1
|
Guillermier C, Kumar NV, Bracken RC, Alvarez D, O'Keefe J, Gurkar A, Brown JD, Steinhauser ML. Nanoscale imaging of DNA-RNA identifies transcriptional plasticity at heterochromatin. Life Sci Alliance 2024; 7:e202402849. [PMID: 39288993 PMCID: PMC11408601 DOI: 10.26508/lsa.202402849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
The three-dimensional structure of DNA is a biophysical determinant of transcription. The density of chromatin condensation is one determinant of transcriptional output. Chromatin condensation is generally viewed as enforcing transcriptional suppression, and therefore, transcriptional output should be inversely proportional to DNA compaction. We coupled stable isotope tracers with multi-isotope imaging mass spectrometry to quantify and image nanovolumetric relationships between DNA density and newly made RNA within individual nuclei. Proliferative cell lines and cycling cells in the murine small intestine unexpectedly demonstrated no consistent relationship between DNA density and newly made RNA, even though localized examples of this phenomenon were detected at nuclear-cytoplasmic transitions. In contrast, non-dividing hepatocytes demonstrated global reduction in newly made RNA and an inverse relationship between DNA density and transcription, driven by DNA condensates at the nuclear periphery devoid of newly made RNA. Collectively, these data support an evolving model of transcriptional plasticity that extends at least to a subset of chromatin at the extreme of condensation as expected of heterochromatin.
Collapse
Affiliation(s)
- Christelle Guillermier
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Naveen Vg Kumar
- https://ror.org/01an3r305 Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ronan C Bracken
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Diana Alvarez
- https://ror.org/01an3r305 Division of Geriatric Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John O'Keefe
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Aditi Gurkar
- https://ror.org/01an3r305 Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- https://ror.org/01an3r305 Division of Geriatric Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan D Brown
- Cardiovascular Division, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew L Steinhauser
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- https://ror.org/01an3r305 Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- https://ror.org/01an3r305 Cardiovascular Division, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Massier L, Musat N, Stumvoll M, Tremaroli V, Chakaroun R, Kovacs P. Tissue-resident bacteria in metabolic diseases: emerging evidence and challenges. Nat Metab 2024; 6:1209-1224. [PMID: 38898236 DOI: 10.1038/s42255-024-01065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Although the impact of the gut microbiome on health and disease is well established, there is controversy regarding the presence of microorganisms such as bacteria and their products in organs and tissues. However, recent contamination-aware findings of tissue-resident microbial signatures provide accumulating evidence in support of bacterial translocation in cardiometabolic disease. The latter provides a distinct paradigm for the link between microbial colonizers of mucosal surfaces and host metabolism. In this Perspective, we re-evaluate the concept of tissue-resident bacteria including their role in metabolic low-grade tissue and systemic inflammation. We examine the limitations and challenges associated with studying low bacterial biomass samples and propose experimental and analytical strategies to overcome these issues. Our Perspective aims to encourage further investigation of the mechanisms linking tissue-resident bacteria to host metabolism and their potentially actionable health implications for prevention and treatment.
Collapse
Affiliation(s)
- Lucas Massier
- Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Niculina Musat
- Aarhus University, Department of Biology, Section for Microbiology, Århus, Denmark
| | - Michael Stumvoll
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rima Chakaroun
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
3
|
Gomes-Dos-Santos A, Domingues M, Ruivo R, Fonseca E, Froufe E, Deyanova D, Franco JN, C Castro LF. An historical "wreck": A transcriptome assembly of the naval shipworm, Teredo navalis Linnaeus, 1978. Mar Genomics 2024; 74:101097. [PMID: 38485291 DOI: 10.1016/j.margen.2024.101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/27/2023] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
Historically famous for their negative impact on human-built marine wood structures, mollusc shipworms play a central ecological role in marine ecosystems. Their association with bacterial symbionts, providing cellulolytic and nitrogen-fixing activities, underscores their exceptional wood-eating and wood-boring behaviours, improving energy transfer and the recycling of essential nutrients locked in the wood cellulose. Importantly, from a molecular standpoint, a minute of omic resources are available from this lineage of Bivalvia. Here, we produced and assembled a transcriptome from the globally distributed naval shipworm, Teredo navalis (family Teredinidae). The transcriptome was obtained by sequencing the total RNA from five equidistant segments of the whole body of a T. navalis specimen. The quality of the produced assembly was accessed with several statistics, revealing a highly contiguous (1194 N50) and complete (over 90% BUSCO scores for Eukaryote and Metazoan databases) transcriptome, with nearly 38,000 predicted ORF, more than half being functionally annotated. Our findings pave the way to investigate the unique evolutionary biology of these highly modified bivalves and lay the foundation for an adequate gene annotation of a full genome sequence of the species.
Collapse
Affiliation(s)
- André Gomes-Dos-Santos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| | - Marcos Domingues
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Raquel Ruivo
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Elza Fonseca
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Elsa Froufe
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Diana Deyanova
- Department of Biological and Environmental Sciences, University of Gothenburg, Kristineberg, Fiskebäckskil, Sweden
| | - João N Franco
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| | - L Filipe C Castro
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 1021/1055, 4169-007 Porto, Portugal.
| |
Collapse
|
4
|
Naka H, Haygood MG. The dual role of TonB genes in turnerbactin uptake and carbohydrate utilization in the shipworm symbiont Teredinibacter turnerae. Appl Environ Microbiol 2023; 89:e0074423. [PMID: 38009998 PMCID: PMC10734418 DOI: 10.1128/aem.00744-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/01/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE This study highlights diversity in iron acquisition and regulation in bacteria. The mechanisms of iron acquisition and its regulation in Teredinibacter turnerae, as well as its connection to cellulose utilization, a hallmark phenotype of T. turnerae, expand the paradigm of bacterial iron acquisition. Two of the four TonB genes identified in T. turnerae exhibit functional redundancy and play a crucial role in siderophore-mediated iron transport. Unlike typical TonB genes in bacteria, none of the TonB genes in T. turnerae are clearly iron regulated. This unusual regulation could be explained by another important finding in this study, namely, that the two TonB genes involved in iron transport are also essential for cellulose utilization as a carbon source, leading to the expression of TonB genes even under iron-rich conditions.
Collapse
Affiliation(s)
- Hiroaki Naka
- Department of Medicinal Chemistry, The University of Utah, Salt Lake City, Utah, USA
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Margo G. Haygood
- Department of Medicinal Chemistry, The University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
5
|
Junghare M, Manavalan T, Fredriksen L, Leiros I, Altermark B, Eijsink VGH, Vaaje-Kolstad G. Biochemical and structural characterisation of a family GH5 cellulase from endosymbiont of shipworm P. megotara. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:61. [PMID: 37016457 PMCID: PMC10071621 DOI: 10.1186/s13068-023-02307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/24/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND Cellulases play a key role in the enzymatic conversion of plant cell-wall polysaccharides into simple and economically relevant sugars. Thus, the discovery of novel cellulases from exotic biological niches is of great interest as they may present properties that are valuable in the biorefining of lignocellulosic biomass. RESULTS We have characterized a glycoside hydrolase 5 (GH5) domain of a bi-catalytic GH5-GH6 multi-domain enzyme from the unusual gill endosymbiont Teredinibacter waterburyi of the wood-digesting shipworm Psiloteredo megotara. The catalytic GH5 domain, was cloned and recombinantly produced with or without a C-terminal family 10 carbohydrate-binding module (CBM). Both variants showed hydrolytic endo-activity on soluble substrates such as β-glucan, carboxymethylcellulose and konjac glucomannan, respectively. However, low activity was observed towards the crystalline form of cellulose. Interestingly, when co-incubated with a cellulose-active LPMO, a clear synergy was observed that boosted the overall hydrolysis of crystalline cellulose. The crystal structure of the GH5 catalytic domain was solved to 1.0 Å resolution and revealed a substrate binding cleft extension containing a putative + 3 subsite, which is uncommon in this enzyme family. The enzyme was active in a wide range of pH, temperatures and showed high tolerance for NaCl. CONCLUSIONS This study provides significant knowledge in the discovery of new enzymes from shipworm gill endosymbionts and sheds new light on biochemical and structural characterization of cellulolytic cellulase. Study demonstrated a boost in the hydrolytic activity of cellulase on crystalline cellulose when co-incubated with cellulose-active LPMO. These findings will be relevant for the development of future enzyme cocktails that may be useful for the biotechnological conversion of lignocellulose.
Collapse
Affiliation(s)
- Madan Junghare
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432, Ås, Norway.
| | - Tamilvendan Manavalan
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Lasse Fredriksen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Ingar Leiros
- The Norwegian Structural Biology Centre, Department of Chemistry, The Arctic University of Norway, 9037, Tromsø, Norway
| | - Bjørn Altermark
- The Norwegian Structural Biology Centre, Department of Chemistry, The Arctic University of Norway, 9037, Tromsø, Norway
| | - Vincent G H Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Gustav Vaaje-Kolstad
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432, Ås, Norway.
| |
Collapse
|
6
|
Naka H, Haygood MG. The dual role of TonB genes in turnerbactin uptake and carbohydrate utilization in the shipworm symbiont Teredinibacter turnerae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529781. [PMID: 36865190 PMCID: PMC9980095 DOI: 10.1101/2023.02.23.529781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Teredinibacter turnerae is an intracellular bacterial symbiont that resides in the gills of shipworms, wood-eating bivalve mollusks. This bacterium produces a catechol siderophore, turnerbactin, required for the survival of this bacterium under iron limiting conditions. The turnerbactin biosynthetic genes are contained in one of the secondary metabolite clusters conserved among T. turnerae strains. However, Fe(III)-turnerbactin uptake mechanisms are largely unknown. Here, we show that the first gene of the cluster, fttA a homologue of Fe(III)-siderophore TonB-dependent outer membrane receptor (TBDR) genes is indispensable for iron uptake via the endogenous siderophore, turnerbactin, as well as by an exogenous siderophore, amphi-enterobactin, ubiquitously produced by marine vibrios. Furthermore, three TonB clusters containing four tonB genes were identified, and two of these genes, tonB1b and tonB2, functioned not only for iron transport but also for carbohydrate utilization when cellulose was a sole carbon source. Gene expression analysis revealed that none of the tonB genes and other genes in those clusters were clearly regulated by iron concentration while turnerbactin biosynthesis and uptake genes were up-regulated under iron limiting conditions, highlighting the importance of tonB genes even in iron rich conditions, possibly for utilization of carbohydrates derived from cellulose.
Collapse
Affiliation(s)
- Hiroaki Naka
- Department of Medicinal Chemistry, the University of Utah
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University
| | | |
Collapse
|
7
|
Ma S, Leng Y, Li X, Meng Y, Yin Z, Hang W. High spatial resolution mass spectrometry imaging for spatial metabolomics: Advances, challenges, and future perspectives. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Abstract
High-resolution imaging with secondary ion mass spectrometry (nanoSIMS) has become a standard method in systems biology and environmental biogeochemistry and is broadly used to decipher ecophysiological traits of environmental microorganisms, metabolic processes in plant and animal tissues, and cross-kingdom symbioses. When combined with stable isotope-labeling-an approach we refer to as nanoSIP-nanoSIMS imaging offers a distinctive means to quantify net assimilation rates and stoichiometry of individual cell-sized particles in both low- and high-complexity environments. While the majority of nanoSIP studies in environmental and microbial biology have focused on nitrogen and carbon metabolism (using 15N and 13C tracers), multiple advances have pushed the capabilities of this approach in the past decade. The development of a high-brightness oxygen ion source has enabled high-resolution metal analyses that are easier to perform, allowing quantification of metal distribution in cells and environmental particles. New preparation methods, tools for automated data extraction from large data sets, and analytical approaches that push the limits of sensitivity and spatial resolution have allowed for more robust characterization of populations ranging from marine archaea to fungi and viruses. NanoSIMS studies continue to be enhanced by correlation with orthogonal imaging and 'omics approaches; when linked to molecular visualization methods, such as in situ hybridization and antibody labeling, these techniques enable in situ function to be linked to microbial identity and gene expression. Here we present an updated description of the primary materials, methods, and calculations used for nanoSIP, with an emphasis on recent advances in nanoSIMS applications, key methodological steps, and potential pitfalls.
Collapse
Affiliation(s)
- Jennifer Pett-Ridge
- Lawrence Livermore National Lab, Physical and Life Science Directorate, Livermore, CA, USA.
| | - Peter K Weber
- Lawrence Livermore National Lab, Physical and Life Science Directorate, Livermore, CA, USA.
| |
Collapse
|
9
|
Tongununui P, Kuriya Y, Murata M, Sawada H, Araki M, Nomura M, Morioka K, Ichie T, Ikejima K, Adachi K. Mangrove crab intestine and habitat sediment microbiomes cooperatively work on carbon and nitrogen cycling. PLoS One 2022; 16:e0261654. [PMID: 34972143 PMCID: PMC8719709 DOI: 10.1371/journal.pone.0261654] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022] Open
Abstract
Mangrove ecosystems, where litter and organic components are degraded and converted into detrital materials, support rich coastal fisheries resources. Sesarmid (Grapsidae) crabs, which feed on mangrove litter, play a crucial role in material flow in carbon-rich and nitrogen-limited mangrove ecosystems; however, the process of assimilation and conversion into detritus has not been well studied. In this study, we performed microbiome analyses of intestinal bacteria from three species of mangrove crab and five sediment positions in the mud lobster mounds, including the crab burrow wall, to study the interactive roles of crabs and sediment in metabolism. Metagenome analysis revealed species-dependent intestinal profiles, especially in Neosarmatium smithi, while the sediment microbiome was similar in all positions, albeit with some regional dependency. The microbiome profiles of crab intestines and sediments were significantly different in the MDS analysis based on OTU similarity; however, 579 OTUs (about 70% of reads in the crab intestinal microbiome) were identical between the intestinal and sediment bacteria. In the phenotype prediction, cellulose degradation was observed in the crab intestine. Cellulase activity was detected in both crab intestine and sediment. This could be mainly ascribed to Demequinaceae, which was predominantly found in the crab intestines and burrow walls. Nitrogen fixation was also enriched in both the crab intestines and sediments, and was supported by the nitrogenase assay. Similar to earlier reports, sulfur-related families were highly enriched in the sediment, presumably degrading organic compounds as terminal electron acceptors under anaerobic conditions. These results suggest that mangrove crabs and habitat sediment both contribute to carbon and nitrogen cycling in the mangrove ecosystem via these two key reactions.
Collapse
Affiliation(s)
- Prasert Tongununui
- Department of Marine Science and Environment, Faculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, Tambon Maifad, Amphur Sikao, Trang, Thailand
| | - Yuki Kuriya
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Masahiro Murata
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Hideki Sawada
- Maizuru Fisheries Research Station, Field Science Education and Research Center, Kyoto University, Maizuru, Kyoto, Japan
| | - Michihiro Araki
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Mika Nomura
- Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, Japan
| | - Katsuji Morioka
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Tomoaki Ichie
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Kou Ikejima
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Kohsuke Adachi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
- * E-mail:
| |
Collapse
|
10
|
Kuga Y, Wu TD, Sakamoto N, Katsuyama C, Yurimoto H. Allocation of Carbon from an Arbuscular Mycorrhizal Fungus, Gigaspora margarita, to Its Gram-Negative and Positive Endobacteria Revealed by High-Resolution Secondary Ion Mass Spectrometry. Microorganisms 2021; 9:microorganisms9122597. [PMID: 34946198 PMCID: PMC8705746 DOI: 10.3390/microorganisms9122597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Arbuscular mycorrhizal fungi are obligate symbionts of land plants; furthermore, some of the species harbor endobacteria. Although the molecular approach increased our knowledge of the diversity and origin of the endosymbiosis and its metabolic possibilities, experiments to address the functions of the fungal host have been limited. In this study, a C flow of the fungus to the bacteria was investigated. Onion seedlings colonized with Gigaspora margarita, possessing Candidatus Glomeribacter gigasporarum (CaGg, Gram-negative, resides in vacuole) and Candidatus Moeniiplasma glomeromycotorum (CaMg, Gram-positive, resides in the cytoplasm,) were labelled with 13CO2. The 13C localization within the mycorrhiza was analyzed using high-resolution secondary ion mass spectrometry (SIMS). Correlative TEM-SIMS analysis of the fungal cells revealed that the 13C/12C ratio of CaGg was the lowest among CaMg and mitochondria and was the highest in the cytoplasm. By contrast, the plant cells, mitochondria, plastids, and fungal cytoplasm, which are contributors to the host, showed significantly higher 13C enrichment than the host cytoplasm. The C allocation patterns implied that CaMg has a greater impact than CaGg on G. margarita, but both seemed to be less burdensome to the host fungus in terms of C cost.
Collapse
Affiliation(s)
- Yukari Kuga
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Hiroshima, Japan;
- Correspondence:
| | - Ting-Di Wu
- Institut Curie, Université PSL, CNRS UMS2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, 91400 Orsay, France;
| | - Naoya Sakamoto
- Isotope Imaging Laboratory, Creative Research Institution, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo 001-0021, Hokkaido, Japan;
| | - Chie Katsuyama
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Hiroshima, Japan;
| | - Hisayoshi Yurimoto
- Department of Natural History Sciences, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo 001-0021, Hokkaido, Japan;
| |
Collapse
|
11
|
Miller BW, Lim AL, Lin Z, Bailey J, Aoyagi KL, Fisher MA, Barrows LR, Manoil C, Schmidt EW, Haygood MG. Shipworm symbiosis ecology-guided discovery of an antibiotic that kills colistin-resistant Acinetobacter. Cell Chem Biol 2021; 28:1628-1637.e4. [PMID: 34146491 PMCID: PMC8605984 DOI: 10.1016/j.chembiol.2021.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 02/04/2023]
Abstract
Teredinibacter turnerae is an intracellular bacterial symbiont in the gills of wood-eating shipworms, where it is proposed to use antibiotics to defend itself and its animal host. Several biosynthetic gene clusters are conserved in T. turnerae and their host shipworms around the world, implying that they encode defensive compounds. Here, we describe turnercyclamycins, lipopeptide antibiotics encoded in the genomes of all sequenced T. turnerae strains. Turnercyclamycins are bactericidal against challenging Gram-negative pathogens, including colistin-resistant Acinetobacter baumannii. Phenotypic screening identified the outer membrane as the likely target. Turnercyclamycins and colistin operate by similar cellular, although not necessarily molecular, mechanisms, but turnercyclamycins kill colistin-resistant A. baumannii, potentially filling an urgent clinical need. Thus, by exploring environments that select for the properties we require, we harvested the fruits of evolution to discover compounds with potential to target unmet health needs. Investigating the symbionts of shipworms is a powerful example of this principle.
Collapse
Affiliation(s)
- Bailey W Miller
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 81112, USA
| | - Albebson L Lim
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 81112, USA
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 81112, USA
| | - Jeannie Bailey
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kari L Aoyagi
- Department of Pathology and ARUP Laboratories, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark A Fisher
- Department of Pathology and ARUP Laboratories, University of Utah, Salt Lake City, UT 84112, USA
| | - Louis R Barrows
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Colin Manoil
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 81112, USA.
| | - Margo G Haygood
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 81112, USA.
| |
Collapse
|
12
|
Pesante G, Sabbadin F, Elias L, Steele-King C, Shipway JR, Dowle AA, Li Y, Busse-Wicher M, Dupree P, Besser K, Cragg SM, Bruce NC, McQueen-Mason SJ. Characterisation of the enzyme transport path between shipworms and their bacterial symbionts. BMC Biol 2021; 19:233. [PMID: 34724941 PMCID: PMC8561940 DOI: 10.1186/s12915-021-01162-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022] Open
Abstract
Background Shipworms are marine xylophagus bivalve molluscs, which can live on a diet solely of wood due to their ability to produce plant cell wall-degrading enzymes. Bacterial carbohydrate-active enzymes (CAZymes), synthesised by endosymbionts living in specialised shipworm cells called bacteriocytes and located in the animal’s gills, play an important role in wood digestion in shipworms. However, the main site of lignocellulose digestion within these wood-boring molluscs, which contains both endogenous lignocellulolytic enzymes and prokaryotic enzymes, is the caecum, and the mechanism by which bacterial enzymes reach the distant caecum lumen has remained so far mysterious. Here, we provide a characterisation of the path through which bacterial CAZymes produced in the gills of the shipworm Lyrodus pedicellatus reach the distant caecum to contribute to the digestion of wood. Results Through a combination of transcriptomics, proteomics, X-ray microtomography, electron microscopy studies and in vitro biochemical characterisation, we show that wood-digesting enzymes produced by symbiotic bacteria are localised not only in the gills, but also in the lumen of the food groove, a stream of mucus secreted by gill cells that carries food particles trapped by filter feeding to the mouth. Bacterial CAZymes are also present in the crystalline style and in the caecum of their shipworm host, suggesting a unique pathway by which enzymes involved in a symbiotic interaction are transported to their site of action. Finally, we characterise in vitro four new bacterial glycosyl hydrolases and a lytic polysaccharide monooxygenase identified in our transcriptomic and proteomic analyses as some of the major bacterial enzymes involved in this unusual biological system. Conclusion Based on our data, we propose that bacteria and their enzymes are transported from the gills along the food groove to the shipworm’s mouth and digestive tract, where they aid in wood digestion. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01162-6.
Collapse
Affiliation(s)
- Giovanna Pesante
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Federico Sabbadin
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Luisa Elias
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Clare Steele-King
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - J Reuben Shipway
- Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Adam A Dowle
- Bioscience Technology Facility, Department, of Biology, University of York, York, YO10 5DD, UK
| | - Yi Li
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Marta Busse-Wicher
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Katrin Besser
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Simon M Cragg
- Institute of Marine Sciences Laboratories, Langstone Harbour, Ferry Road, Eastney, Portsmouth, PO4 9LY, UK
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK.
| | - Simon J McQueen-Mason
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK.
| |
Collapse
|
13
|
McMahon G, Lechene C. High-Resolution Multi-Isotope Imaging Mass Spectrometry (MIMS) Imaging Applications in Stem Cell Biology. Curr Protoc 2021; 1:e290. [PMID: 34787964 PMCID: PMC8654063 DOI: 10.1002/cpz1.290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Multi-isotope imaging mass spectrometry (MIMS) allows the measurement of turnover of molecules within intracellular compartments with a spatial resolution down to 30 nm. We use molecules enriched in stable isotopes administered to animals by diet or injection, or to cells through the culture medium. The stable isotopes used are, in general, 15 N, 13 C, 18 O, and 2 H. For stem cell studies, we essentially use 15 N-thymidine, 13 C-thymidine, and 81 Br from BrdU. This protocol describes the practical use of MIMS with specific reference to applications in stem cell research. This includes choice and administration of stable isotope label(s), sample preparation, best practice for high-resolution imaging, secondary ion mass spectrometry using the Cameca NanoSIMS 50L, and methods for robust statistical analysis of label incorporation in regions of interest (ROI). © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Stable isotope labeling of DNA in cultured cells Basic Protocol 2: Stable isotope labeling of DNA in animals Basic Protocol 3: Preparation of Si chips, the general sample support for NanoSIMS analysis Basic Protocol 4: Stable isotope analysis of DNA replication in single nuclei in a population of cells with NanoSIMS Basic Protocol 5: Data reduction and processing.
Collapse
Affiliation(s)
- G. McMahon
- National Physical Laboratory, Teddington UK
| | - C.P. Lechene
- Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston MA USA
| |
Collapse
|
14
|
Courrèges C, Bonnecaze M, Flahaut D, Nolivos S, Grimaud R, Allouche J. AES and ToF-SIMS combination for single cell chemical imaging of gold nanoparticle-labeled Escherichia coli. Chem Commun (Camb) 2021; 57:5446-5449. [PMID: 33950059 DOI: 10.1039/d1cc01211h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chemical fingerprint of the Escherichia coli cell surface labeled by gelatin coated gold nanoparticles was obtained by combining Auger Electron Spectroscopy (AES) for single cell level chemical images, and Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) Tandem MS for unambiguous molecular identification of co-localized species.
Collapse
Affiliation(s)
- Cécile Courrèges
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et Physico-Chimie Pour l'Environnement et les matériaux (IPREM), 2 avenue du Président Angot, 64000 Pau, France
| | - Mélanie Bonnecaze
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et Physico-Chimie Pour l'Environnement et les matériaux (IPREM), 2 avenue du Président Angot, 64000 Pau, France
| | - Delphine Flahaut
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et Physico-Chimie Pour l'Environnement et les matériaux (IPREM), 2 avenue du Président Angot, 64000 Pau, France
| | - Sophie Nolivos
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et Physico-chimie pour l'environnement et les matériaux (IPREM), Avenue de l'Université, 64000 Pau, France
| | - Régis Grimaud
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et Physico-chimie pour l'environnement et les matériaux (IPREM), Avenue de l'Université, 64000 Pau, France
| | - Joachim Allouche
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et Physico-Chimie Pour l'Environnement et les matériaux (IPREM), 2 avenue du Président Angot, 64000 Pau, France
| |
Collapse
|
15
|
Autochthonous production contributes to the diet of wood-boring invertebrates in temperate shallow water. Oecologia 2021; 196:877-889. [PMID: 34159424 DOI: 10.1007/s00442-021-04973-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Marine wood-boring invertebrates rapidly fragment coarse woody debris in the sea. These wood borers have the ability to digest wood cellulose, but other potential food sources have been less investigated. To assess the contribution of each potential food source to the diet of wood borers, we traced seasonal and environmental changes in δ13C of shipworms cultured under the same experimental conditions and related these changes to variations in δ13C of potential food sources, i.e., wood log and particulate organic matter (POM) by using multiple linear regression models rather than the Bayesian mixing model. Based on the standardized partial regression coefficients in the model, it became clear that wood-derived organic carbon was the main carbon source for the teredinids, and POM also accounted for 37.9% of the teredinids' carbon source. Furthermore, we clarified variations in supplemental nitrogen sources for the teredinids: one species depended on both POM and wood log, whereas the other three species depended on either POM or wood log for their nitrogen source. δ13C values of another wood-boring bivalve of Martesia (Pholadidae) increase as it grows, which suggests that the bivalve switches its feeding strategy from xylophagous to filter feeding as it grows. Wood borers are known to accelerate the transfer of organic materials derived from wood logs to marine ecosystems. However, this study suggests that autochthonous production strongly contribute to the diet of marine wood borers, helping them to decompose wood logs in temperate shallow water.
Collapse
|
16
|
Schwendner P, Nguyen AN, Schuerger AC. Use of NanoSIMS to Identify the Lower Limits of Metabolic Activity and Growth by Serratia liquefaciens Exposed to Sub-Zero Temperatures. Life (Basel) 2021; 11:life11050459. [PMID: 34065549 PMCID: PMC8161314 DOI: 10.3390/life11050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Serratia liquefaciens is a cold-adapted facultative anaerobic astrobiology model organism with the ability to grow at a Martian atmospheric pressure of 7 hPa. Currently there is a lack of data on its limits of growth and metabolic activity at sub-zero temperatures found in potential habitable regions on Mars. Growth curves and nano-scale secondary ion mass spectrometry (NanoSIMS) were used to characterize the growth and metabolic threshold for S. liquefaciens ATCC 27,592 grown at and below 0 °C. Cells were incubated in Spizizen medium containing three stable isotopes substituting their unlabeled counterparts; i.e., 13C-glucose, (15NH4)2SO4, and H218O; at 0, −1.5, −3, −5, −10, or −15 °C. The isotopic ratios of 13C/12C, 15N/14N, and 18O/16O and their corresponding fractions were determined for 240 cells. NanoSIMS results revealed that with decreasing temperature the cellular amounts of labeled ions decreased indicating slower metabolic rates for isotope uptake and incorporation. Metabolism was significantly reduced at −1.5 and −3 °C, almost halted at −5 °C, and shut-down completely at or below −10 °C. While growth was observed at 0 °C after 5 days, samples incubated at −1.5 and −3 °C exhibited significantly slower growth rates until growth was detected at 70 days. In contrast, cell densities decreased by at least half an order of magnitude over 70 days in cultures incubated at ≤ −5 °C. Results suggest that S. liquefaciens, if transported to Mars, might be able to metabolize and grow in shallow sub-surface niches at temperatures above −5 °C and might survive—but not grow—at temperatures below −5 °C.
Collapse
Affiliation(s)
- Petra Schwendner
- Space Life Sciences Lab, Department of Plant Pathology, University of Florida, 505 Odyssey Way, Exploration Park, Merritt Island, FL 32953, USA;
- Correspondence:
| | - Ann N. Nguyen
- Jacobs, NASA Johnson Space Center, Houston, TX 77058, USA;
| | - Andrew C. Schuerger
- Space Life Sciences Lab, Department of Plant Pathology, University of Florida, 505 Odyssey Way, Exploration Park, Merritt Island, FL 32953, USA;
| |
Collapse
|
17
|
Yester JW, Liu H, Gyngard F, Ammanamanchi N, Little KC, Thomas D, Sullivan MLG, Lal S, Steinhauser ML, Kühn B. Use of stable isotope-tagged thymidine and multi-isotope imaging mass spectrometry (MIMS) for quantification of human cardiomyocyte division. Nat Protoc 2021; 16:1995-2022. [PMID: 33627842 PMCID: PMC8221415 DOI: 10.1038/s41596-020-00477-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022]
Abstract
Quantification of cellular proliferation in humans is important for understanding biology and responses to injury and disease. However, existing methods require administration of tracers that cannot be ethically administered in humans. We present a protocol for the direct quantification of cellular proliferation in human hearts. The protocol involves administration of non-radioactive, non-toxic stable isotope 15Nitrogen-enriched thymidine (15N-thymidine), which is incorporated into DNA during S-phase, in infants with tetralogy of Fallot, a common form of congenital heart disease. Infants with tetralogy of Fallot undergo surgical repair, which requires the removal of pieces of myocardium that would otherwise be discarded. This protocol allows for the quantification of cardiomyocyte proliferation in this discarded tissue. We quantitatively analyzed the incorporation of 15N-thymidine with multi-isotope imaging spectrometry (MIMS) at a sub-nuclear resolution, which we combined with correlative confocal microscopy to quantify formation of binucleated cardiomyocytes and cardiomyocytes with polyploid nuclei. The entire protocol spans 3-8 months, which is dependent on the timing of surgical repair, and 3-4.5 researcher days. This protocol could be adapted to study cellular proliferation in a variety of human tissues.
Collapse
Affiliation(s)
- Jessie W Yester
- Division of Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, Pittsburgh, PA, USA
| | - Honghai Liu
- Division of Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, Pittsburgh, PA, USA
| | - Frank Gyngard
- Center for NanoImaging, Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Niyatie Ammanamanchi
- Division of Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, Pittsburgh, PA, USA
| | - Kathryn C Little
- Clinical Research Support Services (CRSS), UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, Pittsburgh, PA, USA
- UPMC Shadyside Hospital, Pittsburgh, PA, USA
| | - Dawn Thomas
- Clinical Research Support Services (CRSS), UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, Pittsburgh, PA, USA
| | - Mara L G Sullivan
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Department of Cell Biology, Pittsburgh, PA, USA
| | - Sean Lal
- Division of Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, Pittsburgh, PA, USA
- Center for NanoImaging, Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Division of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Matthew L Steinhauser
- Center for NanoImaging, Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA.
- UPMC Heart and Vascular Institute, UPMC Presbyterian, Pittsburgh, PA, USA.
- Aging Institute, University of Pittsburgh, Bridgeside Point 1, Pittsburgh, PA, USA.
| | - Bernhard Kühn
- Division of Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, Pittsburgh, PA, USA.
- McGowan Institute of Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
Altamia MA, Shipway JR, Stein D, Betcher MA, Fung JM, Jospin G, Eisen J, Haygood MG, Distel DL. Teredinibacter haidensis sp. nov., Teredinibacter purpureus sp. nov. and Teredinibacter franksiae sp. nov., marine, cellulolytic endosymbiotic bacteria isolated from the gills of the wood-boring mollusc Bankia setacea (Bivalvia: Teredinidae) and emended description of the genus Teredinibacter. Int J Syst Evol Microbiol 2021; 71:004627. [PMID: 33439117 PMCID: PMC8346767 DOI: 10.1099/ijsem.0.004627] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Here, we describe three endosymbiotic bacterial strains isolated from the gills of the shipworm, Bankia setacea (Teredinidae: Bivalvia). These strains, designated as Bs08T, Bs12T and Bsc2T, are Gram-stain-negative, microaerobic, gammaproteobacteria that grow on cellulose and a variety of substrates derived from lignocellulose. Phenotypic characterization, phylogeny based on 16S rRNA gene and whole genome sequence data, amino acid identity and percentage of conserved proteins analyses, show that these strains are novel and may be assigned to the genus Teredinibacter. The three strains may be differentiated and distinguished from other previously described Teredinibacter species based on a combination of four characteristics: colony colour (Bs12T, purple; others beige to brown), marine salt requirement (Bs12T, Bsc2T and Teredinibacter turnerae strains), the capacity for nitrogen fixation (Bs08T and T. turnerae strains) and the ability to respire nitrate (Bs08T). Based on these findings, we propose the names Teredinibacter haidensis sp. nov. (type strain Bs08T=ATCC TSD-121T=KCTC 62964T), Teredinibacter purpureus sp. nov. (type strain Bs12T=ATCC TSD-122T=KCTC 62965T) and Teredinibacter franksiae sp. nov. (type strain Bsc2T=ATCC TSD-123T=KCTC 62966T).
Collapse
Affiliation(s)
- Marvin A. Altamia
- Ocean Genome Legacy Center, Northeastern University, Nahant, MA, USA
| | - J. Reuben Shipway
- The Centre for Enzyme Innovation, University of Portsmouth, Portsmouth, UK
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - David Stein
- Ocean Genome Legacy Center, Northeastern University, Nahant, MA, USA
| | | | | | - Guillaume Jospin
- College of Biological Sciences, University of California, Davis, CA, USA
| | - Jonathan Eisen
- College of Biological Sciences, University of California, Davis, CA, USA
| | - Margo G. Haygood
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, UT, USA
| | - Daniel L. Distel
- Ocean Genome Legacy Center, Northeastern University, Nahant, MA, USA
| |
Collapse
|
19
|
Abstract
FISH has gained an irreplaceable place in microbiology because of its ability to detect and locate a microorganism, or a group of organisms, within complex samples. However, FISH role has evolved drastically in the last few decades and its value has been boosted by several advances in signal intensity, imaging acquisitions, automation, method robustness, and, thus, versatility. This has resulted in a range of FISH variants that gave researchers the ability to access a variety of other valuable information such as complex population composition, metabolic activity, gene detection/quantification, or subcellular location of genetic elements. In this chapter, we will review the more relevant FISH variants, their intended use, and how they address particular challenges of classical FISH.
Collapse
Affiliation(s)
- Nuno M Guimarães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.
| | - Nuno F Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Carina Almeida
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
20
|
Narendra DP, Steinhauser ML. Metabolic Analysis at the Nanoscale with Multi-Isotope Imaging Mass Spectrometry (MIMS). CURRENT PROTOCOLS IN CELL BIOLOGY 2020; 88:e111. [PMID: 32706155 PMCID: PMC7484994 DOI: 10.1002/cpcb.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Incorporation of a stable-isotope metabolic tracer into cells or tissue can be followed at submicron resolution by multi-isotope imaging mass spectrometry (MIMS), a form of imaging secondary ion microscopy optimized for accurate isotope ratio measurement from microvolumes of sample (as small as ∼30 nm across). In a metabolic MIMS experiment, a cell or animal is metabolically labeled with a tracer containing a stable isotope. Relative accumulation of the heavy isotope in the fixed sample is then measured as an increase over its natural abundance by MIMS. MIMS has been used to measure protein turnover in single organelles, track cellular division in vivo, visualize sphingolipid rafts on the plasma membrane, and measure dopamine incorporation into dense-core vesicles, among other biological applications. In this article, we introduce metabolic analysis using NanoSIMS by focusing on two specific applications: quantifying protein turnover in single organelles of cultured cells and tracking cell replication in mouse tissues in vivo. These examples illustrate the versatility of metabolic analysis with MIMS. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Metabolic labeling for MIMS Basic Protocol 2: Embedding of samples for correlative transmission electron microscopy and MIMS with a genetically encoded reporter Alternate Protocol: Embedding of samples for correlative light microscopy and MIMS Support Protocol: Preparation of silicon wafers as sample supports for MIMS Basic Protocol 3: Analysis of MIMS data.
Collapse
Affiliation(s)
- Derek P Narendra
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Matthew L Steinhauser
- Department of Medicine, Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Meng Y, Cheng X, Wang T, Hang W, Li X, Nie W, Liu R, Lin Z, Hang L, Yin Z, Zhang B, Yan X. Micro‐Lensed Fiber Laser Desorption Mass Spectrometry Imaging Reveals Subcellular Distribution of Drugs within Single Cells. Angew Chem Int Ed Engl 2020; 59:17864-17871. [DOI: 10.1002/anie.202002151] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/15/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Yifan Meng
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiaoling Cheng
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Tongtong Wang
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Wei Hang
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- State Key Laboratory of Marine Environmental Science Xiamen University Xiamen 361005 China
| | - Xiaoping Li
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Wan Nie
- State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing College of Materials Science and Engineering Guilin University of Technology Guilin 541004 China
| | - Rong Liu
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Zheng Lin
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Le Hang
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Zhibin Yin
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Baolin Zhang
- State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing College of Materials Science and Engineering Guilin University of Technology Guilin 541004 China
| | - Xiaomei Yan
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
22
|
Meng Y, Cheng X, Wang T, Hang W, Li X, Nie W, Liu R, Lin Z, Hang L, Yin Z, Zhang B, Yan X. Micro‐Lensed Fiber Laser Desorption Mass Spectrometry Imaging Reveals Subcellular Distribution of Drugs within Single Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yifan Meng
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiaoling Cheng
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Tongtong Wang
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Wei Hang
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- State Key Laboratory of Marine Environmental Science Xiamen University Xiamen 361005 China
| | - Xiaoping Li
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Wan Nie
- State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing College of Materials Science and Engineering Guilin University of Technology Guilin 541004 China
| | - Rong Liu
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Zheng Lin
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Le Hang
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Zhibin Yin
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Baolin Zhang
- State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing College of Materials Science and Engineering Guilin University of Technology Guilin 541004 China
| | - Xiaomei Yan
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
23
|
Secondary Metabolism in the Gill Microbiota of Shipworms (Teredinidae) as Revealed by Comparison of Metagenomes and Nearly Complete Symbiont Genomes. mSystems 2020; 5:5/3/e00261-20. [PMID: 32606027 PMCID: PMC7329324 DOI: 10.1128/msystems.00261-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We define a system in which the major symbionts that are important to host biology and to the production of secondary metabolites can be cultivated. We show that symbiotic bacteria that are critical to host nutrition and lifestyle also have an immense capacity to produce a multitude of diverse and likely novel bioactive secondary metabolites that could lead to the discovery of drugs and that these pathways are found within shipworm gills. We propose that, by shaping associated microbial communities within the host, the compounds support the ability of shipworms to degrade wood in marine environments. Because these symbionts can be cultivated and genetically manipulated, they provide a powerful model for understanding how secondary metabolism impacts microbial symbiosis. Shipworms play critical roles in recycling wood in the sea. Symbiotic bacteria supply enzymes that the organisms need for nutrition and wood degradation. Some of these bacteria have been grown in pure culture and have the capacity to make many secondary metabolites. However, little is known about whether such secondary metabolite pathways are represented in the symbiont communities within their hosts. In addition, little has been reported about the patterns of host-symbiont co-occurrence. Here, we collected shipworms from the United States, the Philippines, and Brazil and cultivated symbiotic bacteria from their gills. We analyzed sequences from 22 shipworm gill metagenomes from seven shipworm species and from 23 cultivated symbiont isolates. Using (meta)genome sequencing, we demonstrate that the cultivated isolates represent all the major bacterial symbiont species and strains in shipworm gills. We show that the bacterial symbionts are distributed among shipworm hosts in consistent, predictable patterns. The symbiotic bacteria harbor many gene cluster families (GCFs) for biosynthesis of bioactive secondary metabolites, only <5% of which match previously described biosynthetic pathways. Because we were able to cultivate the symbionts and to sequence their genomes, we can definitively enumerate the biosynthetic pathways in these symbiont communities, showing that ∼150 of ∼200 total biosynthetic gene clusters (BGCs) present in the animal gill metagenomes are represented in our culture collection. Shipworm symbionts occur in suites that differ predictably across a wide taxonomic and geographic range of host species and collectively constitute an immense resource for the discovery of new biosynthetic pathways corresponding to bioactive secondary metabolites. IMPORTANCE We define a system in which the major symbionts that are important to host biology and to the production of secondary metabolites can be cultivated. We show that symbiotic bacteria that are critical to host nutrition and lifestyle also have an immense capacity to produce a multitude of diverse and likely novel bioactive secondary metabolites that could lead to the discovery of drugs and that these pathways are found within shipworm gills. We propose that, by shaping associated microbial communities within the host, the compounds support the ability of shipworms to degrade wood in marine environments. Because these symbionts can be cultivated and genetically manipulated, they provide a powerful model for understanding how secondary metabolism impacts microbial symbiosis.
Collapse
|
24
|
An intracellular silver deposition method for targeted detection and chemical analysis of uncultured microorganisms. Syst Appl Microbiol 2020; 43:126086. [PMID: 32414515 DOI: 10.1016/j.syapm.2020.126086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/31/2020] [Accepted: 04/20/2020] [Indexed: 11/24/2022]
Abstract
The vast majority of environmental bacteria remain uncultured, despite two centuries of effort in cultivating microorganisms. Our knowledge of their physiology and metabolic activity depends to a large extent on methods capable of analyzing single cells. Bacterial identification is a key step required by all currently used single-cell imaging techniques and is typically performed by means of fluorescent labeling. However, fluorescent cells cannot be visualized by ion- and electron microscopy and thus only correlative, indirect, cell identification is possible. Here we present a new method of bacterial identification by in situ hybridization coupled to the deposition of elemental silver nanoparticles (silver-DISH). We show that hybridized cells containing silver can be directly visualized by light microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, secondary ion mass spectrometry (nanoSIMS), and confocal Raman micro-spectroscopy. Silver-DISH did not alter the isotopic (13C) and elemental composition of stable-isotope probed cells more than other available hybridization methods, making silver-DISH suitable for broad applications in stable-isotope labeling studies. Additionally, we demonstrate that silver-DISH can induce a surface-enhanced Raman scattering (SERS) effect, amplifying the Raman signal of biomolecules inside bacterial cells. This makes silver-DISH the only currently available method that is capable of delivering a SERS-active substrate inside specifically targeted microbial cells.
Collapse
|
25
|
Narendra DP, Guillermier C, Gyngard F, Huang X, Ward ME, Steinhauser ML. Coupling APEX labeling to imaging mass spectrometry of single organelles reveals heterogeneity in lysosomal protein turnover. J Cell Biol 2020; 219:e201901097. [PMID: 31719114 PMCID: PMC7039203 DOI: 10.1083/jcb.201901097] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 09/13/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022] Open
Abstract
Quantification of stable isotope tracers after metabolic labeling provides a snapshot of the dynamic state of living cells and tissue. A form of imaging mass spectrometry quantifies isotope ratios with a lateral resolution <50 nm, using a methodology that we refer to as multi-isotope imaging mass spectrometry (MIMS). Despite lateral resolution exceeding diffraction-limited light microscopy, lack of contrast has largely limited use of MIMS to large or specialized subcellular structures, such as the nucleus and stereocilia. In this study, we repurpose the engineered peroxidase APEX2 as the first genetically encoded marker for MIMS. Coupling APEX2 labeling of lysosomes and metabolic labeling of protein, we identify that individual lysosomes exhibit substantial heterogeneity in protein age, which is lost in iPSC-derived neurons lacking the lysosomal protein progranulin. This study expands the practical use of MIMS for cell biology by enabling measurements of metabolic function from stable isotope labeling within individual organelles in situ.
Collapse
Affiliation(s)
- Derek P. Narendra
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Christelle Guillermier
- Harvard Medical School, Boston, MA
- Center for NanoImaging, Cambridge, MA
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, MA
| | - Frank Gyngard
- Harvard Medical School, Boston, MA
- Center for NanoImaging, Cambridge, MA
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, MA
| | - Xiaoping Huang
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Michael E. Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Matthew L. Steinhauser
- Harvard Medical School, Boston, MA
- Center for NanoImaging, Cambridge, MA
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
26
|
Cragg SM, Friess DA, Gillis LG, Trevathan-Tackett SM, Terrett OM, Watts JEM, Distel DL, Dupree P. Vascular Plants Are Globally Significant Contributors to Marine Carbon Fluxes and Sinks. ANNUAL REVIEW OF MARINE SCIENCE 2020; 12:469-497. [PMID: 31505131 DOI: 10.1146/annurev-marine-010318-095333] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
More than two-thirds of global biomass consists of vascular plants. A portion of the detritus they generate is carried into the oceans from land and highly productive blue carbon ecosystems-salt marshes, mangrove forests, and seagrass meadows. This large detrital input receives scant attention in current models of the global carbon cycle, though for blue carbon ecosystems, increasingly well-constrained estimates of biomass, productivity, and carbon fluxes, reviewed in this article, are now available. We show that the fate of this detritus differs markedly from that of strictly marine origin, because the former contains lignocellulose-an energy-rich polymer complex of cellulose, hemicelluloses, and lignin that is resistant to enzymatic breakdown. This complex can be depolymerized for nutritional purposes by specialized marine prokaryotes, fungi, protists, and invertebrates using enzymes such as glycoside hydrolases and lytic polysaccharide monooxygenases to release sugar monomers. The lignin component, however, is less readily depolymerized, and detritus therefore becomes lignin enriched, particularly in anoxic sediments, and forms a major carbon sink in blue carbon ecosystems. Eventual lignin breakdown releases a wide variety of small molecules that may contribute significantly to the oceanic pool of recalcitrant dissolved organic carbon. Marine carbon fluxes and sinks dependent on lignocellulosic detritus are important ecosystem services that are vulnerable to human interventions. These services must be considered when protecting blue carbon ecosystems and planning initiatives aimed at mitigating anthropogenic carbon emissions.
Collapse
Affiliation(s)
- Simon M Cragg
- Institute of Marine Sciences, University of Portsmouth, Portsmouth PO4 9LY, United Kingdom;
| | - Daniel A Friess
- Department of Geography, National University of Singapore, Singapore 117570;
| | - Lucy G Gillis
- Leibniz-Zentrum für Marine Tropenforschung (ZMT), 28359 Bremen, Germany;
| | - Stacey M Trevathan-Tackett
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Burwood, Victoria 3125, Australia;
| | - Oliver M Terrett
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom; ,
| | - Joy E M Watts
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom;
| | - Daniel L Distel
- Ocean Genome Legacy Center of New England Biolabs, Marine Science Center, Northeastern University, Nahant, Massachusetts 01908, USA;
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom; ,
| |
Collapse
|
27
|
Pankievicz VCS, Irving TB, Maia LGS, Ané JM. Are we there yet? The long walk towards the development of efficient symbiotic associations between nitrogen-fixing bacteria and non-leguminous crops. BMC Biol 2019; 17:99. [PMID: 31796086 PMCID: PMC6889567 DOI: 10.1186/s12915-019-0710-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/18/2019] [Indexed: 01/09/2023] Open
Abstract
Nitrogen is an essential element of life, and nitrogen availability often limits crop yields. Since the Green Revolution, massive amounts of synthetic nitrogen fertilizers have been produced from atmospheric nitrogen and natural gas, threatening the sustainability of global food production and degrading the environment. There is a need for alternative means of bringing nitrogen to crops, and taking greater advantage of biological nitrogen fixation seems a logical option. Legumes are used in most cropping systems around the world because of the nitrogen-fixing symbiosis with rhizobia. However, the world's three major cereal crops-rice, wheat, and maize-do not associate with rhizobia. In this review, we will survey how genetic approaches in rhizobia and their legume hosts allowed tremendous progress in understanding the molecular mechanisms controlling root nodule symbioses, and how this knowledge paves the way for engineering such associations in non-legume crops. We will also discuss challenges in bringing these systems into the field and how they can be surmounted by interdisciplinary collaborations between synthetic biologists, microbiologists, plant biologists, breeders, agronomists, and policymakers.
Collapse
Affiliation(s)
| | - Thomas B Irving
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Lucas G S Maia
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin, Madison, WI, USA.
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
28
|
Gyngard F, Steinhauser ML. Biological explorations with nanoscale secondary ion mass spectrometry. JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY 2019; 34:1534-1545. [PMID: 34054180 PMCID: PMC8158666 DOI: 10.1039/c9ja00171a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Investigation of biological processes at the single cell or subcellular level is critical in order to better understand heterogenous cell populations. Nanoscale secondary ion mass spectrometry (NanoSIMS) enables multiplexed, quantitative imaging of the elemental composition of a sample surface at high resolution (< 50 nm). Through measurement of two different isotopic variants of any given element, NanoSIMS provides nanoscale isotope ratio measurements. When coupled with stable isotope tracer methods, the measurement of isotope ratios functionally illuminates biochemical pathways at suborganelle resolution. In this review, we describe the practical application of NanoSIMS to study biological processes in organisms ranging from microbes to humans, highlighting experimental applications that have provided insight that is largely unattainable by other methods.
Collapse
Affiliation(s)
- Frank Gyngard
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Matthew L Steinhauser
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
29
|
Perera IA, Abinandan S, Subashchandrabose SR, Venkateswarlu K, Naidu R, Megharaj M. Advances in the technologies for studying consortia of bacteria and cyanobacteria/microalgae in wastewaters. Crit Rev Biotechnol 2019; 39:709-731. [PMID: 30971144 DOI: 10.1080/07388551.2019.1597828] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The excessive generation and discharge of wastewaters have been serious concerns worldwide in the recent past. From an environmental friendly perspective, bacteria, cyanobacteria and microalgae, and the consortia have been largely considered for biological treatment of wastewaters. For efficient use of bacteria‒cyanobacteria/microalgae consortia in wastewater treatment, detailed knowledge on their structure, behavior and interaction is essential. In this direction, specific analytical tools and techniques play a significant role in studying these consortia. This review presents a critical perspective on physical, biochemical and molecular techniques such as microscopy, flow cytometry with cell sorting, nanoSIMS and omics approaches used for systematic investigations of the structure and function, particularly nutrient removal potential of bacteria‒cyanobacteria/microalgae consortia. In particular, the use of specific molecular techniques of genomics, transcriptomics, proteomics metabolomics and genetic engineering to develop more stable consortia of bacteria and cyanobacteria/microalgae with their improved biotechnological capabilities in wastewater treatment has been highlighted.
Collapse
Affiliation(s)
- Isiri Adhiwarie Perera
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia
| | - Sudharsanam Abinandan
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia
| | - Suresh R Subashchandrabose
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia.,b Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE) , The University of Newcastle , Callaghan , New South Wales , Australia
| | - Kadiyala Venkateswarlu
- c Formerly Department of Microbiology , Sri Krishnadevaraya University , Anantapuramu , Andhra Pradesh , India
| | - Ravi Naidu
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia.,b Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE) , The University of Newcastle , Callaghan , New South Wales , Australia
| | - Mallavarapu Megharaj
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia.,b Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE) , The University of Newcastle , Callaghan , New South Wales , Australia
| |
Collapse
|
30
|
Yin Z, Cheng X, Liu R, Li X, Hang L, Hang W, Xu J, Yan X, Li J, Tian Z. Chemical and Topographical Single‐Cell Imaging by Near‐Field Desorption Mass Spectrometry. Angew Chem Int Ed Engl 2019; 58:4541-4546. [DOI: 10.1002/anie.201813744] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Zhibin Yin
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiaoling Cheng
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Rong Liu
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiaoping Li
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Le Hang
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Wei Hang
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- State Key Laboratory of Marine Environmental Science Xiamen University Xiamen 361005 China
| | - Jingyi Xu
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiaomei Yan
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Jianfeng Li
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Zhongqun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
31
|
Yin Z, Cheng X, Liu R, Li X, Hang L, Hang W, Xu J, Yan X, Li J, Tian Z. Chemical and Topographical Single‐Cell Imaging by Near‐Field Desorption Mass Spectrometry. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zhibin Yin
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiaoling Cheng
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Rong Liu
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiaoping Li
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Le Hang
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Wei Hang
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- State Key Laboratory of Marine Environmental Science Xiamen University Xiamen 361005 China
| | - Jingyi Xu
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiaomei Yan
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Jianfeng Li
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Zhongqun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
32
|
Altamia MA, Shipway JR, Concepcion GP, Haygood MG, Distel DL. Thiosocius teredinicola gen. nov., sp. nov., a sulfur-oxidizing chemolithoautotrophic endosymbiont cultivated from the gills of the giant shipworm, Kuphus polythalamius. Int J Syst Evol Microbiol 2018; 69:638-644. [PMID: 30540238 PMCID: PMC7705117 DOI: 10.1099/ijsem.0.003143] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A chemolithoautotrophic sulfur-oxidizing, diazotrophic, facultatively heterotrophic, endosymbiotic bacterium, designated as strain 2141T, was isolated from the gills of the giant shipworm Kuphus polythalamius (Teredinidae: Bivalvia). Based on its 16S rRNA sequence, the endosymbiont falls within a clade that includes the as-yet-uncultivated thioautotrophic symbionts of a marine ciliate and hydrothermal vent gastropods, uncultivated marine sediment bacteria, and a free-living sulfur-oxidizing bacterium ODIII6, all of which belong to the Gammaproteobacteria. The endosymbiont is Gram-negative, rod-shaped and has a single polar flagellum when grown in culture. This bacterium can be grown chemolithoautotrophically on a chemically defined medium supplemented with either hydrogen sulfide, thiosulfate, tetrathionate or elemental sulfur. The closed-circular genome has a DNA G+C content of 60.1 mol% and is 4.79 Mbp in size with a large nitrogenase cluster spanning nearly 40 kbp. The diazotrophic capability was confirmed by growing the strain on chemolithoautotrophic thiosulfate-based medium without a combined source of fixed nitrogen. The bacterium is also capable of heterotrophic growth on organic acids such as acetate and propionate. The pH, temperature and salinity optima for chemolithoautotrophic growth on thiosulfate were found to be 8.5, 34 °C and 0.2 M NaCl, respectively. To our knowledge, this is the first report of pure culture of a thioautotrophic animal symbiont. The type strain of Thiosocius teredinicola is PMS-2141T.STBD.0c.01aT (=DSM 108030T).
Collapse
Affiliation(s)
- Marvin A. Altamia
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
- Department of Marine and Environmental Science, Ocean Genome Legacy Center, Northeastern University, Nahant MA 01908, USA
| | - J. Reuben Shipway
- Department of Marine and Environmental Science, Ocean Genome Legacy Center, Northeastern University, Nahant MA 01908, USA
| | - Gisela P. Concepcion
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
| | - Margo G. Haygood
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
- *Correspondence: Margo G. Haygood,
| | - Daniel L. Distel
- Department of Marine and Environmental Science, Ocean Genome Legacy Center, Northeastern University, Nahant MA 01908, USA
- Daniel L. Distel,
| |
Collapse
|
33
|
Giardina M, Cheong S, Marjo CE, Clode PL, Guagliardo P, Pickford R, Pernice M, Seymour JR, Raina JB. Quantifying Inorganic Nitrogen Assimilation by Synechococcus Using Bulk and Single-Cell Mass Spectrometry: A Comparative Study. Front Microbiol 2018; 9:2847. [PMID: 30538685 PMCID: PMC6277480 DOI: 10.3389/fmicb.2018.02847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 11/05/2018] [Indexed: 12/03/2022] Open
Abstract
Microorganisms drive most of the major biogeochemical cycles in the ocean, but the rates at which individual species assimilate and transform key elements is generally poorly quantified. One of these important elements is nitrogen, with its availability limiting primary production across a large proportion of the ocean. Nitrogen uptake by marine microbes is typically quantified using bulk-scale approaches, such as Elemental Analyzer-Isotope Ratio Mass Spectrometry (EA-IRMS), which averages uptake over entire communities, masking microbial heterogeneity. However, more recent techniques, such as secondary ion mass spectrometry (SIMS), allow for elucidation of assimilation rates at the scale at which they occur: the single-cell level. Here, we combine and compare the application of bulk (EA-IRMS) and single-cell approaches (NanoSIMS and Time-of-Flight-SIMS) for quantifying the assimilation of inorganic nitrogen by the ubiquitous marine primary producer Synechococcus. We aimed to contrast the advantages and disadvantages of these techniques and showcase their complementarity. Our results show that the average assimilation of 15N by Synechococcus differed based on the technique used: values derived from EA-IRMS were consistently higher than those derived from SIMS, likely due to a combination of previously reported systematic depletion as well as differences in sample preparation. However, single-cell approaches offered additional layers of information, whereby NanoSIMS allowed for the quantification of the metabolic heterogeneity among individual cells and ToF-SIMS enabled identification of nitrogen assimilation into peptides. We suggest that this coupling of stable isotope-based approaches has great potential to elucidate the metabolic capacity and heterogeneity of microbial cells in natural environments.
Collapse
Affiliation(s)
- Marco Giardina
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Soshan Cheong
- Mark Wainwright Analytical Centre, University of New South Wales, Kensington, NSW, Australia
| | - Christopher E. Marjo
- Mark Wainwright Analytical Centre, University of New South Wales, Kensington, NSW, Australia
| | - Peta L. Clode
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
- UWA School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- UWA Oceans Institute, The University of Western Australia, Perth, WA, Australia
| | - Paul Guagliardo
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Mathieu Pernice
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Justin R. Seymour
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
34
|
Brito TL, Campos AB, Bastiaan von Meijenfeldt FA, Daniel JP, Ribeiro GB, Silva GGZ, Wilke DV, de Moraes DT, Dutilh BE, Meirelles PM, Trindade-Silva AE. The gill-associated microbiome is the main source of wood plant polysaccharide hydrolases and secondary metabolite gene clusters in the mangrove shipworm Neoteredo reynei. PLoS One 2018; 13:e0200437. [PMID: 30427852 PMCID: PMC6235255 DOI: 10.1371/journal.pone.0200437] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/08/2018] [Indexed: 12/02/2022] Open
Abstract
Teredinidae are a family of highly adapted wood-feeding and wood-boring bivalves, commonly known as shipworms, whose evolution is linked to the acquisition of cellulolytic gammaproteobacterial symbionts harbored in bacteriocytes within the gills. In the present work we applied metagenomics to characterize microbiomes of the gills and digestive tract of Neoteredo reynei, a mangrove-adapted shipworm species found over a large range of the Brazilian coast. Comparative metagenomics grouped the gill symbiont community of different N. reynei specimens, indicating closely related bacterial types are shared. Similarly, the intestine and digestive gland communities were related, yet were more diverse than and showed no overlap with the gill community. Annotation of assembled metagenomic contigs revealed that the gill symbiotic community of N. reynei encodes a plethora of plant cell wall polysaccharides degrading glycoside hydrolase encoding genes, and Biosynthetic Gene Clusters (BGCs). In contrast, the digestive tract microbiomes seem to play little role in wood digestion and secondary metabolites biosynthesis. Metagenome binning recovered the nearly complete genome sequences of two symbiotic Teredinibacter strains from the gills, a representative of Teredinibacter turnerae “clade I” strain, and a yet to be cultivated Teredinibacter sp. type. These Teredinibacter genomes, as well as un-binned gill-derived gammaproteobacteria contigs, also include an endo-β-1,4-xylanase/acetylxylan esterase multi-catalytic carbohydrate-active enzyme, and a trans-acyltransferase polyketide synthase (trans-AT PKS) gene cluster with the gene cassette for generating β-branching on complex polyketides. Finally, we use multivariate analyses to show that the secondary metabolome from the genomes of Teredinibacter representatives, including genomes binned from N. reynei gills’ metagenomes presented herein, stands out within the Cellvibrionaceae family by size, and enrichments for polyketide, nonribosomal peptide and hybrid BGCs. Results presented here add to the growing characterization of shipworm symbiotic microbiomes and indicate that the N. reynei gill gammaproteobacterial community is a prolific source of biotechnologically relevant enzymes for wood-digestion and bioactive compounds production.
Collapse
Affiliation(s)
- Thais L. Brito
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Amanda B. Campos
- Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Julio P. Daniel
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Gabriella B. Ribeiro
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Genivaldo G. Z. Silva
- Computational Science Research Center, San Diego State University, San Diego, California, United States of America
| | - Diego V. Wilke
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | | | - Bas E. Dutilh
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Pedro M. Meirelles
- Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Federal University of Bahia, Salvador, Brazil
| | - Amaro E. Trindade-Silva
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
- * E-mail:
| |
Collapse
|
35
|
Cabin-Flaman A, Delaune A, Poutrain P, Gangwe Nana YG, Jourdain B, Gibouin D, Paris JP, Trestour S, Seigneuret JM, Léopoldès de Vendômois A, Cosette P, Etienne JJ, Ripoll C. Effect of zein additive on perfume evaporation. Int J Cosmet Sci 2018; 40:575-582. [PMID: 30414278 DOI: 10.1111/ics.12500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/05/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Zein is known to have filmogen properties. We wanted to show if a zein film containing eugenol (eugenol as model) would retain the fragrances, slow their evaporation and therefore produce a long-lasting perception of perfume. METHODS We added corn zein to eugenol in a hydro-alcoholic solution to form a film in vitro and at the surface of the human skin. We have studied the trapping and release of eugenol from zein film by GC/MS. Also we labelled eugenol with deuterium to image specifically its distribution in the zein film using Secondary Ion Mass Spectrometry technique (NanoSIMS 50). Finally, we applied the zein/D-eugenol formulation onto skin to image the eugenol location on and in skin by SIMS (Secondary Ion Mass Spectrometry). RESULTS We showed that eugenol evaporation from zein film can be divided in three periods. The first period (≤2 h) corresponds to the simultaneous solvent and eugenol evaporation occurring during film formation. The second period corresponds to the continuous and slow eugenol evaporation during a few hours (about 10 h) but not to its completion. The third period (at least up to 48 h) results from the trapping of eugenol in zein film. After 24 or 48 h, trapped eugenol can be released and evaporated under mechanical deformations of the film. Moreover we showed that zein addition does not favour the eugenol penetration into viable epidermis which may cause allergenic cutaneous reaction. CONCLUSION The zein additive is safe to use, does not impact the olfactory perception, allows a better perception of the fragrance (long-lasting effect) in a more protective way and can be used in perfume.
Collapse
Affiliation(s)
- A Cabin-Flaman
- Groupe de Physique des Matériaux, UMR 6634 CNRS, Faculté des Sciences et Techniques, Université de Rouen Normandie, Mont-Saint-Aignan, France.,Département de Biologie, Faculté des Sciences et Techniques, Université de Rouen Normandie, Mont-Saint-Aignan, France
| | - A Delaune
- Groupe de Physique des Matériaux, UMR 6634 CNRS, Faculté des Sciences et Techniques, Université de Rouen Normandie, Mont-Saint-Aignan, France.,Département de Biologie, Faculté des Sciences et Techniques, Université de Rouen Normandie, Mont-Saint-Aignan, France
| | - P Poutrain
- Département de Biologie, Faculté des Sciences et Techniques, Université de Rouen Normandie, Mont-Saint-Aignan, France
| | - Y G Gangwe Nana
- Département de Biologie, Faculté des Sciences et Techniques, Université de Rouen Normandie, Mont-Saint-Aignan, France
| | - B Jourdain
- Département de Biologie, Faculté des Sciences et Techniques, Université de Rouen Normandie, Mont-Saint-Aignan, France
| | - D Gibouin
- Groupe de Physique des Matériaux, UMR 6634 CNRS, Faculté des Sciences et Techniques, Université de Rouen Normandie, Mont-Saint-Aignan, France.,Département de Biologie, Faculté des Sciences et Techniques, Université de Rouen Normandie, Mont-Saint-Aignan, France
| | | | | | | | | | - P Cosette
- Département de Chimie, Plateforme Protéomique PISSARO, UMR 6270 CNRS, Faculté des Sciences et Techniques, Université de Rouen Normandie, Mont-Saint-Aignan, France
| | | | - C Ripoll
- Département de Biologie, Faculté des Sciences et Techniques, Université de Rouen Normandie, Mont-Saint-Aignan, France
| |
Collapse
|
36
|
Leftwich PT, Hutchings MI, Chapman T. Diet, Gut Microbes and Host Mate Choice: Understanding the significance of microbiome effects on host mate choice requires a case by case evaluation. Bioessays 2018; 40:e1800053. [PMID: 30311675 DOI: 10.1002/bies.201800053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 09/06/2018] [Indexed: 12/22/2022]
Abstract
All organisms live in close association with microbes. However, not all such associations are meaningful in an evolutionary context. Current debate concerns whether hosts and microbes are best described as communities of individuals or as holobionts (selective units of hosts plus their microbes). Recent reports that assortative mating of hosts by diet can be mediated by commensal gut microbes have attracted interest as a potential route to host reproductive isolation (RI). Here, the authors discuss logical problems with this line of argument. The authors briefly review how microbes can affect host mating preferences and evaluate recent findings from fruitflies. Endosymbionts can potentially influence host RI given stable and recurrent co-association of hosts and microbes over evolutionary time. However, observations of co-occurrence of microbes and hosts are ripe for misinterpretation and such associations will rarely represent a meaningful holobiont. A framework in which hosts and their microbes are independent evolutionary units provides the only satisfactory explanation for the observed range of effects and associations.
Collapse
Affiliation(s)
- Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
37
|
Stryhanyuk H, Calabrese F, Kümmel S, Musat F, Richnow HH, Musat N. Calculation of Single Cell Assimilation Rates From SIP-NanoSIMS-Derived Isotope Ratios: A Comprehensive Approach. Front Microbiol 2018; 9:2342. [PMID: 30337916 PMCID: PMC6178922 DOI: 10.3389/fmicb.2018.02342] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/12/2018] [Indexed: 11/18/2022] Open
Abstract
The nanoSIMS-based chemical microscopy has been introduced in biology over a decade ago. The spatial distribution of elements and isotopes analyzed by nanoSIMS can be used to reconstruct images of biological samples with a resolution down to tens of nanometers, and can be also interpreted quantitatively. Currently, a unified approach for calculation of single cell assimilation rates from nanoSIMS-derived changes in isotope ratios is missing. Here we present a comprehensive concept of assimilation rate calculation with a rigorous mathematical model based on quantitative evaluation of nanoSIMS-derived isotope ratios. We provide a detailed description of data acquisition and treatment, including the selection and accumulation of nanoSIMS scans, defining regions of interest and extraction of isotope ratios. Next, we present alternative methods to determine the cellular volume and the density of the element under scrutiny. Finally, to compensate for alterations of original isotopic ratios, our model considers corrections for sample preparation methods (e.g., air dry, chemical fixation, permeabilization, hybridization), and when known, for the stable isotope fractionation associated with utilization of defined growth substrates. As proof of concept we implemented this protocol to quantify the assimilation of 13C-labeled glucose by single cells of Pseudomonas putida. In addition, we provide a calculation template where all protocol-derived formulas are directly available to facilitate routine assimilation rate calculations by nanoSIMS users.
Collapse
Affiliation(s)
- Hryhoriy Stryhanyuk
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Federica Calabrese
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Florin Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| |
Collapse
|
38
|
Senra MVX, Sung W, Ackerman M, Miller SF, Lynch M, Soares CAG. An Unbiased Genome-Wide View of the Mutation Rate and Spectrum of the Endosymbiotic Bacterium Teredinibacter turnerae. Genome Biol Evol 2018; 10:723-730. [PMID: 29415256 PMCID: PMC5833318 DOI: 10.1093/gbe/evy027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2018] [Indexed: 12/14/2022] Open
Abstract
Mutations contribute to genetic variation in all living systems. Thus, precise estimates of mutation rates and spectra across a diversity of organisms are required for a full comprehension of evolution. Here, a mutation-accumulation (MA) assay was carried out on the endosymbiotic bacterium Teredinibacter turnerae. After ∼3,025 generations, base-pair substitutions (BPSs) and insertion–deletion (indel) events were characterized by whole-genome sequencing analysis of 47 independent MA lines, yielding a BPS rate of 1.14 × 10−9 per site per generation and indel rate of 1.55 × 10−10 events per site per generation, which are among the highest within free-living and facultative intracellular bacteria. As in other endosymbionts, a significant bias of BPSs toward A/T and an excess of deletion mutations over insertion mutations are observed for these MA lines. However, even with a deletion bias, the genome remains relatively large (∼5.2 Mb) for an endosymbiotic bacterium. The estimate of the effective population size (Ne) in T. turnerae is quite high and comparable to free-living bacteria (∼4.5 × 107), suggesting that the heavy bottlenecking associated with many endosymbiotic relationships is not prevalent during the life of this endosymbiont. The efficiency of selection scales with increasing Ne and such strong selection may have been operating against the deletion bias, preventing genome erosion. The observed mutation rate in this endosymbiont is of the same order of magnitude of those with similar Ne, consistent with the idea that population size is a primary determinant of mutation-rate evolution within endosymbionts, and that not all endosymbionts have low Ne.
Collapse
Affiliation(s)
- Marcus V X Senra
- Departamento de Zoologia, Universidade Federal de Juiz de Fora, Brazil
| | - Way Sung
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte
| | - Matthew Ackerman
- Biodesign Center for Mechanisms of Evolution, Arizona State University
| | - Samuel F Miller
- Biodesign Center for Mechanisms of Evolution, Arizona State University
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University
| | - Carlos Augusto G Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Brazil
- Corresponding author: E-mail:
| |
Collapse
|
39
|
Lee MD, Kling JD, Araya R, Ceh J. Jellyfish Life Stages Shape Associated Microbial Communities, While a Core Microbiome Is Maintained Across All. Front Microbiol 2018; 9:1534. [PMID: 30050517 PMCID: PMC6052147 DOI: 10.3389/fmicb.2018.01534] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022] Open
Abstract
The key to 650 million years of evolutionary success in jellyfish is adaptability: with alternating benthic and pelagic generations, sexual and asexual reproductive modes, multitudes of body forms and a cosmopolitan distribution, jellyfish are likely to have established a plenitude of microbial associations. Here we explored bacterial assemblages in the scyphozoan jellyfish Chrysaora plocamia (Lesson 1832). Life stages involved in propagation through cyst formation, i.e., the mother polyp, its dormant cysts (podocysts), and polyps recently excysted (excysts) from podocysts – were investigated. Associated bacterial assemblages were assessed using MiSeq Illumina paired-end tag sequencing of the V1V2 region of the 16S rRNA gene. A microbial core-community was identified as present through all investigated life stages, including bacteria with closest relatives known to be key drivers of carbon, nitrogen, phosphorus, and sulfur cycling. Moreover, the fact that half of C. plocamia’s core bacteria were also present in life stages of the jellyfish Aurelia aurita, suggests that this bacterial community might represent an intrinsic characteristic of scyphozoan jellyfish, contributing to their evolutionary success.
Collapse
Affiliation(s)
- Michael D Lee
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Joshua D Kling
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Rubén Araya
- Instituto de Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Antofagasta, Chile
| | - Janja Ceh
- Instituto de Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Antofagasta, Chile.,Laboratory of Microbial Complexity and Functional Ecology, Institute of Antofagasta, University of Antofagasta, Antofagasta, Chile.,Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
| |
Collapse
|
40
|
Qin L, Zhang Y, Liu Y, He H, Han M, Li Y, Zeng M, Wang X. Recent advances in matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) for in situ analysis of endogenous molecules in plants. PHYTOCHEMICAL ANALYSIS : PCA 2018; 29:351-364. [PMID: 29667236 DOI: 10.1002/pca.2759] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Mass spectrometry imaging (MSI) as a label-free and powerful imaging technique enables in situ evaluation of a tissue metabolome and/or proteome, becoming increasingly popular in the detection of plant endogenous molecules. OBJECTIVE The characterisation of structure and spatial information of endogenous molecules in plants are both very important aspects to better understand the physiological mechanism of plant organism. METHODS Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a commonly-used tissue imaging technique, which requires matrix to assist in situ detection of a variety of molecules on the surface of a tissue section. In previous studies, MALDI-MSI was mostly used for the detection of molecules from animal tissue sections, compared to plant samples due to cell structural limitations, such as plant cuticles, epicuticular waxes, and cell walls. Despite the enormous progress that has been made in tissue imaging, there is still a challenge for MALDI-MSI suitable for the imaging of endogenous compounds in plants. RESULTS This review summarises the recent advances in MALDI-MSI, focusing on the application of in situ detection of endogenous molecules in different plant organs, i.e. root, stem, leaf, flower, fruit, and seed. CONCLUSION Further improvements on instrumentation sensitivity, matrix selection, image processing and sample preparation will expand the application of MALDI-MSI in plant research.
Collapse
Affiliation(s)
- Liang Qin
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Yawen Zhang
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Yaqin Liu
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Huixin He
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Manman Han
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Yanyan Li
- The Hospital of Minzu University of China, Minzu University of China, Beijing, P. R. China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Centre of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Xiaodong Wang
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| |
Collapse
|
41
|
SHAO CF, ZHAO Y, WU K, JIA FF, LUO Q, LIU Z, WANG FY. Correlated Secondary Ion Mass Spectrometry-Laser Scanning Confocal Microscopy Imaging for Single Cell-Principles and Applications. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61095-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Dunham SJB, Ellis JF, Baig NF, Morales-Soto N, Cao T, Shrout JD, Bohn PW, Sweedler JV. Quantitative SIMS Imaging of Agar-Based Microbial Communities. Anal Chem 2018; 90:5654-5663. [PMID: 29623707 PMCID: PMC5930052 DOI: 10.1021/acs.analchem.7b05180] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
After several decades of widespread use for mapping elemental ions and small molecular fragments in surface science, secondary ion mass spectrometry (SIMS) has emerged as a powerful analytical tool for molecular imaging in biology. Biomolecular SIMS imaging has primarily been used as a qualitative technique; although the distribution of a single analyte can be accurately determined, it is difficult to map the absolute quantity of a compound or even to compare the relative abundance of one molecular species to that of another. We describe a method for quantitative SIMS imaging of small molecules in agar-based microbial communities. The microbes are cultivated on a thin film of agar, dried under nitrogen, and imaged directly with SIMS. By use of optical microscopy, we show that the area of the agar is reduced by 26 ± 2% (standard deviation) during dehydration, but the overall biofilm morphology and analyte distribution are largely retained. We detail a quantitative imaging methodology, in which the ion intensity of each analyte is (1) normalized to an external quadratic regression curve, (2) corrected for isomeric interference, and (3) filtered for sample-specific noise and lower and upper limits of quantitation. The end result is a two-dimensional surface density image for each analyte. The sample preparation and quantitation methods are validated by quantitatively imaging four alkyl-quinolone and alkyl-quinoline N-oxide signaling molecules (including Pseudomonas quinolone signal) in Pseudomonas aeruginosa colony biofilms. We show that the relative surface densities of the target biomolecules are substantially different from values inferred through direct intensity comparison and that the developed methodologies can be used to quantitatively compare as many ions as there are available standards.
Collapse
Affiliation(s)
- Sage J. B. Dunham
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana- Champaign, Urbana, IL 61801
| | - Joseph F. Ellis
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana- Champaign, Urbana, IL 61801
| | - Nameera F. Baig
- Department of Chemistry and Biochemistry, and Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556
| | - Nydia Morales-Soto
- Department of Civil and Environmental Engineering and Earth Sciences, and Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - Tianyuan Cao
- Department of Chemistry and Biochemistry, and Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556
| | - Joshua D. Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, and Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - Paul W. Bohn
- Department of Chemistry and Biochemistry, and Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556
| | - Jonathan V. Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana- Champaign, Urbana, IL 61801
| |
Collapse
|
43
|
Morita M, Schmidt EW. Parallel lives of symbionts and hosts: chemical mutualism in marine animals. Nat Prod Rep 2018; 35:357-378. [PMID: 29441375 PMCID: PMC6025756 DOI: 10.1039/c7np00053g] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to 2018 Symbiotic microbes interact with animals, often by producing natural products (specialized metabolites; secondary metabolites) that exert a biological role. A major goal is to determine which microbes produce biologically important compounds, a deceptively challenging task that often rests on correlative results, rather than hypothesis testing. Here, we examine the challenges and successes from the perspective of marine animal-bacterial mutualisms. These animals have historically provided a useful model because of their technical accessibility. By comparing biological systems, we suggest a common framework for establishing chemical interactions between animals and microbes.
Collapse
Affiliation(s)
- Maho Morita
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA 84112.
| | | |
Collapse
|
44
|
Cui L, Yang K, Li HZ, Zhang H, Su JQ, Paraskevaidi M, Martin FL, Ren B, Zhu YG. Functional Single-Cell Approach to Probing Nitrogen-Fixing Bacteria in Soil Communities by Resonance Raman Spectroscopy with 15N 2 Labeling. Anal Chem 2018; 90:5082-5089. [PMID: 29557648 DOI: 10.1021/acs.analchem.7b05080] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitrogen (N) fixation is the conversion of inert nitrogen gas (N2) to bioavailable N essential for all forms of life. N2-fixing microorganisms (diazotrophs), which play a key role in global N cycling, remain largely obscure because a large majority are uncultured. Direct probing of active diazotrophs in the environment is still a major challenge. Herein, a novel culture-independent single-cell approach combining resonance Raman (RR) spectroscopy with 15N2 stable isotope probing (SIP) was developed to discern N2-fixing bacteria in a complex soil community. Strong RR signals of cytochrome c (Cyt c, frequently present in diverse N2-fixing bacteria), along with a marked 15N2-induced Cyt c band shift, generated a highly distinguishable biomarker for N2 fixation. 15N2-induced shift was consistent well with 15N abundance in cell determined by isotope ratio mass spectroscopy. By applying this biomarker and Raman imaging, N2-fixing bacteria in both artificial and complex soil communities were discerned and imaged at the single-cell level. The linear band shift of Cyt c versus 15N2 percentage allowed quantification of N2 fixation extent of diverse soil bacteria. This single-cell approach will advance the exploration of hitherto uncultured diazotrophs in diverse ecosystems.
Collapse
Affiliation(s)
- Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen 361021 , China
| | - Kai Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen 361021 , China.,University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Hong-Zhe Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen 361021 , China.,University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Han Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen 361021 , China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen 361021 , China
| | - Maria Paraskevaidi
- School of Pharmacy and Biomedical Sciences , University of Central Lancashire , Preston PR1 2HE , U.K
| | - Francis L Martin
- School of Pharmacy and Biomedical Sciences , University of Central Lancashire , Preston PR1 2HE , U.K
| | - Bin Ren
- Department of Chemistry , Xiamen University , Xiamen 361005 , China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen 361021 , China.,State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| |
Collapse
|
45
|
Rädecker N, Raina JB, Pernice M, Perna G, Guagliardo P, Kilburn MR, Aranda M, Voolstra CR. Using Aiptasia as a Model to Study Metabolic Interactions in Cnidarian- Symbiodinium Symbioses. Front Physiol 2018; 9:214. [PMID: 29615919 PMCID: PMC5864895 DOI: 10.3389/fphys.2018.00214] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/26/2018] [Indexed: 11/13/2022] Open
Abstract
The symbiosis between cnidarian hosts and microalgae of the genus Symbiodinium provides the foundation of coral reefs in oligotrophic waters. Understanding the nutrient-exchange between these partners is key to identifying the fundamental mechanisms behind this symbiosis, yet has proven difficult given the endosymbiotic nature of this relationship. In this study, we investigated the respective contribution of host and symbiont to carbon and nitrogen assimilation in the coral model anemone Aiptaisa. For this, we combined traditional measurements with nanoscale secondary ion mass spectrometry (NanoSIMS) and stable isotope labeling to investigate patterns of nutrient uptake and translocation both at the organismal scale and at the cellular scale. Our results show that the rate of carbon and nitrogen assimilation in Aiptasia depends on the identity of the host and the symbiont. NanoSIMS analysis confirmed that both host and symbiont incorporated carbon and nitrogen into their cells, implying a rapid uptake and cycling of nutrients in this symbiotic relationship. Gross carbon fixation was highest in Aiptasia associated with their native Symbiodinium communities. However, differences in fixation rates were only reflected in the δ13C enrichment of the cnidarian host, whereas the algal symbiont showed stable enrichment levels regardless of host identity. Thereby, our results point toward a "selfish" character of the cnidarian-Symbiodinium association in which both partners directly compete for available resources. Consequently, this symbiosis may be inherently instable and highly susceptible to environmental change. While questions remain regarding the underlying cellular controls of nutrient exchange and the nature of metabolites involved, the approach outlined in this study constitutes a powerful toolset to address these questions.
Collapse
Affiliation(s)
- Nils Rädecker
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Mathieu Pernice
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Gabriela Perna
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, WA, Australia
| | - Matt R Kilburn
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, WA, Australia
| | - Manuel Aranda
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
46
|
|
47
|
Guillermier C, Poczatek JC, Taylor WR, Steinhauser ML. Quantitative imaging of deuterated metabolic tracers in biological tissues with nanoscale secondary ion mass spectrometry. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2017; 422:42-50. [PMID: 29276427 PMCID: PMC5739342 DOI: 10.1016/j.ijms.2017.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In the field of secondary ion mass spectrometry at nanometer scale (NanoSIMS), configuration of parallel detectors to routinely measure isotope ratios in sub-100 nm domains brings classical stable isotope tracer studies from the whole tissue level down to the suborganelle level. Over the past decade, the marriage of stable isotope tracers with NanoSIMS has been applied to a range of fundamental biological questions that were largely inaccessible by other means. Although multiplexed measurement of different stable isotope tracers is feasible, in practice there remains a gap in the current analytical capacity to efficiently measure stable isotopes commonly utilized in tracer studies. One such example is the measurement of deuterated tracers. The most obvious approach to measuring deuterium/hydrogen isotope ratios is at mass 2/1. However, the radius of the magnetic sector limits concomitant measurement of other masses critical to multiplexed exploration of biological samples. Here we determine the experimental parameters to measure deuterated tracers in biological samples using the C2H- polyatomic ion species (C2D-/C2H-) while operating the NanoSIMS at a reduced Mass Resolving Power of 14,000. Through control of the sputtering parameters, we demonstrate that there is an analytical window during which the C2D-/C2H- isotope ratio can be measured with sufficient precision for biological studies where the degree of D-labeling is typically well above natural abundance. We provide validation of this method by comparing the C2D measurement of D-water labeling in the murine small intestine relative to measurements of native D/H conducted in the same analytical fields. Additional proof-of-concept demonstrations include measurement of D-water, D-glucose, and D-thymidine in biological specimens. Therefore, this study provides a practical template for deuterium-based tracer studies in biological systems.
Collapse
Affiliation(s)
- Christelle Guillermier
- Center for NanoImaging, Brigham and Women’s Hospital, Cambridge MA
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - J. Collin Poczatek
- Center for NanoImaging, Brigham and Women’s Hospital, Cambridge MA
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, MA
| | - Walter R. Taylor
- Center for NanoImaging, Brigham and Women’s Hospital, Cambridge MA
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, MA
| | - Matthew L. Steinhauser
- Center for NanoImaging, Brigham and Women’s Hospital, Cambridge MA
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge MA
- Harvard Stem Cell Institute, Cambridge MA
| |
Collapse
|
48
|
Weisener CG, Reid T. Combined imaging and molecular techniques for evaluating microbial function and composition: A review. SURF INTERFACE ANAL 2017. [DOI: 10.1002/sia.6317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christopher G. Weisener
- The University of Windsor Ontario-Great Lakes Institute for Environmental Research; 401 Sunset Avenue N9B3P4 Windsor ON Canada
| | - Thomas Reid
- The University of Windsor Ontario-Great Lakes Institute for Environmental Research; 401 Sunset Avenue N9B3P4 Windsor ON Canada
| |
Collapse
|
49
|
Wu K, Jia F, Zheng W, Luo Q, Zhao Y, Wang F. Visualization of metallodrugs in single cells by secondary ion mass spectrometry imaging. J Biol Inorg Chem 2017; 22:653-661. [DOI: 10.1007/s00775-017-1462-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/28/2017] [Indexed: 02/07/2023]
|
50
|
Tian H, Six DA, Krucker T, Leeds JA, Winograd N. Subcellular Chemical Imaging of Antibiotics in Single Bacteria Using C 60-Secondary Ion Mass Spectrometry. Anal Chem 2017; 89:5050-5057. [PMID: 28332827 PMCID: PMC5415874 DOI: 10.1021/acs.analchem.7b00466] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/23/2017] [Indexed: 12/20/2022]
Abstract
The inherent difficulty of discovering new and effective antibacterials and the rapid development of resistance particularly in Gram-negative bacteria, illustrates the urgent need for new methods that enable rational drug design. Here we report the development of 3D imaging cluster Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) as a label-free approach to chemically map small molecules in aggregated and single Escherichia coli cells, with ∼300 nm spatial resolution and high chemical sensitivity. The feasibility of quantitative analysis was explored, and a nonlinear relationship between treatment dose and signal for tetracycline and ampicillin, two clinically used antibacterials, was observed. The methodology was further validated by the observation of reduction in tetracycline accumulation in an E. coli strain expressing the tetracycline-specific efflux pump (TetA) compared to the isogenic control. This study serves as a proof-of-concept for a new strategy for chemical imaging at the nanoscale and has the potential to aid discovery of new antibacterials.
Collapse
Affiliation(s)
- Hua Tian
- Department
of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - David A. Six
- Novartis
Institutes
for BioMedical Research, Inc., 5300
Chiron Way, Emeryville, California 94608-2916, United States
| | - Thomas Krucker
- Novartis
Institutes
for BioMedical Research, Inc., 5300
Chiron Way, Emeryville, California 94608-2916, United States
| | - Jennifer A. Leeds
- Novartis
Institutes
for BioMedical Research, Inc., 5300
Chiron Way, Emeryville, California 94608-2916, United States
| | - Nicholas Winograd
- Department
of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|