1
|
Yuan F, Zhou L, Wei X, Shang C, Zhang Z. Comparative Chloroplast Genomics Reveals Intrageneric Divergence in Salix. Int J Mol Sci 2025; 26:2248. [PMID: 40076872 PMCID: PMC11900436 DOI: 10.3390/ijms26052248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
As the most diverse genus of Salicaceae, Salix is primarily distributed in the temperate zone of the Northern Hemisphere, encompassing 350-500 species worldwide. The genus's evolutionary history is complex due to significant genetic differentiation. Chloroplast genes, being highly conserved, serve as effective tools for studying uniparental inheritance and evolution. In this study, we sequenced and assembled the chloroplast genomes of five representative Salix species. Phylogenetic relationships were constructed using chloroplast genome data, and structural differences among lineages were compared. These Salix chloroplast genomes exhibited a typical quadripartite structure, with lengths ranging from 154,444 to 155,725 bp. We successfully annotated 131 genes, including 88 protein-coding genes, 35 tRNA genes, and 8 rRNA genes. Clade I showed higher variability in the SSC region, identifying five highly variable regions: petA-psbJ, rps16-rps3, ndhD, ccsA-ndhD, and ndhG-ndhI. Two rapidly evolving genes, ndhI and ycf4, were also identified. The total length of insertions and deletions (InDels) in Clade I was 1046 bp. Clade II exhibited greater variability in the LSC region, with four highly variable regions being identified: trnK-trnQ, ndhC-trnV, trnV, and psdE-petL. Four rapidly evolving genes-infA, rpoC1, rps18, and ycf1-were identified. The total length of InDels in Clade II was 1282 bp. Therefore, this study elucidated the chloroplast genome evolution across different Salix lineages, thereby providing deeper insights into intrageneric phylogenetic relationships.
Collapse
Affiliation(s)
| | | | | | - Ce Shang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (F.Y.); (L.Z.); (X.W.)
| | - Zhixiang Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (F.Y.); (L.Z.); (X.W.)
| |
Collapse
|
2
|
Buysse SF, Pérez SG, Puzey JR, Garrison A, Bradburd GS, Oakley CG, Tonsor SJ, Picó FX, Josephs EB, Conner JK. Evaluating the Roles of Drift and Selection in Trait Loss along an Elevational Gradient. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598645. [PMID: 38915635 PMCID: PMC11195200 DOI: 10.1101/2024.06.12.598645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Traits that have lost function sometimes persist through evolutionary time. These traits may persist if there is not enough standing genetic variation for the trait to allow a response to selection, if selection against the trait is weak relative to drift, or if the trait has a residual function. To determine the evolutionary processes shaping whether nonfunctional traits are retained or lost, we investigated short stamens in 16 populations of Arabidopsis thaliana along an elevational cline in northeast Spain. We found a cline in short stamen number from retention of short stamens in high elevation populations to incomplete loss in low elevation populations. We did not find evidence that limited genetic variation constrains the loss of short stamens at high elevations, nor evidence for divergent selection on short stamens between high and low elevations. Finally, we identified loci associated with short stamens in northeast Spain that are different from loci associated with variation in short stamen number across latitudes from a previous study. Overall, we did not identify the evolutionary mechanisms contributing to an elevational cline in short stamen number but did identify different genetic loci underlying variation in short stamen along similar phenotypic clines.
Collapse
Affiliation(s)
- Sophia F. Buysse
- Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
- Kellogg Biological Station, Hickory Corners, MI 49060, USA
| | - Samuel G. Pérez
- Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
- Kellogg Biological Station, Hickory Corners, MI 49060, USA
| | - Joshua R. Puzey
- Department of Biology, William & Mary, Williamsburg, VA 23187, USA
| | - Ava Garrison
- Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
- Kellogg Biological Station, Hickory Corners, MI 49060, USA
| | - Gideon S. Bradburd
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christopher G. Oakley
- Department of Botany and Plant Pathology, and the Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Stephen J. Tonsor
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260 (deceased)
| | - F. Xavier Picó
- Departamento de Ecología y Evolución, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Sevilla 41092, Spain
| | - Emily B. Josephs
- Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Jeffrey K Conner
- Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
- Kellogg Biological Station, Hickory Corners, MI 49060, USA
| |
Collapse
|
3
|
Ezoe A, Seki M. Exploring the complexity of genome size reduction in angiosperms. PLANT MOLECULAR BIOLOGY 2024; 114:121. [PMID: 39485504 PMCID: PMC11530473 DOI: 10.1007/s11103-024-01518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024]
Abstract
The genome sizes of angiosperms decreased significantly more than the genome sizes of their ancestors (pteridophytes and gymnosperms). Decreases in genome size involve a highly complex process, with remnants of the genome size reduction scattered across the genome and not directly linked to specific genomic structures. This is because the associated mechanisms operate on a much smaller scale than the mechanisms mediating increases in genome size. This review thoroughly summarizes the available literature regarding the molecular mechanisms underlying genome size reductions and introduces Utricularia gibba and Arabidopsis thaliana as model species for the examination of the effects of these molecular mechanisms. Additionally, we propose that phosphorus deficiency and drought stress are the major external factors contributing to decreases in genome size. Considering these factors affect almost all land plants, angiosperms likely gained the mechanisms for genome size reductions. These environmental factors may affect the retention rates of deletions, while also influencing the mutation rates of deletions via the functional diversification of the proteins facilitating double-strand break repair. The biased retention and mutation rates of deletions may have synergistic effects that enhance deletions in intergenic regions, introns, transposable elements, duplicates, and repeats, leading to a rapid decrease in genome size. We suggest that these selection pressures and associated molecular mechanisms may drive key changes in angiosperms during recurrent cycles of genome size decreases and increases.
Collapse
Affiliation(s)
- Akihiro Ezoe
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan.
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.
| |
Collapse
|
4
|
Liu C, Gu W, Liu C, Shi X, Li B, Zhou Y. Comparative phenotypic and transcriptomic analysis reveals genotypic differences in nitrogen use efficiency in sorghum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109028. [PMID: 39146913 DOI: 10.1016/j.plaphy.2024.109028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Sorghum (Sorghumbicolor L.), a model for C4 grass and an emerging biofuel crop, is known for its robust tolerance to low input field. However, the focus on enhancing nitrogen use efficiency (NUE) in sorghum under low nitrogen (N) conditions has been limited. This study conducted hydroponic experiments and field trials with two sorghum inbred lines, contrasting in their N efficiency: the N-efficient (398B) and the N-inefficient (CS3541) inbred lines. The aim was to analyze the key factors influencing NUE by integrating phenotypic, physiological, and multi-omics approaches under N deficiency conditions. The field experiments revealed that 398B displayed superior NUE and yield performance compared to CS3541. In hydroponic experiments, the growth of 398B outperformed CS3541 following N deficiency, attributing to its higher photosynthetic and sustaining activity of N metabolism-related enzymes. Genomic and transcriptomic integration highlighted fewer genomic diversities and alterations in global gene expression in 398B, which were likely contributor to its high NUE. Additionally, co-expression network analysis suggested the involvement of key genes which impact N uptake efficiency (NUpE) and N utilization efficiency (NUtE) in both lines, such as an N transporter, Sobic.003G371000.v3.2leaf(NPF5.10) and a transcription factor, Sobic.002G202800.v3.2leaf(WRKY) in bolstering NUE under low-N stress. The findings collectively suggested that 398B achieved higher NUpE and NUtE, effectively coordinating photosynthesis and N metabolism to enhance NUE. The candidate genes regulating N uptake and utilization efficiencies could provide valuable insights for developing sorghum breeds with improved NUE, contributing to sustainable agricultural practices and bioenergy crop development.
Collapse
Affiliation(s)
- Chunjuan Liu
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Wendong Gu
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Chang Liu
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Xiaolong Shi
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Bang Li
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Yufei Zhou
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China.
| |
Collapse
|
5
|
Glover AN, Sousa VC, Ridenbaugh RD, Sim SB, Geib SM, Linnen CR. Recurrent selection shapes the genomic landscape of differentiation between a pair of host-specialized haplodiploids that diverged with gene flow. Mol Ecol 2024; 33:e17509. [PMID: 39165007 DOI: 10.1111/mec.17509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024]
Abstract
Understanding the genetics of adaptation and speciation is critical for a complete picture of how biodiversity is generated and maintained. Heterogeneous genomic differentiation between diverging taxa is commonly documented, with genomic regions of high differentiation interpreted as resulting from differential gene flow, linked selection and reduced recombination rates. Disentangling the roles of each of these non-exclusive processes in shaping genome-wide patterns of divergence is challenging but will enhance our knowledge of the repeatability of genomic landscapes across taxa. Here, we combine whole-genome resequencing and genome feature data to investigate the processes shaping the genomic landscape of differentiation for a sister-species pair of haplodiploid pine sawflies, Neodiprion lecontei and Neodiprion pinetum. We find genome-wide correlations between genome features and summary statistics are consistent with pervasive linked selection, with patterns of diversity and divergence more consistently predicted by exon density and recombination rate than the neutral mutation rate (approximated by dS). We also find that both global and local patterns of FST, dXY and π provide strong support for recurrent selection as the primary selective process shaping variation across pine sawfly genomes, with some contribution from balancing selection and lineage-specific linked selection. Because inheritance patterns for haplodiploid genomes are analogous to those of sex chromosomes, we hypothesize that haplodiploids may be especially prone to recurrent selection, even if gene flow occurred throughout divergence. Overall, our study helps fill an important taxonomic gap in the genomic landscape literature and contributes to our understanding of the processes that shape genome-wide patterns of genetic variation.
Collapse
Affiliation(s)
- Ashleigh N Glover
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Vitor C Sousa
- Department of Animal Biology, CE3C - Center for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, University of Lisbon, Lisbon, Lisboa, Portugal
| | - Ryan D Ridenbaugh
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Sheina B Sim
- USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, Hawaii, USA
| | - Scott M Geib
- USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, Hawaii, USA
| | | |
Collapse
|
6
|
Pei M, Yang P, Li J, Wang Y, Li J, Xu H, Li J. Comprehensive analysis of pepper (Capsicum annuum) RAV genes family and functional identification of CaRAV1 under chilling stress. BMC Genomics 2024; 25:731. [PMID: 39075389 PMCID: PMC11285464 DOI: 10.1186/s12864-024-10639-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Despite its known significance in plant abiotic stress responses, the role of the RAV gene family in the response of Capsicum annuum to chilling stress remains largely unexplored. RESULTS In this study, we identified and characterized six members of the CaRAV gene subfamily in pepper plants through genome-wide analysis. Subsequently, the CaRAV subfamily was classified into four branches based on homology with Arabidopsis thaliana, each exhibiting relatively conserved domains within the branch. We discovered that light response elements accounted for the majority of CaRAVs, whereas low-temperature response elements were specific to the NGA gene subfamily. After pepper plants were subjected to chilling stress, qRT‒PCR analysis revealed that CaRAV1, CaRAV2 and CaNGA1 were significantly induced in response to chilling stress, indicating that CaRAVs play a role in the response to chilling stress. Using virus-induced gene silencing (VIGS) vectors, we targeted key members of the CaRAV gene family. Under normal growth conditions, the MDA content and SOD enzyme activity of the silenced plants were slightly greater than those of the control plants, and the REC activity was significantly greater than that of the control plants. The levels of MDA and electrolyte leakage were greater in the silenced plants after they were exposed to chilling stress, and the POD and CAT enzyme activities were significantly lower than those in the control, which was particularly evident under repeated chilling stress. In addition, the relative expression of CaPOD and CaCAT was greater in V2 plants upon repeated chilling stress, especially CaCAT was significantly greater in V2 plants than in the other two silenced plants, with 3.29 and 1.10 increases within 12 and 24 h. These findings suggest that CaRAV1 and CaNGA1 positively regulate the response to chilling stress. CONCLUSIONS Silencing of key members of the CaRAV gene family results in increased susceptibility to chilling damage and reduced antioxidant enzyme activity in plants, particularly under repeated chilling stress. This study provides valuable information for understanding the classification and putative functions of RAV transcription factors in pepper plants.
Collapse
Affiliation(s)
- Minkun Pei
- College of Horticulture, Xinjiang Agriculture University, Urumqi, 830052, China
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661100, China
| | - Ping Yang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661100, China
| | - Jian Li
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661100, China
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, China
| | - Yanzhuang Wang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661100, China
- College of Horticulture and Forestry, Tarim University, Alar, 843300, China
| | - Juan Li
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661100, China
- College of Horticulture and Forestry, Tarim University, Alar, 843300, China
| | - Hongjun Xu
- College of Horticulture, Xinjiang Agriculture University, Urumqi, 830052, China.
| | - Jie Li
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661100, China.
| |
Collapse
|
7
|
Simpson JP, Kim CY, Kaur A, Weng JK, Dilkes B, Chapple C. Genome-wide association identifies a BAHD acyltransferase activity that assembles an ester of glucuronosylglycerol and phenylacetic acid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2169-2187. [PMID: 38558472 DOI: 10.1111/tpj.16737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/13/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
Genome-wide association studies (GWAS) are an effective approach to identify new specialized metabolites and the genes involved in their biosynthesis and regulation. In this study, GWAS of Arabidopsis thaliana soluble leaf and stem metabolites identified alleles of an uncharacterized BAHD-family acyltransferase (AT5G57840) associated with natural variation in three structurally related metabolites. These metabolites were esters of glucuronosylglycerol, with one metabolite containing phenylacetic acid as the acyl component of the ester. Knockout and overexpression of AT5G57840 in Arabidopsis and heterologous overexpression in Nicotiana benthamiana and Escherichia coli demonstrated that it is capable of utilizing phenylacetyl-CoA as an acyl donor and glucuronosylglycerol as an acyl acceptor. We, thus, named the protein Glucuronosylglycerol Ester Synthase (GGES). Additionally, phenylacetyl glucuronosylglycerol increased in Arabidopsis CYP79A2 mutants that overproduce phenylacetic acid and was lost in knockout mutants of UDP-sulfoquinovosyl: diacylglycerol sulfoquinovosyl transferase, an enzyme required for glucuronosylglycerol biosynthesis and associated with glycerolipid metabolism under phosphate-starvation stress. GGES is a member of a well-supported clade of BAHD family acyltransferases that arose by duplication and neofunctionalized during the evolution of the Brassicales within a larger clade that includes HCT as well as enzymes that synthesize other plant-specialized metabolites. Together, this work extends our understanding of the catalytic diversity of BAHD acyltransferases and uncovers a pathway that involves contributions from both phenylalanine and lipid metabolism.
Collapse
Affiliation(s)
- Jeffrey P Simpson
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Center for Plant Biology, West Lafayette, Indiana, 47907, USA
| | - Colin Y Kim
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Amanpreet Kaur
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Center for Plant Biology, West Lafayette, Indiana, 47907, USA
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, 02142, USA
- Department of Chemistry and Chemical Biology & Department of Bioengineering, Northeastern University, Boston, Massachusetts, 02120, USA
- Institute for Plant-Human Interface, Northeastern University, Boston, Massachusetts, 02120, USA
| | - Brian Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Center for Plant Biology, West Lafayette, Indiana, 47907, USA
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Center for Plant Biology, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
8
|
Li Y, Wang Q, Jia H, Ishikawa K, Kosami KI, Ueba T, Tsujimoto A, Yamanaka M, Yabumoto Y, Miki D, Sasaki E, Fukao Y, Fujiwara M, Kaneko-Kawano T, Tan L, Kojima C, Wing RA, Sebastian A, Nishimura H, Fukada F, Niu Q, Shimizu M, Yoshida K, Terauchi R, Shimamoto K, Kawano Y. An NLR paralog Pit2 generated from tandem duplication of Pit1 fine-tunes Pit1 localization and function. Nat Commun 2024; 15:4610. [PMID: 38816417 PMCID: PMC11139913 DOI: 10.1038/s41467-024-48943-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
NLR family proteins act as intracellular receptors. Gene duplication amplifies the number of NLR genes, and subsequent mutations occasionally provide modifications to the second gene that benefits immunity. However, evolutionary processes after gene duplication and functional relationships between duplicated NLRs remain largely unclear. Here, we report that the rice NLR protein Pit1 is associated with its paralogue Pit2. The two are required for the resistance to rice blast fungus but have different functions: Pit1 induces cell death, while Pit2 competitively suppresses Pit1-mediated cell death. During evolution, the suppression of Pit1 by Pit2 was probably generated through positive selection on two fate-determining residues in the NB-ARC domain of Pit2, which account for functional differences between Pit1 and Pit2. Consequently, Pit2 lost its plasma membrane localization but acquired a new function to interfere with Pit1 in the cytosol. These findings illuminate the evolutionary trajectory of tandemly duplicated NLR genes after gene duplication.
Collapse
Affiliation(s)
- Yuying Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Qiong Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Huimin Jia
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Kazuya Ishikawa
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Ken-Ichi Kosami
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Fruit Tree Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Ehime, 791-0112, Japan
| | - Takahiro Ueba
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Nara, 630-0101, Japan
| | - Atsumi Tsujimoto
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Nara, 630-0101, Japan
| | - Miki Yamanaka
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Nara, 630-0101, Japan
| | - Yasuyuki Yabumoto
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Nara, 630-0101, Japan
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Eriko Sasaki
- Faculty of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yoichiro Fukao
- Department of Bioinformatics, Ritsumeikan University, Shiga, 525-8577, Japan
| | | | - Takako Kaneko-Kawano
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Li Tan
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Chojiro Kojima
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Kanagawa, 240-8501, Japan
| | - Rod A Wing
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Alfino Sebastian
- Institute of Plant Science and Resources, Okayama University, Okayama, 710-0046, Japan
| | - Hideki Nishimura
- Institute of Plant Science and Resources, Okayama University, Okayama, 710-0046, Japan
| | - Fumi Fukada
- Institute of Plant Science and Resources, Okayama University, Okayama, 710-0046, Japan
| | - Qingfeng Niu
- Advanced Academy, Anhui Agricultural University, Research Centre for Biological Breeding Technology, Hefei, Anhui, 230036, China
| | - Motoki Shimizu
- Iwate Biotechnology Research Center, Iwate, 024-0003, Japan
| | - Kentaro Yoshida
- Graduate School of Agriculture, Kyoto University, Kyoto, 617-0001, Japan
| | - Ryohei Terauchi
- Iwate Biotechnology Research Center, Iwate, 024-0003, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, 617-0001, Japan
| | - Ko Shimamoto
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Nara, 630-0101, Japan
| | - Yoji Kawano
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
- Institute of Plant Science and Resources, Okayama University, Okayama, 710-0046, Japan.
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, 244-0813, Japan.
| |
Collapse
|
9
|
Jiang F, Yu X, Sun E, Gu S, Liu Y, Liu T. Mitochondrial genomes of four slug moths (Lepidoptera, Limacodidae): Genome description and phylogenetic implications. Ecol Evol 2024; 14:e11319. [PMID: 38694746 PMCID: PMC11057057 DOI: 10.1002/ece3.11319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
The family Limacodidae belongs to the superfamily Zygaenoidea, which includes 1672 species commonly referred to as slug moths. Limacodidae larvae are major pests for many economically important plant species and can cause human dermatitis. At present, the structure of the mitochondrial genome (mitogenome), phylogenetic position, and adaptive evolution of slug moths are poorly understood. Herein, the mitogenomes of Parasa lepida, Phlossa conjuncta, Thosea sinensis, and Setora sinensis were sequenced and compared with other available mitogenome sequences to better characterize the mitogenomic diversity and evolution of this moth family. The mitogenomes of P. lepida, P. conjuncta, T. sinensis, and S. sinensis were confirmed to be circular in structure with lengths of 15,575 bp, 15,553 bp, 15,535 bp, and 15,529 bp, respectively. The Limacodidae mitogenomes exhibited similar nucleotide composition, codon usage, RNA structure, and control region patterns, indicating the conservation of the mitogenome in the family Limacodidae. A sliding window, Ka/Ks, and genetic distance analyses revealed that the atp8 and nad6 genes exhibited the highest levels of variability and the most rapid evolutionary rates among the 13 protein-coding genes (PCGs) encoded in these Limacodidae mitogenomes, suggesting that they may offer value as candidate DNA markers. The phylogenetic analysis recovered the overall relationship as Tortricoidea + (Sesiidae + (Zygaenoidea + (Cossoidea/+Choreutoidea + (others)))). Within Zygaenoidea, Limacodidae was recovered as monophyletic, and the phylogenetic relationships were recovered as (Phaudidae + Zyganidae) + Limacodidae in all six phylogenetic trees. The analysis indicated that P. lepida, P. conjuncta, T. sinensis, and S. sinensis are members of the Limacodidae.
Collapse
Affiliation(s)
- Feng Jiang
- School of Basic Medical SciencesWannan Medical CollegeWuhuChina
- Anhui Provincial Key Laboratory of Biological Macro‐MoleculesWuhuChina
| | - Xu‐Dong Yu
- School of Basic Medical SciencesWannan Medical CollegeWuhuChina
| | - En‐Tao Sun
- School of Laboratory MedicineWannan Medical CollegeWuhuChina
| | - Sheng‐Li Gu
- School of Basic Medical SciencesWannan Medical CollegeWuhuChina
| | - Ying Liu
- School of Medical InformationWannan Medical CollegeWuhuChina
| | - Ting Liu
- School of Basic Medical SciencesWannan Medical CollegeWuhuChina
- Anhui Provincial Key Laboratory of Biological Macro‐MoleculesWuhuChina
| |
Collapse
|
10
|
Sutherland CA, Prigozhin DM, Monroe JG, Krasileva KV. High allelic diversity in Arabidopsis NLRs is associated with distinct genomic features. EMBO Rep 2024; 25:2306-2322. [PMID: 38528170 PMCID: PMC11093987 DOI: 10.1038/s44319-024-00122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024] Open
Abstract
Plants rely on Nucleotide-binding, Leucine-rich repeat Receptors (NLRs) for pathogen recognition. Highly variable NLRs (hvNLRs) show remarkable intraspecies diversity, while their low-variability paralogs (non-hvNLRs) are conserved between ecotypes. At a population level, hvNLRs provide new pathogen-recognition specificities, but the association between allelic diversity and genomic and epigenomic features has not been established. Our investigation of NLRs in Arabidopsis Col-0 has revealed that hvNLRs show higher expression, less gene body cytosine methylation, and closer proximity to transposable elements than non-hvNLRs. hvNLRs show elevated synonymous and nonsynonymous nucleotide diversity and are in chromatin states associated with an increased probability of mutation. Diversifying selection maintains variability at a subset of codons of hvNLRs, while purifying selection maintains conservation at non-hvNLRs. How these features are established and maintained, and whether they contribute to the observed diversity of hvNLRs is key to understanding the evolution of plant innate immune receptors.
Collapse
Affiliation(s)
- Chandler A Sutherland
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Daniil M Prigozhin
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - J Grey Monroe
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
11
|
Wang J, Hu H, Jiang X, Zhang S, Yang W, Dong J, Yang T, Ma Y, Zhou L, Chen J, Nie S, Liu C, Ning Y, Zhu X, Liu B, Yang J, Zhao J. Pangenome-Wide Association Study and Transcriptome Analysis Reveal a Novel QTL and Candidate Genes Controlling both Panicle and Leaf Blast Resistance in Rice. RICE (NEW YORK, N.Y.) 2024; 17:27. [PMID: 38607544 PMCID: PMC11014823 DOI: 10.1186/s12284-024-00707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Cultivating rice varieties with robust blast resistance is the most effective and economical way to manage the rice blast disease. However, rice blast disease comprises leaf and panicle blast, which are different in terms of resistance mechanisms. While many blast resistant rice cultivars were bred using genes conferring resistance to only leaf or panicle blast, mining durable and effective quantitative trait loci (QTLs) for both panicle and leaf blast resistance is of paramount importance. In this study, we conducted a pangenome-wide association study (panGWAS) on 9 blast resistance related phenotypes using 414 international diverse rice accessions from an international rice panel. This approach led to the identification of 74 QTLs associated with rice blast resistance. One notable locus, qPBR1, validated in a F4:5 population and fine-mapped in a Heterogeneous Inbred Family (HIF), exhibited broad-spectrum, major and durable blast resistance throughout the growth period. Furthermore, we performed transcriptomic analysis of 3 resistant and 3 sensitive accessions at different time points after infection, revealing 3,311 differentially expressed genes (DEGs) potentially involved in blast resistance. Integration of the above results identified 6 candidate genes within the qPBR1 locus, with no significant negative effect on yield. The results of this study provide valuable germplasm resources, QTLs, blast response genes and candidate functional genes for developing rice varieties with enduring and broad-spectrum blast resistance. The qPBR1, in particular, holds significant potential for breeding new rice varieties with comprehensive and durable resistance throughout their growth period.
Collapse
Affiliation(s)
- Jian Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Haifei Hu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Xianya Jiang
- Yangjiang Institute of Agricultural Sciences, Yangjiang, 529500, China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Wu Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Tifeng Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Yamei Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Lian Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Jiansong Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Shuai Nie
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Chuanguang Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoyuan Zhu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China
| | - Bin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Jianyuan Yang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China.
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China.
| |
Collapse
|
12
|
Sundaram B, Tweedell RE, Prasanth Kumar S, Kanneganti TD. The NLR family of innate immune and cell death sensors. Immunity 2024; 57:674-699. [PMID: 38599165 PMCID: PMC11112261 DOI: 10.1016/j.immuni.2024.03.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024]
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptors, also known as nucleotide-binding leucine-rich repeat receptors (NLRs), are a family of cytosolic pattern recognition receptors that detect a wide variety of pathogenic and sterile triggers. Activation of specific NLRs initiates pro- or anti-inflammatory signaling cascades and the formation of inflammasomes-multi-protein complexes that induce caspase-1 activation to drive inflammatory cytokine maturation and lytic cell death, pyroptosis. Certain NLRs and inflammasomes act as integral components of larger cell death complexes-PANoptosomes-driving another form of lytic cell death, PANoptosis. Here, we review the current understanding of the evolution, structure, and function of NLRs in health and disease. We discuss the concept of NLR networks and their roles in driving cell death and immunity. An improved mechanistic understanding of NLRs may provide therapeutic strategies applicable across infectious and inflammatory diseases and in cancer.
Collapse
Affiliation(s)
- Balamurugan Sundaram
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rebecca E Tweedell
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
13
|
Wang C, Lan J, Wang J, He W, Lu W, Lin Y, Luo J. Population structure and genetic diversity in Eucalyptus pellita based on SNP markers. FRONTIERS IN PLANT SCIENCE 2023; 14:1278427. [PMID: 38162312 PMCID: PMC10757378 DOI: 10.3389/fpls.2023.1278427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/25/2023] [Indexed: 01/03/2024]
Abstract
Eucalyptus pellita has the characteristics of rapid growth and high resistance. However, there is little research on molecular breeding of E. pellita, which is essential to shortening breeding life and selecting quality varieties. Therefore, a crucial step before selective breeding can be carried out to increase the wood quality of E. pellita is identifying genetic diversity and population structure using single nucleotide polymorphism (SNP) markers. In this study, the genetic diversity of 1st generation 196 E. pellita families from 23 geographically defined was assessed using 1,677,732 SNP markers identified by whole genome resequencing. SNP annotation showed that the ratio of non-synonymous to synonymous coding mutations was 0.83. Principal component analysis (PCA), phylogenetic tree, and population structure analysis permitted the families to be categorized into three groups, one of which (G2) contains most of the Indonesian (IDN) and Papua New Guinea (PNG) families. Genetic relationship analysis showed that IDN was closely related to PNG. Genetic diversity analysis showed that He, PIC, I, and H mean values were 0.2502, 0.2027, 0.3815, and 0.2680, respectively. PCA analysis classified various provenances in QLD into two categories (G1 and G3). The genetic diversity of G3 was higher than that of G2. The results of genetic differentiation (Fst) showed that PNG region was divided into two groups (PNG1 and PNG2), the Fst (0.172) between QLD and PNG2 region was higher than QLD and PNG1, and the Fst (0.024) between IDN and PNG1 is smaller than IDN and PNG2. A Mantel test revealed a positive correlation between the genetic and geographic distance of E. pellita. This study has a certain reference value for genetic identification, germplasm preservation, and breeding of E. pellita. Also, it provides a basis for subsequent association analysis to explore excellent alleles and introduction.
Collapse
Affiliation(s)
- Chubiao Wang
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Jun Lan
- Forestry Science Research Institute, Guangxi Dongmen Forest Farm, Fusui, China
| | - Jianzhong Wang
- Forestry Science Research Institute, Guangxi Dongmen Forest Farm, Fusui, China
| | - Wenliang He
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Wanhong Lu
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Yan Lin
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Jianzhong Luo
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| |
Collapse
|
14
|
Contreras MP, Lüdke D, Pai H, Toghani A, Kamoun S. NLR receptors in plant immunity: making sense of the alphabet soup. EMBO Rep 2023; 24:e57495. [PMID: 37602936 PMCID: PMC10561179 DOI: 10.15252/embr.202357495] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Plants coordinately use cell-surface and intracellular immune receptors to perceive pathogens and mount an immune response. Intracellular events of pathogen recognition are largely mediated by immune receptors of the nucleotide binding and leucine rich-repeat (NLR) classes. Upon pathogen perception, NLRs trigger a potent broad-spectrum immune reaction, usually accompanied by a form of programmed cell death termed the hypersensitive response. Some plant NLRs act as multifunctional singleton receptors which combine pathogen detection and immune signaling. However, NLRs can also function in higher order pairs and networks of functionally specialized interconnected receptors. In this article, we cover the basic aspects of plant NLR biology with an emphasis on NLR networks. We highlight some of the recent advances in NLR structure, function, and activation and discuss emerging topics such as modulator NLRs, pathogen suppression of NLRs, and NLR bioengineering. Multi-disciplinary approaches are required to disentangle how these NLR immune receptor pairs and networks function and evolve. Answering these questions holds the potential to deepen our understanding of the plant immune system and unlock a new era of disease resistance breeding.
Collapse
Affiliation(s)
| | - Daniel Lüdke
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | - Hsuan Pai
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | | | - Sophien Kamoun
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| |
Collapse
|
15
|
Baumgarten L, Pieper B, Song B, Mane S, Lempe J, Lamb J, Cooke EL, Srivastava R, Strütt S, Žanko D, Casimiro PGP, Hallab A, Cartolano M, Tattersall AD, Huettel B, Filatov DA, Pavlidis P, Neuffer B, Bazakos C, Schaefer H, Mott R, Gan X, Alonso-Blanco C, Laurent S, Tsiantis M. Pan-European study of genotypes and phenotypes in the Arabidopsis relative Cardamine hirsuta reveals how adaptation, demography, and development shape diversity patterns. PLoS Biol 2023; 21:e3002191. [PMID: 37463141 PMCID: PMC10353826 DOI: 10.1371/journal.pbio.3002191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/10/2023] [Indexed: 07/20/2023] Open
Abstract
We study natural DNA polymorphisms and associated phenotypes in the Arabidopsis relative Cardamine hirsuta. We observed strong genetic differentiation among several ancestry groups and broader distribution of Iberian relict strains in European C. hirsuta compared to Arabidopsis. We found synchronization between vegetative and reproductive development and a pervasive role for heterochronic pathways in shaping C. hirsuta natural variation. A single, fast-cycling ChFRIGIDA allele evolved adaptively allowing range expansion from glacial refugia, unlike Arabidopsis where multiple FRIGIDA haplotypes were involved. The Azores islands, where Arabidopsis is scarce, are a hotspot for C. hirsuta diversity. We identified a quantitative trait locus (QTL) in the heterochronic SPL9 transcription factor as a determinant of an Azorean morphotype. This QTL shows evidence for positive selection, and its distribution mirrors a climate gradient that broadly shaped the Azorean flora. Overall, we establish a framework to explore how the interplay of adaptation, demography, and development shaped diversity patterns of 2 related plant species.
Collapse
Affiliation(s)
- Lukas Baumgarten
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Bjorn Pieper
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Baoxing Song
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sébastien Mane
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Janne Lempe
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jonathan Lamb
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Elizabeth L. Cooke
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Rachita Srivastava
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Stefan Strütt
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Danijela Žanko
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Asis Hallab
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Maria Cartolano
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Bruno Huettel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Pavlos Pavlidis
- Institute of Computer Science, Foundation for Research and Technology, Crete, Greece
| | - Barbara Neuffer
- Department of Botany, University of Osnabrück, Osnabrück, Germany
| | - Christos Bazakos
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Hanno Schaefer
- Department Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Richard Mott
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Xiangchao Gan
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Carlos Alonso-Blanco
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
16
|
Samelak-Czajka A, Wojciechowski P, Marszalek-Zenczak M, Figlerowicz M, Zmienko A. Differences in the intraspecies copy number variation of Arabidopsis thaliana conserved and nonconserved miRNA genes. Funct Integr Genomics 2023; 23:120. [PMID: 37036577 PMCID: PMC10085913 DOI: 10.1007/s10142-023-01043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/11/2023]
Abstract
MicroRNAs (miRNAs) regulate gene expression by RNA interference mechanism. In plants, miRNA genes (MIRs) which are grouped into conserved families, i.e. they are present among the different plant taxa, are involved in the regulation of many developmental and physiological processes. The roles of the nonconserved MIRs-which are MIRs restricted to one plant family, genus, or even species-are less recognized; however, many of them participate in the responses to biotic and abiotic stresses. Both over- and underproduction of miRNAs may influence various biological processes. Consequently, maintaining intracellular miRNA homeostasis seems to be crucial for the organism. Deletions and duplications in the genomic sequence may alter gene dosage and/or activity. We evaluated the extent of copy number variations (CNVs) among Arabidopsis thaliana (Arabidopsis) MIRs in over 1000 natural accessions, using population-based analysis of the short-read sequencing data. We showed that the conserved MIRs were unlikely to display CNVs and their deletions were extremely rare, whereas nonconserved MIRs presented moderate variation. Transposon-derived MIRs displayed exceptionally high diversity. Conversely, MIRs involved in the epigenetic control of transposons reactivated during development were mostly invariable. MIR overlap with the protein-coding genes also limited their variability. At the expression level, a higher rate of nonvariable, nonconserved miRNAs was detectable in Col-0 leaves, inflorescence, and siliques compared to nonconserved variable miRNAs, although the expression of both groups was much lower than that of the conserved MIRs. Our data indicate that CNV rate of Arabidopsis MIRs is related with their age, function, and genomic localization.
Collapse
Affiliation(s)
- Anna Samelak-Czajka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Pawel Wojciechowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
- Institute of Computing Science, Faculty of Computing and Telecommunications, Poznan University of Technology, 60-965, Poznan, Poland
| | | | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland.
| | - Agnieszka Zmienko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland.
| |
Collapse
|
17
|
Ruperao P, Gandham P, Odeny DA, Mayes S, Selvanayagam S, Thirunavukkarasu N, Das RR, Srikanda M, Gandhi H, Habyarimana E, Manyasa E, Nebie B, Deshpande SP, Rathore A. Exploring the sorghum race level diversity utilizing 272 sorghum accessions genomic resources. FRONTIERS IN PLANT SCIENCE 2023; 14:1143512. [PMID: 37008459 PMCID: PMC10063887 DOI: 10.3389/fpls.2023.1143512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Due to evolutionary divergence, sorghum race populations exhibit significant genetic and morphological variation. A k-mer-based sorghum race sequence comparison identified the conserved k-mers of all 272 accessions from sorghum and the race-specific genetic signatures identified the gene variability in 10,321 genes (PAVs). To understand sorghum race structure, diversity and domestication, a deep learning-based variant calling approach was employed in a set of genotypic data derived from a diverse panel of 272 sorghum accessions. The data resulted in 1.7 million high-quality genome-wide SNPs and identified selective signature (both positive and negative) regions through a genome-wide scan with different (iHS and XP-EHH) statistical methods. We discovered 2,370 genes associated with selection signatures including 179 selective sweep regions distributed over 10 chromosomes. Co-localization of these regions undergoing selective pressure with previously reported QTLs and genes revealed that the signatures of selection could be related to the domestication of important agronomic traits such as biomass and plant height. The developed k-mer signatures will be useful in the future to identify the sorghum race and for trait and SNP markers for assisting in plant breeding programs.
Collapse
Affiliation(s)
- Pradeep Ruperao
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Prasad Gandham
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, LA, United States
| | - Damaris A. Odeny
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sean Mayes
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Nepolean Thirunavukkarasu
- Genomics and Molecular Breeding Lab, Indian Council of Agricultural Research (ICAR) - Indian Institute of Millets Research, Hyderabad, India
| | - Roma R. Das
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Manasa Srikanda
- Department of Statistics, Osmania University, Hyderabad, India
| | - Harish Gandhi
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Ephrem Habyarimana
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Eric Manyasa
- Sorghum Breeding Program, International Crops Research Institute for the Semi-Arid Tropics, Nairobi, Kenya
| | - Baloua Nebie
- International Maize and Wheat Improvement Center (CIMMYT), Dakar, Senegal
| | | | - Abhishek Rathore
- Excellence in Breeding, International Maize and Wheat Improvement Center (CIMMYT), Hyderabad, India
| |
Collapse
|
18
|
Hu Y, Wang X, Xu Y, Yang H, Tong Z, Tian R, Xu S, Yu L, Guo Y, Shi P, Huang S, Yang G, Shi S, Wei F. Molecular mechanisms of adaptive evolution in wild animals and plants. SCIENCE CHINA. LIFE SCIENCES 2023; 66:453-495. [PMID: 36648611 PMCID: PMC9843154 DOI: 10.1007/s11427-022-2233-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
Wild animals and plants have developed a variety of adaptive traits driven by adaptive evolution, an important strategy for species survival and persistence. Uncovering the molecular mechanisms of adaptive evolution is the key to understanding species diversification, phenotypic convergence, and inter-species interaction. As the genome sequences of more and more non-model organisms are becoming available, the focus of studies on molecular mechanisms of adaptive evolution has shifted from the candidate gene method to genetic mapping based on genome-wide scanning. In this study, we reviewed the latest research advances in wild animals and plants, focusing on adaptive traits, convergent evolution, and coevolution. Firstly, we focused on the adaptive evolution of morphological, behavioral, and physiological traits. Secondly, we reviewed the phenotypic convergences of life history traits and responding to environmental pressures, and the underlying molecular convergence mechanisms. Thirdly, we summarized the advances of coevolution, including the four main types: mutualism, parasitism, predation and competition. Overall, these latest advances greatly increase our understanding of the underlying molecular mechanisms for diverse adaptive traits and species interaction, demonstrating that the development of evolutionary biology has been greatly accelerated by multi-omics technologies. Finally, we highlighted the emerging trends and future prospects around the above three aspects of adaptive evolution.
Collapse
Affiliation(s)
- Yibo Hu
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaoping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yongchao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zeyu Tong
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ran Tian
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Shuangquan Huang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| | - Guang Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Fuwen Wei
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
19
|
Allelic variation in the Arabidopsis TNL CHS3/CSA1 immune receptor pair reveals two functional cell-death regulatory modes. Cell Host Microbe 2022; 30:1701-1716.e5. [PMID: 36257318 DOI: 10.1016/j.chom.2022.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 01/26/2023]
Abstract
Some plant NLR immune receptors are encoded in head-to-head "sensor-executor" pairs that function together. Alleles of the NLR pair CHS3/CSA1 form three clades. The clade 1 sensor CHS3 contains an integrated domain (ID) with homology to regulatory domains, which is lacking in clades 2 and 3. In this study, we defined two cell-death regulatory modes for CHS3/CSA1 pairs. One is mediated by ID domain on clade 1 CHS3, and the other relies on CHS3/CSA1 pairs from all clades detecting perturbation of an associated pattern-recognition receptor (PRR) co-receptor. Our data support the hypothesis that an ancestral Arabidopsis CHS3/CSA1 pair gained a second recognition specificity and regulatory mechanism through ID acquisition while retaining its original specificity as a "guard" against PRR co-receptor perturbation. This likely comes with a cost, since both ID and non-ID alleles of the pair persist in diverse Arabidopsis populations through balancing selection.
Collapse
|
20
|
Linder RA, Zabanavar B, Majumder A, Hoang HCS, Delgado VG, Tran R, La VT, Leemans SW, Long AD. Adaptation in Outbred Sexual Yeast is Repeatable, Polygenic and Favors Rare Haplotypes. Mol Biol Evol 2022; 39:msac248. [PMID: 36366952 PMCID: PMC9728589 DOI: 10.1093/molbev/msac248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We carried out a 200 generation Evolve and Resequence (E&R) experiment initiated from an outbred diploid recombined 18-way synthetic base population. Replicate populations were evolved at large effective population sizes (>105 individuals), exposed to several different chemical challenges over 12 weeks of evolution, and whole-genome resequenced. Weekly forced outcrossing resulted in an average between adjacent-gene per cell division recombination rate of ∼0.0008. Despite attempts to force weekly sex, roughly half of our populations evolved cheaters and appear to be evolving asexually. Focusing on seven chemical stressors and 55 total evolved populations that remained sexual we observed large fitness gains and highly repeatable patterns of genome-wide haplotype change within chemical challenges, with limited levels of repeatability across chemical treatments. Adaptation appears highly polygenic with almost the entire genome showing significant and consistent patterns of haplotype change with little evidence for long-range linkage disequilibrium in a subset of populations for which we sequenced haploid clones. That is, almost the entire genome is under selection or drafting with selected sites. At any given locus adaptation was almost always dominated by one of the 18 founder's alleles, with that allele varying spatially and between treatments, suggesting that selection acts primarily on rare variants private to a founder or haplotype blocks harboring multiple mutations.
Collapse
Affiliation(s)
- Robert A Linder
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Behzad Zabanavar
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Arundhati Majumder
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Hannah Chiao-Shyan Hoang
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Vanessa Genesaret Delgado
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Ryan Tran
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Vy Thoai La
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Simon William Leemans
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine
| | - Anthony D Long
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| |
Collapse
|
21
|
Bog M, Braglia L, Morello L, Noboa Melo KI, Schubert I, Shchepin ON, Sree KS, Xu S, Lam E, Appenroth KJ. Strategies for Intraspecific Genotyping of Duckweed: Comparison of Five Orthogonal Methods Applied to the Giant Duckweed Spirodela polyrhiza. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223033. [PMID: 36432762 PMCID: PMC9696241 DOI: 10.3390/plants11223033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 06/12/2023]
Abstract
The predominantly vegetative propagating duckweeds are of growing commercial interest. Since clonal accessions within a respective species can vary considerably with respect to their physiological as well as biochemical traits, it is critical to be able to track the clones of species of interest after their characterization. Here, we compared the efficacy of five different genotyping methods for Spirodela polyrhiza, a species with very low intraspecific sequence variations, including polymorphic NB-ARC-related loci, tubulin-gene-based polymorphism (TBP), simple sequence repeat variations (SSR), multiplexed ISSR genotyping by sequencing (MIG-seq), and low-coverage, reduced-representation genome sequencing (GBS). Four of the five approaches could distinguish 20 to 22 genotypes out of the 23 investigated clones, while TBP resolved just seven genotypes. The choice for a particular method for intraspecific genotyping can depend on the research question and the project budget, while the combination of orthogonal methods may increase the confidence and resolution for the results obtained.
Collapse
Affiliation(s)
- Manuela Bog
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489 Greifswald, Germany
| | - Luca Braglia
- Istituto Biologia e Biotecnologia Agraria, Via Bassini 15, 20131 Milano, Italy
| | - Laura Morello
- Istituto Biologia e Biotecnologia Agraria, Via Bassini 15, 20131 Milano, Italy
| | - Karen I. Noboa Melo
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489 Greifswald, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466 Stadt Seeland, Germany
| | - Oleg N. Shchepin
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489 Greifswald, Germany
| | - K. Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye 671320, India
| | - Shuqing Xu
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Eric Lam
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Klaus J. Appenroth
- Matthias Schleiden Institute—Plant Physiology, University of Jena, 07743 Jena, Germany
| |
Collapse
|
22
|
Rushworth CA, Wagner MR, Mitchell-Olds T, Anderson JT. The Boechera model system for evolutionary ecology. AMERICAN JOURNAL OF BOTANY 2022; 109:1939-1961. [PMID: 36371714 DOI: 10.1002/ajb2.16090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Model systems in biology expand the research capacity of individuals and the community. Closely related to Arabidopsis, the genus Boechera has emerged as an important ecological model owing to the ability to integrate across molecular, functional, and eco-evolutionary approaches. Boechera species are broadly distributed in relatively undisturbed habitats predominantly in western North America and provide one of the few experimental systems for identification of ecologically important genes through genome-wide association studies and investigations of selection with plants in their native habitats. The ecologically, evolutionarily, and agriculturally important trait of apomixis (asexual reproduction via seeds) is common in the genus, and field experiments suggest that abiotic and biotic environments shape the evolution of sex. To date, population genetic studies have focused on the widespread species B. stricta, detailing population divergence and demographic history. Molecular and ecological studies show that balancing selection maintains genetic variation in ~10% of the genome, and ecological trade-offs contribute to complex trait variation for herbivore resistance, flowering phenology, and drought tolerance. Microbiome analyses have shown that host genotypes influence leaf and root microbiome composition, and the soil microbiome influences flowering phenology and natural selection. Furthermore, Boechera offers numerous opportunities for investigating biological responses to global change. In B. stricta, climate change has induced a shift of >2 weeks in the timing of first flowering since the 1970s, altered patterns of natural selection, generated maladaptation in previously locally-adapted populations, and disrupted life history trade-offs. Here we review resources and results for this eco-evolutionary model system and discuss future research directions.
Collapse
Affiliation(s)
| | - Maggie R Wagner
- Department of Ecology and Evolutionary Biology, Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, 66045, USA
| | | | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
23
|
A genetically linked pair of NLR immune receptors shows contrasting patterns of evolution. Proc Natl Acad Sci U S A 2022; 119:e2116896119. [PMID: 35771942 PMCID: PMC9271155 DOI: 10.1073/pnas.2116896119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Throughout their evolution, plant nucleotide-binding leucine-rich-repeat receptors (NLRs) have acquired widely divergent unconventional integrated domains that enhance their ability to detect pathogen effectors. However, the functional dynamics that drive the evolution of NLRs with integrated domains (NLR-IDs) remain poorly understood. Here, we reconstructed the evolutionary history of an NLR locus prone to unconventional domain integration and experimentally tested hypotheses about the evolution of NLR-IDs. We show that the rice (Oryza sativa) NLR Pias recognizes the effector AVR-Pias of the blast fungal pathogen Magnaporthe oryzae. Pias consists of a functionally specialized NLR pair, the helper Pias-1 and the sensor Pias-2, that is allelic to the previously characterized Pia pair of NLRs: the helper RGA4 and the sensor RGA5. Remarkably, Pias-2 carries a C-terminal DUF761 domain at a similar position to the heavy metal-associated (HMA) domain of RGA5. Phylogenomic analysis showed that Pias-2/RGA5 sensor NLRs have undergone recurrent genomic recombination within the genus Oryza, resulting in up to six sequence-divergent domain integrations. Allelic NLRs with divergent functions have been maintained transspecies in different Oryza lineages to detect sequence-divergent pathogen effectors. By contrast, Pias-1 has retained its NLR helper activity throughout evolution and is capable of functioning together with the divergent sensor-NLR RGA5 to respond to AVR-Pia. These results suggest that opposite selective forces have driven the evolution of paired NLRs: highly dynamic domain integration events maintained by balancing selection for sensor NLRs, in sharp contrast to purifying selection and functional conservation of immune signaling for helper NLRs.
Collapse
|
24
|
Rahmani RS, Decap D, Fostier J, Marchal K. BLSSpeller to discover novel regulatory motifs in maize. DNA Res 2022; 29:6651838. [PMID: 35904558 PMCID: PMC9358016 DOI: 10.1093/dnares/dsac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
With the decreasing cost of sequencing and availability of larger numbers of sequenced genomes, comparative genomics is becoming increasingly attractive to complement experimental techniques for the task of transcription factor (TF) binding site identification. In this study, we redesigned BLSSpeller, a motif discovery algorithm, to cope with larger sequence datasets. BLSSpeller was used to identify novel motifs in Zea mays in a comparative genomics setting with 16 monocot lineages. We discovered 61 motifs of which 20 matched previously described motif models in Arabidopsis. In addition, novel, yet uncharacterized motifs were detected, several of which are supported by available sequence-based and/or functional data. Instances of the predicted motifs were enriched around transcription start sites and contained signatures of selection. Moreover, the enrichment of the predicted motif instances in open chromatin and TF binding sites indicates their functionality, supported by the fact that genes carrying instances of these motifs were often found to be co-expressed and/or enriched in similar GO functions. Overall, our study unveiled several novel candidate motifs that might help our understanding of the genotype to phenotype association in crops.
Collapse
Affiliation(s)
- Razgar Seyed Rahmani
- Department of Plant Biotechnology and Bioinformatics, Ghent University , Gent, Belgium
- Department of Information Technology, IDLab, Ghent University—imec , Gent, Belgium
| | - Dries Decap
- Department of Information Technology, IDLab, Ghent University—imec , Gent, Belgium
| | - Jan Fostier
- Department of Information Technology, IDLab, Ghent University—imec , Gent, Belgium
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Ghent University , Gent, Belgium
- Department of Information Technology, IDLab, Ghent University—imec , Gent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria , Pretoria, South Africa
| |
Collapse
|
25
|
Genomic selection and genetic architecture of agronomic traits during modern rapeseed breeding. Nat Genet 2022; 54:694-704. [PMID: 35484301 DOI: 10.1038/s41588-022-01055-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 03/18/2022] [Indexed: 01/06/2023]
Abstract
Rapeseed (Brassica napus L.) is an important oil-producing crop for the world. Its adaptation, yield and quality have been considerably improved in recent decades, but the genomic basis underlying successful breeding selection remains unclear. Hence, we conducted a comprehensive genomic assessment of rapeseed in the breeding process based on the whole-genome resequencing of 418 diverse rapeseed accessions. We unraveled the genomic basis for the selection of adaptation and agronomic traits. Genome-wide association studies identified 628 associated loci-related causative candidate genes for 56 agronomically important traits, including plant architecture and yield traits. Furthermore, we uncovered nonsynonymous mutations in plausible candidate genes for agronomic traits with significant differences in allele frequency distributions across the improvement process, including the ribosome recycling factor (BnRRF) gene for seed weight. This study provides insights into the genomic basis for improving rapeseed varieties and a valuable genomic resource for genome-assisted rapeseed breeding.
Collapse
|
26
|
Wang Y, Jiang B, Wu Y, He X, Liu L. Rapid intraspecies evolution of fitness effects of yeast genes. Genome Biol Evol 2022; 14:6575331. [PMID: 35482054 PMCID: PMC9113246 DOI: 10.1093/gbe/evac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 11/14/2022] Open
Abstract
Organisms within species have numerous genetic and phenotypic variations. Growing evidences show intraspecies variation of mutant phenotypes may be more complicated than expected. Current studies on intraspecies variations of mutant phenotypes are limited to just a few strains. This study investigated the intraspecies variation of fitness effects of 5,630 gene mutants in ten Saccharomyces cerevisiae strains using CRISPR–Cas9 screening. We found that the variability of fitness effects induced by gene disruptions is very large across different strains. Over 75% of genes affected cell fitness in a strain-specific manner to varying degrees. The strain specificity of the fitness effect of a gene is related to its evolutionary and functional properties. Subsequent analysis revealed that younger genes, especially those newly acquired in S. cerevisiae species, are more likely to be strongly strain-specific. Intriguingly, there seems to exist a ceiling of fitness effect size for strong strain-specific genes, and among them, the newly acquired genes are still evolving and have yet to reach this ceiling. Additionally, for a large proportion of protein complexes, the strain specificity profile is inconsistent among genes encoding the same complex. Taken together, these results offer a genome-wide map of intraspecies variation for fitness effect as a mutant phenotype and provide an updated insight on intraspecies phenotypic evolution.
Collapse
Affiliation(s)
- Yayu Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Bei Jiang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yue Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xionglei He
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Li Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
27
|
Global Identification and Characterization of C2 Domain-Containing Proteins Associated with Abiotic Stress Response in Rice (Oryza sativa L.). Int J Mol Sci 2022; 23:ijms23042221. [PMID: 35216337 PMCID: PMC8875736 DOI: 10.3390/ijms23042221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/20/2022] Open
Abstract
C2 domain-containing proteins (C2DPs) have been identified in different genomes that contain single or multiple C2 domains in their C- or N-terminal. It possesses higher functional activity in the transmembrane regions. The identification of C2 domains were reported in a previous study, such as multiple C2 domains and transmembrane-region proteins (MCTPs) and N-terminal-TM-C2 domain proteins (NTMC2s) of rice, Arabidopsis thaliana, and cotton, whereas the C2DP gene family in rice has not been comprehensively studied, and the role of the C2DP gene in rice in response to abiotic stress is not yet fully understood. In this study, we identified 82 C2DPs in the rice genome and divided them into seven groups through phylogenetic analysis. The synteny analysis revealed that duplication events were either exhibited within the genome of rice or between the genomes of rice and other species. Through the analysis of cis-acting elements in promoters, expression profiles, and qRT-PCR results, the functions of OsC2DPs were found to be widely distributed in diverse tissues and were extensively involved in phytohormones-related and abiotic stresses response in rice. The prediction of the microRNA (miRNA) targets of OsC2DPs revealed the possibility of regulation by consistent miRNAs. Notably, OsC2DP50/51/52 as a co-tandem duplication exhibited similar expression variations and involved the coincident miRNA-regulation pathway. Moreover, the results of the genotypic variation and haplotype analysis revealed that OsC2DP17, OsC2DP29, and OsC2DP49 were associated with cold stress responses. These findings provided comprehensive insights for characterizations of OsC2DPs in rice as well as for their roles for abiotic stress.
Collapse
|
28
|
Priyanatha C, Torkamaneh D, Rajcan I. Genome-Wide Association Study of Soybean Germplasm Derived From Canadian × Chinese Crosses to Mine for Novel Alleles to Improve Seed Yield and Seed Quality Traits. FRONTIERS IN PLANT SCIENCE 2022; 13:866300. [PMID: 35419011 PMCID: PMC8996715 DOI: 10.3389/fpls.2022.866300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 05/16/2023]
Abstract
Genome-wide association study (GWAS) has emerged in the past decade as a viable tool for identifying beneficial alleles from a genomic diversity panel. In an ongoing effort to improve soybean [Glycine max (L.) Merr.], which is the third largest field crop in Canada, a GWAS was conducted to identify novel alleles underlying seed yield and seed quality and agronomic traits. The genomic panel consisted of 200 genotypes including lines derived from several generations of bi-parental crosses between modern Canadian × Chinese cultivars (CD-CH). The genomic diversity panel was field evaluated at two field locations in Ontario in 2019 and 2020. Genotyping-by-sequencing (GBS) was conducted and yielded almost 32 K high-quality SNPs. GWAS was conducted using Fixed and random model Circulating Probability Unification (FarmCPU) model on the following traits: seed yield, seed protein concentration, seed oil concentration, plant height, 100 seed weight, days to maturity, and lodging score that allowed to identify five QTL regions controlling seed yield and seed oil and protein content. A candidate gene search identified a putative gene for each of the three traits. The results of this GWAS study provide insight into potentially valuable genetic resources residing in Chinese modern cultivars that breeders may use to further improve soybean seed yield and seed quality traits.
Collapse
Affiliation(s)
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
- *Correspondence: Istvan Rajcan,
| |
Collapse
|
29
|
Zhao H, Sun S, Ding Y, Wang Y, Yue X, Du X, Wei Q, Fan G, Sun H, Lou Y, Yang H, Wang J, Xu X, Li L, Yang K, Xu H, Wang J, Zhu C, Wang S, Shan X, Hou Y, Wang Y, Fei B, Liu X, Jiang Z, Gao Z. Analysis of 427 genomes reveals moso bamboo population structure and genetic basis of property traits. Nat Commun 2021; 12:5466. [PMID: 34526499 PMCID: PMC8443721 DOI: 10.1038/s41467-021-25795-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
Moso bamboo (Phyllostachys edulis) is an economically and ecologically important nontimber forestry species. Further development of this species as a sustainable bamboo resource has been hindered by a lack of population genome information. Here, we report a moso bamboo genomic variation atlas of 5.45 million single-nucleotide polymorphisms (SNPs) from whole-genome resequencing of 427 individuals covering 15 representative geographic areas. We uncover low genetic diversity, high genotype heterozygosity, and genes under balancing selection underlying moso bamboo population adaptation. We infer its demographic history with one bottleneck and its recently small population without a rebound. We define five phylogenetic groups and infer that one group probably originated by a single-origin event from East China. Finally, we conduct genome-wide association analysis of nine important property-related traits to identify candidate genes, many of which are involved in cell wall, carbohydrate metabolism, and environmental adaptation. These results provide a foundation and resources for understanding moso bamboo evolution and the genetic mechanisms of agriculturally important traits.
Collapse
Affiliation(s)
- Hansheng Zhao
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, 100102 Beijing, China ,Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, 100102 Beijing, China
| | - Shuai Sun
- grid.21155.320000 0001 2034 1839BGI-Qingdao, BGI-Shenzhen, 266555 Qingdao, China ,China National GeneBank, BGI-Shenzhen, 518120 Shenzhen, China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yulong Ding
- grid.410625.40000 0001 2293 4910Bamboo Research Institute, Nanjing Forestry University, 210037 Nanjing, China
| | - Yue Wang
- grid.21155.320000 0001 2034 1839BGI-Qingdao, BGI-Shenzhen, 266555 Qingdao, China ,China National GeneBank, BGI-Shenzhen, 518120 Shenzhen, China
| | - Xianghua Yue
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, 100102 Beijing, China ,Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, 100102 Beijing, China
| | - Xiao Du
- grid.21155.320000 0001 2034 1839BGI-Qingdao, BGI-Shenzhen, 266555 Qingdao, China ,China National GeneBank, BGI-Shenzhen, 518120 Shenzhen, China ,grid.21155.320000 0001 2034 1839BGI-Shenzhen, 518083 Shenzhen, China
| | - Qiang Wei
- grid.410625.40000 0001 2293 4910Bamboo Research Institute, Nanjing Forestry University, 210037 Nanjing, China
| | - Guangyi Fan
- grid.21155.320000 0001 2034 1839BGI-Qingdao, BGI-Shenzhen, 266555 Qingdao, China ,China National GeneBank, BGI-Shenzhen, 518120 Shenzhen, China ,grid.21155.320000 0001 2034 1839BGI-Shenzhen, 518083 Shenzhen, China ,grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, 518083 Shenzhen, China
| | - Huayu Sun
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, 100102 Beijing, China ,Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, 100102 Beijing, China
| | - Yongfeng Lou
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, 100102 Beijing, China ,Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, 100102 Beijing, China
| | - Huanming Yang
- grid.21155.320000 0001 2034 1839BGI-Shenzhen, 518083 Shenzhen, China ,grid.21155.320000 0001 2034 1839Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, 518120 Shenzhen, China
| | - Jian Wang
- grid.21155.320000 0001 2034 1839BGI-Shenzhen, 518083 Shenzhen, China ,grid.13402.340000 0004 1759 700XJames D. Watson Institute of Genome Science, 310008 Hangzhou, China
| | - Xun Xu
- grid.21155.320000 0001 2034 1839BGI-Shenzhen, 518083 Shenzhen, China ,grid.21155.320000 0001 2034 1839Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, 518120 Shenzhen, China
| | - Lichao Li
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, 100102 Beijing, China ,Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, 100102 Beijing, China
| | - Kebin Yang
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, 100102 Beijing, China ,Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, 100102 Beijing, China
| | - Hao Xu
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, 100102 Beijing, China ,Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, 100102 Beijing, China
| | - Jiongliang Wang
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, 100102 Beijing, China ,Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, 100102 Beijing, China
| | - Chenglei Zhu
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, 100102 Beijing, China ,Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, 100102 Beijing, China
| | - Sining Wang
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, 100102 Beijing, China ,Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, 100102 Beijing, China
| | - Xuemeng Shan
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, 100102 Beijing, China ,Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, 100102 Beijing, China
| | - Yinguang Hou
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, 100102 Beijing, China ,Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, 100102 Beijing, China
| | - Yu Wang
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, 100102 Beijing, China ,Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, 100102 Beijing, China
| | - Benhua Fei
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, 100102 Beijing, China ,Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, 100102 Beijing, China
| | - Xin Liu
- grid.21155.320000 0001 2034 1839BGI-Shenzhen, 518083 Shenzhen, China ,grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, 518083 Shenzhen, China ,grid.21155.320000 0001 2034 1839BGI-Beijing, BGI-Shenzhen, 100101 Beijing, China ,grid.21155.320000 0001 2034 1839BGI-Fuyang, BGI-Shenzhen, 236009 Fuyang, China
| | - Zehui Jiang
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, 100102 Beijing, China ,Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, 100102 Beijing, China
| | - Zhimin Gao
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, 100102 Beijing, China ,Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, 100102 Beijing, China
| |
Collapse
|
30
|
Zhan S, Griswold C, Lukens L. Zea mays RNA-seq estimated transcript abundances are strongly affected by read mapping bias. BMC Genomics 2021; 22:285. [PMID: 33874908 PMCID: PMC8056621 DOI: 10.1186/s12864-021-07577-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/30/2021] [Indexed: 11/27/2022] Open
Abstract
Background Genetic variation for gene expression is a source of phenotypic variation for natural and agricultural species. The common approach to map and to quantify gene expression from genetically distinct individuals is to assign their RNA-seq reads to a single reference genome. However, RNA-seq reads from alleles dissimilar to this reference genome may fail to map correctly, causing transcript levels to be underestimated. Presently, the extent of this mapping problem is not clear, particularly in highly diverse species. We investigated if mapping bias occurred and if chromosomal features associated with mapping bias. Zea mays presents a model species to assess these questions, given it has genotypically distinct and well-studied genetic lines. Results In Zea mays, the inbred B73 genome is the standard reference genome and template for RNA-seq read assignments. In the absence of mapping bias, B73 and a second inbred line, Mo17, would each have an approximately equal number of regulatory alleles that increase gene expression. Remarkably, Mo17 had 2–4 times fewer such positively acting alleles than did B73 when RNA-seq reads were aligned to the B73 reference genome. Reciprocally, over one-half of the B73 alleles that increased gene expression were not detected when reads were aligned to the Mo17 genome template. Genes at dissimilar chromosomal ends were strongly affected by mapping bias, and genes at more similar pericentromeric regions were less affected. Biased transcript estimates were higher in untranslated regions and lower in splice junctions. Bias occurred across software and alignment parameters. Conclusions Mapping bias very strongly affects gene transcript abundance estimates in maize, and bias varies across chromosomal features. Individual genome or transcriptome templates are likely necessary for accurate transcript estimation across genetically variable individuals in maize and other species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07577-3.
Collapse
Affiliation(s)
- Shuhua Zhan
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
| | - Cortland Griswold
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Lewis Lukens
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
31
|
Guo M, Zhang Z, Li S, Lian Q, Fu P, He Y, Qiao J, Xu K, Liu L, Wu M, Du Z, Li S, Wang J, Shao P, Yu Q, Xu G, Li D, Wang Y, Tian S, Zhao J, Feng X, Li R, Jiang W, Zhao X. Genomic analyses of diverse wild and cultivated accessions provide insights into the evolutionary history of jujube. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:517-531. [PMID: 32946650 PMCID: PMC7955879 DOI: 10.1111/pbi.13480] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 07/31/2020] [Accepted: 09/07/2020] [Indexed: 05/07/2023]
Abstract
The Chinese jujube (Ziziphus jujuba Mill.), a member of the Rhamnaceae family, is an important perennial fruit tree crop of substantial economic, ecological and nutritional value, and is also used as a traditional herbal medicine. Here, we report the resequencing of 493 jujube accessions, including 202 wild and 291 cultivated accessions at >16× depth. Our population genomic analyses revealed that the Shanxi-Shaanxi area of China was jujube's primary domestication centre and that jujube was then disseminated into East China before finally extending into South China. Divergence events analysis indicated that Ziziphus acidojujuba and Ziziphus jujuba diverged around 2.7 Mya, suggesting the interesting possibility that a long pre-domestication period may have occurred prior to human intervention. Using the large genetic polymorphism data set, we identified a 15-bp tandem insertion in the promoter of the jujube ortholog of the POLLEN DEFECTIVE IN GUIDANCE 1 (POD1) gene, which was strongly associated with seed-setting rate. Integrating genome-wide association study (GWAS), transcriptome data, expression analysis and transgenic validation in tomato, we identified a DA3/UBIQUITIN-SPECIFIC PROTEASE 14 (UBP14) ortholog, which negatively regulate fruit weight in jujube. We also identified candidate genes, which have likely influenced the selection of fruit sweetness and crispness texture traits among fresh and dry jujubes. Our study not only illuminates the genetic basis of jujube evolution and domestication and provides a deep and rich genomic resource to facilitate both crop improvement and hypothesis-driven basic research, but also identifies multiple agriculturally important genes for this unique perennial tree fruit species.
Collapse
Affiliation(s)
- Mingxin Guo
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
- Jujube Research CenterLuoyang Normal UniversityLuoyangChina
| | | | - Shipeng Li
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
- Jujube Research CenterLuoyang Normal UniversityLuoyangChina
| | - Qun Lian
- Genome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Pengcheng Fu
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Yali He
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Jinxin Qiao
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Keke Xu
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Linpei Liu
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Miaoyan Wu
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Zheran Du
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Sunan Li
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Junjie Wang
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Peiyin Shao
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Qiang Yu
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Gan Xu
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Dengke Li
- Pomology InstituteShanxi Academy of Agricultural SciencesTaiguChina
| | - Yongkang Wang
- Pomology InstituteShanxi Academy of Agricultural SciencesTaiguChina
| | - Shan Tian
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
- Jujube Research CenterLuoyang Normal UniversityLuoyangChina
| | - Jing Zhao
- Novogene Bioinformatics InstituteBeijingChina
| | - Xue Feng
- Novogene Bioinformatics InstituteBeijingChina
| | - Ruiqiang Li
- Novogene Bioinformatics InstituteBeijingChina
| | | | - Xusheng Zhao
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
- Jujube Research CenterLuoyang Normal UniversityLuoyangChina
| |
Collapse
|
32
|
Torkamaneh D, Laroche J, Valliyodan B, O'Donoughue L, Cober E, Rajcan I, Vilela Abdelnoor R, Sreedasyam A, Schmutz J, Nguyen HT, Belzile F. Soybean (Glycine max) Haplotype Map (GmHapMap): a universal resource for soybean translational and functional genomics. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:324-334. [PMID: 32794321 DOI: 10.1101/534578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 05/27/2023]
Abstract
Here, we describe a worldwide haplotype map for soybean (GmHapMap) constructed using whole-genome sequence data for 1007 Glycine max accessions and yielding 14.9 million variants as well as 4.3 M tag single-nucleotide polymorphisms (SNPs). When sampling random subsets of these accessions, the number of variants and tag SNPs plateaued beyond approximately 800 and 600 accessions, respectively. This suggests extensive coverage of diversity within the cultivated soybean. GmHapMap variants were imputed onto 21 618 previously genotyped accessions with up to 96% success for common alleles. A local association analysis was performed with the imputed data using markers located in a 1-Mb region known to contribute to seed oil content and enabled us to identify a candidate causal SNP residing in the NPC1 gene. We determined gene-centric haplotypes (407 867 GCHs) for the 55 589 genes and showed that such haplotypes can help to identify alleles that differ in the resulting phenotype. Finally, we predicted 18 031 putative loss-of-function (LOF) mutations in 10 662 genes and illustrated how such a resource can be used to explore gene function. The GmHapMap provides a unique worldwide resource for applied soybean genomics and breeding.
Collapse
Affiliation(s)
- Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Jérôme Laroche
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
| | - Babu Valliyodan
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Louise O'Donoughue
- CÉROM, Centre de recherche Sur Les Grains Inc., Saint-Mathieu de Beloeil, QC, Canada
| | - Elroy Cober
- Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Ricardo Vilela Abdelnoor
- Brazilian Corporation of Agricultural Research (Embrapa Soja), Warta County, PR, Brazil
- Londrina State University (UEL), Londrina, PR, Brazil
| | | | - Jeremy Schmutz
- Institute for Biotechnology, HudsonAlpha, Huntsville, AL, USA
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Henry T Nguyen
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - François Belzile
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
| |
Collapse
|
33
|
Wan WL, Kim ST, Castel B, Charoennit N, Chae E. Genetics of autoimmunity in plants: an evolutionary genetics perspective. THE NEW PHYTOLOGIST 2021; 229:1215-1233. [PMID: 32970825 DOI: 10.1111/nph.16947] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/12/2020] [Indexed: 05/14/2023]
Abstract
Autoimmunity in plants has been found in numerous hybrids as a form of hybrid necrosis and mutant panels. Uncontrolled cell death is a main cellular outcome of autoimmunity, which negatively impacts growth. Its occurrence highlights the vulnerable nature of the plant immune system. Genetic investigation of autoimmunity in hybrid plants revealed that extreme variation in the immune receptor repertoire is a major contributor, reflecting an evolutionary conundrum that plants face in nature. In this review, we discuss natural variation in the plant immune system and its contribution to fitness. The value of autoimmunity genetics lies in its ability to identify combinations of a natural immune receptor and its partner that are predisposed to triggering autoimmunity. The network of immune components for autoimmunity becomes instrumental in revealing mechanistic details of how immune receptors recognize cellular invasion and activate signaling. The list of autoimmunity-risk variants also allows us to infer evolutionary processes contributing to their maintenance in the natural population. Our approach to autoimmunity, which integrates mechanistic understanding and evolutionary genetics, has the potential to serve as a prognosis tool to optimize immunity in crops.
Collapse
Affiliation(s)
- Wei-Lin Wan
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Sang-Tae Kim
- Department of Life Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea
| | - Baptiste Castel
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Nuri Charoennit
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Eunyoung Chae
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| |
Collapse
|
34
|
Tello-Ruiz MK, Naithani S, Gupta P, Olson A, Wei S, Preece J, Jiao Y, Wang B, Chougule K, Garg P, Elser J, Kumari S, Kumar V, Contreras-Moreira B, Naamati G, George N, Cook J, Bolser D, D’Eustachio P, Stein LD, Gupta A, Xu W, Regala J, Papatheodorou I, Kersey PJ, Flicek P, Taylor C, Jaiswal P, Ware D. Gramene 2021: harnessing the power of comparative genomics and pathways for plant research. Nucleic Acids Res 2021; 49:D1452-D1463. [PMID: 33170273 PMCID: PMC7779000 DOI: 10.1093/nar/gkaa979] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/09/2020] [Indexed: 01/27/2023] Open
Abstract
Gramene (http://www.gramene.org), a knowledgebase founded on comparative functional analyses of genomic and pathway data for model plants and major crops, supports agricultural researchers worldwide. The resource is committed to open access and reproducible science based on the FAIR data principles. Since the last NAR update, we made nine releases; doubled the genome portal's content; expanded curated genes, pathways and expression sets; and implemented the Domain Informational Vocabulary Extraction (DIVE) algorithm for extracting gene function information from publications. The current release, #63 (October 2020), hosts 93 reference genomes-over 3.9 million genes in 122 947 families with orthologous and paralogous classifications. Plant Reactome portrays pathway networks using a combination of manual biocuration in rice (320 reference pathways) and orthology-based projections to 106 species. The Reactome platform facilitates comparison between reference and projected pathways, gene expression analyses and overlays of gene-gene interactions. Gramene integrates ontology-based protein structure-function annotation; information on genetic, epigenetic, expression, and phenotypic diversity; and gene functional annotations extracted from plant-focused journals using DIVE. We train plant researchers in biocuration of genes and pathways; host curated maize gene structures as tracks in the maize genome browser; and integrate curated rice genes and pathways in the Plant Reactome.
Collapse
Affiliation(s)
| | - Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Parul Gupta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Andrew Olson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sharon Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Justin Preece
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Yinping Jiao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Bo Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kapeel Chougule
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Priyanka Garg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Sunita Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Vivek Kumar
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Bruno Contreras-Moreira
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Guy Naamati
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Nancy George
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Justin Cook
- Informatics and Bio-computing Program, Ontario Institute of Cancer Research, Toronto M5G 1L7, Canada
| | - Daniel Bolser
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
- Current affiliation: Geromics Inc., Cambridge CB1 3NF, UK
| | - Peter D’Eustachio
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lincoln D Stein
- Adaptive Oncology Program, Ontario Institute for Cancer Research, Toronto M5G 0A3, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Amit Gupta
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX 78758, USA
| | - Weijia Xu
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX 78758, USA
| | - Jennifer Regala
- American Society of Plant Biologists, Rockville, MD 20855-2768, USA
- Current affiliation: American Urological Association, Linthicum, MD 21090, USA
| | - Irene Papatheodorou
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Paul J Kersey
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
- Current affiliation: Royal Botanic Gardens, Kew Richmond, Surrey TW9 3AE, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Crispin Taylor
- American Society of Plant Biologists, Rockville, MD 20855-2768, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- USDA ARS NAA Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| |
Collapse
|
35
|
Kim MS, Lozano R, Kim JH, Bae DN, Kim ST, Park JH, Choi MS, Kim J, Ok HC, Park SK, Gore MA, Moon JK, Jeong SC. The patterns of deleterious mutations during the domestication of soybean. Nat Commun 2021; 12:97. [PMID: 33397978 PMCID: PMC7782591 DOI: 10.1038/s41467-020-20337-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023] Open
Abstract
Globally, soybean is a major protein and oil crop. Enhancing our understanding of the soybean domestication and improvement process helps boost genomics-assisted breeding efforts. Here we present a genome-wide variation map of 10.6 million single-nucleotide polymorphisms and 1.4 million indels for 781 soybean individuals which includes 418 domesticated (Glycine max), 345 wild (Glycine soja), and 18 natural hybrid (G. max/G. soja) accessions. We describe the enhanced detection of 183 domestication-selective sweeps and the patterns of putative deleterious mutations during domestication and improvement. This predominantly selfing species shows 7.1% reduction of overall deleterious mutations in domesticated soybean relative to wild soybean and a further 1.4% reduction from landrace to improved accessions. The detected domestication-selective sweeps also show reduced levels of deleterious alleles. Importantly, genotype imputation with this resource increases the mapping resolution of genome-wide association studies for seed protein and oil traits in a soybean diversity panel.
Collapse
Affiliation(s)
- Myung-Shin Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Korea
- Plant Immunity Research Center, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Roberto Lozano
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Ji Hong Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Korea
| | - Dong Nyuk Bae
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Korea
| | - Sang-Tae Kim
- Department of Life Science, The Catholic University of Korea, Bucheon, 14662, Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Korea
| | - Man Soo Choi
- National Institute of Crop Science, Rural Development Administration, Wanju, Jeonbuk, 55365, Korea
| | - Jaehyun Kim
- National Institute of Crop Science, Rural Development Administration, Wanju, Jeonbuk, 55365, Korea
| | - Hyun-Choong Ok
- National Institute of Crop Science, Rural Development Administration, Wanju, Jeonbuk, 55365, Korea
| | - Soo-Kwon Park
- National Institute of Crop Science, Rural Development Administration, Wanju, Jeonbuk, 55365, Korea
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Jung-Kyung Moon
- National Institute of Crop Science, Rural Development Administration, Wanju, Jeonbuk, 55365, Korea.
- Agricultural Genome Center, National Academy of Agricultural Sciences, Rural Development Administration, Jeonju, Jeonbuk, 55365, Korea.
| | - Soon-Chun Jeong
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Korea.
| |
Collapse
|
36
|
Wang J, Chen J, Li X, Cui H. RNA-Seq transcriptome analysis to identify candidate genes involved in non-target site-based mesosulfuron-methyl resistance in Beckmannia syzigachne. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104738. [PMID: 33357560 DOI: 10.1016/j.pestbp.2020.104738] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
American sloughgrass (Beckmannia syzigachne Steud.) has become a dominant weed in fields with rice-wheat rotation. Moreover, herbicide resistance has rendered weed control difficult. We identified a biotype showing resistance to ALS inhibitor mesosulfuron-methyl with a resistant index 3.3, but without any ALS mutation. This study aims to identify and confirm the factors associated with non-target site resistance of this biotype to mesosulfuron-methyl using RNA-Seq. 118,111 unigenes were assembled, and 50.9% of these were annotated across seven databases. Eleven contigs related to metabolic resistance were identified based on differential expression via RNA-Seq which include a novel resistance-related transcription factor (MYC3) and two disease resistance proteins were also identified (At1g58602 and At1g15890). Fold changes in expression of these genes in comparison M-R vs. M-S ranged from 3.9 to 11.6, as confirmed by qPCR. The expression of a contig annotated as cytochrome P450 (CYP86B1) in resistant individuals was over 3 times higher than that in sensitive individuals at 0-72 h after mesosulfuron-methyl treatment. A similar trend was noted for three other genes annotated as glutathione S-transferase (GST), namely GST-T3, GST-U6, and GST-U14; the expression of GST-U6 in resistant individuals was up to 142.3 times higher than that in sensitive individuals at 24 h after mesosulfuron-methyl treatment. In addition, GST activity in resistant individuals was 2.1 to 5.3 times higher than that in sensitive individuals. The GR50 of resistant biotype decreased from 24.4 to 11.3 g a.i. ha-1 after P450 inhibitor malathion treatment. This study identified a cytochrome P450 gene CYP86B1 and three GST genes GST-T3, GST-U6, and GST-U14 that have higher expression in mesosulfuron-methyl resistant B. syzigachne, suggesting that both P450- and GST-based activities could be involved in resistance.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingchao Chen
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangju Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hailan Cui
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
37
|
Genome-wide SNPs reveal complex fine scale population structure in the California market squid fishery (Doryteuthis opalescens). CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01321-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Chakraborty J, Ghosh P. Advancement of research on plant NLRs evolution, biochemical activity, structural association, and engineering. PLANTA 2020; 252:101. [PMID: 33180185 DOI: 10.1007/s00425-020-03512-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
In this review, we have included evolution of plant intracellular immune receptors, oligomeric complex formation, enzymatic action, engineering, and mechanisms of immune inspection for appropriate defense outcomes. NLR (Nucleotide binding oligomerization domain containing leucine-rich repeat) proteins are the intracellular immune receptors that recognize pathogen-derived virulence factors to confer effector-triggered immunity (ETI). Activation of plant defense by the NLRs are often conveyed through N-terminal Toll-like/ IL-1 receptor (TIR) or non-TIR (coiled-coils or CC) domains. Homodimerization or self-association property of CC/ TIR domains of plant NLRs contribute to their auto-activity and induction of in planta ectopic cell death. High resolution crystal structures of Arabidopsis thaliana RPS4TIR, L6TIR, SNC1TIR, RPP1TIR and Muscadinia rotundifolia RPV1TIR showed that interaction is mediated through one or two distinct interfaces i.e., αA and αE helices comprise AE interface and αD and αE helices were found to form DE interface. By contrast, conserved helical regions were determined for CC domains of plant NLRs. Evolutionary history of NLRs diversification has shown that paired forms were originated from NLR singletons. Plant TIRs executed NAD+ hydrolysis activity for cell death promotion. Plant NLRs were found to form large oligomeric complexes as observed in animal inflammasomes. We have also discussed different protein engineering methods includes domain shuffling, and decoy modification that increase effector recognition spectrum of plant NLRs. In summary, our review highlights structural basis of perception of the virulence factors by NLRs or NLR pairs to design novel classes of plant immune receptors.
Collapse
Affiliation(s)
| | - Prithwi Ghosh
- Department of Botany, Narajole Raj College, Narajole, Paschim Medinipur, 721211, West Bengal, India
| |
Collapse
|
39
|
He S, Dong X, Zhang G, Fan W, Duan S, Shi H, Li D, Li R, Chen G, Long G, Zhao Y, Chen M, Yan M, Yang J, Lu Y, Zhou Y, Chen W, Dong Y, Yang S. High quality genome of Erigeron breviscapus provides a reference for herbal plants in Asteraceae. Mol Ecol Resour 2020; 21:153-169. [PMID: 32985109 PMCID: PMC7756436 DOI: 10.1111/1755-0998.13257] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 01/02/2023]
Abstract
Erigeron breviscapus is an important medicinal plant in Compositae and the first species to realize the whole process from the decoding of the draft genome sequence to scutellarin biosynthesis in yeast. However, the previous low‐quality genome assembly has hindered the optimization of candidate genes involved in scutellarin synthesis and the development of molecular‐assisted breeding based on the genome. Here, the E. breviscapus genome was updated using PacBio RSII sequencing data and Hi‐C data, and increased in size from 1.2 Gb to 1.43 Gb, with a scaffold N50 of 156.82 Mb and contig N50 of 140.95 kb, and a total of 43,514 protein‐coding genes were obtained and oriented onto nine pseudo‐chromosomes, thus becoming the third plant species assembled to chromosome level after sunflower and lettuce in Compositae. Fourteen genes with evidence for positive selection were identified and found to be related to leaf morphology, flowering and secondary metabolism. The number of genes in some gene families involved in flavonoid biosynthesis in E. breviscapus have been significantly expanded. In particular, additional candidate genes involved in scutellarin biosynthesis, such as flavonoid‐7‐O‐glucuronosyltransferase genes (F7GATs) were identified using updated genome. In addition, three candidate genes encoding indole‐3‐pyruvate monooxygenase YUCCA2 (YUC2), serine carboxypeptidase‐like 18 (SCPL18), and F‐box protein (FBP), respectively, were identified to be probably related to leaf development and flowering by resequencing 99 individuals. These results provided a substantial genetic basis for improving agronomic and quality traits of E. breviscapus, and provided a platform for improving other draft genome assemblies to chromosome‐level.
Collapse
Affiliation(s)
- Simei He
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Xiao Dong
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming, China
| | - Guanghui Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Wei Fan
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Shengchang Duan
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming, China
| | - Hong Shi
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Dawei Li
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Rui Li
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Geng Chen
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Guangqiang Long
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Yan Zhao
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Mo Chen
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Mi Yan
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Jianli Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yingchun Lu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Yanli Zhou
- Plant Germplasm and Genomics Center, The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wei Chen
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming, China
| | - Yang Dong
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming, China
| | - Shengchao Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
40
|
Wang J, Chen J, Li X, Li D, Li Z, Cui H. Pro-197-Ser Mutation in ALS and High-Level GST Activities: Multiple Resistance to ALS and ACCase Inhibitors in Beckmannia syzigachne. FRONTIERS IN PLANT SCIENCE 2020; 11:572610. [PMID: 33101340 PMCID: PMC7556300 DOI: 10.3389/fpls.2020.572610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/11/2020] [Indexed: 06/02/2023]
Abstract
American sloughgrass (Beckmannia syzigachne Steud.) is one of the most troublesome weeds infesting wheat and canola fields in China. Some biotypes cannot be controlled, either by acetolactate synthase (ALS) or acetyl coenzyme A carboxylase (ACCase) inhibitors, which are the main herbicides for controlling this weed. However, very few studies have investigated multiple resistance mechanism in B. syzigachne. In this study, a B. syzigachne biotype with a high resistance to ALS inhibitors we have reported was also showed relatively lower resistance to ACCase inhibitors, with a resistance index around 7. RNA-seq analysis was used to investigate the factors responsible for multiple resistance, and 60,108 unigenes were assembled by de novo transcriptome assembly and then annotated across eight databases. A Pro-197-Ser mutation was identified in the ALS gene by SNPs analysis and validated by PCR, while no mutation was identified in the ACCase gene. Nineteen candidate metabolic genes were screened and their overexpression was confirmed by qPCR. The expression of GST-T3 and GST-U6 in resistant plants ranged from 7.5- to 109.4-folds than that in susceptible ones at different times after two kinds of herbicide treatment. In addition, GST activities in resistant plants were 3.0-5.0 times higher than that in susceptible plants. Other novel resistance factors also showed high correlation with multiple resistance which included four genes encoding disease resistance proteins, a transcription factor (MYC3), and one gene conferring blight resistance. In this research, a B. syzigachne biotype was confirmed to have evolved multiple resistance to ACCase and ALS inhibitors. The Pro-197-Ser mutation in ALS gene and high-level GST activities were confirmed responsible for the multiple resistance. Characterized disease-resistance proteins, transcription factor, and blight-resistance proteins may play an essential role in these multiple herbicide resistance.
Collapse
|
41
|
Woodruff GC, Teterina AA. Degradation of the Repetitive Genomic Landscape in a Close Relative of Caenorhabditis elegans. Mol Biol Evol 2020; 37:2549-2567. [PMID: 32359146 PMCID: PMC7475029 DOI: 10.1093/molbev/msaa107] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The abundance, diversity, and genomic distribution of repetitive elements is highly variable among species. These patterns are thought to be driven in part by reproductive mode and the interaction of selection and recombination, and recombination rates typically vary by chromosomal position. In the nematode Caenorhabditis elegans, repetitive elements are enriched at chromosome arms and depleted on centers, and this mirrors the chromosomal distributions of other genomic features such as recombination rate. How conserved is this genomic landscape of repeats, and what evolutionary forces maintain it? To address this, we compared the genomic organization of repetitive elements across five Caenorhabditis species with chromosome-level assemblies. As previously reported, repeat content is enriched on chromosome arms in most Caenorhabditis species, and no obvious patterns of repeat content associated with reproductive mode were observed. However, the fig-associated C. inopinata has experienced repetitive element expansion and reveals no association of global repeat density with chromosome position. Patterns of repeat superfamily specific distributions reveal this global pattern is driven largely by a few repeat superfamilies that in C. inopinata have expanded in number and have weak associations with chromosome position. Additionally, 15% of predicted protein-coding genes in C. inopinata align to transposon-related proteins. When these are excluded, C. inopinata has no enrichment of genes in chromosome centers, in contrast to its close relatives who all have such clusters. Forward evolutionary simulations reveal that chromosomal heterogeneity in recombination rate alone can generate structured repetitive genomic landscapes when insertions are weakly deleterious, whereas chromosomal heterogeneity in the fitness effects of transposon insertion can promote such landscapes across a variety of evolutionary scenarios. Thus, patterns of gene density along chromosomes likely contribute to global repetitive landscapes in this group, although other historical or genomic factors are needed to explain the idiosyncrasy of genomic organization of various transposable element taxa within C. inopinata. Taken together, these results highlight the power of comparative genomics and evolutionary simulations in testing hypotheses regarding the causes of genome organization.
Collapse
Affiliation(s)
- Gavin C Woodruff
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR
| | - Anastasia A Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| |
Collapse
|
42
|
Zhang L, Sun PY, Xie HK, Zhang YH, Zhang YY, Peng XM, Yang Z. Characterization of γ-Radiation-Induced DNA Polymorphisms in the M1 Population of the Japonica Rice Variety Gaogengnuo by Whole-Genome Resequencing. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420060149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Lian S, Zhou Y, Liu Z, Gong A, Cheng L. The differential expression patterns of paralogs in response to stresses indicate expression and sequence divergences. BMC PLANT BIOLOGY 2020; 20:277. [PMID: 32546126 PMCID: PMC7298774 DOI: 10.1186/s12870-020-02460-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/24/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Theoretically, paralogous genes generated through whole genome duplications should share identical expression levels due to their identical sequences and chromatin environments. However, functional divergences and expression differences have arisen due to selective pressures throughout evolution. A comprehensive investigation of the expression patterns of paralogous gene pairs in response to various stresses and a study of correlations between the expression levels and sequence divergences of the paralogs are needed. RESULTS In this study, we analyzed the expression patterns of paralogous genes under different types of stress and investigated the correlations between the expression levels and sequence divergences of the paralogs. We analyzed the differential expression patterns of the paralogs under four different types of stress (drought, cold, infection, and herbivory) and classified them into three main types according to their expression patterns. We then further analyzed the differential expression patterns under various degrees of stress and constructed corresponding co-expression networks of differentially expressed paralogs and transcription factors. Finally, we investigated the correlations between the expression levels and sequence divergences of the paralogs and identified positive correlations between expression level and sequence divergence. With regard to sequence divergence, we identified correlations between selective pressures and phylogenetic relationships. CONCLUSIONS These results shed light on differential expression patterns of paralogs in response to environmental stresses and are helpful for understanding the relationships between expression levels and sequences divergences.
Collapse
Affiliation(s)
- Shuaibin Lian
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, China
| | - Yongjie Zhou
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, China
| | - Zixiao Liu
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, China
| | - Andong Gong
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Lin Cheng
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
44
|
Zmienko A, Marszalek-Zenczak M, Wojciechowski P, Samelak-Czajka A, Luczak M, Kozlowski P, Karlowski WM, Figlerowicz M. AthCNV: A Map of DNA Copy Number Variations in the Arabidopsis Genome. THE PLANT CELL 2020; 32:1797-1819. [PMID: 32265262 PMCID: PMC7268809 DOI: 10.1105/tpc.19.00640] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 05/13/2023]
Abstract
Copy number variations (CNVs) greatly contribute to intraspecies genetic polymorphism and phenotypic diversity. Recent analyses of sequencing data for >1000 Arabidopsis (Arabidopsis thaliana) accessions focused on small variations and did not include CNVs. Here, we performed genome-wide analysis and identified large indels (50 to 499 bp) and CNVs (500 bp and larger) in these accessions. The CNVs fully overlap with 18.3% of protein-coding genes, with enrichment for evolutionarily young genes and genes involved in stress and defense. By combining analysis of both genes and transposable elements (TEs) affected by CNVs, we revealed that the variation statuses of genes and TEs are tightly linked and jointly contribute to the unequal distribution of these elements in the genome. We also determined the gene copy numbers in a set of 1060 accessions and experimentally validated the accuracy of our predictions by multiplex ligation-dependent probe amplification assays. We then successfully used the CNVs as markers to analyze population structure and migration patterns. Finally, we examined the impact of gene dosage variation triggered by a CNV spanning the SEC10 gene on SEC10 expression at both the transcript and protein levels. The catalog of CNVs, CNV-overlapping genes, and their genotypes in a top model dicot will stimulate the exploration of the genetic basis of phenotypic variation.
Collapse
Affiliation(s)
- Agnieszka Zmienko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Faculty of Computing Science, Poznan University of Technology, Poznan, Poland
| | | | - Pawel Wojciechowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Faculty of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Anna Samelak-Czajka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Magdalena Luczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Piotr Kozlowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Wojciech M Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Faculty of Computing Science, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
45
|
Zhou L, Wang C, Gao X, Ding Y, Cheng B, Zhang G, Cao N, Xu Y, Shao M, Zhang L. Genome-wide variations analysis of sorghum cultivar Hongyingzi for brewing Moutai liquor. Hereditas 2020; 157:19. [PMID: 32410666 PMCID: PMC7227080 DOI: 10.1186/s41065-020-00130-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/14/2020] [Indexed: 11/28/2022] Open
Abstract
Background Hongyingzi is a sorghum (Sorghum bicolor L. Moench) cultivar for brewing Moutai liquor. For an overall understanding of the whole genome of Hongyingzi, we performed whole-genome resequencing technology to reveal its comprehensive variations. Results Compared with the BTx623 reference genome, we uncovered 1,885,774 single nucleotide polymorphisms (SNPs), 309,381 small fragments insertions and deletions (Indels), 31,966 structural variations (SVs), and 217,273 copy number variations (CNVs). These alterations conferred 29,614 gene variations. It was also predicted that 35 gene variations were related to the multidrug and toxic efflux (MATE) transporter, chalcone synthase (CHS), ATPase isoform 10 (AHA10) transporter, dihydroflavonol-4-reductase (DFR), the laccase 15 (LAC15), flavonol 3′-hydroxylase (F3′H), flavanone 3-hydroxylase (F3H), O-methyltransferase (OMT), flavonoid 3′5′ hydroxylase (F3′5′H), UDP-glucose:sterol-glucosyltransferase (SGT), flavonol synthase (FLS), and chalcone isomerase (CHI) involved in the tannin synthesis. Conclusions These results would provide theoretical supports for the molecular markers developments and gene function studies related to the tannin synthesis, and the genetic improvement of liquor-making sorghum based on the genome editing technology.
Collapse
Affiliation(s)
- Lingbo Zhou
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Can Wang
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Xu Gao
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Yanqing Ding
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Bin Cheng
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Guobing Zhang
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Ning Cao
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Yan Xu
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Mingbo Shao
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Liyi Zhang
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China.
| |
Collapse
|
46
|
Brosseau C, Bolaji A, Roussin-Léveillée C, Zhao Z, Biga S, Moffett P. Natural variation in the Arabidopsis AGO2 gene is associated with susceptibility to potato virus X. THE NEW PHYTOLOGIST 2020; 226:866-878. [PMID: 31880814 DOI: 10.1111/nph.16397] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
RNA silencing functions as an anti-viral defence in plants through the action of DICER-like (DCL) and ARGONAUTE (AGO) proteins. Despite the importance of this mechanism, little is known about the functional consequences of variation in genes encoding RNA silencing components. The AGO2 protein has been shown to be important for defense against multiple viruses, and we investigated how naturally occurring differences in AGO2 between and within species affects its antiviral activities. We find that the AGO2 protein from Arabidopsis thaliana, but not Nicotiana benthamiana, effectively limits potato virus X (PVX). Consistent with this, we find that the A. thaliana AGO2 gene shows a high incidence of polymorphisms between accessions, with evidence of selective pressure. Using functional analyses, we identify polymorphisms that specifically affect AGO2 antiviral activity, without interfering with other AGO2-associated functions such as anti-bacterial resistance or DNA methylation. Our results suggest that viruses adapt to overcome RNA silencing in their hosts. Furthermore, they indicate that plant-virus interactions have influenced natural variation in RNA-silencing components and that the latter may be a source of genetically encoded virus resistance.
Collapse
Affiliation(s)
- Chantal Brosseau
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Ayooluwa Bolaji
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | | | - Zhenxing Zhao
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Sébastien Biga
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Peter Moffett
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| |
Collapse
|
47
|
Wang Q, Tang J, Han B, Huang X. Advances in genome-wide association studies of complex traits in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1415-1425. [PMID: 31720701 DOI: 10.1007/s00122-019-03473-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/05/2019] [Indexed: 05/27/2023]
Abstract
Genome-wide association studies (GWAS), genetic surveys of the whole genome to detect variants associated with a trait in natural populations, are a powerful approach for dissecting complex traits. This genetic mapping approach has been applied in rice over the last 10 years. During the last decade, GWAS was used to identify the loci underlying tens of rice traits, and several important genes were detected in GWAS and further confirmed in follow-up functional experiments. In this review, we present an overview of the whole process in a typical GWAS, including population design, genotyping, phenotyping and analysis methods. Recent advances in rice GWAS are also provided, including several examples of the functional characterization of candidate genes. The possible breakthroughs of rice GWAS in the next decade are discussed with regard to their application in breeding, the consideration of epistatic interactions and in-depth functional annotations of DNA elements and genetic variants throughout the rice genome.
Collapse
Affiliation(s)
- Qin Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jiali Tang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Bin Han
- National Center for Gene Research, CAS Center for Excellence of Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
48
|
Exposito-Alonso M, Drost HG, Burbano HA, Weigel D. The Earth BioGenome project: opportunities and challenges for plant genomics and conservation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:222-229. [PMID: 31788877 DOI: 10.1111/tpj.14631] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/03/2019] [Accepted: 11/18/2019] [Indexed: 05/28/2023]
Abstract
Sequencing them all. That is the ambitious goal of the recently launched Earth BioGenome project (Proceedings of the National Academy of Sciences of the United States of America, 115, 4325-4333), which aims to produce reference genomes for all eukaryotic species within the next decade. In this perspective, we discuss the opportunities of this project with a plant focus, but highlight also potential limitations. This includes the question of how to best capture all plant diversity, as the green taxon is one of the most complex clades in the tree of life, with over 300 000 species. For this, we highlight four key points: (i) the unique biological insights that could be gained from studying plants, (ii) their apparent underrepresentation in sequencing efforts given the number of threatened species, (iii) the necessity of phylogenomic methods that are aware of differences in genome complexity and quality, and (iv) the accounting for within-species genetic diversity and the historical aspect of conservation genetics.
Collapse
Affiliation(s)
| | - Hajk-Georg Drost
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, CB2 1LR, Cambridge, UK
| | - Hernán A Burbano
- Centre for Life's Origins and Evolution, Department of Genetics Evolution and Environment, University College London, London, WC1H 0AG, UK
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| |
Collapse
|
49
|
Jiao WB, Schneeberger K. Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics. Nat Commun 2020; 11:989. [PMID: 32080174 PMCID: PMC7033125 DOI: 10.1038/s41467-020-14779-y] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Despite hundreds of sequenced Arabidopsis genomes, very little is known about the degree of genomic collinearity within single species, due to the low number of chromosome-level assemblies. Here, we report chromosome-level reference-quality assemblies of seven Arabidopsis thaliana accessions selected across its global range. Each genome reveals between 13–17 Mb rearranged, and 5–6 Mb non-reference sequences introducing copy-number changes in ~5000 genes, including ~1900 non-reference genes. Quantifying the collinearity between the genomes reveals ~350 euchromatic regions, where accession-specific tandem duplications destroy the collinearity between the genomes. These hotspots of rearrangements are characterized by reduced meiotic recombination in hybrids and genes implicated in biotic stress response. This suggests that hotspots of rearrangements undergo altered evolutionary dynamics, as compared to the rest of the genome, which are mostly based on the accumulation of new mutations and not on the recombination of existing variation, and thereby enable a quick response to the biotic stress. Despite tremendous genomic resources in the Arabidopsis community, only a few whole genome de novo assemblies are available. Here, the authors report chromosome-level reference-quality assemblies of seven A. thaliana accessions and reveal hotspots of rearrangements with altered evolutionary dynamics.
Collapse
Affiliation(s)
- Wen-Biao Jiao
- Max Planck Institute for Plant Breeding Research, Department of Chromosome Biology, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Korbinian Schneeberger
- Max Planck Institute for Plant Breeding Research, Department of Chromosome Biology, Carl-von-Linné-Weg 10, 50829, Cologne, Germany. .,Faculty of Biology, LMU Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
50
|
Li Y, Zhu FL, Zheng XW, Hu ML, Dong C, Diao Y, Wang YW, Xie KQ, Hu ZL. Comparative population genomics reveals genetic divergence and selection in lotus, Nelumbo nucifera. BMC Genomics 2020; 21:146. [PMID: 32046648 PMCID: PMC7014656 DOI: 10.1186/s12864-019-6376-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 12/08/2019] [Indexed: 12/26/2022] Open
Abstract
Background Lotus (Nelumbo nucifera) is an aquatic plant with important agronomic, horticulture, art and religion values. It was the basal eudicot species occupying a critical phylogenetic position in flowering plants. After the domestication for thousands of years, lotus has differentiated into three cultivated types -flower lotus, seed lotus and rhizome lotus. Although the phenotypic and genetic differentiations based on molecular markers have been reported, the variation on whole-genome level among the different lotus types is still ambiguous. Results In order to reveal the evolution and domestication characteristics of lotus, a total of 69 lotus accessions were selected, including 45 cultivated accessions, 22 wild sacred lotus accessions, and 2 wild American lotus accessions. With Illumina technology, the genomes of these lotus accessions were resequenced to > 13× raw data coverage. On the basis of these genomic data, 25 million single-nucleotide polymorphisms (SNPs) were identified in lotus. Population analysis showed that the rhizome and seed lotus were monophyletic and genetically homogeneous, whereas the flower lotus was biphyletic and genetically heterogeneous. Using population SNP data, we identified 1214 selected regions in seed lotus, 95 in rhizome lotus, and 37 in flower lotus. Some of the genes in these regions contributed to the essential domestication traits of lotus. The selected genes of seed lotus mainly affected lotus seed weight, size and nutritional quality. While the selected genes were responsible for insect resistance, antibacterial immunity and freezing and heat stress resistance in flower lotus, and improved the size of rhizome in rhizome lotus, respectively. Conclusions The genome differentiation and a set of domestication genes were identified from three types of cultivated lotus- flower lotus, seed lotus and rhizome lotus, respectively. Among cultivated lotus, flower lotus showed the greatest variation. The domestication genes may show agronomic importance via enhancing insect resistance, improving seed weight and size, or regulating lotus rhizome size. The domestication history of lotus enhances our knowledge of perennial aquatic crop evolution, and the obtained dataset provides a basis for future genomics-enabled breeding.
Collapse
Affiliation(s)
- Ye Li
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Feng-Lin Zhu
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xing-Wen Zheng
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.,Guangchang Research School of White Lotus, Guangchang, 344900, People's Republic of China
| | - Man-Li Hu
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Chen Dong
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Ying Diao
- College of Landscape Architecture and Life Science / Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, People's Republic of China
| | - You-Wei Wang
- Institute of Traditional Chinese Medicine and Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Ke-Qiang Xie
- Guangchang Research School of White Lotus, Guangchang, 344900, People's Republic of China.
| | - Zhong-Li Hu
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|