1
|
Tan Z, Calandrini V, Dhont JKG, Nägele G. Quasi-two-dimensional dispersions of Brownian particles with competitive interactions: phase behavior and structural properties. SOFT MATTER 2024. [PMID: 39415718 DOI: 10.1039/d4sm00736k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Competing short-range attractive (SA) and long range repulsive (LR) particle interactions can be used to describe three-dimensional charge-stabilized colloid or protein dispersions at low added salt concentrations, as well as membrane proteins with interaction contributions mediated by lipid molecules. Using Langevin dynamics (LD) simulations, we determine the generalized phase diagram, cluster shapes and size distributions of a generic quasi-two-dimensional (Q2D) dispersion of spherical SALR particles confined to in-plane motion inside a bulk fluid. The SA and LR interaction parts are modelled by a generalized Lennard-Jones potential and a screened Coulomb potential, respectively. The microstructures of the detected equilibrium and non-equilibrium Q2D phases are distinctly different from those observed in three-dimensional (3D) SALR systems, by exhibiting different levels of hexagonal ordering. We discuss a thermodynamic perturbation theory prediction for the metastable binodal line of a reference system of particles with SA interactions only, which in the explored Q2D-SALR phase diagram region separates cluster from non-clustered phases. The transition from the high-temperature (small SA) dispersed fluid (DF) phase to the lower-temperature equilibrium cluster (EC) fluid phase is characterised by a low-wavenumber peak height of the static structure factor (corresponding to a thermal correlation length of about twice the particle diameter) featuring a distinctly smaller value (≈1.4) than in 3D SALR systems. With decreasing temperature (increasing SA), the cluster morphology changes from disk-like shapes in the equilibrium cluster phase, to double-stranded anisotropic hexagonal cluster segments formed in a cluster-percolated (CP) gel-like phase. This transition can be quantified by a hexagonal order parameter distribution function. The mean cluster size and coordination number of particles in the CP phase are insensitive to changes in the attraction strength.
Collapse
Affiliation(s)
- Zihan Tan
- Biomacromolecular Systems and Processes, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany
- Computational Biomedicine, Institute for Advanced Simulation, Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrβe 36, 10623 Berlin, Germany.
| | - Vania Calandrini
- Computational Biomedicine, Institute for Advanced Simulation, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Jan K G Dhont
- Biomacromolecular Systems and Processes, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany
- Department of Physics, Heinrich-Heine Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Gerhard Nägele
- Biomacromolecular Systems and Processes, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany
- Department of Physics, Heinrich-Heine Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
2
|
White KI, Khan YA, Qiu K, Balaji A, Couoh-Cardel S, Esquivies L, Pfuetzner RA, Diao J, Brunger AT. Pre-fusion AAA+ remodeling of target-SNARE protein complexes enables synaptic transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617886. [PMID: 39416070 PMCID: PMC11482947 DOI: 10.1101/2024.10.11.617886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Membrane fusion is driven by SNARE complex formation across cellular contexts, including vesicle fusion during synaptic transmission. Multiple proteins organize trans-SNARE complex assembly and priming, leading to fusion. One target membrane SNARE, syntaxin, forms nanodomains at the active zone, and another, SNAP-25, enters non-fusogenic complexes with it. Here, we show that the AAA+ protein NSF (N-ethylmaleimide sensitive factor) and SNAP (soluble NSF attachment protein) must act prior to fusion. We show that syntaxin clusters are conserved, that NSF colocalizes with them, and characterize SNARE populations within and near these clusters using cryo-EM. Supercomplexes of NSF, α-SNAP, and either a syntaxin tetramer or two binary complexes of syntaxin-SNAP-25 reveal atomic details of SNARE processing and show how sequential ATP hydrolysis drives disassembly. These results suggest a functional role for syntaxin clusters as reservoirs and a corresponding role for NSF in syntaxin liberation and SNARE protein quality control preceding fusion.
Collapse
|
3
|
Wu Y, Williams RM. The ATTO 565 Dye and Its Applications in Microscopy. Molecules 2024; 29:4243. [PMID: 39275091 PMCID: PMC11397231 DOI: 10.3390/molecules29174243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
ATTO 565, a Rhodamine-type dye, has garnered significant attention due to its remarkable optical properties, such as a high fluorescence quantum yield, and the fact that it is a relatively stable structure and has low biotoxicity. ATTO 565 has found extensive applications in combination with microscopy technology. In this review, the chemical and optical properties of ATTO 565 are introduced, along with the principles behind them. The functionality of ATTO 565 in confocal microscopy, stimulated emission depletion (STED) microscopy, single-molecule tracking (SMT) techniques, two-photon excitation-stimulated emission depletion microscopy (TPE-STED) and fluorescence correlation spectroscopy (FCS) is discussed. These studies demonstrate that ATTO 565 plays a crucial role in areas such as biological imaging and single-molecule localization, thus warranting further in-depth investigations. Finally, we present some prospects and concepts for the future applications of ATTO 565 in the fields of biocompatibility and metal ion detection. This review does not include theoretical calculations for the ATTO 565 molecule.
Collapse
Affiliation(s)
- Yuheng Wu
- Molecular Photonics Group, Van 't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - René M Williams
- Molecular Photonics Group, Van 't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
4
|
Pribicevic S, Graham AC, Cafiso DS, Pérez-Lara Á, Jahn R. Intermediate steps in the formation of neuronal SNARE complexes. J Biol Chem 2024; 300:107591. [PMID: 39032647 PMCID: PMC11381810 DOI: 10.1016/j.jbc.2024.107591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/06/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
Neuronal exocytosis requires the assembly of three SNARE proteins, syntaxin and SNAP25 on the plasma membrane and synaptobrevin on the vesicle membrane. However, the precise steps in this process and the points at which assembly and fusion are controlled by regulatory proteins are unclear. In the present work, we examine the kinetics and intermediate states during SNARE assembly in vitro using a combination of time resolved fluorescence and EPR spectroscopy. We show that syntaxin rapidly forms a dimer prior to forming the kinetically stable 2:1 syntaxin:SNAP25 complex and that the 2:1 complex is not diminished by the presence of excess SNAP25. Moreover, the 2:1 complex is temperature-dependent with a reduced concentration at 37 °C. The two segments of SNAP25 behave differently. The N-terminal SN1 segment of SNAP25 exhibits a pronounced increase in backbone ordering from the N- to the C-terminus that is not seen in the C-terminal SNAP25 segment SN2. Both the SN1 and SN2 segments of SNAP25 will assemble with syntaxin; however, while the association of the SN1 segment with syntaxin produces a stable 2:2 (SN1:syntaxin) complex, the complex formed between SN2 and syntaxin is largely disordered. Synaptobrevin fails to bind syntaxin alone but will associate with syntaxin in the presence of either the SN1 or SN2 segments; however, the synaptobrevin:syntaxin:SN2 complex remains disordered. Taken together, these data suggest that synaptobrevin and syntaxin do not assemble in the absence of SNAP25 and that the SN2 segment of SNAP25 is the last to enter the SNARE complex.
Collapse
Affiliation(s)
- Sonja Pribicevic
- Laboratory of Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Abigail C Graham
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - David S Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA.
| | - Ángel Pérez-Lara
- Laboratory of Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain.
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
5
|
Shin KC, Ali Moussa HY, Park Y. Cholesterol imbalance and neurotransmission defects in neurodegeneration. Exp Mol Med 2024; 56:1685-1690. [PMID: 39085348 PMCID: PMC11371908 DOI: 10.1038/s12276-024-01273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 08/02/2024] Open
Abstract
The brain contains the highest concentration of cholesterol in the human body, which emphasizes the importance of cholesterol in brain physiology. Cholesterol is involved in neurogenesis and synaptogenesis, and age-related reductions in cholesterol levels can lead to synaptic loss and impaired synaptic plasticity, which potentially contribute to neurodegeneration. The maintenance of cholesterol homeostasis in the neuronal plasma membrane is essential for normal brain function, and imbalances in cholesterol distribution are associated with various neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. This review aims to explore the molecular and pathological mechanisms by which cholesterol imbalance can lead to neurotransmission defects and neurodegeneration, focusing on four key mechanisms: (1) synaptic dysfunction, (2) alterations in membrane structure and protein clustering, (3) oligomers of amyloid beta (Aβ) protein, and (4) α-synuclein aggregation.
Collapse
Affiliation(s)
- Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Houda Yasmine Ali Moussa
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
- College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
6
|
Ben Zion MY, Oppenheimer N. Compact Expansion of a Repulsive Suspension. PHYSICAL REVIEW LETTERS 2024; 132:238201. [PMID: 38905695 DOI: 10.1103/physrevlett.132.238201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/30/2024] [Indexed: 06/23/2024]
Abstract
Short-range repulsion governs the dynamics of matter from atoms to animals. Using theory, simulations, and experiments, we find that an ensemble of repulsive particles spreads compactly with a sharp boundary, in contrast to the diffusive spreading of Brownian particles. Starting from the pair interactions, at high densities, the many-body dynamics follow nonlinear diffusion with a self-similar expansion, growing as t^{1/4}; At longer times, thermal motion dominates with the classic t^{1/2} expansion. A logarithmic growth controlled by nearest-neighbor interactions connects the two self-similar regimes.
Collapse
Affiliation(s)
- Matan Yah Ben Zion
- School of Physics and Astronomy and the Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Machine Learning and Natural Computing, Donders Institute for Brain, Cognition and Behavior, Thomas van Aquinostraat 4, Nijmegen, 6525GD, The Netherlands
| | - Naomi Oppenheimer
- School of Physics and Astronomy and the Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
7
|
Leitz J, Wang C, Esquivies L, Pfuetzner RA, Peters JJ, Couoh-Cardel S, Wang AL, Brunger AT. Beyond the MUN domain, Munc13 controls priming and depriming of synaptic vesicles. Cell Rep 2024; 43:114026. [PMID: 38809756 PMCID: PMC11286359 DOI: 10.1016/j.celrep.2024.114026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 05/31/2024] Open
Abstract
Synaptic vesicle docking and priming are dynamic processes. At the molecular level, SNAREs (soluble NSF attachment protein receptors), synaptotagmins, and other factors are critical for Ca2+-triggered vesicle exocytosis, while disassembly factors, including NSF (N-ethylmaleimide-sensitive factor) and α-SNAP (soluble NSF attachment protein), disassemble and recycle SNAREs and antagonize fusion under some conditions. Here, we introduce a hybrid fusion assay that uses synaptic vesicles isolated from mouse brains and synthetic plasma membrane mimics. We included Munc18, Munc13, complexin, NSF, α-SNAP, and an ATP-regeneration system and maintained them continuously-as in the neuron-to investigate how these opposing processes yield fusogenic synaptic vesicles. In this setting, synaptic vesicle association is reversible, and the ATP-regeneration system produces the most synchronous Ca2+-triggered fusion, suggesting that disassembly factors perform quality control at the early stages of synaptic vesicle association to establish a highly fusogenic state. We uncovered a functional role for Munc13 ancillary to the MUN domain that alleviates an α-SNAP-dependent inhibition of Ca2+-triggered fusion.
Collapse
Affiliation(s)
- Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Chuchu Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Richard A Pfuetzner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - John Jacob Peters
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Sergio Couoh-Cardel
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Austin L Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Jahn R, Cafiso DC, Tamm LK. Mechanisms of SNARE proteins in membrane fusion. Nat Rev Mol Cell Biol 2024; 25:101-118. [PMID: 37848589 DOI: 10.1038/s41580-023-00668-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/19/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are a family of small conserved eukaryotic proteins that mediate membrane fusion between organelles and with the plasma membrane. SNAREs are directly or indirectly anchored to membranes. Prior to fusion, complementary SNAREs assemble between membranes with the aid of accessory proteins that provide a scaffold to initiate SNARE zippering, pulling the membranes together and mediating fusion. Recent advances have enabled the construction of detailed models describing bilayer transitions and energy barriers along the fusion pathway and have elucidated the structures of SNAREs complexed in various states with regulatory proteins. In this Review, we discuss how these advances are yielding an increasingly detailed picture of the SNARE-mediated fusion pathway, leading from first contact between the membranes via metastable non-bilayer intermediates towards the opening and expansion of a fusion pore. We describe how SNARE proteins assemble into complexes, how this assembly is regulated by accessory proteins and how SNARE complexes overcome the free energy barriers that prevent spontaneous membrane fusion.
Collapse
Affiliation(s)
- Reinhard Jahn
- Laboratory of Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - David C Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
9
|
Weisgerber AW, Otruba Z, Knowles MK. Syntaxin clusters and cholesterol affect the mobility of Syntaxin1a. Biophys J 2024:S0006-3495(24)00028-6. [PMID: 38221759 DOI: 10.1016/j.bpj.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/02/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024] Open
Abstract
Syntaxin1a (Syx1a) is essential for stimulated exocytosis in neuroendocrine cells. The vesicle docking process involves the formation of nanoscale Syx1a domains on the plasma membrane and the Syx1a clusters disintegrate during the fusion process. Syx1a nanodomains are static yet Syx1a molecules dynamically enter and leave the domains; the process by which these clusters maintain this balance is unclear. In this work, the dynamics of the Syx1a molecules is elucidated relative to the cluster position through a labeling strategy that allows both the bulk position of the Syx clusters to be visualized concurrent with the trajectories of single Syx1a molecules on the surface of PC12 cells. Single Syx1a molecules were tracked in time relative to cluster positions to decipher how Syx1a moves within a cluster and when clusters are not present. Syx1a is mobile on the plasma membrane, more mobile at the center of clusters, and less mobile near the edges of clusters; this depends on the presence of the N-terminal Habc domain and cholesterol, which are essential for proper exocytosis. Simulations of the dynamics observed at clusters support a model where clusters are maintained by a large cage (r = 100 nm) within which Syx1a remains highly mobile within the cluster (r = 50 nm). The depletion of cholesterol dramatically reduces the mobility of Syx1a within clusters and less so over the rest of the plasma membrane. This suggests that fluidity of Syx1a supramolecular clusters is needed for function.
Collapse
Affiliation(s)
- Alan W Weisgerber
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado
| | - Zdeněk Otruba
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado
| | - Michelle K Knowles
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado.
| |
Collapse
|
10
|
Zhao Y, Fang Q, Sharma S, Jakhanwal S, Jahn R, Lindau M. All SNAP25 molecules in the vesicle-plasma membrane contact zone change conformation during vesicle priming. Proc Natl Acad Sci U S A 2024; 121:e2309161121. [PMID: 38170748 PMCID: PMC10786266 DOI: 10.1073/pnas.2309161121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
In neuronal cell types, vesicular exocytosis is governed by the SNARE (soluble NSF attachment receptor) complex consisting of synaptobrevin2, SNAP25, and syntaxin1. These proteins are required for vesicle priming and fusion. We generated an improved SNAP25-based SNARE COmplex Reporter (SCORE2) incorporating mCeruelan3 and Venus and overexpressed it in SNAP25 knockout embryonic mouse chromaffin cells. This construct rescues vesicle fusion with properties indistinguishable from fusion in wild-type cells. Combining electrochemical imaging of individual release events using electrochemical detector arrays with total internal reflection fluorescence resonance energy transfer (TIR-FRET) imaging reveals a rapid FRET increase preceding individual fusion events by 65 ms. The experiments are performed under conditions of a steady-state cycle of docking, priming, and fusion, and the delay suggests that the FRET change reflects tight docking and priming of the vesicle, followed by fusion after ~65 ms. Given the absence of wt SNAP25, SCORE2 allows determination of the number of molecules at fusion sites and the number that changes conformation. The number of SNAP25 molecules changing conformation in the priming step increases with vesicle size and SNAP25 density in the plasma membrane and equals the number of copies present in the vesicle-plasma membrane contact zone. We estimate that in wt cells, 6 to 7 copies of SNAP25 change conformation during the priming step.
Collapse
Affiliation(s)
- Ying Zhao
- Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, GöttingenD-37077, Germany
| | - Qinghua Fang
- Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, GöttingenD-37077, Germany
| | - Satyan Sharma
- Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, GöttingenD-37077, Germany
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala75124, Sweden
| | - Shrutee Jakhanwal
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, GöttingenD-37077, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, GöttingenD-37077, Germany
| | - Manfred Lindau
- Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, GöttingenD-37077, Germany
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, FL33136
| |
Collapse
|
11
|
Ali Moussa HY, Shin KC, Ponraj J, Kim SJ, Ryu J, Mansour S, Park Y. Requirement of Cholesterol for Calcium-Dependent Vesicle Fusion by Strengthening Synaptotagmin-1-Induced Membrane Bending. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206823. [PMID: 37058136 PMCID: PMC10214243 DOI: 10.1002/advs.202206823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/09/2023] [Indexed: 05/27/2023]
Abstract
Cholesterol is essential for neuronal activity and function. Cholesterol depletion in the plasma membrane impairs synaptic transmission. However, the molecular mechanisms by which cholesterol deficiency leads to defects in vesicle fusion remain poorly understood. Here, it is shown that cholesterol is required for Ca2+ -dependent native vesicle fusion using the in vitro reconstitution of fusion and amperometry to monitor exocytosis in chromaffin cells. Purified native vesicles are crucial for the reconstitution of physiological Ca2+ -dependent fusion, because vesicle-mimicking liposomes fail to reproduce the cholesterol effect. Intriguingly, cholesterol has no effect on the membrane binding of synaptotagmin-1, a Ca2+ sensor for ultrafast fusion. Cholesterol strengthens local membrane deformation and bending induced by synaptotagmin-1, thereby lowering the energy barrier for Ca2+ -dependent fusion to occur. The data provide evidence that cholesterol depletion abolishes Ca2+ -dependent vesicle fusion by disrupting synaptotagmin-1-induced membrane bending, and suggests that cholesterol is an essential lipid regulator for Ca2+ -dependent fusion.
Collapse
Affiliation(s)
- Houda Yasmine Ali Moussa
- Neurological Disorders Research CenterQatar Biomedical Research Institute (QBRI)Hamad Bin Khalifa University (HBKU)Qatar FoundationDohaQatar
| | - Kyung Chul Shin
- Neurological Disorders Research CenterQatar Biomedical Research Institute (QBRI)Hamad Bin Khalifa University (HBKU)Qatar FoundationDohaQatar
| | | | - Soo Jin Kim
- Division of Molecular and Life SciencesPohang University of Science and TechnologyPohang790‐784Republic of Korea
| | - Je‐Kyung Ryu
- Department of Physics & AstronomySeoul National University. 1 Gwanak‐roGwanak‐guSeoul08826South Korea
| | - Said Mansour
- HBKU Core LabsHamad Bin Khalifa University (HBKU)DohaQatar
| | - Yongsoo Park
- Neurological Disorders Research CenterQatar Biomedical Research Institute (QBRI)Hamad Bin Khalifa University (HBKU)Qatar FoundationDohaQatar
- College of Health & Life Sciences (CHLS)Hamad Bin Khalifa University (HBKU)Qatar FoundationDohaQatar
| |
Collapse
|
12
|
Wu X, Qiu H, Zhang M. Interactions between Membraneless Condensates and Membranous Organelles at the Presynapse: A Phase Separation View of Synaptic Vesicle Cycle. J Mol Biol 2023; 435:167629. [PMID: 35595170 DOI: 10.1016/j.jmb.2022.167629] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023]
Abstract
Action potential-induced neurotransmitter release in presynaptic boutons involves coordinated actions of a large list of proteins that are associated directly or indirectly with membrane structures including synaptic vesicles and plasma membranes. These proteins are often highly abundant in different synaptic bouton sub-compartments, and they rarely act alone. Instead, these proteins interact with each other forming intricate and distinct molecular complexes. Many of these complexes form condensed clusters on membrane surfaces. This review summarizes findings in recent years showing that many of presynaptic protein complex assemblies are formed via phase separation. These protein condensates extensively interact with lipid membranes via distinct modes, forming various mesoscale structures by different mode of organizations between membraneless condensates and membranous organelles. We discuss that such mesoscale interactions could have deep implications on mobilization, exocytosis, and retrieval of synaptic vesicles.
Collapse
Affiliation(s)
- Xiandeng Wu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hua Qiu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518036, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
13
|
Bademosi AT, Meunier FA. Unveiling the Nanoscale Dynamics of the Exocytic Machinery in Chromaffin Cells with Single-Molecule Imaging. Methods Mol Biol 2023; 2565:311-327. [PMID: 36205903 DOI: 10.1007/978-1-0716-2671-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Neuronal and hormonal communication relies on the exocytic fusion of vesicles containing neurotransmitters and hormones with the plasma membrane. This process is tightly regulated by key protein-protein and protein-lipid interactions and culminates in the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex formation and zippering that promotes vesicular fusion. Located on both sides of the vesicle and the plasma membrane, the zippering of the SNARE complex acts to overcome the energy barrier afforded by the repulsive electrostatic force stemming from apposing two negatively charged phospholipid membranes. Another component opposing the timely organization of the fusion machinery is thermal Brownian energy that tends to homogenize all cellular molecules by constantly switching their motions and directions through short-lived molecular interactions. Much less is known of the mechanisms counteracting these chaotic forces, allowing seamless cellular functions such as exocytic fusion. Super-resolution microscopy techniques such as single-molecule imaging have proven useful to start uncovering these nanoscale mechanisms. Here, we used single-particle tracking photoactivatable localization microscopy (sptPALM) to track syntaxin-1-mEos, a SNARE protein located on the plasma membrane of cultured bovine chromaffin cells. We demonstrate that syntaxin-1-mEos undergoes dramatic change in its mobility in response to secretagogue stimulation leading to increased nanoclustering. These nanoclusters are transient in nature and likely to provide docked vesicles with a molecular environment conducive to exocytic fusion.
Collapse
Affiliation(s)
- Adekunle T Bademosi
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia.
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia.
| |
Collapse
|
14
|
Palfreyman MT, West SE, Jorgensen EM. SNARE Proteins in Synaptic Vesicle Fusion. ADVANCES IN NEUROBIOLOGY 2023; 33:63-118. [PMID: 37615864 DOI: 10.1007/978-3-031-34229-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Neurotransmitters are stored in small membrane-bound vesicles at synapses; a subset of synaptic vesicles is docked at release sites. Fusion of docked vesicles with the plasma membrane releases neurotransmitters. Membrane fusion at synapses, as well as all trafficking steps of the secretory pathway, is mediated by SNARE proteins. The SNAREs are the minimal fusion machinery. They zipper from N-termini to membrane-anchored C-termini to form a 4-helix bundle that forces the apposed membranes to fuse. At synapses, the SNAREs comprise a single helix from syntaxin and synaptobrevin; SNAP-25 contributes the other two helices to complete the bundle. Unc13 mediates synaptic vesicle docking and converts syntaxin into the permissive "open" configuration. The SM protein, Unc18, is required to initiate and proofread SNARE assembly. The SNAREs are then held in a half-zippered state by synaptotagmin and complexin. Calcium removes the synaptotagmin and complexin block, and the SNAREs drive vesicle fusion. After fusion, NSF and alpha-SNAP unwind the SNAREs and thereby recharge the system for further rounds of fusion. In this chapter, we will describe the discovery of the SNAREs, their relevant structural features, models for their function, and the central role of Unc18. In addition, we will touch upon the regulation of SNARE complex formation by Unc13, complexin, and synaptotagmin.
Collapse
Affiliation(s)
- Mark T Palfreyman
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Sam E West
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Erik M Jorgensen
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
15
|
Chai YJ, Cheng CY, Liao YH, Lin CH, Hsieh CL. Heterogeneous nanoscopic lipid diffusion in the live cell membrane and its dependency on cholesterol. Biophys J 2022; 121:3146-3161. [PMID: 35841144 PMCID: PMC9463655 DOI: 10.1016/j.bpj.2022.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/08/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022] Open
Abstract
Cholesterol plays a unique role in the regulation of membrane organization and dynamics by modulating the membrane phase transition at the nanoscale. Unfortunately, due to their small sizes and dynamic nature, the effects of cholesterol-mediated membrane nanodomains on membrane dynamics remain elusive. Here, using ultrahigh-speed single-molecule tracking with advanced optical microscope techniques, we investigate the diffusive motion of single phospholipids in the live cell plasma membrane at the nanoscale and its dependency on the cholesterol concentration. We find that both saturated and unsaturated phospholipids undergo anomalous subdiffusion on the length scale of 10-100 nm. The diffusion characteristics exhibit considerable variations in space and in time, indicating that the nanoscopic lipid diffusion is highly heterogeneous. Importantly, through the statistical analysis, apparent dual-mobility subdiffusion is observed from the mixed diffusion behaviors. The measured subdiffusion agrees well with the hop diffusion model that represents a diffuser moving in a compartmentalized membrane created by the cytoskeleton meshwork. Cholesterol depletion diminishes the lipid mobility with an apparently smaller compartment size and a stronger confinement strength. Similar results are measured with temperature reduction, suggesting that the more heterogeneous and restricted diffusion is connected to the nanoscopic membrane phase transition. Our conclusion supports the model that cholesterol depletion induces the formation of gel-phase, solid-like membrane nanodomains. These nanodomains undergo restricted diffusion and act as diffusion obstacles to the membrane molecules that are excluded from the nanodomains. This work provides the experimental evidence that the nanoscopic lipid diffusion in the cell plasma membrane is heterogeneous and sensitive to the cholesterol concentration and temperature, shedding new light on the regulation mechanisms of nanoscopic membrane dynamics.
Collapse
Affiliation(s)
- Yu-Jo Chai
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei, Taiwan
| | - Ching-Ya Cheng
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei, Taiwan
| | - Yi-Hung Liao
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei, Taiwan
| | - Chih-Hsiang Lin
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei, Taiwan
| | - Chia-Lung Hsieh
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
16
|
Mion D, Bunel L, Heo P, Pincet F. The beginning and the end of SNARE-induced membrane fusion. FEBS Open Bio 2022; 12:1958-1979. [PMID: 35622519 PMCID: PMC9623537 DOI: 10.1002/2211-5463.13447] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 01/25/2023] Open
Abstract
Membrane fusion is not a spontaneous process. Physiologically, the formation of coiled-coil protein complexes, the SNAREpins, bridges the membrane of a vesicle and a target membrane, brings them in close contact, and provides the energy necessary for their fusion. In this review, we utilize results from in vitro experiments and simple physics and chemistry models to dissect the kinetics and energetics of the fusion process from the encounter of the two membranes to the full expansion of a fusion pore. We find three main energy barriers that oppose the fusion process: SNAREpin initiation, fusion pore opening, and expansion. SNAREpin initiation is inherent to the proteins and makes in vitro fusion kinetic experiments rather slow. The kinetics are physiologically accelerated by effectors. The energy barriers that precede pore opening and pore expansion can be overcome by several SNAREpins acting in concert.
Collapse
Affiliation(s)
- Delphine Mion
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSLCNRS, Sorbonne Université, Université Paris CitéFrance
| | - Louis Bunel
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSLCNRS, Sorbonne Université, Université Paris CitéFrance
| | - Paul Heo
- Institute of Psychiatry and Neuroscience of Paris (IPNP)INSERM U1266ParisFrance
| | - Frédéric Pincet
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSLCNRS, Sorbonne Université, Université Paris CitéFrance
| |
Collapse
|
17
|
Gormal RS, Meunier FA. Nanoscale organization of the pre-synapse: Tracking the neurotransmitter release machinery. Curr Opin Neurobiol 2022; 75:102576. [PMID: 35716557 DOI: 10.1016/j.conb.2022.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022]
Abstract
Chemical communication is underpinned by the fusion of neurotransmitter-containing synaptic vesicles with the plasma membrane at active zones. With the advent of super-resolution microscopy, the door is now opened to unravel the dynamic remodeling of synapses underpinning learning and memory. Imaging proteins with conventional light microscopy cannot provide submicron information vital to determining the nanoscale organization of the synapse. We will first review the current super-resolution microscopy techniques available to investigate the localization and movement of synaptic proteins and how they have been applied to visualize the synapse. We discuss the new techniques and analytical approaches have provided comprehensive insights into synaptic organization in various model systems. Finally, this review provides a brief update on how these super-resolution techniques and analyses have opened the way to a much greater understanding of the synapse, the fusion and compensatory endocytosis machinery.
Collapse
Affiliation(s)
- Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia. https://twitter.com/rachelgormal
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
18
|
Liu Z, Li Z, Li B, Zhou L, Zhang H, Han J. Hybrid Macrocyclic Polymers: Self-Assembly Containing Cucurbit[m]uril-pillar[n]arene. Polymers (Basel) 2022; 14:1777. [PMID: 35566949 PMCID: PMC9106019 DOI: 10.3390/polym14091777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Supramolecular self-assembly by hybrid macrocycles containing both cucurbit[m]uril (CB[m]) and pillar[n]arene was discussed and summarized in this review. Due to different solubility, diverse-sized cavities, and various driving forces in recognizing guests, the role of CB[m] and pillar[n]arene in such hybrid macrocyclic systems could switch between competitor in capturing specialized guests, and cooperator for building advanced hybridized macrocycles, by controlling their characteristics in host-guest inclusions. Furthermore, both CB[m] and pillar[n]arene were employed for fabricating advanced supramolecular self-assemblies such as mechanically interlocked molecules and supramolecular polymers. In those self-assemblies, CB[m] and pillar[n]arene played significant roles in, e.g., microreactor for catalyzing particular reactions to bridge different small pieces together, molecular "joint" to connect different monomers into larger assemblies, and "stabilizer" in accommodating the guest molecules to adopt a favorite structure geometry ready for assembling.
Collapse
Affiliation(s)
- Zhaona Liu
- Medical School, Xi’an Peihua University, Xi’an 710125, China;
| | - Zhizheng Li
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Z.L.); (B.L.); (L.Z.)
| | - Bing Li
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Z.L.); (B.L.); (L.Z.)
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Z.L.); (B.L.); (L.Z.)
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Z.L.); (B.L.); (L.Z.)
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Hasan MM, Islam T, Shah SS, Awal A, Aziz MA, Ahammad AJS. Recent Advances in Carbon and Metal Based Supramolecular Technology for Supercapacitor Applications. CHEM REC 2022; 22:e202200041. [DOI: 10.1002/tcr.202200041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Md. Mahedi Hasan
- Department of Chemistry Jagannath University Dhaka 1100 Bangladesh
- Present Address: Environmental Science & Engineering Program University of Texas at El Paso El Paso Texas 79968 United States
| | - Tamanna Islam
- Department of Chemistry Jagannath University Dhaka 1100 Bangladesh
- Present Address: Environmental Science & Engineering Program University of Texas at El Paso El Paso Texas 79968 United States
| | - Syed Shaheen Shah
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES) King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
- Physics Department King Fahd University of Petroleum & Minerals, KFUPM Box 5047 Dhahran 31261 Saudi Arabia
| | - Abdul Awal
- Department of Chemistry Jagannath University Dhaka 1100 Bangladesh
| | - Md. Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES) King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
- K.A.CARE Energy Research & Innovation Center King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | | |
Collapse
|
20
|
Plattner H. Membrane Traffic and Ca 2+ -Signals in Ciliates. J Eukaryot Microbiol 2022; 69:e12895. [PMID: 35156735 DOI: 10.1111/jeu.12895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
Abstract
A Paramecium cell has as many types of membrane interactions as mammalian cells, as established with monoclonal antibodies by R. Allen and A. Fok. Since then, we have identified key-players, such as SNARE-proteins, Ca2+ -regulating proteins, including Ca2+ -channels, Ca2+ -pumps, Ca2+ -binding proteins of different affinity etc. at the molecular level, probed their function and localized them at the light and electron microscopy level. SNARE-proteins, in conjunction with a synaptotagmin-like Ca2+ -sensor protein, mediate membrane fusion. This interaction is additionally regulated by monomeric GTPases whose spectrum in Tetrahymena and Paramecium has been established by A. Turkewitz. As known from mammalian cells, GTPases are activated on membranes in conjunction with lumenal acidification by an H+ -ATPase. For these complex molecules we found in Paramecium an unsurpassed number of 17 a-subunit paralogs which connect the polymeric head and basis part, V1 and V0. (This multitude may reflect different local functional requirements.) Together with plasmalemmal Ca2+ -influx-channels, locally enriched intracellular InsP3 -type (InsP3 R, mainly in osmoregulatory system) and ryanodine receptor-like Ca2+ -release channels (ryanodine receptor-like proteins, RyR-LP), this complexity mediates Ca2+ signals for most flexible local membrane-to-membrane interactions. As we found, the latter channel types miss a substantial portion of the N-terminal part. Caffeine and 4-chloro-meta-cresol (the agent used to probe mutations of RyRs in man during surgery in malignant insomnia patients) initiate trichocyst exocytosis by activating Ca2+ -release channels type CRC-IV in the peripheral part of alveolar sacs. This is superimposed by Ca2+ -influx, i.e. a mechanism called "store-operated Ca2+ -entry" (SOCE). For the majority of key players, we have mapped paralogs throughout the Paramecium cell, with features in common or at variance in the different organelles participating in vesicle trafficking. Local values of free Ca2+ -concentration, [Ca2+ ]i , and their change, e.g. upon exocytosis stimulation, have been registered by flurochromes and chelator effects. In parallel we have registered release of Ca2+ from alveolar sacs by quenched-flow analysis combined with cryofixation and x-ray microanalysis.
Collapse
|
21
|
Munc18-dependent and -independent clustering of syntaxin in the plasma membrane of cultured endocrine cells. Proc Natl Acad Sci U S A 2021; 118:2025748118. [PMID: 34857632 DOI: 10.1073/pnas.2025748118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
Syntaxin helps in catalyzing membrane fusion during exocytosis. It also forms clusters in the plasma membrane, where both its transmembrane and SNARE domains are thought to homo-oligomerize. To study syntaxin clustering in live PC12 cells, we labeled granules with neuropeptide-Y-mCherry and syntaxin clusters with syntaxin-1a green fluorescent protein (GFP). Abundant clusters appeared under total internal reflection (TIRF) illumination, and some of them associated with granules ("on-granule clusters"). Syntaxin-1a-GFP or its mutants were expressed at low levels and competed with an excess of endogenous syntaxin for inclusion into clusters. On-granule inclusion was diminished by mutations known to inhibit binding to Munc18-1 in vitro. Knock-down of Munc18-1 revealed Munc18-dependent and -independent on-granule clustering. Clustering was inhibited by mutations expected to break salt bridges between syntaxin's Hb and SNARE domains and was rescued by additional mutations expected to restore them. Most likely, syntaxin is in a closed conformation when it clusters on granules, and its SNARE and Hb domains approach to within atomic distances. Pairwise replacements of Munc18-contacting residues with alanines had only modest effects, except that the pair R114A/I115A essentially abolished on-granule clustering. In summary, an on-granule cluster arises from the specific interaction between a granule and a dense cluster of syntaxin-Munc18-1 complexes. Off-granule clusters, by contrast, were resistant to even the strongest mutations we tried and required neither Munc18-1 nor the presence of a SNARE domain. They may well form through the nonstoichiometric interactions with membrane lipids that others have observed in cell-free systems.
Collapse
|
22
|
Aleksejenko N, Heller J. Super-resolution imaging to reveal the nanostructure of tripartite synapses. Neuronal Signal 2021; 5:NS20210003. [PMID: 34737894 PMCID: PMC8536832 DOI: 10.1042/ns20210003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Even though neurons are the main drivers of information processing in the brain and spinal cord, other cell types are important to mediate adequate flow of information. These include electrically passive glial cells such as microglia and astrocytes, which recently emerged as active partners facilitating proper signal transduction. In disease, these cells undergo pathophysiological changes that propel disease progression and change synaptic connections and signal transmission. In the healthy brain, astrocytic processes contact pre- and postsynaptic structures. These processes can be nanoscopic, and therefore only electron microscopy has been able to reveal their structure and morphology. However, electron microscopy is not suitable in revealing dynamic changes, and it is labour- and time-intensive. The dawn of super-resolution microscopy, techniques that 'break' the diffraction limit of conventional light microscopy, over the last decades has enabled researchers to reveal the nanoscopic synaptic environment. In this review, we highlight and discuss recent advances in our understanding of the nano-world of the so-called tripartite synapses, the relationship between pre- and postsynapse as well as astrocytic processes. Overall, novel super-resolution microscopy methods are needed to fully illuminate the intimate relationship between glia and neuronal cells that underlies signal transduction in the brain and that might be affected in diseases such as Alzheimer's disease and epilepsy.
Collapse
Affiliation(s)
- Natalija Aleksejenko
- School of Biotechnology and National Institute for Cellular Biotechnology (NICB), Dublin City University, Glasnevin, Ireland
| | - Janosch P. Heller
- School of Biotechnology and National Institute for Cellular Biotechnology (NICB), Dublin City University, Glasnevin, Ireland
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
23
|
Mertins J, Finke J, Sies R, Rink KM, Hasenauer J, Lang T. The mesoscale organization of syntaxin 1A and SNAP25 is determined by SNARE-SNARE interactions. eLife 2021; 10:69236. [PMID: 34779769 PMCID: PMC8629428 DOI: 10.7554/elife.69236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 11/14/2021] [Indexed: 01/01/2023] Open
Abstract
SNARE proteins have been described as the effectors of fusion events in the secretory pathway more than two decades ago. The strong interactions between SNARE domains are clearly important in membrane fusion, but it is unclear whether they are involved in any other cellular processes. Here, we analyzed two classical SNARE proteins, syntaxin 1A and SNAP25. Although they are supposed to be engaged in tight complexes, we surprisingly find them largely segregated in the plasma membrane. Syntaxin 1A only occupies a small fraction of the plasma membrane area. Yet, we find it is able to redistribute the far more abundant SNAP25 on the mesoscale by gathering crowds of SNAP25 molecules onto syntaxin clusters in a SNARE-domain-dependent manner. Our data suggest that SNARE domain interactions are not only involved in driving membrane fusion on the nanoscale, but also play an important role in controlling the general organization of proteins on the mesoscale. Further, we propose these mechanisms preserve active syntaxin 1A–SNAP25 complexes at the plasma membrane.
Collapse
Affiliation(s)
- Jasmin Mertins
- Departments of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jérôme Finke
- Departments of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Ricarda Sies
- Departments of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Kerstin M Rink
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Jan Hasenauer
- Computational Life Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Interdisciplinary Research Unit Mathematics and Life Sciences, University of Bonn, Bonn, Germany.,Institute of Computational Biology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Thorsten Lang
- Departments of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
24
|
Super-resolution microscopy: a closer look at synaptic dysfunction in Alzheimer disease. Nat Rev Neurosci 2021; 22:723-740. [PMID: 34725519 DOI: 10.1038/s41583-021-00531-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 11/08/2022]
Abstract
The synapse has emerged as a critical neuronal structure in the degenerative process of Alzheimer disease (AD), in which the pathogenic signals of two key players - amyloid-β (Aβ) and tau - converge, thereby causing synaptic dysfunction and cognitive deficits. The synapse presents a dynamic, confined microenvironment in which to explore how key molecules travel, localize, interact and assume different levels of organizational complexity, thereby affecting neuronal function. However, owing to their small size and the diffraction-limited resolution of conventional light microscopic approaches, investigating synaptic structure and dynamics has been challenging. Super-resolution microscopy (SRM) techniques have overcome the resolution barrier and are revolutionizing our quantitative understanding of biological systems in unprecedented spatio-temporal detail. Here we review critical new insights provided by SRM into the molecular architecture and dynamic organization of the synapse and, in particular, the interactions between Aβ and tau in this compartment. We further highlight how SRM can transform our understanding of the molecular pathological mechanisms that underlie AD. The application of SRM for understanding the roles of synapses in AD pathology will provide a stepping stone towards a broader understanding of dysfunction in other subcellular compartments and at cellular and circuit levels in this disease.
Collapse
|
25
|
Abstract
Fluorescence imaging techniques play a pivotal role in our understanding of the nervous system. The emergence of various super-resolution microscopy methods and specialized fluorescent probes enables direct insight into neuronal structure and protein arrangements in cellular subcompartments with so far unmatched resolution. Super-resolving visualization techniques in neurons unveil a novel understanding of cytoskeletal composition, distribution, motility, and signaling of membrane proteins, subsynaptic structure and function, and neuron-glia interaction. Well-defined molecular targets in autoimmune and neurodegenerative disease models provide excellent starting points for in-depth investigation of disease pathophysiology using novel and innovative imaging methodology. Application of super-resolution microscopy in human brain samples and for testing clinical biomarkers is still in its infancy but opens new opportunities for translational research in neurology and neuroscience. In this review, we describe how super-resolving microscopy has improved our understanding of neuronal and brain function and dysfunction in the last two decades.
Collapse
Affiliation(s)
- Christian Werner
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
26
|
Mrestani A, Pauli M, Kollmannsberger P, Repp F, Kittel RJ, Eilers J, Doose S, Sauer M, Sirén AL, Heckmann M, Paul MM. Active zone compaction correlates with presynaptic homeostatic potentiation. Cell Rep 2021; 37:109770. [PMID: 34610300 DOI: 10.1016/j.celrep.2021.109770] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/14/2021] [Accepted: 09/07/2021] [Indexed: 12/30/2022] Open
Abstract
Neurotransmitter release is stabilized by homeostatic plasticity. Presynaptic homeostatic potentiation (PHP) operates on timescales ranging from minute- to life-long adaptations and likely involves reorganization of presynaptic active zones (AZs). At Drosophila melanogaster neuromuscular junctions, earlier work ascribed AZ enlargement by incorporating more Bruchpilot (Brp) scaffold protein a role in PHP. We use localization microscopy (direct stochastic optical reconstruction microscopy [dSTORM]) and hierarchical density-based spatial clustering of applications with noise (HDBSCAN) to study AZ plasticity during PHP at the synaptic mesoscale. We find compaction of individual AZs in acute philanthotoxin-induced and chronic genetically induced PHP but unchanged copy numbers of AZ proteins. Compaction even occurs at the level of Brp subclusters, which move toward AZ centers, and in Rab3 interacting molecule (RIM)-binding protein (RBP) subclusters. Furthermore, correlative confocal and dSTORM imaging reveals how AZ compaction in PHP translates into apparent increases in AZ area and Brp protein content, as implied earlier.
Collapse
Affiliation(s)
- Achmed Mrestani
- Institute for Physiology, Department of Neurophysiology, Julius Maximilians University Würzburg, 97070 Würzburg, Germany; Department of Neurology, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Martin Pauli
- Institute for Physiology, Department of Neurophysiology, Julius Maximilians University Würzburg, 97070 Würzburg, Germany; Department of Neurosurgery, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Philip Kollmannsberger
- Center for Computational and Theoretical Biology, Julius Maximilians University Würzburg, 97074 Würzburg, Germany
| | - Felix Repp
- Institute for Physiology, Department of Neurophysiology, Julius Maximilians University Würzburg, 97070 Würzburg, Germany; Center for Computational and Theoretical Biology, Julius Maximilians University Würzburg, 97074 Würzburg, Germany; Department of Neurosurgery, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Robert J Kittel
- Institute for Physiology, Department of Neurophysiology, Julius Maximilians University Würzburg, 97070 Würzburg, Germany; Institute of Biology, Department of Animal Physiology, Leipzig University, 04103 Leipzig, Germany; Carl-Ludwig-Institute for Physiology, Leipzig University, 04103 Leipzig, Germany
| | - Jens Eilers
- Carl-Ludwig-Institute for Physiology, Leipzig University, 04103 Leipzig, Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics, Julius Maximilians University Würzburg, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Julius Maximilians University Würzburg, 97074 Würzburg, Germany
| | - Anna-Leena Sirén
- Institute for Physiology, Department of Neurophysiology, Julius Maximilians University Würzburg, 97070 Würzburg, Germany; Department of Neurosurgery, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Manfred Heckmann
- Institute for Physiology, Department of Neurophysiology, Julius Maximilians University Würzburg, 97070 Würzburg, Germany.
| | - Mila M Paul
- Institute for Physiology, Department of Neurophysiology, Julius Maximilians University Würzburg, 97070 Würzburg, Germany; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
27
|
Tian X, Teng J, Chen J. New insights regarding SNARE proteins in autophagosome-lysosome fusion. Autophagy 2021; 17:2680-2688. [PMID: 32924745 PMCID: PMC8525925 DOI: 10.1080/15548627.2020.1823124] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/26/2022] Open
Abstract
Macroautophagy/autophagy refers to the engulfment of cellular contents selected for lysosomal degradation. The final step in autophagy is the fusion of autophagosome with the lysosome, which is mediated by SNARE proteins. Of the SNAREs, autophagosome-localized Q-SNAREs, such as STX17 and SNAP29, and lysosome-localized R-SNAREs, such as VAMP8 or VAMP7, have been reported to be involved. Recent studies also reveal participation of the R-SNARE, YKT6, in autophagosome-lysosome fusion. These SNAREs, with the help of other regulatory factors, act coordinately to spatiotemporally control the fusion process. Besides regulating autophagosome-lysosome fusion, some SNAREs, such as STX17, also function in other autophagic processes, including autophagosome formation and mitophagy. A better understanding of the functions of SNAREs will shed light on the molecular mechanisms of autophagosome-lysosome fusion as well as on the mechanisms by which autophagy is globally regulated.Abbreviations: ATG: autophagy related; DNM1L: dynamin 1 like; ER: endoplasmic reticulum; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; IRGM: immunity related GTPase M; LAMP2: lysosomal associated membrane protein 2; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PLEKHM1: pleckstrin homology and RUN domain containing M1; PRKN: PRKN RBR E3 ubiquitin protein ligase; RAB2A: RAB2A, member RAS oncogene family; RAB33B: RAB33B, member RAS oncogene family; RAB7A: RAB7A, member RAS oncogene family; RB1CC1: RB1 inducible coiled-coil 1; RTN3: reticulon 3; RUBCNL: rubicon like autophagy enhancer; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SNAP29: synaptosomal associated protein 29; STX17: syntaxin 17; ULK1: unc-51 like autophagy activating kinase 1; VAMP7: vesicle associated membrane protein 7; VAMP8: vesicle associated membrane protein 8; YKT6: YKT6 v-SNARE homolog.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing, China
| |
Collapse
|
28
|
Binotti B, Jahn R, Pérez-Lara Á. An overview of the synaptic vesicle lipid composition. Arch Biochem Biophys 2021; 709:108966. [PMID: 34139199 DOI: 10.1016/j.abb.2021.108966] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 11/29/2022]
Abstract
Chemical neurotransmission is the major mechanism of neuronal communication. Neurotransmitters are released from secretory organelles, the synaptic vesicles (SVs) via exocytosis into the synaptic cleft. Fusion of SVs with the presynaptic plasma membrane is balanced by endocytosis, thus maintaining the presynaptic membrane at steady-state levels. The protein machineries responsible for exo- and endocytosis have been extensively investigated. In contrast, less is known about the role of lipids in synaptic transmission and how the lipid composition of SVs is affected by dynamic exo-endocytotic cycling. Here we summarize the current knowledge about the composition, organization, and function of SV membrane lipids. We also cover lipid biogenesis and maintenance during the synaptic vesicle cycle.
Collapse
Affiliation(s)
- Beyenech Binotti
- Department of Biochemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany.
| | - Ángel Pérez-Lara
- Department of Physical Chemistry, University of Granada, Campus Universitario de Cartuja, 18071, Granada, Spain.
| |
Collapse
|
29
|
Abstract
The molecular mechanisms that help to place the division septum in bacteria is of fundamental importance to ensure cell proliferation and maintenance of cell shape and size. The Min protein system, found in many rod-shaped bacteria, is thought to play a major role in division site selection. Division site selection is a vital process to ensure generation of viable offspring. In many rod-shaped bacteria, a dynamic protein system, termed the Min system, acts as a central regulator of division site placement. The Min system is best studied in Escherichia coli, where it shows a remarkable oscillation from pole to pole with a time-averaged density minimum at midcell. Several components of the Min system are conserved in the Gram-positive model organism Bacillus subtilis. However, in B. subtilis, it is commonly believed that the system forms a stationary bipolar gradient from the cell poles to midcell. Here, we show that the Min system of B. subtilis localizes dynamically to active sites of division, often organized in clusters. We provide physical modeling using measured diffusion constants that describe the observed enrichment of the Min system at the septum. Mathematical modeling suggests that the observed localization pattern of Min proteins corresponds to a dynamic equilibrium state. Our data provide evidence for the importance of ongoing septation for the Min dynamics, consistent with a major role of the Min system in controlling active division sites but not cell pole areas.
Collapse
|
30
|
Choquet D, Sainlos M, Sibarita JB. Advanced imaging and labelling methods to decipher brain cell organization and function. Nat Rev Neurosci 2021; 22:237-255. [PMID: 33712727 DOI: 10.1038/s41583-021-00441-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
The brain is arguably the most complex organ. The branched and extended morphology of nerve cells, their subcellular complexity, the multiplicity of brain cell types as well as their intricate connectivity and the scattering properties of brain tissue present formidable challenges to the understanding of brain function. Neuroscientists have often been at the forefront of technological and methodological developments to overcome these hurdles to visualize, quantify and modify cell and network properties. Over the last few decades, the development of advanced imaging methods has revolutionized our approach to explore the brain. Super-resolution microscopy and tissue imaging approaches have recently exploded. These instrumentation-based innovations have occurred in parallel with the development of new molecular approaches to label protein targets, to evolve new biosensors and to target them to appropriate cell types or subcellular compartments. We review the latest developments for labelling and functionalizing proteins with small localization and functionalized reporters. We present how these molecular tools are combined with the development of a wide variety of imaging methods that break either the diffraction barrier or the tissue penetration depth limits. We put these developments in perspective to emphasize how they will enable step changes in our understanding of the brain.
Collapse
Affiliation(s)
- Daniel Choquet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France. .,University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, Bordeaux, France.
| | - Matthieu Sainlos
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France.
| | - Jean-Baptiste Sibarita
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France.
| |
Collapse
|
31
|
Mühlenbrock P, Sari M, Steinem C. In vitro single vesicle fusion assays based on pore-spanning membranes: merits and drawbacks. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:239-252. [PMID: 33320298 PMCID: PMC8071798 DOI: 10.1007/s00249-020-01479-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022]
Abstract
Neuronal fusion mediated by soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs) is a fundamental cellular process by which two initially distinct membranes merge resulting in one interconnected structure to release neurotransmitters into the presynaptic cleft. To get access to the different stages of the fusion process, several in vitro assays have been developed. In this review, we provide a short overview of the current in vitro single vesicle fusion assays. Among those assays, we developed a single vesicle assay based on pore-spanning membranes (PSMs) on micrometre-sized pores in silicon, which might overcome some of the drawbacks associated with the other membrane architectures used for investigating fusion processes. Prepared by spreading of giant unilamellar vesicles with reconstituted t-SNAREs, PSMs provide an alternative tool to supported lipid bilayers to measure single vesicle fusion events by means of fluorescence microscopy. Here, we discuss the diffusive behaviour of the reconstituted membrane components as well as that of the fusing synthetic vesicles with reconstituted synaptobrevin 2 (v-SNARE). We compare our results with those obtained if the synthetic vesicles are replaced by natural chromaffin granules under otherwise identical conditions. The fusion efficiency as well as the different fusion states observable in this assay by means of both lipid mixing and content release are illuminated.
Collapse
Affiliation(s)
- Peter Mühlenbrock
- Georg-August-Universität Göttingen, Institute of Organic and Biomolecular Chemistry, Tammannstr. 2, 37077, Göttingen, Germany
| | - Merve Sari
- Georg-August-Universität Göttingen, Institute of Organic and Biomolecular Chemistry, Tammannstr. 2, 37077, Göttingen, Germany
| | - Claudia Steinem
- Georg-August-Universität Göttingen, Institute of Organic and Biomolecular Chemistry, Tammannstr. 2, 37077, Göttingen, Germany.
- Max-Planck-Institute for Dynamics and Self Organization, Am Faßberg 17, 37077, Göttingen, Germany.
| |
Collapse
|
32
|
Li M, Yu Y. Innate immune receptor clustering and its role in immune regulation. J Cell Sci 2021; 134:134/4/jcs249318. [PMID: 33597156 DOI: 10.1242/jcs.249318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The discovery of receptor clustering in the activation of adaptive immune cells has revolutionized our understanding of the physical basis of immune signal transduction. In contrast to the extensive studies of adaptive immune cells, particularly T cells, there is a lesser, but emerging, recognition that the formation of receptor clusters is also a key regulatory mechanism in host-pathogen interactions. Many kinds of innate immune receptors have been found to assemble into nano- or micro-sized domains on the surfaces of cells. The clusters formed between diverse categories of innate immune receptors function as a multi-component apparatus for pathogen detection and immune response regulation. Here, we highlight these pioneering efforts and the outstanding questions that remain to be answered regarding this largely under-explored research topic. We provide a critical analysis of the current literature on the clustering of innate immune receptors. Our emphasis is on studies that draw connections between the phenomenon of receptor clustering and its functional role in innate immune regulation.
Collapse
Affiliation(s)
- Miao Li
- Department of Chemistry, Indiana University, Bloomington, IN 47401, USA
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN 47401, USA
| |
Collapse
|
33
|
Membrane dynamics are slowed for Alexa594-labeled membrane proteins due to substrate interactions. BBA ADVANCES 2021; 1:100026. [PMID: 37082018 PMCID: PMC10074974 DOI: 10.1016/j.bbadva.2021.100026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The addition of fluorescent dyes to proteins, lipids and other biological molecules can affect a range of processes such as mobility, molecular interactions, localization, and, ultimately, function. The dynamics of a protein can be dramatically affected if the label interacts non-specifically with the substrate or with other molecules in the system. To test how dye-substrate interactions affect protein diffusion, fluorescence recovery after photobleaching (FRAP) measurements were designed to explicitly determine the role of the dye on the diffusion of a transmembrane protein, Syntaxin1a, expressed on the cell surface. Syntaxin1a, was tagged with EGFP on the extracellular side and an EGFP nanobody with or without a dye label was attached. FRAP was performed on Syx1a-EGFP and the choice of cell growth substrate affected mobility in the presence of a dye labeled nanobody. This work provides evidence for choosing fibronectin (Fn) over poly-L-lysine (PLL) in FRAP and single molecule tracking measurements when using Alexa594, a common probe for red fluorescent measurements. Alexa594-labeled nanobody but not unlabeled nanobody, dramatically reduced the mobility of Syx1a-EGFP when cells were cultured on PLL. However, when Fn was used, the mobility returned. Mobility measured by single molecule tracking measurements align with the FRAP measurements with Fn coated surfaces being more mobile than PLL.
Collapse
|
34
|
Insulin granule biogenesis and exocytosis. Cell Mol Life Sci 2020; 78:1957-1970. [PMID: 33146746 PMCID: PMC7966131 DOI: 10.1007/s00018-020-03688-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/11/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Insulin is produced by pancreatic β-cells, and once released to the blood, the hormone stimulates glucose uptake and suppresses glucose production. Defects in both the availability and action of insulin lead to elevated plasma glucose levels and are major hallmarks of type-2 diabetes. Insulin is stored in secretory granules that form at the trans-Golgi network. The granules undergo extensive modifications en route to their release sites at the plasma membrane, including changes in both protein and lipid composition of the granule membrane and lumen. In parallel, the insulin molecules also undergo extensive modifications that render the hormone biologically active. In this review, we summarize current understanding of insulin secretory granule biogenesis, maturation, transport, docking, priming and eventual fusion with the plasma membrane. We discuss how different pools of granules form and how these pools contribute to insulin secretion under different conditions. We also highlight the role of the β-cell in the development of type-2 diabetes and discuss how dysregulation of one or several steps in the insulin granule life cycle may contribute to disease development or progression.
Collapse
|
35
|
Nosov G, Kahms M, Klingauf J. The Decade of Super-Resolution Microscopy of the Presynapse. Front Synaptic Neurosci 2020; 12:32. [PMID: 32848695 PMCID: PMC7433402 DOI: 10.3389/fnsyn.2020.00032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 07/21/2020] [Indexed: 01/05/2023] Open
Abstract
The presynaptic compartment of the chemical synapse is a small, yet extremely complex structure. Considering its size, most methods of optical microscopy are not able to resolve its nanoarchitecture and dynamics. Thus, its ultrastructure could only be studied by electron microscopy. In the last decade, new methods of optical superresolution microscopy have emerged allowing the study of cellular structures and processes at the nanometer scale. While this is a welcome addition to the experimental arsenal, it has necessitated careful analysis and interpretation to ensure the data obtained remains artifact-free. In this article we review the application of nanoscopic techniques to the study of the synapse and the progress made over the last decade with a particular focus on the presynapse. We find to our surprise that progress has been limited, calling for imaging techniques and probes that allow dense labeling, multiplexing, longer imaging times, higher temporal resolution, while at least maintaining the spatial resolution achieved thus far.
Collapse
Affiliation(s)
- Georgii Nosov
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany.,CIM-IMPRS Graduate Program in Münster, Münster, Germany
| | - Martin Kahms
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Jurgen Klingauf
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| |
Collapse
|
36
|
Li M, Oh TJ, Fan H, Diao J, Zhang K. Syntaxin Clustering and Optogenetic Control for Synaptic Membrane Fusion. J Mol Biol 2020; 432:4773-4782. [PMID: 32682743 DOI: 10.1016/j.jmb.2020.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/05/2020] [Accepted: 07/12/2020] [Indexed: 01/01/2023]
Abstract
Membrane fusion during synaptic transmission mediates the trafficking of chemical signals and neuronal communication. The fast kinetics of membrane fusion on the order of millisecond is precisely regulated by the assembly of SNAREs and accessory proteins. It is believed that the formation of the SNARE complex is a key step during membrane fusion. Little is known, however, about the molecular machinery that mediates the formation of a large pre-fusion complex, including multiple SNAREs and accessory proteins. Syntaxin, a transmembrane protein on the plasma membrane, has been observed to undergo oligomerization to form clusters. Whether this clustering plays a critical role in membrane fusion is poorly understood in live cells. Optogenetics is an emerging biotechnology armed with the capacity to precisely modulate protein-protein interaction in time and space. Here, we propose an experimental scheme that combines optogenetics with single-vesicle membrane fusion, aiming to gain a better understanding of the molecular mechanism by which the syntaxin cluster regulates membrane fusion. We envision that newly developed optogenetic tools could facilitate the mechanistic understanding of synaptic transmission in live cells and animals.
Collapse
Affiliation(s)
- Miaoling Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Teak-Jung Oh
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huaxun Fan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
37
|
Xu G, Liu K, Xu B, Yao Y, Li W, Yan J, Zhang A. Confined Microenvironments from Thermoresponsive Dendronized Polymers. Macromol Rapid Commun 2020; 41:e2000325. [PMID: 32639094 DOI: 10.1002/marc.202000325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/23/2020] [Indexed: 11/07/2022]
Abstract
Confined microenvironments in biomacromolecules arising from molecular crowding account for their well-defined biofunctions and bioactivities. To mimick this, synthetic polymers to form confined structures or microenvironments are of key scientific value, which have received significant attention recently. To create synthetic confined microenvironments, molecular crowding effects and topological cooperative effects have been applied successfully, and the key is balance between self-association of structural units and self-repulsion from crowding-induced steric hindrance. In this article, formation of confined microenvironments from stimuli-responsive dendronized polymers carrying densely dendritic oligoethylene glycols (OEGs) moieties in their pendants is presented. These wormlike thick macromolecules exhibit characteristic thermoresponsive properties, which can provide constrained microenvironments to encapsulate effectively guest molecules including dyes, proteins, or nucleic acids to prevent their protonation or biodegradation. This efficient shielding effect can also mediate chemical reactions in aqueous phase, and even enhance chirality transferring efficiency. All of these can be switched off simply through the thermally-induced dehydration and collapse of OEG dendrons due to the amphiphilicity of OEG chains. Furthermore, the switchable encapsulation and release of guests can be greatly enhanced when these dendronized polymers are used as major constituents for fabricating bulk hydrogels or nanogels, which provide a higher-level confinement.
Collapse
Affiliation(s)
- Gang Xu
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Kun Liu
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Biyi Xu
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yi Yao
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Wen Li
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Jiatao Yan
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Afang Zhang
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| |
Collapse
|
38
|
Shao K, Li F, Yang Y, Wang N, Gao XD, Nakanishi H. Characteristics of SNARE proteins are defined by distinctive properties of SNARE motifs. Biochim Biophys Acta Gen Subj 2020; 1864:129658. [PMID: 32512168 DOI: 10.1016/j.bbagen.2020.129658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 05/16/2020] [Accepted: 06/03/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Syntaxin-1A and Sso1 are syntaxin family SNARE proteins engaged in synaptic vesicle fusion and yeast exocytosis. The syntaxin-1A SNARE motif can form a fusogenic SNARE complex with Sso1 partners. However, a chimera in which the SNARE motif in syntaxin-1A is introduced into Sso1 was not functional in yeast because the chimera is retained in the ER. Through the analysis of the transport defect of Sso1/syntaxin-1A chimeric SNAREs, we found that their SNARE motifs have distinctive properties. METHODS Sso1, syntaxin-1A, and Sso1/syntaxin-1A chimeric SNAREs were expressed in yeast cells and their localization and interaction with other SNAREs are analyzed. RESULTS SNARE proteins containing the syntaxin-1A SNARE motif exhibit a transport defect because they form a cis-SNARE complex in the ER. Ectopic SNARE complex formation can be prevented in syntaxin-1A by binding to a Sec1/Munc-18-like (SM) protein. In contrast, the SNARE motif of Sso1 does not form an ectopic SNARE complex. Additionally, we found that the SNARE motif in syntaxin-1A, but not that in Sso1, self-interacts, even when it is in the inactive form and bound to the SM protein. CONCLUSIONS The SNARE motif in syntaxin-1A, but not in Sso1, likely forms ectopic SNARE complex. Because of this property, the SM protein is necessary for syntaxin-1A to prevent its promiscuous assembly and to promote its export from the ER. GENERAL SIGNIFICANCE Properties of SNARE motifs affect characteristics of SNARE proteins. The regulatory mechanisms of SNARE proteins are, in part, designed to handle such properties.
Collapse
Affiliation(s)
- Kankai Shao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Feng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yan Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
| |
Collapse
|
39
|
Wollman AJ, Muchová K, Chromiková Z, Wilkinson AJ, Barák I, Leake MC. Single-molecule optical microscopy of protein dynamics and computational analysis of images to determine cell structure development in differentiating Bacillus subtilis. Comput Struct Biotechnol J 2020; 18:1474-1486. [PMID: 32637045 PMCID: PMC7327415 DOI: 10.1016/j.csbj.2020.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Here we use singe-molecule optical proteomics and computational analysis of live cell bacterial images, using millisecond super-resolved tracking and quantification of fluorescently labelled protein SpoIIE in single live Bacillus subtilis bacteria to understand its crucial role in cell development. Asymmetric cell division during sporulation in Bacillus subtilis presents a model system for studying cell development. SpoIIE is a key integral membrane protein phosphatase that couples morphological development to differential gene expression. However, the basic mechanisms behind its operation remain unclear due to limitations of traditional tools and technologies. We instead used advanced single-molecule imaging of fluorescently tagged SpoIIE in real time on living cells to reveal vital changes to the patterns of expression, localization, mobility and stoichiometry as cells undergo asymmetric cell division then engulfment of the smaller forespore by the larger mother cell. We find, unexpectedly, that SpoIIE forms tetramers capable of cell- and stage-dependent clustering, its copy number rising to ~ 700 molecules as sporulation progresses. We observed that slow moving SpoIIE clusters initially located at septa are released as mobile clusters at the forespore pole as phosphatase activity is manifested and compartment-specific RNA polymerase sigma factor, σF, becomes active. Our findings reveal that information captured in its quaternary organization enables one protein to perform multiple functions, extending an important paradigm for regulatory proteins in cells. Our findings more generally demonstrate the utility of rapid live cell single-molecule optical proteomics for enabling mechanistic insight into the complex processes of cell development during the cell cycle.
Collapse
Affiliation(s)
- Adam J.M. Wollman
- Departments of Physics and Biology, University of York, York YO10 5DD, United Kingdom
| | - Katarína Muchová
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Chromiková
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Anthony J. Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Imrich Barák
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mark C. Leake
- Departments of Physics and Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
40
|
Metal-induced sensor mobilization turns on affinity to activate regulator for metal detoxification in live bacteria. Proc Natl Acad Sci U S A 2020; 117:13248-13255. [PMID: 32467170 DOI: 10.1073/pnas.1919816117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Metal detoxification is essential for bacteria's survival in adverse environments and their pathogenesis in hosts. Understanding the underlying mechanisms is crucial for devising antibacterial treatments. In the Gram-negative bacterium Escherichia coli, membrane-bound sensor CusS and its response regulator CusR together regulate the transcription of the cus operon that plays important roles in cells' resistance to copper/silver, and they belong to the two-component systems (TCSs) that are ubiquitous across various organisms and regulate diverse cellular functions. In vitro protein reconstitution and associated biochemical/physical studies have provided significant insights into the functions and mechanisms of CusS-CusR and related TCSs. Such studies are challenging regarding multidomain membrane proteins like CusS and also lack the physiological environment, particularly the native spatial context of proteins inside a cell. Here, we use stroboscopic single-molecule imaging and tracking to probe the dynamic behaviors of both CusS and CusR in live cells, in combination with protein- or residue-specific genetic manipulations. We find that copper stress leads to a cellular protein concentration increase and a concurrent mobilization of CusS out of clustered states in the membrane. We show that the mobilized CusS has significant interactions with CusR for signal transduction and that CusS's affinity toward CusR switches on upon sensing copper at the interfacial metal-binding sites in CusS's periplasmic sensor domains, prior to ATP binding and autophosphorylation at CusS's cytoplasmic kinase domain(s). The observed CusS mobilization upon stimulation and its surprisingly early interaction with CusR likely ensure an efficient signal transduction by providing proper conformation and avoiding futile cross talks.
Collapse
|
41
|
Ma M, Li D, Kahraman O, Haselwandter CA. Symmetry of membrane protein polyhedra with heterogeneous protein size. Phys Rev E 2020; 101:022417. [PMID: 32168654 DOI: 10.1103/physreve.101.022417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/19/2019] [Indexed: 01/08/2023]
Abstract
In experiments on membrane protein polyhedral nanoparticles (MPPNs) [Basta et al., Proc. Natl. Acad. Sci. USA 111, 670 (2014)PNASA60027-842410.1073/pnas.1321936111], it has been observed that membrane proteins and lipids can self-assemble into closed lipid bilayer vesicles with a polyhedral arrangement of membrane proteins. In particular, MPPNs formed from the mechanosensitive channel of small conductance (MscS) were found to have the symmetry of the snub cube-a chiral, Archimedean solid-with one MscS protein located at each one of the 24 vertices of the snub cube. It is currently unknown whether MPPNs with heterogeneous protein composition maintain a high degree of symmetry. Inspired by previous work on viral capsid symmetry, we employ here computational modeling to study the symmetry of MPPNs with heterogeneous protein size. We focus on MPPNs formed from MscS proteins, which can exist in closed or open conformational states with distinct sizes. We find that, as an increasing number of closed-state MscS proteins transitions to the open conformational state of MscS, the minimum-energy MscS arrangement in MPPNs follows a strikingly regular pattern, with the dominant MPPN symmetry always being provided by the snub cube. Our results suggest that MPPNs with heterogeneous protein size can be highly symmetric, with a well-defined polyhedral ordering of membrane proteins of different sizes.
Collapse
Affiliation(s)
- Mingyuan Ma
- Department of Physics and Astronomy and Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Di Li
- Department of Physics and Astronomy and Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Osman Kahraman
- Department of Physics and Astronomy and Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Christoph A Haselwandter
- Department of Physics and Astronomy and Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
42
|
Heine M, Holcman D. Asymmetry Between Pre- and Postsynaptic Transient Nanodomains Shapes Neuronal Communication. Trends Neurosci 2020; 43:182-196. [DOI: 10.1016/j.tins.2020.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
|
43
|
Stanly TA, Fritzsche M, Banerji S, Shrestha D, Schneider F, Eggeling C, Jackson DG. The cortical actin network regulates avidity-dependent binding of hyaluronan by the lymphatic vessel endothelial receptor LYVE-1. J Biol Chem 2020; 295:5036-5050. [PMID: 32034091 PMCID: PMC7152780 DOI: 10.1074/jbc.ra119.011992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/29/2020] [Indexed: 12/16/2022] Open
Abstract
Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) mediates the docking and entry of dendritic cells to lymphatic vessels through selective adhesion to its ligand hyaluronan in the leukocyte surface glycocalyx. To bind hyaluronan efficiently, LYVE-1 must undergo surface clustering, a process that is induced efficiently by the large cross-linked assemblages of glycosaminoglycan present within leukocyte pericellular matrices but is induced poorly by the shorter polymer alone. These properties suggested that LYVE-1 may have limited mobility in the endothelial plasma membrane, but no biophysical investigation of these parameters has been carried out to date. Here, using super-resolution fluorescence microscopy and spectroscopy combined with biochemical analyses of the receptor in primary lymphatic endothelial cells, we provide the first evidence that LYVE-1 dynamics are indeed restricted by the submembranous actin network. We show that actin disruption not only increases LYVE-1 lateral diffusion but also enhances hyaluronan-binding activity. However, unlike the related leukocyte HA receptor CD44, which uses ERM and ankyrin motifs within its cytoplasmic tail to bind actin, LYVE-1 displays little if any direct interaction with actin, as determined by co-immunoprecipitation. Instead, as shown by super-resolution stimulated emission depletion microscopy in combination with fluorescence correlation spectroscopy, LYVE-1 diffusion is restricted by transient entrapment within submembranous actin corrals. These results point to an actin-mediated constraint on LYVE-1 clustering in lymphatic endothelium that tunes the receptor for selective engagement with hyaluronan assemblages in the glycocalyx that are large enough to cross-bridge the corral-bound LYVE-1 molecules and thereby facilitate leukocyte adhesion and transmigration.
Collapse
Affiliation(s)
- Tess A Stanly
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom.,York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Marco Fritzsche
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom.,Kennedy Institute for Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Suneale Banerji
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Dilip Shrestha
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Falk Schneider
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Christian Eggeling
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom .,Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Strasse 9, 07745 Jena, Germany.,Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany
| | - David G Jackson
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
44
|
The SNAP-25 Protein Family. Neuroscience 2019; 420:50-71. [DOI: 10.1016/j.neuroscience.2018.09.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
|
45
|
Strašková A, Steinbach G, Konert G, Kotabová E, Komenda J, Tichý M, Kaňa R. Pigment-protein complexes are organized into stable microdomains in cyanobacterial thylakoids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148053. [PMID: 31344362 DOI: 10.1016/j.bbabio.2019.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/28/2019] [Accepted: 07/18/2019] [Indexed: 02/03/2023]
Abstract
Thylakoids are the place of the light-photosynthetic reactions. To gain maximal efficiency, these reactions are conditional to proper pigment-pigment and protein-protein interactions. In higher plants thylakoids, the interactions lead to a lateral asymmetry in localization of protein complexes (i.e. granal/stromal thylakoids) that have been defined as a domain-like structures characteristic by different biochemical composition and function (Albertsson P-Å. 2001,Trends Plant Science 6: 349-354). We explored this complex organization of thylakoid pigment-proteins at single cell level in the cyanobacterium Synechocystis sp. PCC 6803. Our 3D confocal images captured heterogeneous distribution of all main photosynthetic pigment-protein complexes (PPCs), Photosystem I (fluorescently tagged by YFP), Photosystem II and Phycobilisomes. The acquired images depicted cyanobacterial thylakoid membrane as a stable, mosaic-like structure formed by microdomains (MDs). These microcompartments are of sub-micrometer in sizes (~0.5-1.5 μm), typical by particular PPCs ratios and importantly without full segregation of observed complexes. The most prevailing MD is represented by MD with high Photosystem I content which allows also partial separation of Photosystems like in higher plants thylakoids. We assume that MDs stability (in minutes) provides optimal conditions for efficient excitation/electron transfer. The cyanobacterial MDs thus define thylakoid membrane organization as a system controlled by co-localization of three main PPCs leading to formation of thylakoid membrane mosaic. This organization might represent evolutional and functional precursor for the granal/stromal spatial heterogeneity in photosystems that is typical for higher plant thylakoids.
Collapse
Affiliation(s)
- A Strašková
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - G Steinbach
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - G Konert
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - E Kotabová
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - J Komenda
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - M Tichý
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - R Kaňa
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic.
| |
Collapse
|
46
|
Janáček J, Brejchová J, Svoboda P. Determination of δ-opioid receptor molecules mobility in living cells plasma membrane by novel method of FRAP analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1346-1354. [PMID: 31071299 DOI: 10.1016/j.bbamem.2019.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 04/09/2019] [Accepted: 04/29/2019] [Indexed: 11/18/2022]
Abstract
Fluorescence recovery after photobleaching (FRAP) is the preferred method for analyzing the lateral mobility of fluorescently-tagged proteins in the plasma membranes (PMs) of live cells. FRAP experiments are described as being easy to perform; however, the analysis of the acquired data can be difficult. The evaluation procedure must be properly combined with the imaging setup of the confocal microscope to provide unbiased results. With the aim of increasing the accuracy of determining the diffusion coefficient (D) and mobile fraction (Mf) of PM proteins, we developed a novel method for FRAP analysis in the equatorial plane of the cell. This method is based on the calculation of photobleaching characteristics, derived from the light intensity profile and optical parameters of the confocal microscope, and on the model of fluorescent molecule diffusion in PM regions outside of the focal plane. Furthermore, cell movement artifacts in the FRAP data are ameliorated by using a region of interest, which is not fixed but instead moves adaptively in coordination with the movement of cells. When this method was used to determine the mobility of the δ-opioid receptor-eYFP in HEK293 cells, a highly significant decrease in receptor mobility was detected in cholesterol-depleted cells. This decrease was fully reversible by the replenishment of cholesterol levels. Our results demonstrate the crucial role played by cholesterol in the dynamic organization of δ-opioid receptors in the PM under in vivo conditions. Our method may be applied for the determination of the D and Mf values of other PM proteins.
Collapse
Affiliation(s)
- Jiří Janáček
- Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic.
| | - Jana Brejchová
- Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Petr Svoboda
- Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| |
Collapse
|
47
|
Zhang S, Reinhard BM. Characterizing Large-Scale Receptor Clustering on the Single Cell Level: A Comparative Plasmon Coupling and Fluorescence Superresolution Microscopy Study. J Phys Chem B 2019; 123:5494-5505. [PMID: 31244098 DOI: 10.1021/acs.jpcb.9b05176] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Spatial clustering of cell membrane receptors has been indicated to play a regulatory role in signal initiation, and the distribution of receptors on the cell surface may represent a potential biomarker. To realize its potential for diagnostic purposes, scalable assays capable of mapping spatial receptor heterogeneity with high throughput are needed. In this work, we use gold nanoparticle (NP) labels with an average diameter of 72.17 ± 2.16 nm as bright markers for large-scale epidermal growth factor receptor (EGFR) clustering in hyperspectral plasmon coupling microscopy and compare the obtained clustering maps with those obtained through fluorescence superresolution microscopy (direct stochastic optical reconstruction microscopy, dSTORM). Our dSTORM experiments reveal average EGFR cluster sizes of 172 ± 99 and 150 ± 90 nm for MDA-MB-468 and HeLa, respectively. The cluster sizes decrease after EGFR activation. Hyperspectral imaging of the NP labels shows that differences in the EGFR cluster sizes are accompanied by differences in the average separations between electromagnetically coupled NPs. Because of the distance dependence of plasmon coupling, changes in the average interparticle separation result in significant spectral shifts. For the experimental conditions investigated in this work, hyperspectral plasmon coupling microscopy of NP labels identified the same trends in large-scale EGFR clustering as dSTORM, but the NP imaging approach provided the information in a fraction of the time. Both dSTORM and hyperspectral plasmon coupling microscopy confirm the cortical actin network as one structural component that determines the average size of EGFR clusters.
Collapse
Affiliation(s)
- Sandy Zhang
- Department of Chemistry and The Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Björn M Reinhard
- Department of Chemistry and The Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
48
|
Kahraman O, Haselwandter CA. Supramolecular organization of membrane proteins with anisotropic hydrophobic thickness. SOFT MATTER 2019; 15:4301-4310. [PMID: 31070658 DOI: 10.1039/c9sm00358d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Experiments have revealed that membrane proteins often self-assemble into locally ordered clusters. Such membrane protein lattices can play key roles in the functional organization of cell membranes. Membrane protein organization can be driven, at least in part, by bilayer-mediated elastic interactions between membrane proteins. For membrane proteins with anisotropic hydrophobic thickness, bilayer-mediated protein interactions are inherently directional. Here we establish general relations between anisotropy in membrane protein hydrophobic thickness and supramolecular membrane protein organization. We show that protein symmetry is distinctively reflected in the energy landscape of bilayer-mediated protein interactions, favoring characteristic lattice architectures of membrane protein clusters. We find that, in the presence of thermal fluctuations, anisotropy in protein hydrophobic thickness can induce membrane proteins to form mesh-like structures dividing the membrane into compartments. Our results help to elucidate the physical principles and mechanisms underlying the functional organization of cell membranes.
Collapse
Affiliation(s)
- Osman Kahraman
- Department of Physics & Astronomy and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | |
Collapse
|
49
|
Padmanabhan P, Bademosi AT, Kasula R, Lauwers E, Verstreken P, Meunier FA. Need for speed: Super-resolving the dynamic nanoclustering of syntaxin-1 at exocytic fusion sites. Neuropharmacology 2019; 169:107554. [PMID: 30826343 DOI: 10.1016/j.neuropharm.2019.02.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 01/08/2023]
Abstract
Communication between cells relies on regulated exocytosis, a multi-step process that involves the docking, priming and fusion of vesicles with the plasma membrane, culminating in the release of neurotransmitters and hormones. Key proteins and lipids involved in exocytosis are subjected to Brownian movement and constantly switch between distinct motion states which are governed by short-lived molecular interactions. Critical biochemical reactions between exocytic proteins that occur in the confinement of nanodomains underpin the precise sequence of priming steps which leads to the fusion of vesicles. The advent of super-resolution microscopy techniques has provided the means to visualize individual molecules on the plasma membrane with high spatiotemporal resolution in live cells. These techniques are revealing a highly dynamic nature of the nanoscale organization of the exocytic machinery. In this review, we focus on soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) syntaxin-1, which mediates vesicular fusion. Syntaxin-1 is highly mobile at the plasma membrane, and its inherent speed allows fast assembly and disassembly of syntaxin-1 nanoclusters which are associated with exocytosis. We reflect on recent studies which have revealed the mechanisms regulating syntaxin-1 nanoclustering on the plasma membrane and draw inferences on the effect of synaptic activity, phosphoinositides, N-ethylmaleimide-sensitive factor (NSF), α-soluble NSF attachment protein (α-SNAP) and SNARE complex assembly on the dynamic nanoscale organization of syntaxin-1. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.
Collapse
Affiliation(s)
- Pranesh Padmanabhan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Adekunle T Bademosi
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Ravikiran Kasula
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Elsa Lauwers
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia.
| |
Collapse
|
50
|
Dubacheva GV, Curk T, Frenkel D, Richter RP. Multivalent Recognition at Fluid Surfaces: The Interplay of Receptor Clustering and Superselectivity. J Am Chem Soc 2019; 141:2577-2588. [DOI: 10.1021/jacs.8b12553] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Galina V. Dubacheva
- Biosurfaces Lab, CIC biomaGUNE, Paseo Miramon 182, 20014 Donostia - San Sebastian, Spain
- PPSM CNRS UMR8531, ENS Cachan, Université Paris-Saclay, 61 Avenue du Président Wilson, 94235 Cachan, France
| | - Tine Curk
- Beijing National Laboratory for Condensed Matter Physics & CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
| | - Daan Frenkel
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Ralf P. Richter
- Biosurfaces Lab, CIC biomaGUNE, Paseo Miramon 182, 20014 Donostia - San Sebastian, Spain
- School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Mathematics and Physical Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|