their role in farm animal disease and mycotoxin challenges. Front Vet Sci 2024; 11:1372961. [PMID: 38803799 PMCID: PMC11129562 DOI: 10.3389/fvets.2024.1372961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/04/2024] [Indexed: 05/29/2024] Open
Abstract
MicroRNAs (miRNAs) serve as key regulators in gene expression and play a crucial role in immune responses, holding a significant promise for diagnosing and managing diseases in farm animals. This review article summarizes current research on the role of miRNAs in various farm animal diseases and mycotoxicosis, highlighting their potential as biomarkers and using them for mitigation strategies. Through an extensive literature review, we focused on the impact of miRNAs in the pathogenesis of several farm animal diseases, including viral and bacterial infections and mycotoxicosis. They regulate gene expression by inducing mRNA deadenylation, decay, or translational inhibition, significantly impacting cellular processes and protein synthesis. The research revealed specific miRNAs associated with the diseases; for instance, gga-miR-M4 is crucial in Marek's disease, and gga-miR-375 tumor-suppressing function in Avian Leukosis. In swine disease such as Porcine Respiratory and Reproductive Syndrome (PRRS) and swine influenza, miRNAs like miR-155 and miR-21-3p emerged as key regulatory factors. Additionally, our review highlighted the interaction between miRNAs and mycotoxins, suggesting miRNAs can be used as a biomarker for mycotoxin exposure. For example, alterations in miRNA expression, such as the dysregulation observed in response to Aflatoxin B1 (AFB1) in chickens, may indicate potential mechanisms for toxin-induced changes in lipid metabolism leading to liver damage. Our findings highlight miRNAs potential for early disease detection and intervention in farm animal disease management, potentially reducing significant economic losses in agriculture. With only a fraction of miRNAs functionally characterized in farm animals, this review underlines more focused research on specific miRNAs altered in distinct diseases, using advanced technologies like CRISPR-Cas9 screening, single-cell sequencing, and integrated multi-omics approaches. Identifying specific miRNA targets offers a novel pathway for early disease detection and the development of mitigation strategies against mycotoxin exposure in farm animals.
Collapse
Affiliation(s)
- Laharika Kappari
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | | | - Todd J. Applegate
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| |
Collapse
|
23
|
Cassani M, Seydoux G. P-body-like condensates in the germline. Semin Cell Dev Biol 2024; 157:24-32. [PMID: 37407370 PMCID: PMC10761593 DOI: 10.1016/j.semcdb.2023.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
P-bodies are cytoplasmic condensates that accumulate low-translation mRNAs for temporary storage before translation or degradation. P-bodies have been best characterized in yeast and mammalian tissue culture cells. We describe here related condensates in the germline of animal models. Germline P-bodies have been reported at all stages of germline development from primordial germ cells to gametes. The activity of the universal germ cell fate regulator, Nanos, is linked to the mRNA decay function of P-bodies, and spatially-regulated condensation of P-body like condensates in embryos is required to localize mRNA regulators to primordial germ cells. In most cases, however, it is not known whether P-bodies represent functional compartments or non-functional condensation by-products that arise when ribonucleoprotein complexes saturate the cytoplasm. We speculate that the ubiquity of P-body-like condensates in germ cells reflects the strong reliance of the germline on cytoplasmic, rather than nuclear, mechanisms of gene regulation.
Collapse
Affiliation(s)
- Madeline Cassani
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Geraldine Seydoux
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
24
|
Jiogo H, Crist C. Navigating translational control of gene expression in satellite cells. Curr Top Dev Biol 2024; 158:253-277. [PMID: 38670709 DOI: 10.1016/bs.ctdb.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Satellite cells, named for their satellite position around the sarcolemma of the myofibre, are responsible for skeletal muscle regeneration. Satellite cells normally reside in a quiescent state, but rapidly activate the myogenic program and the cell cycle in response to injury. Translational control of gene expression has emerged as an important regulator of satellite cell activity. Quiescent satellite cells maintain low levels of protein synthesis and selectively translate specific mRNAs to conserve limited energy. Activated satellite cells rapidly restore global protein synthesis to meet the demands of proliferating myogenic progenitors that participate in muscle repair. We propose a model by which translational control enables rapid protein level changes in response to injury-induced environmental shifts, serving as both a brake mechanism during quiescence and an accelerator for injury response. In this Chapter, we navigate the processing, translation and metabolism of newly transcribed mRNAs. We review the modifications of mRNA that occur during mRNA processing in the nucleus of satellite cells, and illustrate how these modifications impact the translation and stability of mRNAs. In the cytoplasm, we review how pathways work in concert to regulate protein synthesis globally, while trans acting microRNAs and RNA binding proteins modify specific mRNA translation within a context of tightly regulated protein synthesis. While navigating translational control of gene expression in satellite cells, this chapter reveals that despite significant progress, the field remains nascent in the broader scope of translational control in cell biology. We propose that future investigations will benefit from incorporating emerging global analyses to study translational control of gene expression in rare satellite cells, and we pose unanswered questions that warrant future exploration.
Collapse
Affiliation(s)
- Holly Jiogo
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Colin Crist
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.
| |
Collapse
|
25
|
Blagojevic A, Baldrich P, Schiaffini M, Lechner E, Baumberger N, Hammann P, Elmayan T, Garcia D, Vaucheret H, Meyers BC, Genschik P. Heat stress promotes Arabidopsis AGO1 phase separation and association with stress granule components. iScience 2024; 27:109151. [PMID: 38384836 PMCID: PMC10879784 DOI: 10.1016/j.isci.2024.109151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/17/2023] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
In Arabidopsis thaliana, ARGONAUTE1 (AGO1) plays a central role in microRNA (miRNA) and small interfering RNA (siRNA)-mediated silencing. AGO1 associates to the rough endoplasmic reticulum to conduct miRNA-mediated translational repression, mRNA cleavage, and biogenesis of phased siRNAs. Here, we show that a 37°C heat stress (HS) promotes AGO1 protein accumulation in cytosolic condensates where it colocalizes with components of siRNA bodies and of stress granules. AGO1 contains a prion-like domain in its poorly characterized N-terminal Poly-Q domain, which is sufficient to undergo phase separation independently of the presence of SGS3. HS only moderately affects the small RNA repertoire, the loading of AGO1 by miRNAs, and the signatures of target cleavage, suggesting that its localization in condensates protects AGO1 rather than promoting or impairing its activity in reprogramming gene expression during stress. Collectively, our work sheds new light on the impact of high temperature on a main effector of RNA silencing in plants.
Collapse
Affiliation(s)
- Aleksandar Blagojevic
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, 67084 Strasbourg, France
| | | | - Marlene Schiaffini
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, 67084 Strasbourg, France
| | - Esther Lechner
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, 67084 Strasbourg, France
| | - Nicolas Baumberger
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, 67084 Strasbourg, France
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Taline Elmayan
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Damien Garcia
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, 67084 Strasbourg, France
| | - Hervé Vaucheret
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Blake C. Meyers
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, 67084 Strasbourg, France
| |
Collapse
|
26
|
Younes M, Loubnane G, Sleiman C, Rizk S. Tocotrienol isoforms: The molecular mechanisms underlying their effects in cancer therapy and their implementation in clinical trials. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:1-11. [PMID: 38336507 DOI: 10.1016/j.joim.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 07/19/2023] [Indexed: 02/12/2024]
Abstract
Tocotrienols are found in a variety of natural sources, like rice bran, annatto seeds and palm oil, and have been shown to have several health-promoting properties, particularly against chronic diseases such as cancer. The incidence of cancer is rapidly increasing around the world, not only a result of continued aging and population growth, but also due to the adoption of aspects of the Western lifestyle, such as high-fat diets and low-physical activity. The literature provides strong evidence that tocotrienols are able to inhibit the growth of various cancers, including breast, lung, ovarian, prostate, liver, brain, colon, myeloma and pancreatic cancers. These findings, along with the reported safety profile of tocotrienols in healthy human volunteers, encourage further research into these compounds' potential use in cancer prevention and treatment. The current review provided detailed information about the molecular mechanisms of action of different tocotrienol isoforms in various cancer models and evaluated the potential therapeutic effects of different vitamin E analogues on important cancer hallmarks, such as cellular proliferation, apoptosis, angiogenesis and metastasis. MEDLINE/PubMed and Scopus databases were used to identify recently published articles that investigated the anticancer effects of vitamin E derivatives in various types of cancer in vitro and in vivo along with clinical evidence of adjuvant chemopreventive benefits. Following an overview of pre-clinical studies, we describe several completed and ongoing clinical trials that are paving the way for the successful implementation of tocotrienols in cancer chemotherapy.
Collapse
Affiliation(s)
- Maria Younes
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Ghady Loubnane
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Christopher Sleiman
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
27
|
Barrington CL, Galindo G, Koch AL, Horton ER, Morrison EJ, Tisa S, Stasevich TJ, Rissland OS. Synonymous codon usage regulates translation initiation. Cell Rep 2023; 42:113413. [PMID: 38096059 PMCID: PMC10790568 DOI: 10.1016/j.celrep.2023.113413] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/30/2023] [Accepted: 10/25/2023] [Indexed: 12/30/2023] Open
Abstract
Nonoptimal synonymous codons repress gene expression, but the underlying mechanisms are poorly understood. We and others have previously shown that nonoptimal codons slow translation elongation speeds and thereby trigger messenger RNA (mRNA) degradation. Nevertheless, transcript levels are often insufficient to explain protein levels, suggesting additional mechanisms by which codon usage regulates gene expression. Using reporters in human and Drosophila cells, we find that transcript levels account for less than half of the variation in protein abundance due to codon usage. This discrepancy is explained by translational differences whereby nonoptimal codons repress translation initiation. Nonoptimal transcripts are also less bound by the translation initiation factors eIF4E and eIF4G1, providing a mechanistic explanation for their reduced initiation rates. Importantly, translational repression can occur without mRNA decay and deadenylation, and it does not depend on the known nonoptimality sensor, CNOT3. Our results reveal a potent mechanism of regulation by codon usage where nonoptimal codons repress further rounds of translation.
Collapse
Affiliation(s)
- Chloe L Barrington
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Gabriel Galindo
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Amanda L Koch
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Emma R Horton
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Evan J Morrison
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Samantha Tisa
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Timothy J Stasevich
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Olivia S Rissland
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
28
|
Adhikary R, Roy A, Jolly MK, Das D. Effects of microRNA-mediated negative feedback on gene expression noise. Biophys J 2023; 122:4220-4240. [PMID: 37803829 PMCID: PMC10645566 DOI: 10.1016/j.bpj.2023.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/19/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression post-transcriptionally in eukaryotes by binding with target mRNAs and preventing translation. miRNA-mediated feedback motifs are ubiquitous in various genetic networks that control cellular decision making. A key question is how such a feedback mechanism may affect gene expression noise. To answer this, we have developed a mathematical model to study the effects of a miRNA-dependent negative-feedback loop on mean expression and noise in target mRNAs. Combining analytics and simulations, we show the existence of an expression threshold demarcating repressed and expressed regimes in agreement with earlier studies. The steady-state mRNA distributions are bimodal near the threshold, where copy numbers of mRNAs and miRNAs exhibit enhanced anticorrelated fluctuations. Moreover, variation of negative-feedback strength shifts the threshold locations and modulates the noise profiles. Notably, the miRNA-mRNA binding affinity and feedback strength collectively shape the bimodality. We also compare our model with a direct auto-repression motif, where a gene produces its own repressor. Auto-repression fails to produce bimodal mRNA distributions as found in miRNA-based indirect repression, suggesting the crucial role of miRNAs in creating phenotypic diversity. Together, we demonstrate how miRNA-dependent negative feedback modifies the expression threshold and leads to a broader parameter regime of bimodality compared to the no-feedback case.
Collapse
Affiliation(s)
- Raunak Adhikary
- Department of Biological Sciences, Indian Institute of Science Education And Research Kolkata Mohanpur, Nadia, West Bengal, India
| | - Arnab Roy
- Department of Biological Sciences, Indian Institute of Science Education And Research Kolkata Mohanpur, Nadia, West Bengal, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Dipjyoti Das
- Department of Biological Sciences, Indian Institute of Science Education And Research Kolkata Mohanpur, Nadia, West Bengal, India.
| |
Collapse
|
29
|
Brothers WR, Ali F, Kajjo S, Fabian MR. The EDC4-XRN1 interaction controls P-body dynamics to link mRNA decapping with decay. EMBO J 2023; 42:e113933. [PMID: 37621215 PMCID: PMC10620763 DOI: 10.15252/embj.2023113933] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
Deadenylation-dependent mRNA decapping and decay is the major cytoplasmic mRNA turnover pathway in eukaryotes. Many mRNA decapping and decay factors are associated with each other via protein-protein interaction motifs. For example, the decapping enzyme DCP2 and the 5'-3' exonuclease XRN1 interact with the enhancer of mRNA-decapping protein 4 (EDC4), a large scaffold that has been reported to stimulate mRNA decapping. mRNA decapping and decay factors are also found in processing bodies (P-bodies), evolutionarily conserved ribonucleoprotein granules that are often enriched with mRNAs targeted for decay, yet paradoxically are not required for mRNA decay to occur. Here, we show that disrupting the EDC4-XRN1 interaction or altering their stoichiometry inhibits mRNA decapping, with microRNA-targeted mRNAs being stabilized in a translationally repressed state. Importantly, we demonstrate that this concomitantly leads to larger P-bodies that are responsible for preventing mRNA decapping. Finally, we demonstrate that P-bodies support cell viability and prevent stress granule formation when XRN1 is limiting. Taken together, these data demonstrate that the interaction between XRN1 and EDC4 regulates P-body dynamics to properly coordinate mRNA decapping with 5'-3' decay in human cells.
Collapse
Affiliation(s)
- William R Brothers
- Lady Davis Institute for Medical ResearchJewish General HospitalMontrealQCCanada
| | - Farah Ali
- Lady Davis Institute for Medical ResearchJewish General HospitalMontrealQCCanada
| | - Sam Kajjo
- Lady Davis Institute for Medical ResearchJewish General HospitalMontrealQCCanada
| | - Marc R Fabian
- Lady Davis Institute for Medical ResearchJewish General HospitalMontrealQCCanada
- Department of BiochemistryMcGill UniversityMontrealQCCanada
- Department of OncologyMcGill UniversityMontrealQCCanada
| |
Collapse
|
30
|
Sparmann A, Vogel J. RNA-based medicine: from molecular mechanisms to therapy. EMBO J 2023; 42:e114760. [PMID: 37728251 PMCID: PMC10620767 DOI: 10.15252/embj.2023114760] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
RNA-based therapeutics have the potential to revolutionize the treatment and prevention of human diseases. While early research faced setbacks, it established the basis for breakthroughs in RNA-based drug design that culminated in the extraordinarily fast development of mRNA vaccines to combat the COVID-19 pandemic. We have now reached a pivotal moment where RNA medicines are poised to make a broad impact in the clinic. In this review, we present an overview of different RNA-based strategies to generate novel therapeutics, including antisense and RNAi-based mechanisms, mRNA-based approaches, and CRISPR-Cas-mediated genome editing. Using three rare genetic diseases as examples, we highlight the opportunities, but also the challenges to wide-ranging applications of this class of drugs.
Collapse
Affiliation(s)
- Anke Sparmann
- Helmholtz Institute for RNA‐based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI)WürzburgGermany
| | - Jörg Vogel
- Helmholtz Institute for RNA‐based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI)WürzburgGermany
- Institute of Molecular Infection Biology (IMIB)University of WürzburgWürzburgGermany
| |
Collapse
|
31
|
Wang C, Hou X, Guan Q, Zhou H, Zhou L, Liu L, Liu J, Li F, Li W, Liu H. RNA modification in cardiovascular disease: implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:412. [PMID: 37884527 PMCID: PMC10603151 DOI: 10.1038/s41392-023-01638-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/15/2023] [Accepted: 09/03/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the world, with a high incidence and a youth-oriented tendency. RNA modification is ubiquitous and indispensable in cell, maintaining cell homeostasis and function by dynamically regulating gene expression. Accumulating evidence has revealed the role of aberrant gene expression in CVD caused by dysregulated RNA modification. In this review, we focus on nine common RNA modifications: N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N4-acetylcytosine (ac4C), pseudouridine (Ψ), uridylation, adenosine-to-inosine (A-to-I) RNA editing, and modifications of U34 on tRNA wobble. We summarize the key regulators of RNA modification and their effects on gene expression, such as RNA splicing, maturation, transport, stability, and translation. Then, based on the classification of CVD, the mechanisms by which the disease occurs and progresses through RNA modifications are discussed. Potential therapeutic strategies, such as gene therapy, are reviewed based on these mechanisms. Herein, some of the CVD (such as stroke and peripheral vascular disease) are not included due to the limited availability of literature. Finally, the prospective applications and challenges of RNA modification in CVD are discussed for the purpose of facilitating clinical translation. Moreover, we look forward to more studies exploring the mechanisms and roles of RNA modification in CVD in the future, as there are substantial uncultivated areas to be explored.
Collapse
Affiliation(s)
- Cong Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xuyang Hou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qing Guan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, The Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jijia Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
32
|
Duran E, Schmidt A, Welty R, Jalihal AP, Pitchiaya S, Walter NG. Utilizing functional cell-free extracts to dissect ribonucleoprotein complex biology at single-molecule resolution. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1787. [PMID: 37042458 PMCID: PMC10524090 DOI: 10.1002/wrna.1787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 04/13/2023]
Abstract
Cellular machineries that drive and regulate gene expression often rely on the coordinated assembly and interaction of a multitude of proteins and RNA together called ribonucleoprotein complexes (RNPs). As such, it is challenging to fully reconstitute these cellular machines recombinantly and gain mechanistic understanding of how they operate and are regulated within the complex environment that is the cell. One strategy for overcoming this challenge is to perform single molecule fluorescence microscopy studies within crude or recombinantly supplemented cell extracts. This strategy enables elucidation of the interaction and kinetic behavior of specific fluorescently labeled biomolecules within RNPs under conditions that approximate native cellular environments. In this review, we describe single molecule fluorescence microcopy approaches that dissect RNP-driven processes within cellular extracts, highlighting general strategies used in these methods. We further survey biological advances in the areas of pre-mRNA splicing and transcription regulation that have been facilitated through this approach. Finally, we conclude with a summary of practical considerations for the implementation of the featured approaches to facilitate their broader future implementation in dissecting the mechanisms of RNP-driven cellular processes. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Elizabeth Duran
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Andreas Schmidt
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Robb Welty
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Ameya P Jalihal
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sethuramasundaram Pitchiaya
- Michigan Center for Translational Pathology, Department of Pathology, Department of Urology, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
33
|
Halbout M, Bury M, Hanet A, Gerin I, Graff J, Killian T, Gatto L, Vertommen D, Bommer GT. SUZ domain-containing proteins have multiple effects on nonsense-mediated decay target transcripts. J Biol Chem 2023; 299:105095. [PMID: 37507022 PMCID: PMC10470013 DOI: 10.1016/j.jbc.2023.105095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Many transcripts are targeted by nonsense-mediated decay (NMD), leading to their degradation and the inhibition of their translation. We found that the protein SUZ domain-containing protein 1 (SZRD1) interacts with the key NMD factor up-frameshift 1. When recruited to NMD-sensitive reporter gene transcripts, SZRD1 increased protein production, at least in part, by relieving translational inhibition. The conserved SUZ domain in SZRD1 was required for this effect. The SUZ domain is present in only three other human proteins besides SZRD1: R3H domain-containing protein 1 and 2 (R3HDM1, R3HDM2) and cAMP-regulated phosphoprotein 21 (ARPP21). We found that ARPP21, similarly to SZRD1, can increase protein production from NMD-sensitive reporter transcripts in an SUZ domain-dependent manner. This indicated that the SUZ domain-containing proteins could prevent translational inhibition of transcripts targeted by NMD. Consistent with the idea that SZRD1 mainly prevents translational inhibition, we did not observe a systematic decrease in the abundance of NMD targets when we knocked down SZRD1. Surprisingly, knockdown of SZRD1 in two different cell lines led to reduced levels of the NMD component UPF3B, which was accompanied by increased levels in a subset of NMD targets. This suggests that SZRD1 is required to maintain normal UPF3B levels and indicates that the effect of SZRD1 on NMD targets is not limited to a relief from translational inhibition. Overall, our study reveals that human SUZ domain-containing proteins play a complex role in regulating protein output from transcripts targeted by NMD.
Collapse
Affiliation(s)
- Mathias Halbout
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium
| | - Marina Bury
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium
| | - Aoife Hanet
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Isabelle Gerin
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium
| | - Julie Graff
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium
| | - Theodore Killian
- Computational Biology Laboratory, de Duve Institute, UCLouvain, Bruxelles, Belgium
| | - Laurent Gatto
- Computational Biology Laboratory, de Duve Institute, UCLouvain, Bruxelles, Belgium
| | - Didier Vertommen
- Protein Phosphorylation Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Guido T Bommer
- Department of Physiological Chemistry, de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium.
| |
Collapse
|
34
|
Ding X, Du Y, Sun B, Liu L, Le S, Wu C, Chen J, Chen X, Chen S, Xia J. MicroRNA let-7a mediates posttranscriptional inhibition of Nr4A1 and exacerbates cardiac allograft rejection. Cell Signal 2023:110783. [PMID: 37356602 DOI: 10.1016/j.cellsig.2023.110783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Acute allograft rejection remains a major obstacle after heart transplantation, and CD4+ T cells play a crucial role in allograft rejection. Upregulation of Nr4A1 could regulate CD4+ T-cell function and alleviate allograft rejection. However, the regulatory mechanism of Nr4A1 in allograft rejection remains elusive. METHODS BCLb/c mouse hearts were transplanted into WT C57BL/6 mice, and dynamic detection of the changes in Nr4A1 expression revealed that Nr4A1 was regulated posttranscriptionally after heart transplantation. Potential upstream miRNAs of Nr4A1 were screened, and the transfection of cells with these miRNA mimics/inhibitors and dual-luciferase reporter experiments were performed to clarify the regulatory mechanism of miRNAs on Nr4A1 expression. The miRNA agomiR/antagomiR was applied in vivo to validate the role of the corresponding miRNA in heart transplantation. Finally, Nr4A1 knockout mice and an adoptive T-cell cotransfer model were used to confirm the specific effects of miRNA. RESULTS The expression of Nr4A1 protein (rather than mRNA) exhibited a trend of initially increasing and then decreasing rapidly, and this phenomenon could not be reversed by lysosomal or proteasomal inhibitors. The miRNA let-7a directly binds to the Nr4A1 3'UTR and posttranscriptionally regulates Nr4A1 expression. The let-7a antagomiR prolonged allograft survival and regulated CD4+ T-cell function by upregulating Nr4A1 protein expression in CD4+ T cells. CONCLUSIONS This study confirmed that let-7a is a potential target for interfering with Nr4A1 expression in CD4+ T cells and preventing the pathological progression of cardiac allograft rejection.
Collapse
Affiliation(s)
- Xiangchao Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yifan Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Sun
- Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| | - Liang Liu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sheng Le
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chuangyan Wu
- Departments of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiuling Chen
- Departments of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Chen
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province and Central Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
35
|
Wilkus-Adamczyk K, Brodaczewska K, Majewska A, Kieda C. Microenvironment commits breast tumor ECs to dedifferentiation by micro-RNA-200-b-3p regulation and extracellular matrix remodeling. Front Cell Dev Biol 2023; 11:1125077. [PMID: 37261072 PMCID: PMC10229062 DOI: 10.3389/fcell.2023.1125077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/27/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction: Hypoxia shapes the tumor microenvironment, modulates distinct cell population activities, and activates pathological angiogenesis in cancer, where endothelial cells (ECs) are the most important players. This study aimed to evidence the influences of the tumor microenvironment on the global gene expression pattern characteristic for ECs and the distinct responses displayed by tumor-derived ECs in comparison to the healthy endothelium during endothelial to mesenchymal transition (EndMT) and its regulation by miR-200-b-3p. Methodology: Immortalized lines of ECs from the same patient with breast cancer, healthy breast tissue (HBH.MEC), and primary tumor (HBCa.MEC) were used. The experiments were performed in normoxia and hypoxia for 48 h. By using the wound healing test, we investigated the migration abilities of ECs. Global gene expression analysis with NGS was carried out to detect new pathways altered in pathological ECs and find the most changed miRNAs. The validation of NGS data from RNA and miRNA was estimated by qPCRs. Mimic miR-200b-3p was used in HBH.MEC, and the targets VEGF, Bcl2, ROCK2, and SP1 were checked. Results: Hypoxia influences EC migration properties in wound healing assays. In hypoxia, healthy ECs migrate slower than they do in normoxia, as opposed to HBCa.MEC, where no decreased migration ability is induced by hypoxia due to EndMT features. NGS data identified this process to be altered in cancer ECs through extracellular matrix (ECM) organization. The deregulated genes, validated by qPCR, included SPP1, ITGB6, COL4A4, ADAMST2, LAMA1, GAS6, PECAM1, ELN, FBLN2, COL6A3, and COL9A3. NGS also identified collagens, laminins, fibronectins, and integrins, as being deregulated in tumor-derived ECs. Moreover, the analysis of the 10 most intensively modified miRNAs, when breast tumor-derived ECs were compared to healthy ECs, shed light on miR-200b-3p, which is strongly upregulated in HBCa.MECs when compared to HBH.MECs. Discussion and conclusion: The pathological ECs differed significantly, both phenotypically and functionally, from the normal corresponding tissue, thus influencing their microenvironment cross-talk. The gene expression profile confirms the EndMT phenotype of tumor-derived ECs and migratory properties acquisition. Moreover, it indicates the role of miR-200b-3p, that is, regulating EndMT in pathological ECs and silencing several angiogenic growth factors and their receptors by directly targeting their mRNA transcripts.
Collapse
Affiliation(s)
- Kinga Wilkus-Adamczyk
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine- National Research Institute, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Klaudia Brodaczewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine- National Research Institute, Warsaw, Poland
| | - Aleksandra Majewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine- National Research Institute, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine- National Research Institute, Warsaw, Poland
- Center for Molecular Biophysics UPR 4301 CNRS, Orleans, France
| |
Collapse
|
36
|
Dave P, Roth G, Griesbach E, Mateju D, Hochstoeger T, Chao JA. Single-molecule imaging reveals translation-dependent destabilization of mRNAs. Mol Cell 2023; 83:589-606.e6. [PMID: 36731471 PMCID: PMC9957601 DOI: 10.1016/j.molcel.2023.01.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/07/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023]
Abstract
The relationship between mRNA translation and decay is incompletely understood, with conflicting reports suggesting that translation can either promote decay or stabilize mRNAs. The effect of translation on mRNA decay has mainly been studied using ensemble measurements and global transcription and translation inhibitors, which can have pleiotropic effects. We developed a single-molecule imaging approach to control the translation of a specific transcript that enabled simultaneous measurement of translation and mRNA decay. Our results demonstrate that mRNA translation reduces mRNA stability, and mathematical modeling suggests that this process is dependent on ribosome flux. Furthermore, our results indicate that miRNAs mediate efficient degradation of both translating and non-translating target mRNAs and reveal a predominant role for mRNA degradation in miRNA-mediated regulation. Simultaneous observation of translation and decay of single mRNAs provides a framework to directly study how these processes are interconnected in cells.
Collapse
Affiliation(s)
- Pratik Dave
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Gregory Roth
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Esther Griesbach
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Daniel Mateju
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Tobias Hochstoeger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
37
|
Mauro M, Berretta M, Palermo G, Cavalieri V, La Rocca G. The Multiplicity of Argonaute Complexes in Mammalian Cells. J Pharmacol Exp Ther 2023; 384:1-9. [PMID: 35667689 PMCID: PMC9827513 DOI: 10.1124/jpet.122.001158] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/12/2023] Open
Abstract
Argonautes (AGOs) are a highly conserved family of proteins found in most eukaryotes and involved in mechanisms of gene regulation, both at the transcriptional and post-transcriptional level. Among other functions, AGO proteins associate with microRNAs (miRNAs) to mediate the post-transcriptional repression of protein-coding genes. In this process, AGOs associate with members of the trinucleotide repeat containing 6 protein (TNRC6) family to form the core of the RNA-induced silencing complex (RISC), the effector machinery that mediates miRNA function. However, the description of the exact composition of the RISC has been a challenging task due to the fact the AGO's interactome is dynamically regulated in a cell type- and condition-specific manner. Here, we summarize some of the most significant studies that have identified AGO complexes in mammalian cells, as well as the approaches used to characterize them. Finally, we discuss possible opportunities to exploit what we have learned on the properties of the RISC to develop novel anti-cancer therapies. SIGNIFICANCE STATEMENT: The RNA-induced silencing complex (RISC) is the molecular machinery that mediates miRNA function in mammals. Studies over the past two decades have shed light on important biochemical and functional properties of this complex. However, many aspects of this complex await further elucidation, mostly due to technical limitations that have hindered full characterization. Here, we summarize some of the most significant studies on the mammalian RISC and discuss possible sources of biases in the approaches used to characterize it.
Collapse
Affiliation(s)
- Maurizio Mauro
- Department of Medicine, Albert Einstein College of Medicine, New York, New York (M.M.); Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy (M.B.); Gruppo Oncologico Ricercatori Italiani, GORI ONLUS, Pordenone, Italy (M.B.); Department of Biomedical and Biotechnological Sciences, University of Catania, Catania Italy (G.P.); Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy (V.C.); and Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York (G.L.R.)
| | - Massimiliano Berretta
- Department of Medicine, Albert Einstein College of Medicine, New York, New York (M.M.); Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy (M.B.); Gruppo Oncologico Ricercatori Italiani, GORI ONLUS, Pordenone, Italy (M.B.); Department of Biomedical and Biotechnological Sciences, University of Catania, Catania Italy (G.P.); Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy (V.C.); and Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York (G.L.R.)
| | - Giuseppe Palermo
- Department of Medicine, Albert Einstein College of Medicine, New York, New York (M.M.); Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy (M.B.); Gruppo Oncologico Ricercatori Italiani, GORI ONLUS, Pordenone, Italy (M.B.); Department of Biomedical and Biotechnological Sciences, University of Catania, Catania Italy (G.P.); Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy (V.C.); and Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York (G.L.R.)
| | - Vincenzo Cavalieri
- Department of Medicine, Albert Einstein College of Medicine, New York, New York (M.M.); Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy (M.B.); Gruppo Oncologico Ricercatori Italiani, GORI ONLUS, Pordenone, Italy (M.B.); Department of Biomedical and Biotechnological Sciences, University of Catania, Catania Italy (G.P.); Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy (V.C.); and Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York (G.L.R.)
| | - Gaspare La Rocca
- Department of Medicine, Albert Einstein College of Medicine, New York, New York (M.M.); Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy (M.B.); Gruppo Oncologico Ricercatori Italiani, GORI ONLUS, Pordenone, Italy (M.B.); Department of Biomedical and Biotechnological Sciences, University of Catania, Catania Italy (G.P.); Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy (V.C.); and Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York (G.L.R.)
| |
Collapse
|
38
|
Blatnik MC, Gallagher TL, Amacher SL. Keeping development on time: Insights into post-transcriptional mechanisms driving oscillatory gene expression during vertebrate segmentation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1751. [PMID: 35851751 PMCID: PMC9840655 DOI: 10.1002/wrna.1751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 01/31/2023]
Abstract
Biological time keeping, or the duration and tempo at which biological processes occur, is a phenomenon that drives dynamic molecular and morphological changes that manifest throughout many facets of life. In some cases, the molecular mechanisms regulating the timing of biological transitions are driven by genetic oscillations, or periodic increases and decreases in expression of genes described collectively as a "molecular clock." In vertebrate animals, molecular clocks play a crucial role in fundamental patterning and cell differentiation processes throughout development. For example, during early vertebrate embryogenesis, the segmentation clock regulates the patterning of the embryonic mesoderm into segmented blocks of tissue called somites, which later give rise to axial skeletal muscle and vertebrae. Segmentation clock oscillations are characterized by rapid cycles of mRNA and protein expression. For segmentation clock oscillations to persist, the transcript and protein molecules of clock genes must be short-lived. Faithful, rhythmic, genetic oscillations are sustained by precise regulation at many levels, including post-transcriptional regulation, and such mechanisms are essential for proper vertebrate development. This article is categorized under: RNA Export and Localization > RNA Localization RNA Turnover and Surveillance > Regulation of RNA Stability Translation > Regulation.
Collapse
Affiliation(s)
- Monica C. Blatnik
- The Ohio State University, Department of Molecular Genetics, Columbus, Ohio, 43210-1132, United States
| | - Thomas L. Gallagher
- The Ohio State University, Department of Molecular Genetics, Columbus, Ohio, 43210-1132, United States
| | - Sharon L. Amacher
- The Ohio State University, Department of Molecular Genetics, Columbus, Ohio, 43210-1132, United States
| |
Collapse
|
39
|
Nalavade R, Singh M. Intracellular Compartmentalization: A Key Determinant of MicroRNA Functions. Microrna 2023; 12:114-130. [PMID: 37638608 DOI: 10.2174/2211536612666230330184006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/26/2022] [Accepted: 01/19/2023] [Indexed: 08/29/2023]
Abstract
Being an integral part of the eukaryotic transcriptome, miRNAs are regarded as vital regulators of diverse developmental and physiological processes. Clearly, miRNA activity is kept in check by various regulatory mechanisms that control their biogenesis and decay pathways. With the increasing technical depth of RNA profiling technologies, novel insights have unravelled the spatial diversity exhibited by miRNAs inside a cell. Compartmentalization of miRNAs adds complexity to the regulatory circuits of miRNA expression, thereby providing superior control over the miRNA function. This review provides a bird's eye view of miRNAs expressed in different subcellular locations, thus affecting the gene regulatory pathways therein. Occurrence of miRNAs in diverse intracellular locales also reveals various unconventional roles played by miRNAs in different cellular organelles and expands the scope of miRNA functions beyond their traditionally known repressive activities.
Collapse
Affiliation(s)
- Rohit Nalavade
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Mohini Singh
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, India
| |
Collapse
|
40
|
de Rooij LA, Mastebroek DJ, ten Voorde N, van der Wall E, van Diest PJ, Moelans CB. The microRNA Lifecycle in Health and Cancer. Cancers (Basel) 2022; 14:cancers14235748. [PMID: 36497229 PMCID: PMC9736740 DOI: 10.3390/cancers14235748] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs of ~22 nucleotides that regulate gene expression at the post-transcriptional level. They can bind to around 60% of all protein-coding genes with an average of 200 targets per miRNA, indicating their important function within physiological and pathological cellular processes. miRNAs can be quickly produced in high amounts through canonical and non-canonical pathways that involve a multitude of steps and proteins. In cancer, miRNA biogenesis, availability and regulation of target expression can be altered to promote tumour progression. This can be due to genetic causes, such as single nucleotide polymorphisms, epigenetic changes, differences in host gene expression, or chromosomal remodelling. Alternatively, post-transcriptional changes in miRNA stability, and defective or absent components and mediators of the miRNA-induced silencing complex can lead to altered miRNA function. This review provides an overview of the current knowledge on the lifecycle of miRNAs in health and cancer. Understanding miRNA function and regulation is fundamental prior to potential future application of miRNAs as cancer biomarkers.
Collapse
Affiliation(s)
- Laura Adriana de Rooij
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Correspondence: ; Tel.: +31-887-556-557
| | - Dirk Jan Mastebroek
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Nicky ten Voorde
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Elsken van der Wall
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Paul Joannes van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Cathy Beatrice Moelans
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
41
|
Hayder H, Shan Y, Chen Y, O’Brien JA, Peng C. Role of microRNAs in trophoblast invasion and spiral artery remodeling: Implications for preeclampsia. Front Cell Dev Biol 2022; 10:995462. [PMID: 36263015 PMCID: PMC9575991 DOI: 10.3389/fcell.2022.995462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
It is now well-established that microRNAs (miRNAs) are important regulators of gene expression. The role of miRNAs in placental development and trophoblast function is constantly expanding. Trophoblast invasion and their ability to remodel uterine spiral arteries are essential for proper placental development and successful pregnancy outcome. Many miRNAs are reported to be dysregulated in pregnancy complications, especially preeclampsia and they exert various regulatory effects on trophoblasts. In this review, we provide a brief overview of miRNA biogenesis and their mechanism of action, as well as of trophoblasts differentiation, invasion and spiral artery remodeling. We then discuss the role of miRNAs in trophoblasts invasion and spiral artery remodeling, focusing on miRNAs that have been thoroughly investigated, especially using multiple model systems. We also discuss the potential role of miRNAs in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Heyam Hayder
- Department of Biology, York University, Toronto, ON, Canada
| | - Yanan Shan
- Department of Biology, York University, Toronto, ON, Canada
| | - Yan Chen
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
- Centre for Research on Biomolecular Interactions, York University, Toronto, ON, Canada
- *Correspondence: Chun Peng,
| |
Collapse
|
42
|
Mokhtari F, Kaboosi H, Mohebbi SR, Asadzadeh Aghdaei H, Zali MRZ, Department of Microbiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran, Department of Microbiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran, Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Evaluation of Circulating MicroRNA-222 in Patients with Chronic Hepatitis B virus Infection as a Potential Noninvasive Diagnostic Biomarker. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2022. [DOI: 10.30699/ijmm.16.6.543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Fan X, Zhang W, Zhang K, Zhang J, Long Q, Wu Y, Zhang K, Zhu L, Chen D, Guo R. In-depth investigation of microRNA-mediated cross-kingdom regulation between Asian honey bee and microsporidian. Front Microbiol 2022; 13:1003294. [PMID: 36246221 PMCID: PMC9557207 DOI: 10.3389/fmicb.2022.1003294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Asian honey bee Apis cerana is the original host for Nosema ceranae, a unicellular fungal parasite that causes bee nosemosis throughout the world. Currently, interaction between A. cerana and N. ceranae is largely unknown. Our group previously prepared A. c. cerana workers’ midguts at 7 days post inoculation (dpi) and 10 dpi with N. ceranae spores as well as corresponding un-inoculated workers’ midguts, followed by cDNA library construction and a combination of RNAs-seq and small RNA-seq. Meanwhile, we previously prepared clean spores of N. ceranae, which were then subjected to cDNA library construction and deep sequencing. Here, based on the gained high-quality transcriptome datasets, N. ceranae differentially expressed mRNAs (DEmiRNAs) targeted by host DEmiRNAs, and A. c. cerana DEmRNAs targeted by microsporidian DEmiRNAs were deeply investigated, with a focus on targets involved in N. ceranae glycolysis/glyconeogenesis as well as virulence factors, and A. c. cerana energy metabolism and immune response. In A. c. cerana worker’s midguts at 7 (10) dpi (days post inoculation), eight (seven) up-regulated and six (two) down-regulated miRNAs were observed to target 97 (44) down-regulated and 60 (15) up-regulated N. ceranae mRNAs, respectively. Additionally, two up-regulated miRNAs (miR-60-y and miR-676-y) in host midgut at 7 dpi could target genes engaged in N. ceranae spore wall protein and glycolysis/gluconeogenesis, indicating potential host miRNA-mediated regulation of microsporidian virulence factor and energy metabolism. Meanwhile, in N. ceranae at 7 (10) dpi, 121 (110) up-regulated and 112 (104) down-regulated miRNAs were found to, respectively, target 343 (247) down-regulated and 138 (110) down-regulated mRNAs in A. c. cerana workers’ midguts. These targets in host were relevant to several crucial cellular and humoral immune pathways, such as phagasome, endocytosis, lysosomes, regulation of autophagy, and Jak–STAT signaling pathway, indicative of the involvement of N. ceranae DEmiRNAs in regulating these cellular and humoral immune pathways. In addition, N. ceranae miR-21-x was up-regulated at 7 dpi and had a target relative to oxidative phosphorylation, suggesting that miR-21-x may be used as a weapon to modulate this pivotal energy metabolism pathway. Furthermore, potential targeting relationships between two pairs of host DEmiRNAs-microsporidian DEmRNAs and two pairs of microsporidian DEmiRNAs-host DEmRNAs were validated using RT-qPCR. Our findings not only lay a foundation for exploring the molecular mechanism underlying cross-kingdom regulation between A. c. cerana workers and N. ceranae, but also offer valuable insights into Asian honey bee-microsporidian interaction.
Collapse
Affiliation(s)
- Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wende Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Kaiyao Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jiaxin Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qi Long
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ying Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Kuihao Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Leran Zhu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- *Correspondence: Rui Guo,
| |
Collapse
|
44
|
The Role of miR-29 Family in TGF-β Driven Fibrosis in Glaucomatous Optic Neuropathy. Int J Mol Sci 2022; 23:ijms231810216. [PMID: 36142127 PMCID: PMC9499597 DOI: 10.3390/ijms231810216] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Primary open angle glaucoma (POAG), a chronic optic neuropathy, remains the leading cause of irreversible blindness worldwide. It is driven in part by the pro-fibrotic cytokine transforming growth factor beta (TGF-β) and leads to extracellular matrix remodelling at the lamina cribrosa of the optic nerve head. Despite an array of medical and surgical treatments targeting the only known modifiable risk factor, raised intraocular pressure, many patients still progress and develop significant visual field loss and eventual blindness. The search for alternative treatment strategies targeting the underlying fibrotic transformation in the optic nerve head and trabecular meshwork in glaucoma is ongoing. MicroRNAs are small non-coding RNAs known to regulate post-transcriptional gene expression. Extensive research has been undertaken to uncover the complex role of miRNAs in gene expression and miRNA dysregulation in fibrotic disease. MiR-29 is a family of miRNAs which are strongly anti-fibrotic in their effects on the TGF-β signalling pathway and the regulation of extracellular matrix production and deposition. In this review, we discuss the anti-fibrotic effects of miR-29 and the role of miR-29 in ocular pathology and in the development of glaucomatous optic neuropathy. A better understanding of the role of miR-29 in POAG may aid in developing diagnostic and therapeutic strategies in glaucoma.
Collapse
|
45
|
Ai Y, Liang D, Wilusz JE. CRISPR/Cas13 effectors have differing extents of off-target effects that limit their utility in eukaryotic cells. Nucleic Acids Res 2022; 50:e65. [PMID: 35244715 PMCID: PMC9226543 DOI: 10.1093/nar/gkac159] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 12/26/2022] Open
Abstract
CRISPR/Cas13 effectors have garnered increasing attention as easily customizable tools for detecting and depleting RNAs of interest. Near perfect complementarity between a target RNA and the Cas13-associated guide RNA is required for activation of Cas13 ribonuclease activity. Nonetheless, the specificity of Cas13 effectors in eukaryotic cells has been debated as the Cas13 nuclease domains can be exposed on the enzyme surface, providing the potential for promiscuous cleavage of nearby RNAs (so-called collateral damage). Here, using co-transfection assays in Drosophila and human cells, we found that the off-target effects of RxCas13d, a commonly used Cas13 effector, can be as strong as the level of on-target RNA knockdown. The extent of off-target effects is positively correlated with target RNA expression levels, and collateral damage can be observed even after reducing RxCas13d/guide RNA levels. The PspCas13b effector showed improved specificity and, unlike RxCas13d, can be used to deplete a Drosophila circular RNA without affecting the expression of the associated linear RNA. PspCas13b nonetheless still can have off-target effects and we notably found that the extent of off-target effects for Cas13 effectors differs depending on the cell type and target RNA examined. In total, these results highlight the need for caution when designing and interpreting Cas13-based knockdown experiments.
Collapse
Affiliation(s)
- Yuxi Ai
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Dongming Liang
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jeremy E Wilusz
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
46
|
Cialek CA, Galindo G, Morisaki T, Zhao N, Montgomery TA, Stasevich TJ. Imaging translational control by Argonaute with single-molecule resolution in live cells. Nat Commun 2022; 13:3345. [PMID: 35688806 PMCID: PMC9187665 DOI: 10.1038/s41467-022-30976-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/24/2022] [Indexed: 11/29/2022] Open
Abstract
A major challenge to our understanding of translational control has been deconvolving the individual impact specific regulatory factors have on the complex dynamics of mRNA translation. MicroRNAs (miRNAs), for example, guide Argonaute and associated proteins to target mRNAs, where they direct gene silencing in multiple ways that are not well understood. To better deconvolve these dynamics, we have developed technology to directly visualize and quantify the impact of human Argonaute2 (Ago2) on the translation and subcellular localization of individual reporter mRNAs in living cells. We show that our combined translation and Ago2 tethering sensor reflects endogenous miRNA-mediated gene silencing. Using the sensor, we find that Ago2 association leads to progressive silencing of translation at individual mRNA. Silencing was occasionally interrupted by brief bursts of translational activity and took 3–4 times longer than a single round of translation, consistent with a gradual increase in the inhibition of translation initiation. At later time points, Ago2-tethered mRNAs cluster and coalesce with P-bodies, where a translationally silent state is maintained. These results provide a framework for exploring miRNA-mediated gene regulation in live cells at the single-molecule level. Furthermore, our tethering-based, single-molecule reporter system will likely have wide-ranging application in studying RNA-protein interactions. Guided by miRNA, Argonaute proteins silence mRNA in multiple ways that are not well understood. Here, the authors develop live-cell biosensors to image the impact tethered regulatory factors, such as Argonaute, have on single-mRNA translation dynamics.
Collapse
Affiliation(s)
- Charlotte A Cialek
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Gabriel Galindo
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Tatsuya Morisaki
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ning Zhao
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Taiowa A Montgomery
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Timothy J Stasevich
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA. .,Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
47
|
Guénolé A, Velilla F, Chartier A, Rich A, Carvunis AR, Sardet C, Simonelig M, Sobhian B. RNF219 regulates CCR4-NOT function in mRNA translation and deadenylation. Sci Rep 2022; 12:9288. [PMID: 35660762 PMCID: PMC9166816 DOI: 10.1038/s41598-022-13309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
Post-transcriptional regulatory mechanisms play a role in many biological contexts through the control of mRNA degradation, translation and localization. Here, we show that the RING finger protein RNF219 co-purifies with the CCR4-NOT complex, the major mRNA deadenylase in eukaryotes, which mediates translational repression in both a deadenylase activity-dependent and -independent manner. Strikingly, RNF219 both inhibits the deadenylase activity of CCR4-NOT and enhances its capacity to repress translation of a target mRNA. We propose that the interaction of RNF219 with the CCR4-NOT complex directs the translational repressive activity of CCR4-NOT to a deadenylation-independent mechanism.
Collapse
Affiliation(s)
- Aude Guénolé
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France.
| | - Fabien Velilla
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Aymeric Chartier
- Institut de Génétique Humaine, CNRS, Université de Montpellier, 34396, Montpellier, France
| | - April Rich
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anne-Ruxandra Carvunis
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Claude Sardet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Martine Simonelig
- Institut de Génétique Humaine, CNRS, Université de Montpellier, 34396, Montpellier, France
| | - Bijan Sobhian
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France. .,Institut de Génétique Humaine, CNRS, Université de Montpellier, 34396, Montpellier, France.
| |
Collapse
|
48
|
Chang SY, Han SZ, Choe HM, Gao K, Jin ZY, Liu XY, Yang LH, Lv ST, Yin XJ, Quan LH, Kang JD. miR-320 regulates myogenesis by targeting growth factor receptor-bound protein-2 and ameliorates myotubes atrophy. Int J Biochem Cell Biol 2022; 147:106212. [PMID: 35439649 DOI: 10.1016/j.biocel.2022.106212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
Loss of muscle mass can lead to diseases such as sarcopenia, diabetes, and obesity, which can worsen the quality of life and increase the incidence of disease. Therefore, understanding the mechanism underlying skeletal muscle differentiation is vital to prevent muscle diseases. We previously found that microRNA-320 (miR-320) is highly expressed in the lean muscle-type pigs, but its regulatory role in myogenesis remains unclear. The bioinformatics prediction indicated that miR-320 could bind to the 3 'untranslated region of growth factor receptor-bound protein-2 (Grb2). We hypothesized that miR-320 targets Grb2 to regulate myoblasts differentiation. To verify this, we transfected miR-320 mimic and inhibitor into C2C12 myoblasts to assess the role of miR-320 during myoblasts differentiation. We used real-time qPCR, luciferase reporter assays, and western blotting to confirm that miR-320 directly targets Grb2 to promote myoblasts differentiation. Moreover, by using a dexamethasone-induced atrophic model of myotubes, we discovered that miR-320 promotes the repair of damaged myotubes. Our findings expand understanding of miRNAs and genes related to regulating skeletal muscle differentiation, and provide insight into underlying therapeutic strategies for muscle diseases.
Collapse
Affiliation(s)
- Shuang-Yan Chang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Sheng-Zhong Han
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Hak-Myong Choe
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Kai Gao
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Zheng-Yun Jin
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Xin-Yue Liu
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Liu-Hui Yang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Si-Tong Lv
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Xi-Jun Yin
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Lin-Hu Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China.
| | - Jin-Dan Kang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China.
| |
Collapse
|
49
|
Almonaem ERA, Soliman DR, El Sayed MAM, Ahmed IA, Abdelrahman EG. Association between SNP rs59382073 in TBX2 3′ UTR and susceptibility to congenital heart diseases. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Single-molecule imaging of microRNA-mediated gene silencing in cells. Nat Commun 2022; 13:1435. [PMID: 35301300 PMCID: PMC8931058 DOI: 10.1038/s41467-022-29046-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/16/2022] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs, which regulate the expression of thousands of genes; miRNAs silence gene expression from complementary mRNAs through translational repression and mRNA decay. For decades, the function of miRNAs has been studied primarily by ensemble methods, where a bulk collection of molecules is measured outside cells. Thus, the behavior of individual molecules during miRNA-mediated gene silencing, as well as their spatiotemporal regulation inside cells, remains mostly unknown. Here we report single-molecule methods to visualize each step of miRNA-mediated gene silencing in situ inside cells. Simultaneous visualization of single mRNAs, translation, and miRNA-binding revealed that miRNAs preferentially bind to translated mRNAs rather than untranslated mRNAs. Spatiotemporal analysis based on our methods uncovered that miRNAs bind to mRNAs immediately after nuclear export. Subsequently, miRNAs induced translational repression and mRNA decay within 30 and 60 min, respectively, after the binding to mRNAs. This methodology provides a framework for studying miRNA function at the single-molecule level with spatiotemporal information inside cells.
Collapse
|