1
|
Mukhopadhyay T, Ghosh A, Datta A. Screening 2D Materials for Their Nanotoxicity toward Nucleic Acids and Proteins: An In Silico Outlook. ACS PHYSICAL CHEMISTRY AU 2024; 4:97-121. [PMID: 38560753 PMCID: PMC10979489 DOI: 10.1021/acsphyschemau.3c00053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 04/04/2024]
Abstract
Since the discovery of graphene, two-dimensional (2D) materials have been anticipated to demonstrate enormous potential in bionanomedicine. Unfortunately, the majority of 2D materials induce nanotoxicity via disruption of the structure of biomolecules. Consequently, there has been an urge to synthesize and identify biocompatible 2D materials. Before the cytotoxicity of 2D nanomaterials is experimentally tested, computational studies can rapidly screen them. Additionally, computational analyses can provide invaluable insights into molecular-level interactions. Recently, various "in silico" techniques have identified these interactions and helped to develop a comprehensive understanding of nanotoxicity of 2D materials. In this article, we discuss the key recent advances in the application of computational methods for the screening of 2D materials for their nanotoxicity toward two important categories of abundant biomolecules, namely, nucleic acids and proteins. We believe the present article would help to develop newer computational protocols for the identification of novel biocompatible materials, thereby paving the way for next-generation biomedical and therapeutic applications based on 2D materials.
Collapse
Affiliation(s)
- Titas
Kumar Mukhopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road,
Jadavpur, Kolkata 700032, West Bengal, India
| | - Anupam Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road,
Jadavpur, Kolkata 700032, West Bengal, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road,
Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
2
|
Wang Y, Zhang L, Liu C, Luo Y, Chen D. Peptide-Mediated Nanocarriers for Targeted Drug Delivery: Developments and Strategies. Pharmaceutics 2024; 16:240. [PMID: 38399294 PMCID: PMC10893007 DOI: 10.3390/pharmaceutics16020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Effective drug delivery is essential for cancer treatment. Drug delivery systems, which can be tailored to targeted transport and integrated tumor therapy, are vital in improving the efficiency of cancer treatment. Peptides play a significant role in various biological and physiological functions and offer high design flexibility, excellent biocompatibility, adjustable morphology, and biodegradability, making them promising candidates for drug delivery. This paper reviews peptide-mediated drug delivery systems, focusing on self-assembled peptides and peptide-drug conjugates. It discusses the mechanisms and structural control of self-assembled peptides, the varieties and roles of peptide-drug conjugates, and strategies to augment peptide stability. The review concludes by addressing challenges and future directions.
Collapse
Affiliation(s)
- Yubo Wang
- Medical College, Guangxi University, Da-Xue-Dong Road No. 100, Nanning 530004, China;
| | - Lu Zhang
- School of Life Sciences, Xiamen University, Xiamen 361005, China;
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China;
| | - Chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China;
| | - Yiming Luo
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen 361003, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou 351002, China
| | - Dengyue Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China;
| |
Collapse
|
3
|
Shao H, Adebomi V, Bruce A, Raj M, Houk KN. Intramolecular Hydrogen Bonding Enables a Zwitterionic Mechanism for Macrocyclic Peptide Formation: Computational Mechanistic Studies of CyClick Chemistry. Angew Chem Int Ed Engl 2023; 62:e202307210. [PMID: 37475575 PMCID: PMC10592271 DOI: 10.1002/anie.202307210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
Macrocyclic peptides have become increasingly important in the pharmaceutical industry. We present a detailed computational investigation of the reaction mechanism of the recently developed "CyClick" chemistry to selectively form imidazolidinone cyclic peptides from linear peptide aldehydes, without using catalysts or directing groups (Angew. Chem. Int. Ed. 2019, 58, 19073-19080). We conducted computational mechanistic to investigate the effects of intramolecular hydrogen bonds (IMHBs) in promoting a kinetically facile zwitterionic mechanism in "CyClick" of pentapeptide aldehyde AFGPA. Our DFT calculations highlighted the importance of IMHB in pre-organization of the resting state, stabilization of the zwitterion intermediate, and the control of the product stereoselectivity. Furthermore, we have also identified that the low ring strain energy promotes the "CyClick" of hexapeptide aldehyde AAGPFA to form a thermodynamically more stable 15+5 imidazolidinone cyclic peptide product. In contrast, large ring strain energy suppresses "CyClick" reactivity of tetra peptide aldehyde AFPA from forming the 9+5 imidazolidinone cyclic peptide product.
Collapse
Affiliation(s)
- Huiling Shao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Victor Adebomi
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Angele Bruce
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Monika Raj
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
4
|
Lee YCJ, Javdan B, Cowan A, Smith K. More than skin deep: cyclic peptides as wound healing and cytoprotective compounds. Front Cell Dev Biol 2023; 11:1195600. [PMID: 37325572 PMCID: PMC10267460 DOI: 10.3389/fcell.2023.1195600] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
The prevalence and cost of wounds pose a challenge to patients as well as the healthcare system. Wounds can involve multiple tissue types and, in some cases, become chronic and difficult to treat. Comorbidities may also decrease the rate of tissue regeneration and complicate healing. Currently, treatment relies on optimizing healing factors rather than administering effective targeted therapies. Owing to their enormous diversity in structure and function, peptides are among the most prevalent and biologically important class of compounds and have been investigated for their wound healing bioactivities. A class of these peptides, called cyclic peptides, confer stability and improved pharmacokinetics, and are an ideal source of wound healing therapeutics. This review provides an overview of cyclic peptides that have been shown to promote wound healing in various tissues and in model organisms. In addition, we describe cytoprotective cyclic peptides that mitigate ischemic reperfusion injuries. Advantages and challenges in harnessing the healing potential for cyclic peptides from a clinical perspective are also discussed. Cyclic peptides are a potentially attractive category of wound healing compounds and more research in this field could not only rely on design as mimetics but also encompass de novo approaches as well.
Collapse
Affiliation(s)
- Ying-Chiang J. Lee
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Bahar Javdan
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Alexis Cowan
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Keith Smith
- Merck & Co., Inc., Kenilworth, NJ, United States
| |
Collapse
|
5
|
Borges A, Nguyen C, Letendre M, Onasenko I, Kandler R, Nguyen NK, Chen J, Allakhverdova T, Atkinson E, DiChiara B, Wang C, Petler N, Patel H, Nanavati D, Das S, Nag A. Facile de Novo Sequencing of Tetrazine-Cyclized Peptides through UV-Induced Ring-Opening and Cleavage from the Solid Phase. Chembiochem 2023; 24:e202200590. [PMID: 36471561 PMCID: PMC10099459 DOI: 10.1002/cbic.202200590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
While most FDA-approved peptide drugs are cyclic, the robust cyclization chemistry of peptides and the deconvolution of cyclic peptide sequences by using tandem mass spectrometry render cyclic peptide drug discovery difficult. Here we present the successful design of cyclic peptides on solid phase that addresses both of these problems. We demonstrate that this peptide cyclization method using dichloro-s-tetrazine on solid phase allows successful cyclization of a panel of random peptide sequences with various charges and hydrophobicities. The cyclic peptides can be linearized and cleaved from the solid phase by simple UV light irradiation, and we demonstrate that accurate sequence information can be obtained for the UV-cleaved linearized peptides by using tandem mass spectrometry. The tetrazine linker used in the cyclic peptides can further be explored for inverse electron-demand Diels-Alder (IEDDA) reactions for screening or bioconjugation applications in the future.
Collapse
Affiliation(s)
- Ariane Borges
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Chi Nguyen
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Madison Letendre
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Iryna Onasenko
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Rene Kandler
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Ngoc K Nguyen
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Jue Chen
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Tamara Allakhverdova
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Emily Atkinson
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Bella DiChiara
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Caroline Wang
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Noa Petler
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Henna Patel
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Dhaval Nanavati
- Global Protein Sciences, AbbVie Bioresearch Center, 100 Research Dr, 01605, Worcester, MA, USA
| | - Samir Das
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Arundhati Nag
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| |
Collapse
|
6
|
Morais KLP, Ciccone L, Stura E, Alvarez-Flores MP, Mourier G, Driessche MV, Sciani JM, Iqbal A, Kalil SP, Pereira GJ, Marques-Porto R, Cunegundes P, Juliano L, Servent D, Chudzinski-Tavassi AM. Structural and functional properties of the Kunitz-type and C-terminal domains of Amblyomin-X supporting its antitumor activity. Front Mol Biosci 2023; 10:1072751. [PMID: 36845546 PMCID: PMC9948614 DOI: 10.3389/fmolb.2023.1072751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
Amblyomin-X is a Kunitz-type FXa inhibitor identified through the transcriptome analysis of the salivary gland from Amblyomma sculptum tick. This protein consists of two domains of equivalent size, triggers apoptosis in different tumor cell lines, and promotes regression of tumor growth, and reduction of metastasis. To study the structural properties and functional roles of the N-terminal (N-ter) and C-terminal (C-ter) domains of Amblyomin-X, we synthesized them by solid-phase peptide synthesis, solved the X-Ray crystallographic structure of the N-ter domain, confirming its Kunitz-type signature, and studied their biological properties. We show here that the C-ter domain is responsible for the uptake of Amblyomin-X by tumor cells and highlight the ability of this domain to deliver intracellular cargo by the strong enhancement of the intracellular detection of molecules with low cellular-uptake efficiency (p15) after their coupling with the C-ter domain. In contrast, the N-ter Kunitz domain of Amblyomin-X is not capable of crossing through the cell membrane but is associated with tumor cell cytotoxicity when it is microinjected into the cells or fused to TAT cell-penetrating peptide. Additionally, we identify the minimum length C-terminal domain named F2C able to enter in the SK-MEL-28 cells and induces dynein chains gene expression modulation, a molecular motor that plays a role in the uptake and intracellular trafficking of Amblyomin-X.
Collapse
Affiliation(s)
- K. L. P. Morais
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil,Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - L. Ciccone
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France,Department of Pharmacy, University of Pisa, Pisa, Italy
| | - E. Stura
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France
| | - M. P. Alvarez-Flores
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | - G. Mourier
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France
| | - M. Vanden Driessche
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France
| | - J. M. Sciani
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | - A. Iqbal
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil
| | - S. P. Kalil
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | - G. J. Pereira
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - R. Marques-Porto
- Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil
| | - P. Cunegundes
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - L. Juliano
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - D. Servent
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France,*Correspondence: D. Servent, ; A. M. Chudzinski-Tavassi,
| | - A. M. Chudzinski-Tavassi
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil,*Correspondence: D. Servent, ; A. M. Chudzinski-Tavassi,
| |
Collapse
|
7
|
Lee K, Willi JA, Cho N, Kim I, Jewett MC, Lee J. Cell-free Biosynthesis of Peptidomimetics. BIOTECHNOL BIOPROC E 2023; 28:1-17. [PMID: 36778039 PMCID: PMC9896473 DOI: 10.1007/s12257-022-0268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/16/2022] [Accepted: 11/13/2022] [Indexed: 02/05/2023]
Abstract
A wide variety of peptidomimetics (peptide analogs) possessing innovative biological functions have been brought forth as therapeutic candidates through cell-free protein synthesis (CFPS) systems. A key feature of these peptidomimetic drugs is the use of non-canonical amino acid building blocks with diverse biochemical properties that expand functional diversity. Here, we summarize recent technologies leveraging CFPS platforms to expand the reach of peptidomimetics drugs. We also offer perspectives on engineering the translational machinery that may open new opportunities for expanding genetically encoded chemistry to transform drug discovery practice beyond traditional boundaries.
Collapse
Affiliation(s)
- Kanghun Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| | - Jessica A. Willi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
| | - Namjin Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| | - Inseon Kim
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208 USA
| | - Joongoo Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| |
Collapse
|
8
|
Liang B, Li R, Li L, Tang M, Li X, Su C, Liao H. Silver-promoted solid-phase guanidinylation enables the first synthesis of arginine glycosylated Samoamide A cyclopeptide analogue. Front Chem 2023; 10:1040216. [PMID: 36688048 PMCID: PMC9846560 DOI: 10.3389/fchem.2022.1040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Cyclization and glycosylation serve as effective approaches for enhancing the drug properties of peptides. Distinct from typical glycosylation, atypical arginine N-glycosylation has drawn increasing attention due to its fundamental role in various cellular procedures and signaling pathways. We previously developed a robust strategy for constructing arginine N-glycosylated peptides characterized by silver-promoted solid-phase guanidinylation. Modeled after cyclic octapeptide Samoamide A, an antitumor peptide composed of eight hydrophobic amino acids extracted from cyanobacteria, herein we first performed arginine scanning to determine an optimal position for replacement with arginine. Consequently, the first synthesis of arginine glycosylated Samoamide A cyclopeptide analogue was described combining solid-phase glycosylation with solution-phase cyclization. The resultant SA-HH-TT displayed enhanced water solubility compared with the non-glycosylated SA-HH-TT. Notably, our method provides a universal strategy for synthesizing arginine N-glycosylated cyclopeptides.
Collapse
Affiliation(s)
- Bingxin Liang
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Rong Li
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Linji Li
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Ming Tang
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai, China,*Correspondence: Xiang Li, ; Chunli Su, ; Hongli Liao,
| | - Chunli Su
- School of Public Health, Chengdu Medical College, Chengdu, China,*Correspondence: Xiang Li, ; Chunli Su, ; Hongli Liao,
| | - Hongli Liao
- School of Pharmacy, Chengdu Medical College, Chengdu, China,*Correspondence: Xiang Li, ; Chunli Su, ; Hongli Liao,
| |
Collapse
|
9
|
Ghosh A, Mukhopadhyay TK, Datta A. Two dimensional materials are non-nanotoxic and biocompatible towards cyclotides: evidence from classical molecular dynamics simulations. NANOSCALE 2022; 15:321-336. [PMID: 36484694 DOI: 10.1039/d2nr05096j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cyclotides are backbone-cyclized peptides of plant origin enriched with disulfide bonds, having exceptional stability towards thermal denaturation and proteolytic degradation. They have a plethora of activities like antibacterial, antifungal, anti-tumor and anti-HIV properties predominantly owing to their selective interaction with certain phospholipids, thereby leading to the disruption of cellular membranes. On the other hand, low-dimensional materials like graphene and hexagonal boron nitride (h-BN) are also known to show membrane-proliferating activities through lipid extraction. A plausible and more effective antibacterial, anti-tumor and antifungal agent would be a composite of these 2D materials and cyclotides, provided the structures of the peptides remain unperturbed upon adsorption and interaction. In this study, classical molecular dynamics simulations are performed to understand the nature of adsorption of cyclotides belonging to different families on graphene and h-BN and analyze the resulting structural changes. It is revealed that, due to their exceptional structural stability, cyclotides maintain their structural integrity upon adsorption on the 2D materials. In addition, the aggregated states of the cyclotides, which are ubiquitous in plant organs, are also not disrupted upon adsorption. Extensive free energy calculations show that the adsorption strength of the cyclotides is moderate in comparison to those of other similar-sized biomolecules, and the larger the size of the aggregates, the weaker the binding of individual peptides with the 2D materials, thereby leading to their lower release times from the materials. It is predicted that graphene and h-BN may safely be used for the preparation of composites with cyclotides, which in turn may be envisaged to be probable candidates for manufacturing next-generation bionano agents for agricultural, antibacterial and therapeutic applications.
Collapse
Affiliation(s)
- Anupam Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur - 700032, West Bengal, India.
| | - Titas Kumar Mukhopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur - 700032, West Bengal, India.
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur - 700032, West Bengal, India.
| |
Collapse
|
10
|
Zhao J, Ge G, Huang Y, Hou Y, Hu SQ. Butelase 1-Mediated Enzymatic Cyclization of Antimicrobial Peptides: Improvements on Stability and Bioactivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15869-15878. [PMID: 36471508 DOI: 10.1021/acs.jafc.2c06588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Antimicrobial peptides (AMPs) have broad-spectrum antibacterial properties and safety as food preservatives, whereas the stability and antibacterial activity require improvement. Here, the "head-to-tail" cyclization of linear AMP GKE was catalyzed by butelase 1, which resulted in an improved pronouncedly antibacterial effect. Cell morphology and propidium iodide uptake revealed that the increased membrane permeability was one of the bacteriostatic mechanisms of GKE and could be enhanced after cyclization. As cyclic GKE (cGKE) exhibited more stability than the linear counterpart under the microorganism culture environment, the increase in effective bacteriostatic concentration should be a reason for the superior antibacterial effect. Moreover, cGKE exhibited the ordered secondary structure, while GKE possessed a similar structure only in sodium dodecyl sulfate micelles. The structure was also beneficial to improve the antibacterial activity caused by the increased affinity of cGKE to the membranes. Overall, butelase 1-mediated cyclization is a promising strategy for enhancing the antibacterial activity of linear AMPs.
Collapse
Affiliation(s)
- Jinsong Zhao
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ge Ge
- Beijing Food Safety Monitoring and Risk Assessment Center, Beijing 100094, China
| | - Yanbo Huang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Song-Qing Hu
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
11
|
Trunschke S, Piemontese E, Fuchs O, Abboud S, Seitz O. Enhancing Auxiliary-Mediated Native Chemical Ligation at Challenging Junctions with Pyridine Scaffolds. Chemistry 2022; 28:e202202065. [PMID: 36097325 PMCID: PMC10091703 DOI: 10.1002/chem.202202065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 12/13/2022]
Abstract
To expand the scope of native chemical ligation (NCL) beyond reactions at cysteine, ligation auxiliaries are appended to the peptide N-terminus. After the introduction of a pyridine-containing auxiliary, which provided access to challenging junctions (proline or β-branched amino acids), we herein probe the role of the pyridine-ring nitrogen. We observed side reactions leading to preliminary auxiliary loss. We describe a new easy to attach β-mercapto-β-(4-methoxy-2-pyridinyl)-ethyl (MMPyE) auxiliary, which 1) has increased stability; 2) enables NCL at sterically encumbered junctions (e. g., Leu-Val); and 3) allows removal under mildly basic (pH 8.5) conditions was introduced. The synthesis of a 120 aa long peptide containing eight MUC5AC tandem repeats via ligation of two 60mers demonstrates the usefulness. Making use of hitherto unexplored NCL to tyrosine, the MMPyE auxiliary provided access to a head-to-tail-cyclized 21-mer peptide and a His6 -tagged hexaphosphorylated peptide comprising 6 heptapeptide repeats of the RNA polymerase II C-terminal domain.
Collapse
Affiliation(s)
- Sebastian Trunschke
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Emanuele Piemontese
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Olaf Fuchs
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Skander Abboud
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
12
|
Chen C, Weil T. Cyclic polymers: synthesis, characteristics, and emerging applications. NANOSCALE HORIZONS 2022; 7:1121-1135. [PMID: 35938292 DOI: 10.1039/d2nh00242f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cyclic polymers with a ring-like topology and no chain ends are a unique class of macromolecules. In the past several decades, significant advances have been made to prepare these fascinating polymers, which allow for the exploration of their topological effects and potential applications in various fields. In this Review, we first describe representative synthetic strategies for making cyclic polymers and their derivative topological polymers with more complex structures. Second, the unique physical properties and self-assembly behavior of cyclic polymers are discussed by comparing them with their linear analogues. Special attention is paid to highlight how polymeric rings can assemble into hierarchical macromolecular architectures. Subsequently, representative applications of cyclic polymers in different fields such as drug and gene delivery and surface functionalization are presented. Last, we envision the following key challenges and opportunities for cyclic polymers that may attract future attention: large-scale synthesis, efficient purification, programmable folding and assembly, and expansion of applications.
Collapse
Affiliation(s)
- Chaojian Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
13
|
Zhou Y, Chen H, Lei P, Gui C, Wang H, Yan Q, Wang W, Chen F. Palladium-catalyzed base- and solvent-controlled chemoselective allylation of amino acids with allylic carbonates. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Zhang H, Chen S. Cyclic peptide drugs approved in the last two decades (2001-2021). RSC Chem Biol 2022; 3:18-31. [PMID: 35128405 PMCID: PMC8729179 DOI: 10.1039/d1cb00154j] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/05/2021] [Indexed: 01/01/2023] Open
Abstract
In contrast to the major families of small molecules and antibodies, cyclic peptides, as a family of synthesizable macromolecules, have distinct biochemical and therapeutic properties for pharmaceutical applications. Cyclic peptide-based drugs have increasingly been developed in the past two decades, confirming the common perception that cyclic peptides have high binding affinities and low metabolic toxicity as antibodies, good stability and ease of manufacture as small molecules. Natural peptides were the major source of cyclic peptide drugs in the last century, and cyclic peptides derived from novel screening and cyclization strategies are the new source. In this review, we will discuss and summarize 18 cyclic peptides approved for clinical use in the past two decades to provide a better understanding of cyclic peptide development and to inspire new perspectives. The purpose of the present review is to promote efforts to resolve the challenges in the development of cyclic peptide drugs that are more effective.
Collapse
Affiliation(s)
- Huiya Zhang
- Biotech Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Shiyu Chen
- Biotech Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| |
Collapse
|
15
|
Farooq Z, Howell LA, McCormick PJ. Probing GPCR Dimerization Using Peptides. Front Endocrinol (Lausanne) 2022; 13:843770. [PMID: 35909575 PMCID: PMC9329873 DOI: 10.3389/fendo.2022.843770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest class of membrane proteins and the most common and extensively studied pharmacological target. Numerous studies over the last decade have confirmed that GPCRs do not only exist and function in their monomeric form but in fact, have the ability to form dimers or higher order oligomers with other GPCRs, as well as other classes of receptors. GPCR oligomers have become increasingly attractive to investigate as they have the ability to modulate the pharmacological responses of the receptors which in turn, could have important functional roles in diseases, such as cancer and several neurological & neuropsychiatric disorders. Despite the growing evidence in the field of GPCR oligomerisation, the lack of structural information, as well as targeting the 'undruggable' protein-protein interactions (PPIs) involved in these complexes, has presented difficulties. Outside the field of GPCRs, targeting PPIs has been widely studied, with a variety of techniques being investigated; from small-molecule inhibitors to disrupting peptides. In this review, we will demonstrate several physiologically relevant GPCR dimers and discuss an array of strategies and techniques that can be employed when targeting these complexes, as well as provide ideas for future development.
Collapse
Affiliation(s)
- Zara Farooq
- Centre for Endocrinology, William Harvey Research Institute, Bart’s and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, United Kingdom
| | - Lesley A. Howell
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, United Kingdom
| | - Peter J. McCormick
- Centre for Endocrinology, William Harvey Research Institute, Bart’s and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom
- *Correspondence: Peter J. McCormick,
| |
Collapse
|
16
|
Dahal A, Sonju JJ, Kousoulas KG, Jois SD. Peptides and peptidomimetics as therapeutic agents for Covid-19. Pept Sci (Hoboken) 2022; 114:e24245. [PMID: 34901700 PMCID: PMC8646791 DOI: 10.1002/pep2.24245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Covid-19 pandemic has caused high morbidity and mortality rates worldwide. Virus entry into cells can be blocked using several strategies, including inhibition of protein-protein interactions (PPIs) between the viral spike glycoprotein and cellular receptors, as well as blocking of spike protein conformational changes that are required for cleavage/activation and fusogenicity. The spike-mediated viral attachment and entry into cells via fusion of the viral envelope with cellular membranes involve PPIs mediated by short peptide fragments exhibiting particular secondary structures. Thus, peptides that can inhibit these PPIs may be used as potential antiviral agents preventing virus entry and spread. This review is focused on peptides and peptidomimetics as PPI modulators and protease inhibitors against SARS-CoV-2.
Collapse
Affiliation(s)
- Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of PharmacyUniversity of Louisiana at MonroeMonroeLouisianaUSA
| | - Jafrin Jobayer Sonju
- School of Basic Pharmaceutical and Toxicological Sciences, College of PharmacyUniversity of Louisiana at MonroeMonroeLouisianaUSA
| | - Konstantin G. Kousoulas
- Department of Pathobiological Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Seetharama D. Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of PharmacyUniversity of Louisiana at MonroeMonroeLouisianaUSA
| |
Collapse
|
17
|
|
18
|
Amiss AS, Henriques ST, Lawrence N. Antimicrobial peptides provide wider coverage for targeting drug‐resistant bacterial pathogens. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Anna S. Amiss
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
- School of Biomedical Sciences Queensland University of Technology, Translational Research Institute Brisbane Queensland Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
19
|
Macpherson A, Birtley JR, Broadbridge RJ, Brady K, Schulze MSED, Tang Y, Joyce C, Saunders K, Bogle G, Horton J, Kelm S, Taylor RD, Franklin RJ, Selby MD, Laabei M, Wonfor T, Hold A, Stanley P, Vadysirisack D, Shi J, van den Elsen J, Lawson ADG. The Chemical Synthesis of Knob Domain Antibody Fragments. ACS Chem Biol 2021; 16:1757-1769. [PMID: 34406751 DOI: 10.1021/acschembio.1c00472] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cysteine-rich knob domains found in the ultralong complementarity determining regions of a subset of bovine antibodies are capable of functioning autonomously as 3-6 kDa peptides. While they can be expressed recombinantly in cellular systems, in this paper we show that knob domains are also readily amenable to a chemical synthesis, with a co-crystal structure of a chemically synthesized knob domain in complex with an antigen showing structural equivalence to the biological product. For drug discovery, following the immunization of cattle, knob domain peptides can be synthesized directly from antibody sequence data, combining the power and diversity of the bovine immune repertoire with the ability to rapidly incorporate nonbiological modifications. We demonstrate that, through rational design with non-natural amino acids, a paratope diversity can be massively expanded, in this case improving the efficacy of an allosteric peptide. As a potential route to further improve stability, we also performed head-to-tail cyclizations, exploiting the proximity of the N and C termini to synthesize functional, fully cyclic antibody fragments. Lastly, we highlight the stability of knob domains in plasma and, through pharmacokinetic studies, use palmitoylation as a route to extend the plasma half-life of knob domains in vivo. This study presents an antibody-derived medicinal chemistry platform, with protocols for solid-phase synthesis of knob domains, together with the characterization of their molecular structures, in vitro pharmacology, and pharmacokinetics.
Collapse
Affiliation(s)
- Alex Macpherson
- UCB Pharma, Slough SL1 3WE, U.K
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K
| | | | | | | | | | - Yalan Tang
- UCB-Ra Pharma, Cambridge, Massachusetts 02140, United States
| | - Callum Joyce
- UCB Pharma, Slough SL1 3WE, U.K
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K
| | | | | | - John Horton
- Peptide Protein Research, Bishops Waltham SO32 1QD, U.K
| | | | | | | | | | - Maisem Laabei
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K
| | - Toska Wonfor
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K
| | | | | | | | | | - Jean van den Elsen
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K
- Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, U.K
| | | |
Collapse
|
20
|
Palei S, Mootz HD. Semisynthetic head-to-tail cyclized peptides obtained by combining protein trans-splicing and intramolecular expressed protein ligation. Chem Commun (Camb) 2021; 57:4194-4197. [PMID: 33908454 DOI: 10.1039/d1cc00449b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dual-intein approach for the preparation of head-to-tail macrocyclic peptides is reported, where synthetic and genetically encoded fragments are ligated by two native peptide bonds. A split intein ligates the synthetic and genetically encoded peptides via protein trans-splicing and is followed by intramolecular cyclization through an expressed protein ligation step mediated with a cis-intein. We identified a suitable pair of orthogonal inteins and optimized the conditions for a one-pot cyclization protocol. We report the semisynthesis of model macrocyles with various ring sizes and of the natural product sunflower trypsin inhibitor (SFTI) along with its ornithine analog.
Collapse
Affiliation(s)
- Shubhendu Palei
- Institute of Biochemistry, University of Muenster, Münster 48149, Germany. and International Graduate School of Chemistry (GSC-MS), University of Muenster, Münster 48149, Germany
| | - Henning D Mootz
- Institute of Biochemistry, University of Muenster, Münster 48149, Germany. and International Graduate School of Chemistry (GSC-MS), University of Muenster, Münster 48149, Germany
| |
Collapse
|
21
|
Parker PD, Hou X, Dong VM. Reducing Challenges in Organic Synthesis with Stereoselective Hydrogenation and Tandem Catalysis. J Am Chem Soc 2021; 143:6724-6745. [PMID: 33891819 DOI: 10.1021/jacs.1c00750] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tandem catalysis enables the rapid construction of complex architectures from simple building blocks. This Perspective shares our interest in combining stereoselective hydrogenation with transformations such as isomerization, oxidation, and epimerization to solve diverse challenges. We highlight the use of tandem hydrogenation for preparing complex natural products from simple prochiral building blocks and present tandem catalysis involving transfer hydrogenation and dynamic kinetic resolution. Finally, we underline recent breakthroughs and opportunities for asymmetric hydrogenation.
Collapse
Affiliation(s)
- Patrick D Parker
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Xintong Hou
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
22
|
|
23
|
Jiang W, Zeng W. Construction of a Self-Purification and Self-Assembly Coenzyme Regeneration System for the Synthesis of Chiral Drug Intermediates. ACS OMEGA 2021; 6:1911-1916. [PMID: 33521431 PMCID: PMC7841785 DOI: 10.1021/acsomega.0c04668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
As one of the important research contents of synthetic biology, the construction of a regulatory system exhibits great potential in the synthesis of high value-added chemicals such as drug intermediates. In this work, a self-assembly coenzyme regeneration system, leucine dehydrogenase (LeuDH)-formate dehydrogenase (FDH) protein co-assembly system, was constructed by using the polypeptide, SpyTag/SpyCatcher. Then, it was demonstrated that the nonchromatographic inverse transition cycling purification method could purify intracellular coupling proteins and extracellular coupling proteins well. The conversion rate of the pure LeuDH-FDH protein assembly (FR-LR) was shown to be 1.6-fold and 32.3-fold higher than that of the free LeuDH-FDH system (LeuDH + FDH) and free LeuDH, respectively. This work has paved a new way of constructing a protein self-assembly system and engineering self-purification coenzyme regeneration system for the synthesis of chiral amino acids or chiral α-hydroxy acids.
Collapse
Affiliation(s)
- Wei Jiang
- ; . Tel.: +86-05926162305. Fax: +86-05926162305
| | | |
Collapse
|
24
|
Total synthesis and modification of Bacicyclin (1), a new marine antibacterial cyclic hexapeptide. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Inteins in Science: Evolution to Application. Microorganisms 2020; 8:microorganisms8122004. [PMID: 33339089 PMCID: PMC7765530 DOI: 10.3390/microorganisms8122004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022] Open
Abstract
Inteins are mobile genetic elements that apply standard enzymatic strategies to excise themselves post-translationally from the precursor protein via protein splicing. Since their discovery in the 1990s, recent advances in intein technology allow for them to be implemented as a modern biotechnological contrivance. Radical improvement in the structure and catalytic framework of cis- and trans-splicing inteins devised the development of engineered inteins that contribute to various efficient downstream techniques. Previous literature indicates that implementation of intein-mediated splicing has been extended to in vivo systems. Besides, the homing endonuclease domain also acts as a versatile biotechnological tool involving genetic manipulation and control of monogenic diseases. This review orients the understanding of inteins by sequentially studying the distribution and evolution pattern of intein, thereby highlighting a role in genetic mobility. Further, we include an in-depth summary of specific applications branching from protein purification using self-cleaving tags to protein modification, post-translational processing and labelling, followed by the development of intein-based biosensors. These engineered inteins offer a disruptive approach towards research avenues like biomaterial construction, metabolic engineering and synthetic biology. Therefore, this linear perspective allows for a more comprehensive understanding of intein function and its diverse applications.
Collapse
|
26
|
Macpherson A, Scott-Tucker A, Spiliotopoulos A, Simpson C, Staniforth J, Hold A, Snowden J, Manning L, van den Elsen J, Lawson ADG. Isolation of antigen-specific, disulphide-rich knob domain peptides from bovine antibodies. PLoS Biol 2020; 18:e3000821. [PMID: 32886672 PMCID: PMC7498065 DOI: 10.1371/journal.pbio.3000821] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/17/2020] [Accepted: 08/10/2020] [Indexed: 12/25/2022] Open
Abstract
As a novel alternative to established surface display or combinatorial chemistry approaches for the discovery of therapeutic peptides, we present a method for the isolation of small, cysteine-rich domains from bovine antibody ultralong complementarity-determining regions (CDRs). We show for the first time that isolated bovine antibody knob domains can function as autonomous entities by binding antigen outside the confines of the antibody scaffold. This yields antibody fragments so small as to be considered peptides, each stabilised by an intricate, bespoke arrangement of disulphide bonds. For drug discovery, cow immunisations harness the immune system to generate knob domains with affinities in the picomolar to low nanomolar range, orders of magnitude higher than unoptimized peptides from naïve library screening. Using this approach, knob domain peptides that tightly bound Complement component C5 were obtained, at scale, using conventional antibody discovery and peptide purification techniques. This study describes a method for the isolation of knob domains (a disulfide-rich domain found in the ultra-long CDRH3 of a subset of bovine antibodies) to create a uniquely small antibody fragment. With a molecular weight 3-6 KDa, the knob domain fragment is so small as to be considered a peptide. This approach uniquely harnesses the bovine immune system to affinity maturate peptides in vivo.
Collapse
Affiliation(s)
- Alex Macpherson
- UCB, Slough, United Kingdom
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- * E-mail:
| | | | | | | | | | | | | | | | - Jean van den Elsen
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | |
Collapse
|
27
|
Programmed folding into spiro-multicyclic polymer topologies from linear and star-shaped chains. Commun Chem 2020; 3:97. [PMID: 36703363 PMCID: PMC9814586 DOI: 10.1038/s42004-020-00355-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/14/2020] [Indexed: 01/29/2023] Open
Abstract
The development of precise folding techniques for synthetic polymer chains that replicate the unique structures and functions of biopolymers has long been a key challenge. In particular, spiro-type (i.e., 8-, trefoil-, and quatrefoil-shaped) polymer topologies remain challenging due to their inherent structural complexity. Herein, we establish a folding strategy to produce spiro-type multicyclic polymers via intramolecular ring-opening metathesis oligomerization of the norbornenyl groups attached at predetermined positions along a synthetic polymer precursor. This strategy provides easy access to the desired spiro-type topological polymers with a controllable number of ring units and molecular weight while retaining narrow dispersity (Ɖ < 1.1). This effective strategy marks an advancement in the development of functionalized materials composed of specific three-dimensional nanostructures.
Collapse
|
28
|
Zhang Z, Nie X, Wang F, Chen G, Huang WQ, Xia L, Zhang WJ, Hao ZY, Hong CY, Wang LH, You YZ. Rhodanine-based Knoevenagel reaction and ring-opening polymerization for efficiently constructing multicyclic polymers. Nat Commun 2020; 11:3654. [PMID: 32694628 PMCID: PMC7374721 DOI: 10.1038/s41467-020-17474-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/30/2020] [Indexed: 11/09/2022] Open
Abstract
Cyclic polymers have a number of unique physical properties compared with those of their linear counterparts. However, the methods for the synthesis of cyclic polymers are very limited, and some multicyclic polymers are still not accessible now. Here, we found that the five-membered cyclic structure and electron withdrawing groups make methylene in rhodanine highly active to aldehyde via highly efficient Knoevenagel reaction. Also, rhodanine can act as an initiator for anionic ring-opening polymerization of thiirane to produce cyclic polythioethers. Therefore, rhodanine can serve as both an initiator for ring-opening polymerization and a monomer in Knoevenagel polymerization. Via rhodanine-based Knoevenagel reaction, we can easily incorporate rhodanine moieties in the backbone, side chain, branched chain, etc, and correspondingly could produce cyclic structures in the backbone, side chain, branched chain, etc, via rhodanine-based anionic ring-opening polymerization. This rhodanine chemistry would provide easy access to a wide variety of complex multicyclic polymers.
Collapse
Affiliation(s)
- Ze Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Xuan Nie
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Fei Wang
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
| | - Guang Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Wei-Qiang Huang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Lei Xia
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Wen-Jian Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Zong-Yao Hao
- The First Affiliated Hospital of Anhui Medical University and Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China.
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| | - Long-Hai Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| | - Ye-Zi You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| |
Collapse
|
29
|
Veerapandian R, Paudyal A, Chang A, Vediyappan G. Separation of Bioactive Small Molecules, Peptides from Natural Sources and Proteins from Microbes by Preparative Isoelectric Focusing (IEF) Method. J Vis Exp 2020. [PMID: 32597857 DOI: 10.3791/61101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Natural products derived from plants and microbes are a rich source of bioactive molecules. Prior to their use, the active molecules from complex extracts must be purified for downstream applications. There are various chromatographic methods available for this purpose yet not all labs can afford high performance methods and isolation from complex biological samples can be difficult. Here we demonstrate that preparative liquid-phase isoelectric focusing (IEF) can separate molecules, including small molecules and peptides from complex plant extracts, based on their isoelectric points (pI). We have used the method for complex biological sample fractionation and characterization. As a proof of concept, we fractionated a Gymnema sylvestre plant extract, isolating a family of terpenoid saponin small molecules and a peptide. We also demonstrated effective microbial protein separation using the Candida albicans fungus as a model system.
Collapse
|
30
|
Diemer V, Ollivier N, Leclercq B, Drobecq H, Vicogne J, Agouridas V, Melnyk O. A cysteine selenosulfide redox switch for protein chemical synthesis. Nat Commun 2020; 11:2558. [PMID: 32444769 PMCID: PMC7244499 DOI: 10.1038/s41467-020-16359-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/23/2020] [Indexed: 01/08/2023] Open
Abstract
The control of cysteine reactivity is of paramount importance for the synthesis of proteins using the native chemical ligation (NCL) reaction. We report that this goal can be achieved in a traceless manner during ligation by appending a simple N-selenoethyl group to cysteine. While in synthetic organic chemistry the cleavage of carbon-nitrogen bonds is notoriously difficult, we describe that N-selenoethyl cysteine (SetCys) loses its selenoethyl arm in water under mild conditions upon reduction of its selenosulfide bond. Detailed mechanistic investigations show that the cleavage of the selenoethyl arm proceeds through an anionic mechanism with assistance of the cysteine thiol group. The implementation of the SetCys unit in a process enabling the modular and straightforward assembly of linear or backbone cyclized polypeptides is illustrated by the synthesis of biologically active cyclic hepatocyte growth factor variants.
Collapse
Affiliation(s)
- Vincent Diemer
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Nathalie Ollivier
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Bérénice Leclercq
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Hervé Drobecq
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Jérôme Vicogne
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Vangelis Agouridas
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France.
| | - Oleg Melnyk
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France.
| |
Collapse
|
31
|
Li X, Wang S, Zhu X, Zhangsun D, Wu Y, Luo S. Effects of Cyclization on Activity and Stability of α-Conotoxin TxIB. Mar Drugs 2020; 18:E180. [PMID: 32235388 PMCID: PMC7230940 DOI: 10.3390/md18040180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022] Open
Abstract
α-Conotoxin TxIB specifically blocked α6/α3β2β3 acetylcholine receptors (nAChRs), and it could be a potential probe for studying addiction and other diseases related to α6/α3β2β3 nAChRs. However, as a peptide, TxIB may suffer from low stability, short half-life, and poor bioavailability. In this study, cyclization of TxIB was used to improve its stability. Four cyclic mutants of TxIB (cTxIB) were synthesized, and the inhibition of these analogues on α6/α3β2β3 nAChRs as well as their stability in human serum were measured. All cyclized analogues had similar activity compared to wild-type TxIB, which indicated that backbone cyclization of TxIB had no significant effect on its activity. Cyclization of TxIB with a seven-residue linker improved its stability significantly in human serum. Besides this, the results showed that cyclization maintained the activity of α-conotoxin TxIB, which is conducive to its future application.
Collapse
Affiliation(s)
- Xincan Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.L.); (S.W.); (X.Z.); (D.Z.)
| | - Shuai Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.L.); (S.W.); (X.Z.); (D.Z.)
| | - Xiaopeng Zhu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.L.); (S.W.); (X.Z.); (D.Z.)
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.L.); (S.W.); (X.Z.); (D.Z.)
- Medical School, Guangxi University, Nanning 530004, China
| | - Yong Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.L.); (S.W.); (X.Z.); (D.Z.)
- Medical School, Guangxi University, Nanning 530004, China
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.L.); (S.W.); (X.Z.); (D.Z.)
- Medical School, Guangxi University, Nanning 530004, China
| |
Collapse
|
32
|
|
33
|
Tezuka Y. Topological Polymer Chemistry: A Personal Reflection Upon the Evolution and Prospects of Synthetic Macromolecular Chemistry. Isr J Chem 2020. [DOI: 10.1002/ijch.201900081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Zhao Z, Metanis N. Utilizing Copper-Mediated Deprotection of Selenazolidine for Cyclic Peptide Synthesis. J Org Chem 2019; 85:1731-1739. [DOI: 10.1021/acs.joc.9b02644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhenguang Zhao
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Norman Metanis
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
35
|
Abstract
This Review explores the class of plant-derived macrocyclic peptides called cyclotides. We include an account of their discovery, characterization, and distribution in the plant kingdom as well as a detailed analysis of their sequences and structures, biosynthesis and chemical synthesis, biological functions, and applications. These macrocyclic peptides are around 30 amino acids in size and are characterized by their head-to-tail cyclic backbone and cystine knot motif, which render them to be exceptionally stable, with resistance to thermal or enzymatic degradation. Routes to their chemical synthesis have been developed over the past two decades, and this capability has facilitated a wide range of mutagenesis and structure-activity relationship studies. In turn, these studies have both led to an increased understanding of their mechanisms of action as well as facilitated a range of applications in agriculture and medicine, as ecofriendly crop protection agents, and as drug leads or scaffolds for pharmaceutical design. Our overall objective in this Review is to provide readers with a comprehensive overview of cyclotides that we hope will stimulate further work on this fascinating family of peptides.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Meng-Wei Kan
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
36
|
Wang XS, Chen PC, Hampton JT, Tharp JM, Reed CA, Das SK, Wang D, Hayatshahi HS, Shen Y, Liu J, Liu WR. A Genetically Encoded, Phage‐Displayed Cyclic‐Peptide Library. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - J. Trae Hampton
- Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Jeffery M. Tharp
- Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Catrina A. Reed
- Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Sukant K. Das
- Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Duen‐Shian Wang
- Department of Pharmaceutical Sciences UNT Health Science Center Fort Worth TX 76107 USA
| | - Hamed S. Hayatshahi
- Department of Pharmaceutical Sciences UNT Health Science Center Fort Worth TX 76107 USA
| | - Yang Shen
- Department of Electrical and Computer Engineering Texas A&M University College Station TX 77843-3218 USA
| | - Jin Liu
- Department of Pharmaceutical Sciences UNT Health Science Center Fort Worth TX 76107 USA
| | - Wenshe Ray Liu
- Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| |
Collapse
|
37
|
Wang XS, Chen PHC, Hampton JT, Tharp JM, Reed CA, Das SK, Wang DS, Hayatshahi HS, Shen Y, Liu J, Liu WR. A Genetically Encoded, Phage-Displayed Cyclic-Peptide Library. Angew Chem Int Ed Engl 2019; 58:15904-15909. [PMID: 31398275 PMCID: PMC6803038 DOI: 10.1002/anie.201908713] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 11/10/2022]
Abstract
Superior to linear peptides in biological activities, cyclic peptides are considered to have great potential as therapeutic agents. To identify cyclic-peptide ligands for therapeutic targets, phage-displayed peptide libraries in which cyclization is achieved by the covalent conjugation of cysteines have been widely used. To resolve drawbacks related to cysteine conjugation, we have invented a phage-display technique in which its displayed peptides are cyclized through a proximity-driven Michael addition reaction between a cysteine and an amber-codon-encoded Nϵ -acryloyl-lysine (AcrK). Using a randomized 6-mer library in which peptides were cyclized at two ends through a cysteine-AcrK linker, we demonstrated the successful selection of potent ligands for TEV protease and HDAC8. All selected cyclic peptide ligands showed 4- to 6-fold stronger affinity to their protein targets than their linear counterparts. We believe this approach will find broad applications in drug discovery.
Collapse
Affiliation(s)
- Xiaoshan Shayna Wang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Peng-Hsun Chase Chen
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - J Trae Hampton
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Jeffery M Tharp
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Catrina A Reed
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Sukant K Das
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Duen-Shian Wang
- Department of Pharmaceutical Sciences, UNT Health Science Center, Fort Worth, TX, 76107, USA
| | - Hamed S Hayatshahi
- Department of Pharmaceutical Sciences, UNT Health Science Center, Fort Worth, TX, 76107, USA
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843-3218, USA
| | - Jin Liu
- Department of Pharmaceutical Sciences, UNT Health Science Center, Fort Worth, TX, 76107, USA
| | - Wenshe Ray Liu
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| |
Collapse
|
38
|
Delivoria DC, Chia S, Habchi J, Perni M, Matis I, Papaevgeniou N, Reczko M, Chondrogianni N, Dobson CM, Vendruscolo M, Skretas G. Bacterial production and direct functional screening of expanded molecular libraries for discovering inhibitors of protein aggregation. SCIENCE ADVANCES 2019; 5:eaax5108. [PMID: 31663025 PMCID: PMC6795521 DOI: 10.1126/sciadv.aax5108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/25/2019] [Indexed: 05/17/2023]
Abstract
Protein misfolding and aggregation are associated with a many human disorders, including Alzheimer's and Parkinson's diseases. Toward increasing the effectiveness of early-stage drug discovery for these conditions, we report a bacterial platform that enables the biosynthesis of molecular libraries with expanded diversities and their direct functional screening for discovering protein aggregation inhibitors. We illustrate this approach by performing, what is to our knowledge, the largest functional screen of small-size molecular entities described to date. We generated a combinatorial library of ~200 million drug-like, cyclic peptides and rapidly screened it for aggregation inhibitors against the amyloid-β peptide (Aβ42), linked to Alzheimer's disease. Through this procedure, we identified more than 400 macrocyclic compounds that efficiently reduce Aβ42 aggregation and toxicity in vitro and in vivo. Finally, we applied a combination of deep sequencing and mutagenesis analyses to demonstrate how this system can rapidly determine structure-activity relationships and define consensus motifs required for bioactivity.
Collapse
Affiliation(s)
- Dafni C. Delivoria
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens 11635, Greece
- School of Chemical Engineering, National Technical University of Athens, Athens 15780, Greece
| | - Sean Chia
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Johnny Habchi
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Michele Perni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Ilias Matis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens 11635, Greece
| | - Nikoletta Papaevgeniou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens 11635, Greece
- Faculty of Biology and Pharmacy, Institute of Nutrition, Friedrich Schiller University of Jena, Jena 07743, Germany
| | - Martin Reczko
- Institute for Fundamental Biomedical Science, Biomedical Sciences Research Center “Alexander Fleming,” Athens 16672, Greece
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens 11635, Greece
| | - Christopher M. Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens 11635, Greece
- Corresponding author.
| |
Collapse
|
39
|
Andreev K, Martynowycz MW, Gidalevitz D. Peptoid drug discovery and optimization via surface X-ray scattering. Biopolymers 2019; 110:e23274. [PMID: 30892696 PMCID: PMC6661014 DOI: 10.1002/bip.23274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/31/2022]
Abstract
Synthetic polymers mimicking antimicrobial peptides have drawn considerable interest as potential therapeutics. N-substituted glycines, or peptoids, are recognized by their in vivo stability and ease of synthesis. Peptoids are thought to act primarily on the negatively charged lipids that are abundant in bacterial cell membranes. A mechanistic understanding of lipid-peptoid interaction at the molecular level will provide insights for rational design and optimization of peptoids. Here, we highlight recent studies that utilize synchrotron liquid surface X-ray scattering to characterize the underlying peptoid interactions with bacterial and eukaryotic membranes. Cellular membranes are highly complex, and difficult to characterize at the molecular level. Model systems including Langmuir monolayers, are used in these studies to reduce system complexity. The general workflow of these systems and the corresponding data analysis techniques are presented alongside recent findings. These studies investigate the role of peptoid physicochemical characteristics on membrane activity. Specifically, the roles of cationic charge, conformational constraint via macrocyclization, and hydrophobicity are shown to correlate their membrane interactions to biological activities in vitro. These structure-activity relationships have led to new insights into the mechanism of action by peptoid antimicrobials, and suggest optimization strategies for future therapeutics based on peptoids.
Collapse
Affiliation(s)
- Konstantin Andreev
- Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois
| | | | - David Gidalevitz
- Center for the Molecular Study of Condensed Soft Matter and Department of Physics, Illinois Institute of Technology, Chicago, Illinois
| |
Collapse
|
40
|
Efimov S, Zgadzay Y, Darwish S, Klochkov V. Conformational Variability of Cyclosporin C Dissolved in Dimethylformamide. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00641-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu JCM, Melnyk O. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem Rev 2019; 119:7328-7443. [DOI: 10.1021/acs.chemrev.8b00712] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vangelis Agouridas
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ouafâa El Mahdi
- Faculté Polydisciplinaire de Taza, University Sidi Mohamed Ben Abdellah, BP 1223 Taza Gare, Morocco
| | - Vincent Diemer
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Marine Cargoët
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Department of Chemistry, University of Liège, Building B6a, Room 3/16a, Sart-Tilman, B-4000 Liège, Belgium
| | - Oleg Melnyk
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
42
|
Malde AK, Hill TA, Iyer A, Fairlie DP. Crystal Structures of Protein-Bound Cyclic Peptides. Chem Rev 2019; 119:9861-9914. [DOI: 10.1021/acs.chemrev.8b00807] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alpeshkumar K. Malde
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Timothy A. Hill
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Abishek Iyer
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
43
|
Kyoda K, Yamamoto T, Tezuka Y. Programmed Polymer Folding with Periodically Positioned Tetrafunctional Telechelic Precursors by Cyclic Ammonium Salt Units as Nodal Points. J Am Chem Soc 2019; 141:7526-7536. [DOI: 10.1021/jacs.9b02459] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kohei Kyoda
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Takuya Yamamoto
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yasuyuki Tezuka
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
44
|
Papain-like cysteine proteases prepare plant cyclic peptide precursors for cyclization. Proc Natl Acad Sci U S A 2019; 116:7831-7836. [PMID: 30944220 DOI: 10.1073/pnas.1901807116] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cyclotides are plant defense peptides that have been extensively investigated for pharmaceutical and agricultural applications, but key details of their posttranslational biosynthesis have remained elusive. Asparaginyl endopeptidases are crucial in the final stage of the head-to-tail cyclization reaction, but the enzyme(s) involved in the prerequisite steps of N-terminal proteolytic release were unknown until now. Here we use activity-guided fractionation to identify specific members of papain-like cysteine proteases involved in the N-terminal cleavage of cyclotide precursors. Through both characterization of recombinantly produced enzymes and in planta peptide cyclization assays, we define the molecular basis of the substrate requirements of these enzymes, including the prototypic member, here termed kalatase A. The findings reported here will pave the way for improving the efficiency of plant biofactory approaches for heterologous production of cyclotide analogs of therapeutic or agricultural value.
Collapse
|
45
|
Wei W, Chen Y, Xie D, Zhou Y. Molecular insight into chymotrypsin inhibitor 2 resisting proteolytic degradation. Phys Chem Chem Phys 2019; 21:5049-5058. [PMID: 30762035 DOI: 10.1039/c8cp07784c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chymotrypsin inhibitor 2 (CI2) is a special serine protease inhibitor which can resist hydrolysis for several days with a rapid equilibrium between the Michaelis complex and acyl-enzyme intermediate. The energies and conformational changes for subtilisin-catalyzed proteolysis of CI2 were examined in this paper for the first time by employing pseudo bond ab initio QM/MM MD simulations. In the acylation reaction, a low-barrier hydrogen bond between His64 and Asp32 in the transition state together with the lack of covalent backbone constraints makes the peptide bonds of CI2 break more easily than in other serine protease inhibitors. After acyl-enzyme formation, molecular dynamics simulations showed that the access of hydrolytic water to the active site requires partial dissociation of the leaving group. However, retention of the leaving group mainly by the intra- and inter-molecular H-bonding networks hinders the access of water and retards the deacylation reaction. Instead of the dissociation constant of inhibitors, we suggest employing the free energy at the acyl-enzyme state to predict the relative hydrolysis rates of CI2 mutants, which are testified by the experimental relative hydrolysis rates.
Collapse
Affiliation(s)
- Wanqing Wei
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | | | | | | |
Collapse
|
46
|
Uehara E, Deguchi T. Mean-square radius of gyration and the hydrodynamic radius for topological polymers expressed with graphs evaluated by the method of quaternions revisited. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Li YL, Chang Q, Han WW, Bai MY, Gao YY, Zhao X. Total Synthesis of Cyclic Octapeptide Reniochalistatin E. Chem Nat Compd 2018. [DOI: 10.1007/s10600-018-2572-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Yan ZC, Hossain MD, Monteiro MJ, Vlassopoulos D. Viscoelastic Properties of Unentangled Multicyclic Polystyrenes. Polymers (Basel) 2018; 10:E973. [PMID: 30960898 PMCID: PMC6403732 DOI: 10.3390/polym10090973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/10/2018] [Accepted: 08/28/2018] [Indexed: 11/16/2022] Open
Abstract
We report on the viscoelastic properties of linear, monocyclic, and multicyclic polystyrenes with the same low molecular weight. All polymers investigated were found to exhibit unentangled dynamics. For monocyclic polymers without inner loops, a cyclic-Rouse model complemented by the contribution of unlinked chains (whose fraction was determined experimentally) captured the observed rheological response. On the other hand, multicyclic polymers with inner loops were shown to follow a hierarchical cyclic-Rouse relaxation with the outer loops relaxing first, followed by the inner loop relaxation. The influence of unlinked linear chains was less significant in multicyclic polymers with inner loops. The isofrictional zero-shear viscosity decreased with increasing number of constrained segments on the coupling sites, which was attributed to the decreasing loop size and the dilution effect due to the hierarchical relaxation.
Collapse
Affiliation(s)
- Zhi-Chao Yan
- Institute of Electronic Structure & Laser, Foundation for Research & Technology Hellas (FORTH), 70013 Heraklion, Greece.
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, China.
| | - Md D Hossain
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
- School of Chemical and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
- School of Chemical and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Dimitris Vlassopoulos
- Institute of Electronic Structure & Laser, Foundation for Research & Technology Hellas (FORTH), 70013 Heraklion, Greece.
- Department of Materials Science & Technology, University of Crete, 70013 Heraklion, Greece.
| |
Collapse
|
49
|
Le DN, Hansen E, Khan HA, Kim B, Wiest O, Dong VM. Hydrogenation catalyst generates cyclic peptide stereocentres in sequence. Nat Chem 2018; 10:968-973. [PMID: 30061616 DOI: 10.1038/s41557-018-0089-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 05/22/2018] [Indexed: 11/09/2022]
Abstract
Molecular recognition plays a key role in enzyme-substrate specificity, the regulation of genes, and the treatment of diseases. Inspired by the power of molecular recognition in enzymatic processes, we sought to exploit its use in organic synthesis. Here we demonstrate how a synthetic rhodium-based catalyst can selectively bind a dehydroamino acid residue to initiate a sequential and stereoselective synthesis of cyclic peptides. Our combined experimental and theoretical study reveals the underpinnings of a cascade reduction that occurs with high stereocontrol and in one direction around a macrocyclic ring. As the catalyst can dissociate from the peptide, the C to N directionality of the hydrogenation reactions is controlled by catalyst-substrate recognition rather than a processive mechanism in which the catalyst remains bound to the macrocycle. This mechanistic insight provides a foundation for the use of cascade hydrogenations.
Collapse
Affiliation(s)
- Diane N Le
- Department of Chemistry, University of California, Irvine, CA, USA
| | - Eric Hansen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Hasan A Khan
- Department of Chemistry, University of California, Irvine, CA, USA.,Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Byoungmoo Kim
- Department of Chemistry, University of California, Irvine, CA, USA.,Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Olaf Wiest
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA. .,Lab of Computational Chemistry and Drug Design, School of Chemical Biology and Biotechnology, Peking University, Shenzhen, China.
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
50
|
Wu H, Acharyya A, Wu Y, Liu L, Jo H, Gai F, DeGrado WF. Design of a Short Thermally Stable α-Helix Embedded in a Macrocycle. Chembiochem 2018; 19:902-906. [PMID: 29417711 PMCID: PMC6512792 DOI: 10.1002/cbic.201800026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Indexed: 12/12/2022]
Abstract
Although helices play key roles in peptide-protein and protein-protein interactions, the helical conformation is generally unstable for short peptides (10-15 residues) in aqueous solution in the absence of their binding partners. Thus, stabilizing the helical conformation of peptides can lead to increases in binding potency, specificity, and stability towards proteolytic degradation. Helices have been successfully stabilized by introducing side chain-to-side chain crosslinks within the central portion of the helix. However, this approach leaves the ends of the helix free, thus leading to fraying and exposure of the non-hydrogen-bonded amide groups to solvent. Here, we develop a "capped-strapped" peptide strategy to stabilize helices by embedding the entire length of the helix within a macrocycle, which also includes a semirigid organic template as well as end-capping interactions. We have designed a ten-residue capped-strapped helical peptide that behaves like a miniprotein, with a cooperative thermal unfolding transition and Tm ≈70 °C, unprecedented for helical peptides of this length. The NMR structure determination confirmed the design, and X-ray crystallography revealed a novel quaternary structure with implications for foldamer design.
Collapse
Affiliation(s)
- Haifan Wu
- Department of Pharmaceutical Chemistry, University of
California San Francisco, CA 94158 (USA)
| | - Arusha Acharyya
- Department of Chemistry, University of Pennsylvania
Philadelphia, PA 19104 (USA)
| | - Yibing Wu
- Department of Pharmaceutical Chemistry, University of
California San Francisco, CA 94158 (USA)
| | - Lijun Liu
- DLX Scientific Lawrence, KS 66049 (USA)
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of
California San Francisco, CA 94158 (USA)
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania
Philadelphia, PA 19104 (USA)
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of
California San Francisco, CA 94158 (USA)
| |
Collapse
|