1
|
Jaisamut K, Pitiwararom R, Sukawutthiya P, Sathirapatya T, Noh H, Worrapitirungsi W, Vongpaisarnsin K. Unraveling the mitochondrial phylogenetic landscape of Thailand reveals complex admixture and demographic dynamics. Sci Rep 2023; 13:20396. [PMID: 37990137 PMCID: PMC10663463 DOI: 10.1038/s41598-023-47762-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
The evolutionary dynamics of mitochondrial DNA within the Thai population were comprehensively explored with a specific focus on the influence of South Asian admixture. A total of 166 samples were collected through randomized sampling, ensuring a diverse representation. Our findings unveil substantial genetic and haplogroup diversity within the Thai population. We have identified 164 haplotypes categorized into 97 haplogroups, with a notable inclusion of 20 novel haplogroups. The distribution of haplogroups exhibited variations across different populations and countries. The central Thai population displayed a high diversity of haplogroups from both the M and N clades. Maternal lineage affinities were discerned between several Mainland Southeast Asia (MSEA) and South Asian populations, implying ancestral genetic connections and a substantial influence of South Asian women in establishing these relationships. f4-statistics indicates the presence of a Tibeto-Burman genetic component within the Mon population from Thailand. New findings demonstrate two phases of population expansion occurring 22,000-26,000 and 2500-3800 years ago, coinciding with the Last Glacial Maximum, and Neolithic demographic transition, respectively. This research significantly enhances our understanding of the maternal genetic history of Thailand and MSEA, emphasizing the influence of South Asian admixture. Moreover, it underscores the critical role of prior information, such as mutation rates, within the Bayesian framework for accurate estimation of coalescence times and inferring demographic history.
Collapse
Affiliation(s)
- Kitipong Jaisamut
- Forensic Genetics Research Unit, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rachtipan Pitiwararom
- Forensic Genetics Research Unit, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Poonyapat Sukawutthiya
- Forensic Genetics Research Unit, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tikumphorn Sathirapatya
- Forensic Genetics Research Unit, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Hasnee Noh
- Forensic Genetics Research Unit, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wikanda Worrapitirungsi
- Forensic Genetics Research Unit, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kornkiat Vongpaisarnsin
- Forensic Genetics Research Unit, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Forensic Serology and DNA, King Chulalongkorn Memorial Hospital and Thai Red Cross Society, Bangkok, Thailand.
| |
Collapse
|
2
|
Uricoechea Patiño D, Collins A, Romero García OJ, Santos Vecino G, Aristizábal Espinosa P, Bernal Villegas JE, Benavides Benitez E, Vergara Muñoz S, Briceño Balcázar I. Unraveling the Genetic Threads of History: mtDNA HVS-I Analysis Reveals the Ancient Past of the Aburra Valley. Genes (Basel) 2023; 14:2036. [PMID: 38002979 PMCID: PMC10670959 DOI: 10.3390/genes14112036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/18/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
This article presents a comprehensive genetic study focused on pre-Hispanic individuals who inhabited the Aburrá Valley in Antioquia, Colombia, between the tenth and seventeenth centuries AD. Employing a genetic approach, the study analyzed maternal lineages using DNA samples obtained from skeletal remains. The results illuminate a remarkable degree of biological diversity within these populations and provide insights into their genetic connections with other ancient and indigenous groups across the American continent. The findings strongly support the widely accepted hypothesis that the migration of the first American settlers occurred through Beringia, a land bridge connecting Siberia to North America during the last Ice Age. Subsequently, these early settlers journeyed southward, crossing the North American ice cap. Of particular note, the study unveils the presence of ancestral lineages from Asian populations, which played a pivotal role in populating the Americas. The implications of these results extend beyond delineating migratory routes and settlement patterns of ancient populations. They also enrich our understanding of the genetic diversity inherent in indigenous populations of the region. By revealing the genetic heritage of pre-Hispanic individuals from the Aburrá Valley, this study offers valuable insights into the history of human migration and settlement in the Americas. Furthermore, it enhances our comprehension of the intricate genetic tapestry that characterizes indigenous communities in the area.
Collapse
Affiliation(s)
- Daniel Uricoechea Patiño
- Doctoral Program in Biosciences, Human Genetics Group, Faculty of Medicine, University of La Sabana, Chía 250001, Colombia;
| | - Andrew Collins
- Human Genetics & Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
| | | | - Gustavo Santos Vecino
- Department of Anthropology, Faculty of Social and Human Science, Universidad de Antioquia, Medellín 050010, Colombia;
| | | | | | | | - Saray Vergara Muñoz
- Faculty of Medicine, University of Sinú, Cartagena de Indias 130011, Colombia; (J.E.B.V.); (S.V.M.)
| | - Ignacio Briceño Balcázar
- Doctoral Program in Biosciences, Human Genetics Group, Faculty of Medicine, University of La Sabana, Chía 250001, Colombia;
| |
Collapse
|
3
|
Luis JR, Palencia-Madrid L, Garcia-Bertrand R, Herrera RJ. Bidirectional dispersals during the peopling of the North American Arctic. Sci Rep 2023; 13:1268. [PMID: 36690673 PMCID: PMC9871004 DOI: 10.1038/s41598-023-28384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
It is thought that Paleo-Inuit were the first people that settled the American Arctic about 5000 BP (before the present) from a migration that crossed Beringia from Northeast Asia. It is theorized that this group initially migrated to the North Slopes of Alaska and subsequently expanded eastward, eventually reaching Greenland. A second circumpolar dispersal of Neo-Inuit from the North Slopes associated with the Thule-Inuk culture has been postulated to have extended eastward around 800 BP, totally replacing the original Paleo-Inuit without admixing. Although generally accepted, this migration scenario is incompatible with previously reported indications of east to west gene flow across the American Arctic. Here we report on the Y-chromosome haplogroup and Y-STR diversity of the four circumpolar populations of the Tuva Republic (N = 24), Northeast Siberia (N = 9), Bethel, Alaska (N = 40), and Barrow, Alaska (N = 31). Four haplogroup lineages (Q-NWT01, Q-M3, Q-M346, and Q-M120) were detected, Q-NWT01 and Q-M3 being the most abundant at 11.11 and 66.67% in Northeast Siberia, 32.50 and 65.00% in Bethel, and 67.74 and 32.26% in Barrow, respectively. The same samples genotyped for Y-chromosome SNPs were typed for 17 Y-STYR loci using the AmpFlSTR Yfiler system. Age estimates and diversity values for the Q-NWT01 and Q-M3 mutations suggest extensive movement of male individuals along the entire longitudinal stretch of the American circumpolar region. Throughout the entire region, Q-M3 exhibits a west to east decreasing gradient in age and diversity while Q-NWT01 indicates the opposite with older TMRCA and higher diversity values running from east to west with the most recent estimates in Canada and Alaska. The high age and diversity values in Greenland are congruent with an origin of the Q-NWT01 mutation in the east of the circumpolar range about 2000-3000 ya. This scenario is incompatible with a complete biological replacement starting about 700 BP of Paleo-Inuit like the Dorset by the Thule-Inuit (Neo-Inuit), as is currently thought, and more parsimonious with gene flow carrying the NWT01 mutation from a pre-Thule population to the ancestors of the present-day Inuit.
Collapse
Affiliation(s)
- Javier Rodriguez Luis
- Area de Antropología, Facultad de Biología, Universidad de Santiago de Compostela, Campus Sur s/n, 15782, Santiago de Compostela, Spain
| | - Leire Palencia-Madrid
- BIOMICs Research Group, Dpto. Z. y Biologia Celular A., Lascaray Research Centre, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
| | | | - Rene J Herrera
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, 80903, USA.
| |
Collapse
|
4
|
Wang K, Bleasdale M, Le Moyne C, Freund C, Krause J, Boivin N, Schiffels S. 4000-year-old hair from the Middle Nile highlights unusual ancient DNA degradation pattern and a potential source of early eastern Africa pastoralists. Sci Rep 2022; 12:20939. [PMID: 36463384 PMCID: PMC9719486 DOI: 10.1038/s41598-022-25384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022] Open
Abstract
Petrous bones and teeth are the skeletal elements most often targeted by researchers for ancient DNA (aDNA) extraction, and the sources of the majority of previously published ancient African genomes. However, the high temperature environments that characterise much of Africa often lead to poor preservation of skeletal remains. Here, we successfully reconstruct and analyse genome-wide data from the naturally mummified hair of a 4000-year-old individual from Sudan in northeastern Africa, after failed attempts at DNA extraction from teeth, petrous, and cranium of this and other individuals from the Kadruka cemeteries. We find that hair DNA extracted with an established single-stranded library protocol is unusually enriched in ultra-short DNA molecules and exhibits substantial interior molecular damage. The aDNA was nonetheless amenable to genetic analyses, which revealed that the genome is genetically indistinguishable from that of early Neolithic eastern African pastoralists located 2500 kms away. Our findings are consistent with established models for the southward dispersal of Middle Nile Valley pastoral populations to the Rift Valley of eastern Africa, and provide a possible genetic source population for this dispersal. Our study highlights the value of mummified hair as an alternate source of aDNA from regions with poor bone preservation.
Collapse
Affiliation(s)
- Ke Wang
- grid.419518.00000 0001 2159 1813Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany ,grid.8547.e0000 0001 0125 2443School of Life Sciences, Fudan University, Shanghai, China
| | - Madeleine Bleasdale
- grid.5685.e0000 0004 1936 9668Department of Archaeology, University of York, York, UK ,grid.469873.70000 0004 4914 1197Max Planck Institute for the Science of Human History, Jena, Germany
| | - Charles Le Moyne
- grid.469873.70000 0004 4914 1197Max Planck Institute for the Science of Human History, Jena, Germany ,grid.1003.20000 0000 9320 7537School of Social Science, The University of Queensland, Brisbane, Australia
| | - Cacilia Freund
- grid.419518.00000 0001 2159 1813Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Johannes Krause
- grid.419518.00000 0001 2159 1813Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Nicole Boivin
- grid.469873.70000 0004 4914 1197Max Planck Institute for the Science of Human History, Jena, Germany ,grid.1003.20000 0000 9320 7537School of Social Science, The University of Queensland, Brisbane, Australia
| | - Stephan Schiffels
- grid.419518.00000 0001 2159 1813Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
5
|
Ancient DNA analysis from epoxy resin Biodur ®-embedded bones. Biotechniques 2022; 73:113-122. [PMID: 36066013 DOI: 10.2144/btn-2022-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
For microscopic investigation, archaeological bone samples are often embedded in Biodur® epoxy resin. This study wants to test whether it is possible to extract DNA suitable for PCR amplification from this sample type. For eight individuals a set of samples - each consisting of a Biodur-embedded femur sample, a native femur sample and a control sample of different anatomical origin - were submitted to organic DNA extraction. The extraction success was tested by autosomal short tandem repeat amplification. Seven out of eight Biodur-embedded femur samples revealed successful amplification results. If Biodur-embedded bone material exists from earlier microscopic investigations, our results encourage the use of this sample type as a source for genetic research.
Collapse
|
6
|
An infant burial from Arma Veirana in northwestern Italy provides insights into funerary practices and female personhood in early Mesolithic Europe. Sci Rep 2021; 11:23735. [PMID: 34907203 PMCID: PMC8671481 DOI: 10.1038/s41598-021-02804-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
The evolution and development of human mortuary behaviors is of enormous cultural significance. Here we report a richly-decorated young infant burial (AVH-1) from Arma Veirana (Liguria, northwestern Italy) that is directly dated to 10,211-9910 cal BP (95.4% probability), placing it within the early Holocene and therefore attributable to the early Mesolithic, a cultural period from which well-documented burials are exceedingly rare. Virtual dental histology, proteomics, and aDNA indicate that the infant was a 40-50 days old female. Associated artifacts indicate significant material and emotional investment in the child's interment. The detailed biological profile of AVH-1 establishes the child as the earliest European near-neonate documented to be female. The Arma Veirana burial thus provides insight into sex/gender-based social status, funerary treatment, and the attribution of personhood to the youngest individuals among prehistoric hunter-gatherer groups and adds substantially to the scant data on mortuary practices from an important period in prehistory shortly following the end of the last Ice Age.
Collapse
|
7
|
Ancient DNA and multimethod dating confirm the late arrival of anatomically modern humans in southern China. Proc Natl Acad Sci U S A 2021; 118:2019158118. [PMID: 33558418 DOI: 10.1073/pnas.2019158118] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The expansion of anatomically modern humans (AMHs) from Africa around 65,000 to 45,000 y ago (ca. 65 to 45 ka) led to the establishment of present-day non-African populations. Some paleoanthropologists have argued that fossil discoveries from Huanglong, Zhiren, Luna, and Fuyan caves in southern China indicate one or more prior dispersals, perhaps as early as ca. 120 ka. We investigated the age of the human remains from three of these localities and two additional early AMH sites (Yangjiapo and Sanyou caves, Hubei) by combining ancient DNA (aDNA) analysis with a multimethod geological dating strategy. Although U-Th dating of capping flowstones suggested they lie within the range ca. 168 to 70 ka, analyses of aDNA and direct AMS 14C dating on human teeth from Fuyan and Yangjiapo caves showed they derive from the Holocene. OSL dating of sediments and AMS 14C analysis of mammal teeth and charcoal also demonstrated major discrepancies from the flowstone ages; the difference between them being an order of magnitude or more at most of these localities. Our work highlights the surprisingly complex depositional history recorded at these subtropical caves which involved one or more episodes of erosion and redeposition or intrusion as recently as the late Holocene. In light of our findings, the first appearance datum for AMHs in southern China should probably lie within the timeframe set by molecular data of ca. 50 to 45 ka.
Collapse
|
8
|
Gelabert P, Sawyer S, Bergström A, Margaryan A, Collin TC, Meshveliani T, Belfer-Cohen A, Lordkipanidze D, Jakeli N, Matskevich Z, Bar-Oz G, Fernandes DM, Cheronet O, Özdoğan KT, Oberreiter V, Feeney RNM, Stahlschmidt MC, Skoglund P, Pinhasi R. Genome-scale sequencing and analysis of human, wolf, and bison DNA from 25,000-year-old sediment. Curr Biol 2021; 31:3564-3574.e9. [PMID: 34256019 PMCID: PMC8409484 DOI: 10.1016/j.cub.2021.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/23/2021] [Accepted: 06/09/2021] [Indexed: 01/07/2023]
Abstract
Cave sediments have been shown to preserve ancient DNA but so far have not yielded the genome-scale information of skeletal remains. We retrieved and analyzed human and mammalian nuclear and mitochondrial environmental "shotgun" genomes from a single 25,000-year-old Upper Paleolithic sediment sample from Satsurblia cave, western Georgia:first, a human environmental genome with substantial basal Eurasian ancestry, which was an ancestral component of the majority of post-Ice Age people in the Near East, North Africa, and parts of Europe; second, a wolf environmental genome that is basal to extant Eurasian wolves and dogs and represents a previously unknown, likely extinct, Caucasian lineage; and third, a European bison environmental genome that is basal to present-day populations, suggesting that population structure has been substantially reshaped since the Last Glacial Maximum. Our results provide new insights into the Late Pleistocene genetic histories of these three species and demonstrate that direct shotgun sequencing of sediment DNA, without target enrichment methods, can yield genome-wide data informative of ancestry and phylogenetic relationships.
Collapse
Affiliation(s)
- Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Anders Bergström
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| | - Ashot Margaryan
- Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen, Denmark
| | - Thomas C Collin
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Tengiz Meshveliani
- Georgian National Museum, Institute of Paleoanthropology and Paleobiology, Tbilisi, Georgia
| | - Anna Belfer-Cohen
- Institute of Archaeology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Lordkipanidze
- Georgian National Museum, Institute of Paleoanthropology and Paleobiology, Tbilisi, Georgia
| | - Nino Jakeli
- Georgian National Museum, Institute of Paleoanthropology and Paleobiology, Tbilisi, Georgia
| | | | - Guy Bar-Oz
- Zinman Institute of Archaeology, University of Haifa, Haifa, Israel
| | - Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria; CIAS, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Kadir T Özdoğan
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | | | - Mareike C Stahlschmidt
- Department of Human Evolution, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Pontus Skoglund
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Abstract
Cultural diversity is disappearing quickly. Whilst a phylogenetic approach makes explicit the continuous extinction of cultures, and the generation of new ones, cultural evolutionary changes such as the rise of agriculture or more recently colonisation can cause periods of mass cultural extinction. At the current rate, 90% of languages will become extinct or moribund by the end of this century. Unlike biological extinction, cultural extinction does not necessarily involve genetic extinction or even deaths, but results from the disintegration of a social entity and discontinuation of culture-specific behaviours. Here we propose an analytical framework to examine the phenomenon of cultural extinction. When examined over millennia, extinctions of cultural traits or institutions can be studied in a phylogenetic comparative framework that incorporates archaeological data on ancestral states. Over decades or centuries, cultural extinction can be studied in a behavioural ecology framework to investigate how the fitness consequences of cultural behaviours and population dynamics shift individual behaviours away from the traditional norms. Frequency-dependent costs and benefits are key to understanding both the origin and the loss of cultural diversity. We review recent evolutionary studies that have informed cultural extinction processes and discuss avenues of future studies.
Collapse
Affiliation(s)
- Hanzhi Zhang
- Department of Anthropology, University College London, LondonWC1H 0BW, UK
| | - Ruth Mace
- Department of Anthropology, University College London, LondonWC1H 0BW, UK
| |
Collapse
|
10
|
Romandini M, Oxilia G, Bortolini E, Peyrégne S, Delpiano D, Nava A, Panetta D, Di Domenico G, Martini P, Arrighi S, Badino F, Figus C, Lugli F, Marciani G, Silvestrini S, Menghi Sartorio JC, Terlato G, Hublin JJ, Meyer M, Bondioli L, Higham T, Slon V, Peresani M, Benazzi S. A late Neanderthal tooth from northeastern Italy. J Hum Evol 2020; 147:102867. [DOI: 10.1016/j.jhevol.2020.102867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022]
|
11
|
Initial Upper Palaeolithic Homo sapiens from Bacho Kiro Cave, Bulgaria. Nature 2020; 581:299-302. [DOI: 10.1038/s41586-020-2259-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
|
12
|
Carr SM. Evidence for the persistence of ancient Beothuk and Maritime Archaic mitochondrial DNA genome lineages among modern Native American peoples. Genome 2020; 63:349-355. [PMID: 32283039 DOI: 10.1139/gen-2019-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Beothuk were a Native American people who formerly occupied the island of Newfoundland, and who are generally accepted to have become culturally extinct in 1829. The Beothuk succeeded the Maritime Archaic people on the island after a hiatus of ca. 1.4 ka, and were themselves succeeded by the extant Mi'kmaq within historic times. Genetic continuity between ancient and modern Native Americans remains of interest. Complete aDNA mitogenomes from ancient Beothuk and Maritime Archaic were compared with the most closely related modern mitogenomes as obtained by BLAST search of GenBank. Beothuk mitogenomes in five clades are in one case identical to and otherwise differ by minima of three to eight SNPs from the most closely related modern mitogenomes. Maritime Archaic mitogenomes in 12 clades are in one case identical to and otherwise differ by minima of one to nine SNPs from the most similar modern mitogenomes. The single available modern Mi'kmaq mitogenome differs from the most similar Beothuk and Maritime Archaic mitogenomes by 12 and 22 SNPs, respectively. Phylogenetic analysis and sequence similarities imply lineage extinction of most ancient clades, as well as continuity of two Beothuk and at least one Maritime Archaic lineages in modern Native Americans and their descendants.
Collapse
Affiliation(s)
- Steven M Carr
- Genetics, Evolution, and Molecular Systematics Laboratory, Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada.,Genetics, Evolution, and Molecular Systematics Laboratory, Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| |
Collapse
|
13
|
Resolving mitochondrial haplogroups B2 and B4 with next-generation mitogenome sequencing to distinguish Native American from Asian haplotypes. Forensic Sci Int Genet 2019; 43:102143. [DOI: 10.1016/j.fsigen.2019.102143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/31/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022]
|
14
|
Peyrégne S, Slon V, Mafessoni F, de Filippo C, Hajdinjak M, Nagel S, Nickel B, Essel E, Le Cabec A, Wehrberger K, Conard NJ, Kind CJ, Posth C, Krause J, Abrams G, Bonjean D, Di Modica K, Toussaint M, Kelso J, Meyer M, Pääbo S, Prüfer K. Nuclear DNA from two early Neandertals reveals 80,000 years of genetic continuity in Europe. SCIENCE ADVANCES 2019; 5:eaaw5873. [PMID: 31249872 PMCID: PMC6594762 DOI: 10.1126/sciadv.aaw5873] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Little is known about the population history of Neandertals over the hundreds of thousands of years of their existence. We retrieved nuclear genomic sequences from two Neandertals, one from Hohlenstein-Stadel Cave in Germany and the other from Scladina Cave in Belgium, who lived around 120,000 years ago. Despite the deeply divergent mitochondrial lineage present in the former individual, both Neandertals are genetically closer to later Neandertals from Europe than to a roughly contemporaneous individual from Siberia. That the Hohlenstein-Stadel and Scladina individuals lived around the time of their most recent common ancestor with later Neandertals suggests that all later Neandertals trace at least part of their ancestry back to these early European Neandertals.
Collapse
Affiliation(s)
- Stéphane Peyrégne
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
| | - Viviane Slon
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
| | - Fabrizio Mafessoni
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
| | - Cesare de Filippo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
| | - Mateja Hajdinjak
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
| | - Sarah Nagel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
| | - Birgit Nickel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
| | - Elena Essel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
| | - Adeline Le Cabec
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
| | | | - Nicholas J. Conard
- Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Schloss Hohentübingen, Tübingen72070, Germany
| | - Claus Joachim Kind
- State Office for Cultural Heritage Baden-Württemberg Berliner Strasse 12, Esslingen 73728 Germany
| | - Cosimo Posth
- Max Planck Institute for the Science of Human History, Khalaische Strasse 10, Jena07745, Germany
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, Khalaische Strasse 10, Jena07745, Germany
| | | | | | | | | | - Janet Kelso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
| | - Svante Pääbo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
| | - Kay Prüfer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig04103, Germany
- Max Planck Institute for the Science of Human History, Khalaische Strasse 10, Jena07745, Germany
| |
Collapse
|
15
|
Brandhagen MD, Loreille O, Irwin JA. Fragmented Nuclear DNA is the Predominant Genetic Material in Human Hair Shafts. Genes (Basel) 2018; 9:genes9120640. [PMID: 30567392 PMCID: PMC6316335 DOI: 10.3390/genes9120640] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 01/18/2023] Open
Abstract
While shed hairs are one of the most commonly encountered evidence types, they are among the most limited in terms of DNA quantity and quality. As a result, nuclear DNA short tandem repeat (STR) profiling is generally unsuccessful and DNA testing of shed hair is instead performed by targeting the mitochondrial DNA control region. Although the high copy number of mitochondrial DNA relative to nuclear DNA routinely permits the recovery of mitochondrial DNA (mtDNA) data in these cases, mtDNA profiles do not offer the discriminatory power of nuclear DNA profiles. In order to better understand the total content and degradation state of DNA in single shed hairs and assess the feasibility of recovering highly discriminatory nuclear DNA data from this common evidence type, high throughput shotgun sequencing was performed on both recently collected and aged (approximately 50-year-old) hair samples. The data reflect trends that have been demonstrated previously with other technologies, namely that mtDNA quantity and quality decrease along the length of the hair shaft. In addition, the shotgun data reveal that nuclear DNA is present in shed hair and surprisingly abundant relative to mitochondrial DNA, even in the most distal fragments. Nuclear DNA comprised, at minimum, 88% of the total human reads in any given sample, and generally more than 95%. Here, we characterize both the nuclear and mitochondrial DNA content of shed hairs and discuss the implications of these data for forensic investigations.
Collapse
Affiliation(s)
- Michael D Brandhagen
- DNA Support Unit, FBI Laboratory, 2501 Investigation Parkway, Quantico, VA 22135, USA.
| | - Odile Loreille
- DNA Support Unit, FBI Laboratory, 2501 Investigation Parkway, Quantico, VA 22135, USA.
| | - Jodi A Irwin
- DNA Support Unit, FBI Laboratory, 2501 Investigation Parkway, Quantico, VA 22135, USA.
| |
Collapse
|
16
|
Andersen MM, Balding DJ. How many individuals share a mitochondrial genome? PLoS Genet 2018; 14:e1007774. [PMID: 30383746 PMCID: PMC6233927 DOI: 10.1371/journal.pgen.1007774] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/13/2018] [Accepted: 10/17/2018] [Indexed: 01/23/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is useful to assist with identification of the source of a biological sample, or to confirm matrilineal relatedness. Although the autosomal genome is much larger, mtDNA has an advantage for forensic applications of multiple copy number per cell, allowing better recovery of sequence information from degraded samples. In addition, biological samples such as fingernails, old bones, teeth and hair have mtDNA but little or no autosomal DNA. The relatively low mutation rate of the mitochondrial genome (mitogenome) means that there can be large sets of matrilineal-related individuals sharing a common mitogenome. Here we present the mitolina simulation software that we use to describe the distribution of the number of mitogenomes in a population that match a given mitogenome, and investigate its dependence on population size and growth rate, and on a database count of the mitogenome. Further, we report on the distribution of the number of meioses separating pairs of individuals with matching mitogenome. Our results have important implications for assessing the weight of mtDNA profile evidence in forensic science, but mtDNA analysis has many non-human applications, for example in tracking the source of ivory. Our methods and software can also be used for simulations to help validate models of population history in human or non-human populations.
Collapse
Affiliation(s)
- Mikkel M. Andersen
- Department of Mathematical Sciences, Aalborg University, Aalborg, Denmark
| | - David J. Balding
- Melbourne Integrative Genomics, University of Melbourne, Victoria, Australia
- Genetics Institute, University College London, London, UK
- * E-mail:
| |
Collapse
|
17
|
Mak SST, Gopalakrishnan S, Carøe C, Geng C, Liu S, Sinding MHS, Kuderna LFK, Zhang W, Fu S, Vieira FG, Germonpré M, Bocherens H, Fedorov S, Petersen B, Sicheritz-Pontén T, Marques-Bonet T, Zhang G, Jiang H, Gilbert MTP. Comparative performance of the BGISEQ-500 vs Illumina HiSeq2500 sequencing platforms for palaeogenomic sequencing. Gigascience 2018; 6:1-13. [PMID: 28854615 PMCID: PMC5570000 DOI: 10.1093/gigascience/gix049] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/20/2017] [Indexed: 12/30/2022] Open
Abstract
Ancient DNA research has been revolutionized following development of next-generation sequencing platforms. Although a number of such platforms have been applied to ancient DNA samples, the Illumina series are the dominant choice today, mainly because of high production capacities and short read production. Recently a potentially attractive alternative platform for palaeogenomic data generation has been developed, the BGISEQ-500, whose sequence output are comparable with the Illumina series. In this study, we modified the standard BGISEQ-500 library preparation specifically for use on degraded DNA, then directly compared the sequencing performance and data quality of the BGISEQ-500 to the Illumina HiSeq2500 platform on DNA extracted from 8 historic and ancient dog and wolf samples. The data generated were largely comparable between sequencing platforms, with no statistically significant difference observed for parameters including level (P = 0.371) and average sequence length (P = 0718) of endogenous nuclear DNA, sequence GC content (P = 0.311), double-stranded DNA damage rate (v. 0.309), and sequence clonality (P = 0.093). Small significant differences were found in single-strand DNA damage rate (δS; slightly lower for the BGISEQ-500, P = 0.011) and the background rate of difference from the reference genome (θ; slightly higher for BGISEQ-500, P = 0.012). This may result from the differences in amplification cycles used to polymerase chain reaction–amplify the libraries. A significant difference was also observed in the mitochondrial DNA percentages recovered (P = 0.018), although we believe this is likely a stochastic effect relating to the extremely low levels of mitochondria that were sequenced from 3 of the samples with overall very low levels of endogenous DNA. Although we acknowledge that our analyses were limited to animal material, our observations suggest that the BGISEQ-500 holds the potential to represent a valid and potentially valuable alternative platform for palaeogenomic data generation that is worthy of future exploration by those interested in the sequencing and analysis of degraded DNA.
Collapse
Affiliation(s)
- Sarah Siu Tze Mak
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Shyam Gopalakrishnan
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Christian Carøe
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.,DTU Bioinformatics, Department of Bio and Health Informatics, Technical University of Denmark, Building 208, DK-2800 Lyngby, Denmark
| | | | - Shanlin Liu
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.,China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Mikkel-Holger S Sinding
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.,Natural History Museum, University of Oslo, PO Box 1172 Blindern, N-0318 Oslo, Norway.,The Qimmeq Project, University of Greenland, Manutooq 1, PO Box 1061, 3905 Nuussuaq, Greenland
| | - Lukas F K Kuderna
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | | | - Shujin Fu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Filipe G Vieira
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Mietje Germonpré
- OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium
| | - Hervé Bocherens
- Department of Geosciences, Palaeobiology, University of Tübingen, Tübingen, Germany.,Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Sergey Fedorov
- Mammoth Museum, Institute of Applied Ecology of the North of the North-Eastern Federal University, ul. Kulakovskogo 48, 677980 Yakutsk, Russia
| | - Bent Petersen
- DTU Bioinformatics, Department of Bio and Health Informatics, Technical University of Denmark, Building 208, DK-2800 Lyngby, Denmark
| | - Thomas Sicheritz-Pontén
- DTU Bioinformatics, Department of Bio and Health Informatics, Technical University of Denmark, Building 208, DK-2800 Lyngby, Denmark
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China.,Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Hui Jiang
- BGI-Shenzhen, Shenzhen 518083, China
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.,Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, 6102 Perth, Australia.,Norwegian University of Science and Technology, University Museum, 7491 Trondheim, Norway
| |
Collapse
|
18
|
Szathmáry EJE, Zegura SL, Hammer MF. Exceeding Hrdlička's aims: 100 Years of genetics in anthropology. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 165:754-776. [PMID: 29574830 DOI: 10.1002/ajpa.23406] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Emőke J E Szathmáry
- Department of Anthropology, St. Paul's College, University of Manitoba, 70 Dysart Road, Winnipeg, Manitoba, R3T 2M6, Canada
| | | | | |
Collapse
|
19
|
Hajdinjak M, Fu Q, Hübner A, Petr M, Mafessoni F, Grote S, Skoglund P, Narasimham V, Rougier H, Crevecoeur I, Semal P, Soressi M, Talamo S, Hublin JJ, Gušić I, Kućan Ž, Rudan P, Golovanova LV, Doronichev VB, Posth C, Krause J, Korlević P, Nagel S, Nickel B, Slatkin M, Patterson N, Reich D, Prüfer K, Meyer M, Pääbo S, Kelso J. Reconstructing the genetic history of late Neanderthals. Nature 2018; 555:652-656. [PMID: 29562232 PMCID: PMC6485383 DOI: 10.1038/nature26151] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 01/24/2018] [Indexed: 12/19/2022]
Abstract
Although it is known that Neandertals contributed DNA to modern humans1,2, not much is known about the genetic diversity of Neandertals or the relationship between late Neandertal populations at the time when their last interactions with early modern humans occurred and before they eventually disappeared. Our ability to retrieve DNA from a larger number of Neandertal individuals has been limited by poor preservation of endogenous DNA3 and large amounts of microbial and present-day human DNA that contaminate Neandertal skeletal remains3–5. Here we use hypochlorite treatment6 of as little as 9 mg of bone or tooth powder to generate between 1- and 2.7-fold genomic coverage of five 39,000- to 47,000-year-old Neandertals (i.e. late Neandertals), thereby doubling the number of Neandertals for which genome sequences are available. Genetic similarity among late Neandertals is well predicted by their geographical location, and comparison to the genome of an older Neandertal from the Caucasus2,7 indicates that a population turnover is likely to have occurred, either in the Caucasus or throughout Europe, towards the end of Neandertal history. We find that the bulk of Neandertal gene flow into early modern humans originated from one or more source populations that diverged from the Neandertals studied here at least 70,000 years ago, but after they split from a previously sequenced Neandertal from Siberia2 ~150,000 years ago. Although four of these Neandertals post-date the putative arrival of early modern humans into Europe, we do not detect any recent gene flow from early modern humans in their ancestry.
Collapse
Affiliation(s)
- Mateja Hajdinjak
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing 100044, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alexander Hübner
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Martin Petr
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Fabrizio Mafessoni
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Steffi Grote
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Pontus Skoglund
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Vagheesh Narasimham
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hélène Rougier
- Department of Anthropology, California State University Northridge, Northridge, California 91330-8244, USA
| | | | - Patrick Semal
- Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium
| | - Marie Soressi
- Faculty of Archaeology, Leiden University, 2300 RA Leiden, The Netherlands.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Sahra Talamo
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Ivan Gušić
- Croatian Academy of Sciences and Arts, HR-10000 Zagreb, Croatia
| | - Željko Kućan
- Croatian Academy of Sciences and Arts, HR-10000 Zagreb, Croatia
| | - Pavao Rudan
- Croatian Academy of Sciences and Arts, HR-10000 Zagreb, Croatia
| | | | | | - Cosimo Posth
- Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Institute for Archaeological Sciences, University of Tübingen, Rümelin Strasse 23, 72070 Tübingen, Germany
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Institute for Archaeological Sciences, University of Tübingen, Rümelin Strasse 23, 72070 Tübingen, Germany
| | - Petra Korlević
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Sarah Nagel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Birgit Nickel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Montgomery Slatkin
- Department of Integrative Biology, University of California, Berkeley, California 94720-3140, USA
| | - Nick Patterson
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kay Prüfer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Svante Pääbo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Janet Kelso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| |
Collapse
|
20
|
Brandini S, Bergamaschi P, Cerna MF, Gandini F, Bastaroli F, Bertolini E, Cereda C, Ferretti L, Gómez-Carballa A, Battaglia V, Salas A, Semino O, Achilli A, Olivieri A, Torroni A. The Paleo-Indian Entry into South America According to Mitogenomes. Mol Biol Evol 2018; 35:299-311. [PMID: 29099937 PMCID: PMC5850732 DOI: 10.1093/molbev/msx267] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent and compelling archaeological evidence attests to human presence ∼14.5 ka at multiple sites in South America and a very early exploitation of extreme high-altitude Andean environments. Considering that, according to genetic evidence, human entry into North America from Beringia most likely occurred ∼16 ka, these archeological findings would imply an extremely rapid spread along the double continent. To shed light on this issue from a genetic perspective, we first completely sequenced 217 novel modern mitogenomes of Native American ancestry from the northwestern area of South America (Ecuador and Peru); we then evaluated them phylogenetically together with other available mitogenomes (430 samples, both modern and ancient) from the same geographic area and, finally, with all closely related mitogenomes from the entire double continent. We detected a large number (N = 48) of novel subhaplogroups, often branching into further subclades, belonging to two classes: those that arose in South America early after its peopling and those that instead originated in North or Central America and reached South America with the first settlers. Coalescence age estimates for these subhaplogroups provide time boundaries indicating that early Paleo-Indians probably moved from North America to the area corresponding to modern Ecuador and Peru over the short time frame of ∼1.5 ka comprised between 16.0 and 14.6 ka.
Collapse
Affiliation(s)
- Stefania Brandini
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Paola Bergamaschi
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
- Servizio di Immunoematologia e Medicina Trasfusionale, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marco Fernando Cerna
- Biotechnology Laboratory, Salesian Polytechnic University of Ecuador, Quito, Ecuador
| | - Francesca Gandini
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | | | - Emilie Bertolini
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Cristina Cereda
- Genomic and Post-Genomic Center, National Neurological Institute C. Mondino, Pavia, Italy
| | - Luca Ferretti
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Alberto Gómez-Carballa
- Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Unidade de Xenética, Galicia, Spain
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Unidade de Xenética, Galicia, Spain
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela, Galicia, Spain
| | - Vincenza Battaglia
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Antonio Salas
- Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Unidade de Xenética, Galicia, Spain
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Unidade de Xenética, Galicia, Spain
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| |
Collapse
|
21
|
Llamas B, Willerslev E, Orlando L. Human evolution: a tale from ancient genomes. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0484. [PMID: 27994125 DOI: 10.1098/rstb.2015.0484] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2016] [Indexed: 12/21/2022] Open
Abstract
The field of human ancient DNA (aDNA) has moved from mitochondrial sequencing that suffered from contamination and provided limited biological insights, to become a fully genomic discipline that is changing our conception of human history. Recent successes include the sequencing of extinct hominins, and true population genomic studies of Bronze Age populations. Among the emerging areas of aDNA research, the analysis of past epigenomes is set to provide more new insights into human adaptation and disease susceptibility through time. Starting as a mere curiosity, ancient human genetics has become a major player in the understanding of our evolutionary history.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Bastien Llamas
- Australian Centre for ADNA, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350 K Copenhagen, Denmark.,Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.,Wellcome Genome Campus Hinxton, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350 K Copenhagen, Denmark .,Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, Université de Toulouse, University Paul Sabatier, CNRS UMR 5288, 31000 Toulouse, France
| |
Collapse
|
22
|
Duggan AT, Harris AJT, Marciniak S, Marshall I, Kuch M, Kitchen A, Renaud G, Southon J, Fuller B, Young J, Fiedel S, Golding GB, Grimes V, Poinar H. Genetic Discontinuity between the Maritime Archaic and Beothuk Populations in Newfoundland, Canada. Curr Biol 2017; 27:3149-3156.e11. [PMID: 29033326 DOI: 10.1016/j.cub.2017.08.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/03/2017] [Accepted: 08/22/2017] [Indexed: 12/15/2022]
Abstract
Situated at the furthest northeastern edge of Canada, the island of Newfoundland (approximately 110,000 km2) and Labrador (approximately 295,000 km2) today constitute a province characterized by abundant natural resources but low population density. Both landmasses were covered by the Laurentide ice sheet during the Last Glacial Maximum (18,000 years before present [YBP]); after the glacier retreated, ice patches remained on the island until ca. 9,000 calibrated (cal) YBP [1]. Nevertheless, indigenous peoples, whose ancestors had trekked some 5,000 km from the west coast, arrived approximately 10,000 cal YBP in Labrador and ca. 6,000 cal YBP in Newfoundland [2, 3]. Differential features in material culture indicate at least three settlement episodes by distinct cultural groups, including the Maritime Archaic, Palaeoeskimo, and Beothuk. Newfoundland has remained home to indigenous peoples until present day with only one apparent hiatus (3,400-2,800 YBP). This record suggests abandonment, severe constriction, or local extinction followed by subsequent immigrations from single or multiple source populations, but the specific dynamics and the cultural and biological relationships, if any, among these successive peoples remain enigmatic [4]. By examining the mitochondrial genome diversity and isotopic ratios of 74 ancient remains in conjunction with the archaeological record, we have provided definitive evidence for the genetic discontinuity between the maternal lineages of these populations. This northeastern margin of North America appears to have been populated multiple times by distinct groups that did not share a recent common ancestry, but rather one much deeper in time at the entry point into the continent.
Collapse
Affiliation(s)
- Ana T Duggan
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, ON L8S 4L8, Canada.
| | - Alison J T Harris
- Department of Archaeology, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Stephanie Marciniak
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Ingeborg Marshall
- Institute of Social and Economic Research, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Melanie Kuch
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Andrew Kitchen
- Department of Anthropology, University of Iowa, Iowa City, IA 52242, USA
| | - Gabriel Renaud
- Centre for GeoGenetics, Natural History Museum of Denmark, 1350 Copenhagen, Denmark
| | - John Southon
- Keck Carbon Cycle Accelerator Mass Spectrometer, Earth Systems Science Department, University of California, Irvine, Irvine, CA, USA
| | - Ben Fuller
- Keck Carbon Cycle Accelerator Mass Spectrometer, Earth Systems Science Department, University of California, Irvine, Irvine, CA, USA
| | - Janet Young
- Canadian Museum of History, 100 Laurier Street, Gatineau, QC K1A 0M8, Canada
| | - Stuart Fiedel
- Louis Berger, 117 Kendrick Street No. 400, Needham, MA 02494, USA
| | - G Brian Golding
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Vaughan Grimes
- Department of Archaeology, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada; Department of Earth Sciences, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada.
| | - Hendrik Poinar
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, ON L8S 4L8, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada; Humans & the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8, Canada.
| |
Collapse
|
23
|
Bouckaert R, Simons BC, Krarup H, Friesen TM, Osiowy C. Tracing hepatitis B virus (HBV) genotype B5 (formerly B6) evolutionary history in the circumpolar Arctic through phylogeographic modelling. PeerJ 2017; 5:e3757. [PMID: 28875087 PMCID: PMC5581946 DOI: 10.7717/peerj.3757] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/12/2017] [Indexed: 12/11/2022] Open
Abstract
Background Indigenous populations of the circumpolar Arctic are considered to be endemically infected (>2% prevalence) with hepatitis B virus (HBV), with subgenotype B5 (formerly B6) unique to these populations. The distinctive properties of HBV/B5, including high nucleotide diversity yet no significant liver disease, suggest virus adaptation through long-term host-pathogen association. Methods To investigate the origin and evolutionary spread of HBV/B5 into the circumpolar Arctic, fifty-seven partial and full genome sequences from Alaska, Canada and Greenland, having known location and sampling dates spanning 40 years, were phylogeographically investigated by Bayesian analysis (BEAST 2) using a reversible-jump-based substitution model and a clock rate estimated at 4.1 × 10−5 substitutions/site/year. Results Following an initial divergence from an Asian viral ancestor approximately 1954 years before present (YBP; 95% highest probability density interval [1188, 2901]), HBV/B5 coalescence occurred almost 1000 years later. Surprisingly, the HBV/B5 ancestor appears to locate first to Greenland in a rapid coastal route progression based on the landscape aware geographic model, with subsequent B5 evolution and spread westward. Bayesian skyline plot analysis demonstrated an HBV/B5 population expansion occurring approximately 400 YBP, coinciding with the disruption of the Neo-Eskimo Thule culture into more heterogeneous and regionally distinct Inuit populations throughout the North American Arctic. Discussion HBV/B5 origin and spread appears to occur coincident with the movement of Neo-Eskimo (Inuit) populations within the past 1000 years, further supporting the hypothesis of HBV/host co-expansion, and illustrating the concept of host-pathogen adaptation and balance.
Collapse
Affiliation(s)
- Remco Bouckaert
- Department of Computer Science, University of Auckland, Auckland, New Zealand
| | - Brenna C Simons
- Alaska Native Tribal Health Consortium, Anchorage, AK, United States of America
| | - Henrik Krarup
- Section of Molecular Diagnostics, Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - T Max Friesen
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Carla Osiowy
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
24
|
Vohr SH, Gordon R, Eizenga JM, Erlich HA, Calloway CD, Green RE. A phylogenetic approach for haplotype analysis of sequence data from complex mitochondrial mixtures. Forensic Sci Int Genet 2017; 30:93-105. [PMID: 28667863 DOI: 10.1016/j.fsigen.2017.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/05/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022]
Abstract
Massively parallel (next-generation) sequencing provides a powerful method to analyze DNA from many different sources, including degraded and trace samples. A common challenge, however, is that many forensic samples are often known or suspected mixtures of DNA from multiple individuals. Haploid lineage markers, such as mitochondrial (mt) DNA, are useful for analysis of mixtures because, unlike nuclear genetic markers, each individual contributes a single sequence to the mixture. Deconvolution of these mixtures into the constituent mitochondrial haplotypes is challenging as typical sequence read lengths are too short to reconstruct the distinct haplotypes completely. We present a powerful computational approach for determining the constituent haplotypes in massively parallel sequencing data from potentially mixed samples. At the heart of our approach is an expectation maximization based algorithm that co-estimates the overall mixture proportions and the source haplogroup for each read individually. This approach, implemented in the software package mixemt, correctly identifies haplogroups from mixed samples across a range of mixture proportions. Furthermore, our method can separate fragments in a mixed sample by the most likely originating contributor and generate reconstructions of the constituent haplotypes based on known patterns of mtDNA diversity.
Collapse
Affiliation(s)
- Samuel H Vohr
- Department of Biomolecular Engineering, University of California, Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA.
| | - Rachel Gordon
- Center for Genetics, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA
| | - Jordan M Eizenga
- Department of Biomolecular Engineering, University of California, Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA
| | - Henry A Erlich
- Center for Genetics, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA
| | - Cassandra D Calloway
- Center for Genetics, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA; Forensic Science Graduate Program, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Richard E Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA
| |
Collapse
|
25
|
Kivisild T. The study of human Y chromosome variation through ancient DNA. Hum Genet 2017; 136:529-546. [PMID: 28260210 PMCID: PMC5418327 DOI: 10.1007/s00439-017-1773-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/24/2017] [Indexed: 12/15/2022]
Abstract
High throughput sequencing methods have completely transformed the study of human Y chromosome variation by offering a genome-scale view on genetic variation retrieved from ancient human remains in context of a growing number of high coverage whole Y chromosome sequence data from living populations from across the world. The ancient Y chromosome sequences are providing us the first exciting glimpses into the past variation of male-specific compartment of the genome and the opportunity to evaluate models based on previously made inferences from patterns of genetic variation in living populations. Analyses of the ancient Y chromosome sequences are challenging not only because of issues generally related to ancient DNA work, such as DNA damage-induced mutations and low content of endogenous DNA in most human remains, but also because of specific properties of the Y chromosome, such as its highly repetitive nature and high homology with the X chromosome. Shotgun sequencing of uniquely mapping regions of the Y chromosomes to sufficiently high coverage is still challenging and costly in poorly preserved samples. To increase the coverage of specific target SNPs capture-based methods have been developed and used in recent years to generate Y chromosome sequence data from hundreds of prehistoric skeletal remains. Besides the prospects of testing directly as how much genetic change in a given time period has accompanied changes in material culture the sequencing of ancient Y chromosomes allows us also to better understand the rate at which mutations accumulate and get fixed over time. This review considers genome-scale evidence on ancient Y chromosome diversity that has recently started to accumulate in geographic areas favourable to DNA preservation. More specifically the review focuses on examples of regional continuity and change of the Y chromosome haplogroups in North Eurasia and in the New World.
Collapse
Affiliation(s)
- Toomas Kivisild
- Department of Archaeology and Anthropology, University of Cambridge, Cambridge, CB2 1QH, UK.
- Estonian Biocentre, 51010, Tartu, Estonia.
| |
Collapse
|
26
|
Tracing the peopling of the world through genomics. Nature 2017; 541:302-310. [PMID: 28102248 DOI: 10.1038/nature21347] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022]
Abstract
Advances in the sequencing and the analysis of the genomes of both modern and ancient peoples have facilitated a number of breakthroughs in our understanding of human evolutionary history. These include the discovery of interbreeding between anatomically modern humans and extinct hominins; the development of an increasingly detailed description of the complex dispersal of modern humans out of Africa and their population expansion worldwide; and the characterization of many of the genetic adaptions of humans to local environmental conditions. Our interpretation of the evolutionary history and adaptation of humans is being transformed by analyses of these new genomic data.
Collapse
|
27
|
Archaeogenomic evidence reveals prehistoric matrilineal dynasty. Nat Commun 2017; 8:14115. [PMID: 28221340 PMCID: PMC5321759 DOI: 10.1038/ncomms14115] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022] Open
Abstract
For societies with writing systems, hereditary leadership is documented as one of the hallmarks of early political complexity and governance. In contrast, it is unknown whether hereditary succession played a role in the early formation of prehistoric complex societies that lacked writing. Here we use an archaeogenomic approach to identify an elite matriline that persisted between 800 and 1130 CE in Chaco Canyon, the centre of an expansive prehistoric complex society in the Southwestern United States. We show that nine individuals buried in an elite crypt at Pueblo Bonito, the largest structure in the canyon, have identical mitochondrial genomes. Analyses of nuclear genome data from six samples with the highest DNA preservation demonstrate mother–daughter and grandmother–grandson relationships, evidence for a multigenerational matrilineal descent group. Together, these results demonstrate the persistence of an elite matriline in Chaco for ∼330 years. In ancient cultures without a writing system, it is difficult to infer the basis of status and rank. Here the authors analyse ancient DNA from nine presumed elite individuals buried successively over a 300-year period at Chaco Canyon, and show evidence of matrilineal relationships.
Collapse
|
28
|
Abstract
When humans moved from Asia toward the Americas over 18,000 y ago and eventually peopled the New World they encountered a new environment with extreme climate conditions and distinct dietary resources. These environmental and dietary pressures may have led to instances of genetic adaptation with the potential to influence the phenotypic variation in extant Native American populations. An example of such an event is the evolution of the fatty acid desaturases (FADS) genes, which have been claimed to harbor signals of positive selection in Inuit populations due to adaptation to the cold Greenland Arctic climate and to a protein-rich diet. Because there was evidence of intercontinental variation in this genetic region, with indications of positive selection for its variants, we decided to compare the Inuit findings with other Native American data. Here, we use several lines of evidence to show that the signal of FADS-positive selection is not restricted to the Arctic but instead is broadly observed throughout the Americas. The shared signature of selection among populations living in such a diverse range of environments is likely due to a single and strong instance of local adaptation that took place in the common ancestral population before their entrance into the New World. These first Americans peopled the whole continent and spread this adaptive variant across a diverse set of environments.
Collapse
|
29
|
Cruz-Dávalos DI, Llamas B, Gaunitz C, Fages A, Gamba C, Soubrier J, Librado P, Seguin-Orlando A, Pruvost M, Alfarhan AH, Alquraishi SA, Al-Rasheid KAS, Scheu A, Beneke N, Ludwig A, Cooper A, Willerslev E, Orlando L. Experimental conditions improving in-solution target enrichment for ancient DNA. Mol Ecol Resour 2016; 17:508-522. [PMID: 27566552 DOI: 10.1111/1755-0998.12595] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 11/30/2022]
Abstract
High-throughput sequencing has dramatically fostered ancient DNA research in recent years. Shotgun sequencing, however, does not necessarily appear as the best-suited approach due to the extensive contamination of samples with exogenous environmental microbial DNA. DNA capture-enrichment methods represent cost-effective alternatives that increase the sequencing focus on the endogenous fraction, whether it is from mitochondrial or nuclear genomes, or parts thereof. Here, we explored experimental parameters that could impact the efficacy of MYbaits in-solution capture assays of ~5000 nuclear loci or the whole genome. We found that varying quantities of the starting probes had only moderate effect on capture outcomes. Starting DNA, probe tiling, the hybridization temperature and the proportion of endogenous DNA all affected the assay, however. Additionally, probe features such as their GC content, number of CpG dinucleotides, sequence complexity and entropy and self-annealing properties need to be carefully addressed during the design stage of the capture assay. The experimental conditions and probe molecular features identified in this study will improve the recovery of genetic information extracted from degraded and ancient remains.
Collapse
Affiliation(s)
- Diana I Cruz-Dávalos
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350K, Copenhagen, Denmark.,Undergraduate Program on Genomic Sciences, Universidad Nacional Autónoma de México, Av. Universidad s/n, 62210, Cuernavaca, Mexico
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Charleen Gaunitz
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350K, Copenhagen, Denmark
| | - Antoine Fages
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350K, Copenhagen, Denmark.,Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse, University Paul Sabatier, 31000, Toulouse, France
| | - Cristina Gamba
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350K, Copenhagen, Denmark
| | - Julien Soubrier
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Pablo Librado
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350K, Copenhagen, Denmark
| | - Andaine Seguin-Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350K, Copenhagen, Denmark.,National High-Throughput DNA Sequencing Center, University of Copenhagen, Øster Farimagsgade 2D, 1353K, Copenhagen, Denmark
| | - Mélanie Pruvost
- Institut Jacques Monod, UMR7592 CNRS, Université Paris 7, 75205, Paris cédex 13, France
| | - Ahmed H Alfarhan
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saleh A Alquraishi
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khaled A S Al-Rasheid
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Amelie Scheu
- Palaeogenetics Group, Johannes Gutenberg-University, Anselm-Franz-von-Bentzel-Weg 7, 55099, Mainz, Germany.,Smurfit Institute of Genetics, Trinity College Dublin, Dublin, 2, Ireland
| | - Norbert Beneke
- Naturwissenschaftliches Referat an der Zentrale, Deutsches Archäologisches Institut, Im Dol 2-6, 14195, Berlin, Germany
| | - Arne Ludwig
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, 10315, Berlin, Germany
| | - Alan Cooper
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350K, Copenhagen, Denmark
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350K, Copenhagen, Denmark.,Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse, University Paul Sabatier, 31000, Toulouse, France
| |
Collapse
|
30
|
Vai S, Lari M, Caramelli D. DNA Sequencing in Cultural Heritage. Top Curr Chem (Cham) 2016; 374:8. [PMID: 27572991 DOI: 10.1007/s41061-015-0009-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/31/2015] [Indexed: 12/17/2022]
Abstract
During the last three decades, DNA analysis on degraded samples revealed itself as an important research tool in anthropology, archaeozoology, molecular evolution, and population genetics. Application on topics such as determination of species origin of prehistoric and historic objects, individual identification of famous personalities, characterization of particular samples important for historical, archeological, or evolutionary reconstructions, confers to the paleogenetics an important role also for the enhancement of cultural heritage. A really fast improvement in methodologies in recent years led to a revolution that permitted recovering even complete genomes from highly degraded samples with the possibility to go back in time 400,000 years for samples from temperate regions and 700,000 years for permafrozen remains and to analyze even more recent material that has been subjected to hard biochemical treatments. Here we propose a review on the different methodological approaches used so far for the molecular analysis of degraded samples and their application on some case studies.
Collapse
Affiliation(s)
- Stefania Vai
- Department of Biology, University of Florence, Via del Proconsolo 12, 50122, Florence, Italy.
| | - Martina Lari
- Department of Biology, University of Florence, Via del Proconsolo 12, 50122, Florence, Italy
| | - David Caramelli
- Department of Biology, University of Florence, Via del Proconsolo 12, 50122, Florence, Italy
| |
Collapse
|
31
|
Lopopolo M, Børsting C, Pereira V, Morling N. A study of the peopling of Greenland using next generation sequencing of complete mitochondrial genomes. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 161:698-704. [PMID: 27553902 DOI: 10.1002/ajpa.23074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 07/28/2016] [Accepted: 08/04/2016] [Indexed: 11/05/2022]
Abstract
OBJECTIVES The Greenlandic population history is characterized by a number of migrations of people of various ethnicities. In this work, the analysis of the complete mtDNA genome aimed to contribute to the ongoing debate on the origin of current Greenlanders and, at the same time, to address the migration patterns in the Greenlandic population from a female inheritance demographic perspective. METHODS We investigated the maternal genetic variation in the Greenlandic population by sequencing the whole mtDNA genome in 127 Greenlandic individuals using the Illumina MiSeq® platform. RESULTS All Greenlandic individuals belonged to the Inuit mtDNA lineages A2a, A2b1, and D4b1a2a1. No European haplogroup was found. DISCUSSION The mtDNA lineages seem to support the hypothesis that the Inuit in Greenland are descendants from the Thule migration. The results also reinforce the importance of isolation and genetic drift in shaping the genetic diversity in Greenlanders. Based on the mtDNA sequences, the Greenlandic Inuit are phylogenetically close to Siberian groups and Canadian Inuit.
Collapse
Affiliation(s)
- Maria Lopopolo
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Claus Børsting
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Vania Pereira
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100, Copenhagen, Denmark
| |
Collapse
|
32
|
Morozova I, Flegontov P, Mikheyev AS, Bruskin S, Asgharian H, Ponomarenko P, Klyuchnikov V, ArunKumar G, Prokhortchouk E, Gankin Y, Rogaev E, Nikolsky Y, Baranova A, Elhaik E, Tatarinova TV. Toward high-resolution population genomics using archaeological samples. DNA Res 2016; 23:295-310. [PMID: 27436340 PMCID: PMC4991838 DOI: 10.1093/dnares/dsw029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 05/22/2016] [Indexed: 12/30/2022] Open
Abstract
The term ‘ancient DNA’ (aDNA) is coming of age, with over 1,200 hits in the PubMed database, beginning in the early 1980s with the studies of ‘molecular paleontology’. Rooted in cloning and limited sequencing of DNA from ancient remains during the pre-PCR era, the field has made incredible progress since the introduction of PCR and next-generation sequencing. Over the last decade, aDNA analysis ushered in a new era in genomics and became the method of choice for reconstructing the history of organisms, their biogeography, and migration routes, with applications in evolutionary biology, population genetics, archaeogenetics, paleo-epidemiology, and many other areas. This change was brought by development of new strategies for coping with the challenges in studying aDNA due to damage and fragmentation, scarce samples, significant historical gaps, and limited applicability of population genetics methods. In this review, we describe the state-of-the-art achievements in aDNA studies, with particular focus on human evolution and demographic history. We present the current experimental and theoretical procedures for handling and analysing highly degraded aDNA. We also review the challenges in the rapidly growing field of ancient epigenomics. Advancement of aDNA tools and methods signifies a new era in population genetics and evolutionary medicine research.
Collapse
Affiliation(s)
- Irina Morozova
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic Bioinformatics Center, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexander S Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Sergey Bruskin
- Vavilov Institute of General Genetics RAS, Moscow, Russia
| | - Hosseinali Asgharian
- Department of Computational and Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - Petr Ponomarenko
- Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA
| | | | | | - Egor Prokhortchouk
- Research Center of Biotechnology RAS, Moscow, Russia Department of Biology, Lomonosov Moscow State University, Russia
| | | | - Evgeny Rogaev
- Vavilov Institute of General Genetics RAS, Moscow, Russia University of Massachusetts Medical School, Worcester, MA, USA
| | - Yuri Nikolsky
- Vavilov Institute of General Genetics RAS, Moscow, Russia F1 Genomics, San Diego, CA, USA School of Systems Biology, George Mason University, VA, USA
| | - Ancha Baranova
- School of Systems Biology, George Mason University, VA, USA Research Centre for Medical Genetics, Moscow, Russia Atlas Biomed Group, Moscow, Russia
| | - Eran Elhaik
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, South Yorkshire, UK
| | - Tatiana V Tatarinova
- Bioinformatics Center, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
33
|
Brown S, Higham T, Slon V, Pääbo S, Meyer M, Douka K, Brock F, Comeskey D, Procopio N, Shunkov M, Derevianko A, Buckley M. Identification of a new hominin bone from Denisova Cave, Siberia using collagen fingerprinting and mitochondrial DNA analysis. Sci Rep 2016; 6:23559. [PMID: 27020421 PMCID: PMC4810434 DOI: 10.1038/srep23559] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/07/2016] [Indexed: 12/18/2022] Open
Abstract
DNA sequencing has revolutionised our understanding of archaic humans during the Middle and Upper Palaeolithic. Unfortunately, while many Palaeolithic sites contain large numbers of bones, the majority of these lack the diagnostic features necessary for traditional morphological identification. As a result the recovery of Pleistocene-age human remains is extremely rare. To circumvent this problem we have applied a method of collagen fingerprinting to more than 2000 fragmented bones from the site of Denisova Cave, Russia, in order to facilitate the discovery of human remains. As a result of our analysis a single hominin bone (Denisova 11) was identified, supported through in-depth peptide sequencing analysis, and found to carry mitochondrial DNA of the Neandertal type. Subsequent radiocarbon dating revealed the bone to be >50,000 years old. Here we demonstrate the huge potential collagen fingerprinting has for identifying hominin remains in highly fragmentary archaeological assemblages, improving the resources available for wider studies into human evolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fiona Brock
- Cranfield Forensic Institute, Cranfield University, SN6 8LA, UK
| | | | - Noemi Procopio
- Faculty of Life Sciences, University of Manchester, M13 9PL, UK
| | - Michael Shunkov
- Institute of Archeology and Ethnography, Novosibirsk, 630090, Russia
| | | | - Michael Buckley
- Faculty of Life Sciences, University of Manchester, M13 9PL, UK
| |
Collapse
|
34
|
Galland M, Friess M. A three-dimensional geometric morphometrics view of the cranial shape variation and population history in the New World. Am J Hum Biol 2016; 28:646-61. [PMID: 26924543 DOI: 10.1002/ajhb.22845] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 11/25/2015] [Accepted: 01/30/2016] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES Craniofacial variation in past and present Amerindians has been attributed to the effect of multiple founder events, or to one major migration followed by in situ differentiation and possibly recurrent contacts among Circum-Arctic groups. Our study aims to: (i) detect morphological differences that may indicate several migrations; (ii) test for the presence of genetic isolation; and (iii) test the correlation between shape data and competing settlement hypotheses by taking into account geography, chronology, climate effects, the presence of genetic isolation and recurrent gene flow. METHODS We analyzed a large sample of three-dimensional (3D) cranial surface scans (803 specimens) including past and modern groups from America and Australasia. Shape variation was investigated using geometric morphometrics. Differential external gene flow was evaluated by applying genetic concepts to morphometric data (Relethford-Blangero approach). Settlement hypotheses were tested using a matrix correlation approach (Mantel tests). RESULTS Our results highlight the strong dichotomy between Circum-Arctic and continental Amerindians as well as the impact of climate adaptation, and possibly recurrent gene flow in the Circum-Arctic area. There is also evidence for the impact of genetic isolation on phenetic variation in Baja California. Several settlement hypotheses are correlated with our data. CONCLUSIONS The three approaches used in this study highlight the importance of local processes especially in Baja California, and caution against the use of overly simplistic models when searching for the number of migration events. The results stress the complexity of the settlement of the Americas as well as the mosaic nature of the processes involved in this process. Am. J. Hum. Biol. 28:646-661, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Manon Galland
- School of Archaeology and Earth Institute, University College Dublin, Dublin, Ireland. .,Département Hommes, Natures, Sociétés & UMR 7206, Muséum national d'Histoire naturelle, Paris, France.
| | - Martin Friess
- Département Hommes, Natures, Sociétés & UMR 7206, Muséum national d'Histoire naturelle, Paris, France
| |
Collapse
|
35
|
Flegontov P, Changmai P, Zidkova A, Logacheva MD, Altınışık NE, Flegontova O, Gelfand MS, Gerasimov ES, Khrameeva EE, Konovalova OP, Neretina T, Nikolsky YV, Starostin G, Stepanova VV, Travinsky IV, Tříska M, Tříska P, Tatarinova TV. Genomic study of the Ket: a Paleo-Eskimo-related ethnic group with significant ancient North Eurasian ancestry. Sci Rep 2016; 6:20768. [PMID: 26865217 PMCID: PMC4750364 DOI: 10.1038/srep20768] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/07/2016] [Indexed: 01/11/2023] Open
Abstract
The Kets, an ethnic group in the Yenisei River basin, Russia, are considered the last nomadic hunter-gatherers of Siberia, and Ket language has no transparent affiliation with any language family. We investigated connections between the Kets and Siberian and North American populations, with emphasis on the Mal'ta and Paleo-Eskimo ancient genomes, using original data from 46 unrelated samples of Kets and 42 samples of their neighboring ethnic groups (Uralic-speaking Nganasans, Enets, and Selkups). We genotyped over 130,000 autosomal SNPs, identified mitochondrial and Y-chromosomal haplogroups, and performed high-coverage genome sequencing of two Ket individuals. We established that Nganasans, Kets, Selkups, and Yukaghirs form a cluster of populations most closely related to Paleo-Eskimos in Siberia (not considering indigenous populations of Chukotka and Kamchatka). Kets are closely related to modern Selkups and to some Bronze and Iron Age populations of the Altai region, with all these groups sharing a high degree of Mal'ta ancestry. Implications of these findings for the linguistic hypothesis uniting Ket and Na-Dene languages into a language macrofamily are discussed.
Collapse
Affiliation(s)
- Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budĕjovice, Czech Republic
| | - Piya Changmai
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Anastassiya Zidkova
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Maria D. Logacheva
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - N. Ezgi Altınışık
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Olga Flegontova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budĕjovice, Czech Republic
| | - Mikhail S. Gelfand
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Evgeny S. Gerasimov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina E. Khrameeva
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Olga P. Konovalova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Neretina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri V. Nikolsky
- Biomedical Cluster, Skolkovo Foundation, Skolkovo, Russia
- George Mason University, Fairfax, VA, USA
| | - George Starostin
- Russian State University for the Humanities, Moscow, Russia
- Russian Presidential Academy (RANEPA), Moscow, Russia
| | - Vita V. Stepanova
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | | | - Martin Tříska
- Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Petr Tříska
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas da Universidade do Porto (ICBAS), Porto, Portugal
| | - Tatiana V. Tatarinova
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
36
|
Abstract
As the Cordilleran and Laurentide Ice Sheets retreated, North America was colonized by human populations; however, the spatial patterns of subsequent population growth are unclear. Temporal frequency distributions of aggregated radiocarbon ((14)C) dates are used as a proxy of population size and can be used to track this expansion. The Canadian Archaeological Radiocarbon Database contains more than 35,000 (14)C dates and is used in this study to map the spatiotemporal demographic changes of Holocene populations in North America at a continental scale for the past 13,000 y. We use the kernel method, which converts the spatial distribution of (14)C dates into estimates of population density at 500-y intervals. The resulting maps reveal temporally distinct, dynamic patterns associated with paleodemographic trends that correspond well to genetic, archaeological, and ethnohistoric evidence of human occupation. These results have implications for hypothesizing and testing migration routes into and across North America as well as the relative influence of North American populations on the evolution of the North American ecosystem.
Collapse
|
37
|
Bégat C, Bailly P, Chiaroni J, Mazières S. Revisiting the Diego Blood Group System in Amerindians: Evidence for Gene-Culture Comigration. PLoS One 2015; 10:e0132211. [PMID: 26148209 PMCID: PMC4493026 DOI: 10.1371/journal.pone.0132211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 06/12/2015] [Indexed: 11/24/2022] Open
Abstract
Six decades ago the DI*A allele of the Diego blood group system was instrumental in proving Native American populations originated from Siberia. Since then, it has received scant attention. The present study was undertaken to reappraise distribution of the DI*A allele in 144 Native American populations based on current knowledge. Using analysis of variance tests, frequency distribution was studied according to geographical, environmental, and cultural parameters. Frequencies were highest in Amazonian populations. In contrast, DI*A was undetectable in subarctic, Fuegian, Panamanian, Chaco and Yanomama populations. Closer study revealed a correlation that this unequal distribution was correlated with language, suggesting that linguistic divergence was a driving force in the expansion of DI*A among Native Americans. The absence of DI*A in circumpolar Eskimo-Aleut and Na-Dene speakers was consistent with a late migratory event confined to North America. Distribution of DI*A in subtropical areas indicated that gene and culture exchanges were more intense within than between ecozones. Bolstering the utility of classical genetic markers in biological anthropology, the present study of the expansion of Diego blood group genetic polymorphism in Native Americans shows strong evidence of gene-culture comigration.
Collapse
Affiliation(s)
- Christophe Bégat
- Aix Marseille Université, CNRS, EFS, ADES UMR 7268, 13916 Marseille, France
| | - Pascal Bailly
- Aix Marseille Université, CNRS, EFS, ADES UMR 7268, 13916 Marseille, France
- Etablissement Français du Sang Alpes Méditerranée, 13392 Marseille cedex 5, France
| | - Jacques Chiaroni
- Aix Marseille Université, CNRS, EFS, ADES UMR 7268, 13916 Marseille, France
- Etablissement Français du Sang Alpes Méditerranée, 13392 Marseille cedex 5, France
| | - Stéphane Mazières
- Aix Marseille Université, CNRS, EFS, ADES UMR 7268, 13916 Marseille, France
- * E-mail:
| |
Collapse
|
38
|
Druzhkova AS, Vorobieva NV, Trifonov VA, Graphodatsky AS. Ancient DNA: Results and prospects (The 30th anniversary). RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415060046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Knapp M, Lalueza-Fox C, Hofreiter M. Re-inventing ancient human DNA. INVESTIGATIVE GENETICS 2015; 6:4. [PMID: 25937886 PMCID: PMC4416249 DOI: 10.1186/s13323-015-0020-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/27/2015] [Indexed: 11/10/2022]
Abstract
For a long time, the analysis of ancient human DNA represented one of the most controversial disciplines in an already controversial field of research. Scepticism in this field was only matched by the long-lasting controversy over the authenticity of ancient pathogen DNA. This ambiguous view on ancient human DNA had a dichotomous root. On the one hand, the interest in ancient human DNA is great because such studies touch on the history and evolution of our own species. On the other hand, because these studies are dealing with samples from our own species, results are easily compromised by contamination of the experiments with modern human DNA, which is ubiquitous in the environment. Consequently, some of the most disputed studies published - apart maybe from early reports on million year old dinosaur or amber DNA - reported DNA analyses from human subfossil remains. However, the development of so-called next- or second-generation sequencing (SGS) in 2005 and the technological advances associated with it have generated new confidence in the genetic study of ancient human remains. The ability to sequence shorter DNA fragments than with PCR amplification coupled to traditional Sanger sequencing, along with very high sequencing throughput have both reduced the risk of sequencing modern contamination and provided tools to evaluate the authenticity of DNA sequence data. The field is now rapidly developing, providing unprecedented insights into the evolution of our own species and past human population dynamics as well as the evolution and history of human pathogens and epidemics. Here, we review how recent technological improvements have rapidly transformed ancient human DNA research from a highly controversial subject to a central component of modern anthropological research. We also discuss potential future directions of ancient human DNA research.
Collapse
Affiliation(s)
- Michael Knapp
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, 3rd Floor, Deiniol Road, Bangor, LL57 2UW UK ; Department of Anatomy, University of Otago, 270 Great King St, Dunedin, 9016 New Zealand
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology (CSIC-UPF), Doctor Aiguader, 88, 08003 Barcelona, Spain
| | - Michael Hofreiter
- Department of Mathematics and Natural Sciences, Evolutionary and Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
40
|
Raff JA, Rzhetskaya M, Tackney J, Hayes MG. Mitochondrial diversity of Iñupiat people from the Alaskan North Slope provides evidence for the origins of the Paleo- and Neo-Eskimo peoples. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 157:603-14. [PMID: 25884279 DOI: 10.1002/ajpa.22750] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 03/11/2015] [Accepted: 03/14/2015] [Indexed: 11/08/2022]
Abstract
OBJECTIVES All modern Iñupiaq speakers share a common origin, the result of a recent (∼800 YBP) and rapid trans-Arctic migration by the Neo-Eskimo Thule, who replaced the previous Paleo-Eskimo inhabitants of the region. Reduced mitochondrial haplogroup diversity in the eastern Arctic supports the archaeological hypothesis that the migration occurred in an eastward direction. We tested the hypothesis that the Alaskan North Slope served as the origin of the Neo- and Paleo-Eskimo populations further east. MATERIALS AND METHODS We sequenced HVR I and HVR II of the mitochondrial D-loop from 151 individuals in eight Alaska North Slope communities, and compared genetic diversity and phylogenetic relationships between the North Slope Inupiat and other Arctic populations from Siberia, the Aleutian Islands, Canada, and Greenland. RESULTS Mitochondrial lineages from the North Slope villages had a low frequency (2%) of non-Arctic maternal admixture, and all haplogroups (A2, A2a, A2b, D2a, and D4b1a-formerly known as D3) found in previously sequenced Neo- and Paleo-Eskimos and living Inuit and Eskimo peoples from across the North American Arctic. Lineages basal for each haplogroup were present in the North Slope. We also found the first occurrence of two haplogroups in contemporary North American Arctic populations: D2a, previously identified only in Aleuts and Paleo-Eskimos, and the pan-American C4. DISCUSSION Our results yield insight into the maternal population history of the Alaskan North Slope and support the hypothesis that this region served as an ancestral pool for eastward movements to Canada and Greenland, for both the Paleo-Eskimo and Neo-Eskimo populations.
Collapse
Affiliation(s)
- Jennifer A Raff
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611
| | - Margarita Rzhetskaya
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611
| | - Justin Tackney
- Department of Anthropology, University of Utah, Salt Lake City, UT, 84112
| | - M Geoffrey Hayes
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611.,Department of Anthropology, Northwestern University, Evanston, IL, 60208.,Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611
| |
Collapse
|
41
|
Maternal ancestry and population history from whole mitochondrial genomes. INVESTIGATIVE GENETICS 2015; 6:3. [PMID: 25798216 PMCID: PMC4367903 DOI: 10.1186/s13323-015-0022-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/04/2015] [Indexed: 01/12/2023]
Abstract
MtDNA has been a widely used tool in human evolutionary and population genetic studies over the past three decades. Its maternal inheritance and lack of recombination have offered the opportunity to explore genealogical relationships among individuals and to study the frequency differences of matrilineal clades among human populations at continental and regional scales. The whole mtDNA genome sequencing delivers molecular resolution that is sufficient to distinguish patterns that have arisen over thousands of years. However, mutation rate is highly variable among the functional and non-coding domains of mtDNA which makes it challenging to obtain accurate split dates of the mitochondrial clades. Due to the shallow coalescent time of mitochondrial TMRCA at approximately 100 to 200 thousand years (ky), mtDNA data have only limited power to inform us about the more distant past and the early stages of human evolutionary history. The variation shared by mitochondrial genomes of individuals drawn from different continents outside Africa has been used to illuminate the details of the colonization process of the Old World, whereas regional patterns of variation have been at the focus of studies addressing questions of a more recent time scale. In the era of whole nuclear genome sequencing, mitochondrial genomes are continuing to be informative as a unique tool for the assessment of female-specific aspects of the demographic history of human populations.
Collapse
|
42
|
Marciniak S, Klunk J, Devault A, Enk J, Poinar HN. Ancient human genomics: the methodology behind reconstructing evolutionary pathways. J Hum Evol 2015; 79:21-34. [PMID: 25601038 DOI: 10.1016/j.jhevol.2014.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/09/2014] [Accepted: 11/07/2014] [Indexed: 11/15/2022]
Abstract
High-throughput sequencing (HTS) has radically altered approaches to human evolutionary research. Recent contributions highlight that HTS is able to reach depths of the human lineage previously thought to be impossible. In this paper, we outline the methodological advances afforded by recent developments in DNA recovery, data output, scalability, speed, and resolution of the current sequencing technology. We review and critically evaluate the 'DNA pipeline' for ancient samples: from DNA extraction, to constructing immortalized sequence libraries, to enrichment strategies (e.g., polymerase chain reaction [PCR] and hybridization capture), and finally, to bioinformatic analyses of sequence data. We argue that continued evaluations and improvements to this process are essential to ensure sequence data validity. Also, we highlight the role of contamination and authentication in ancient DNA-HTS, which is particularly relevant to ancient human genomics, since sequencing the genomes of hominins such as Homo erectus and Homo heidelbergensis may soon be within the realm of possibility.
Collapse
Affiliation(s)
- Stephanie Marciniak
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L9, Canada.
| | - Jennifer Klunk
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L9, Canada; Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Alison Devault
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L9, Canada; MYcroarray, Ann Arbor, MI, USA
| | - Jacob Enk
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L9, Canada; Department of Biology, McMaster University, Hamilton, ON, Canada; MYcroarray, Ann Arbor, MI, USA
| | - Hendrik N Poinar
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L9, Canada; Department of Biology, McMaster University, Hamilton, ON, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
43
|
Mitochondrial genome diversity at the Bering Strait area highlights prehistoric human migrations from Siberia to northern North America. Eur J Hum Genet 2015; 23:1399-404. [PMID: 25564040 DOI: 10.1038/ejhg.2014.286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/12/2014] [Accepted: 12/02/2014] [Indexed: 11/09/2022] Open
Abstract
The patterns of prehistoric migrations across the Bering Land Bridge are far from being completely understood: there still exists a significant gap in our knowledge of the population history of former Beringia. Here, through comprehensive survey of mitochondrial DNA genomes retained in 'relic' populations, the Maritime Chukchi, Siberian Eskimos, and Commander Aleuts, we explore genetic contribution of prehistoric Siberians/Asians to northwestern Native Americans. Overall, 201 complete mitochondrial sequences (52 new and 149 published) were selected in the reconstruction of trees encompassing mtDNA lineages that are restricted to Coastal Chukotka and Alaska, the Canadian Arctic, Greenland, and the Aleutian chain. Phylogeography of the resulting mtDNA genomes (mitogenomes) considerably extends the range and intrinsic diversity of haplogroups (eg, A2a, A2b, D2a, and D4b1a2a1) that emerged and diversified in postglacial central Beringia, defining independent origins of Neo-Eskimos versus Paleo-Eskimos, Aleuts, and Tlingit (Na-Dene). Specifically, Neo-Eskimos, ancestral to modern Inuit, not only appear to be of the High Arctic origin but also to harbor Altai/Sayan-related ancestry. The occurrence of the haplogroup D2a1b haplotypes in Chukotka (Sireniki) introduces the possibility that the traces of Paleo-Eskimos have not been fully erased by spread of the Neo-Eskimos or their descendants. Our findings are consistent with the recurrent gene flow model of multiple streams of expansions to northern North America from northeastern Eurasia in late Pleistocene-early Holocene.
Collapse
|
44
|
Major transitions in human evolution revisited: a tribute to ancient DNA. J Hum Evol 2014; 79:4-20. [PMID: 25532800 DOI: 10.1016/j.jhevol.2014.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 06/06/2014] [Accepted: 06/19/2014] [Indexed: 11/23/2022]
Abstract
The origin and diversification of modern humans have been characterized by major evolutionary transitions and demographic changes. Patterns of genetic variation within modern populations can help with reconstructing this ∼200 thousand year-long population history. However, by combining this information with genomic data from ancient remains, one can now directly access our evolutionary past and reveal our population history in much greater detail. This review outlines the main recent achievements in ancient DNA research and illustrates how the field recently moved from the polymerase chain reaction (PCR) amplification of short mitochondrial fragments to whole-genome sequencing and thereby revisited our own history. Ancient DNA research has revealed the routes that our ancestors took when colonizing the planet, whom they admixed with, how they domesticated plant and animal species, how they genetically responded to changes in lifestyle, and also, which pathogens decimated their populations. These approaches promise to soon solve many pending controversies about our own origins that are indecipherable from modern patterns of genetic variation alone, and therefore provide an extremely powerful toolkit for a new generation of molecular anthropologists.
Collapse
|
45
|
Raghavan M, DeGiorgio M, Albrechtsen A, Moltke I, Skoglund P, Korneliussen TS, Grønnow B, Appelt M, Gulløv HC, Friesen TM, Fitzhugh W, Malmström H, Rasmussen S, Olsen J, Melchior L, Fuller BT, Fahrni SM, Stafford T, Grimes V, Renouf MAP, Cybulski J, Lynnerup N, Lahr MM, Britton K, Knecht R, Arneborg J, Metspalu M, Cornejo OE, Malaspinas AS, Wang Y, Rasmussen M, Raghavan V, Hansen TVO, Khusnutdinova E, Pierre T, Dneprovsky K, Andreasen C, Lange H, Hayes MG, Coltrain J, Spitsyn VA, Götherström A, Orlando L, Kivisild T, Villems R, Crawford MH, Nielsen FC, Dissing J, Heinemeier J, Meldgaard M, Bustamante C, O'Rourke DH, Jakobsson M, Gilbert MTP, Nielsen R, Willerslev E. The genetic prehistory of the New World Arctic. Science 2014; 345:1255832. [PMID: 25170159 DOI: 10.1126/science.1255832] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The New World Arctic, the last region of the Americas to be populated by humans, has a relatively well-researched archaeology, but an understanding of its genetic history is lacking. We present genome-wide sequence data from ancient and present-day humans from Greenland, Arctic Canada, Alaska, Aleutian Islands, and Siberia. We show that Paleo-Eskimos (~3000 BCE to 1300 CE) represent a migration pulse into the Americas independent of both Native American and Inuit expansions. Furthermore, the genetic continuity characterizing the Paleo-Eskimo period was interrupted by the arrival of a new population, representing the ancestors of present-day Inuit, with evidence of past gene flow between these lineages. Despite periodic abandonment of major Arctic regions, a single Paleo-Eskimo metapopulation likely survived in near-isolation for more than 4000 years, only to vanish around 700 years ago.
Collapse
Affiliation(s)
- Maanasa Raghavan
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Michael DeGiorgio
- Department of Biology, Pennsylvania State University, 502 Wartik Laboratory, University Park, PA 16802, USA
| | - Anders Albrechtsen
- Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark
| | - Ida Moltke
- Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark. Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Pontus Skoglund
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Thorfinn S Korneliussen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Bjarne Grønnow
- Arctic Centre at the Ethnographic Collections (SILA), National Museum of Denmark, Frederiksholms Kanal 12, 1220 Copenhagen, Denmark
| | - Martin Appelt
- Arctic Centre at the Ethnographic Collections (SILA), National Museum of Denmark, Frederiksholms Kanal 12, 1220 Copenhagen, Denmark
| | - Hans Christian Gulløv
- Arctic Centre at the Ethnographic Collections (SILA), National Museum of Denmark, Frederiksholms Kanal 12, 1220 Copenhagen, Denmark
| | - T Max Friesen
- Department of Anthropology, University of Toronto, Toronto, Ontario M5S 2S2, Canada
| | - William Fitzhugh
- Arctic Studies Center, Post Office Box 37012, Department of Anthropology, MRC 112, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Helena Malmström
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark. Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Simon Rasmussen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Jesper Olsen
- AMS 14C Dating Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Linea Melchior
- Anthropological Laboratory, Institute of Forensic Medicine, Faculty of Health Sciences, University of Copenhagen, Frederik V's Vej 11, 2100 Copenhagen, Denmark
| | - Benjamin T Fuller
- Department of Earth System Science, University of California, Irvine, CA 92697, USA
| | - Simon M Fahrni
- Department of Earth System Science, University of California, Irvine, CA 92697, USA
| | - Thomas Stafford
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark. AMS 14C Dating Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Vaughan Grimes
- Department of Archaeology, Memorial University, Queen's College, 210 Prince Philip Drive, St. John's, Newfoundland, A1C 5S7, Canada. Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - M A Priscilla Renouf
- Department of Archaeology, Memorial University, Queen's College, 210 Prince Philip Drive, St. John's, Newfoundland, A1C 5S7, Canada
| | - Jerome Cybulski
- Canadian Museum of History, 100 Rue Laurier, Gatineau, Quebec K1A 0M8, Canada. Department of Anthropology, University of Western Ontario, 1151 Richmond Street North, London N6A 5C2, Canada
| | - Niels Lynnerup
- Anthropological Laboratory, Institute of Forensic Medicine, Faculty of Health Sciences, University of Copenhagen, Frederik V's Vej 11, 2100 Copenhagen, Denmark
| | - Marta Mirazon Lahr
- Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology and Anthropology, University of Cambridge, Cambridge CB2 1QH, UK
| | - Kate Britton
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany. Department of Archaeology, University of Aberdeen, St. Mary's Building, Elphinstone Road, Aberdeen AB24 3UF, Scotland, UK
| | - Rick Knecht
- Department of Archaeology, University of Aberdeen, St. Mary's Building, Elphinstone Road, Aberdeen AB24 3UF, Scotland, UK
| | - Jette Arneborg
- National Museum of Denmark, Frederiksholms kanal 12, 1220 Copenhagen, Denmark. School of Geosciences, University of Edinburgh, Edinburgh EH8 9XP, UK
| | - Mait Metspalu
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia. Department of Evolutionary Biology, University of Tartu, Tartu 51010, Estonia
| | - Omar E Cornejo
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA. School of Biological Sciences, Washington State University, Post Office Box 644236, Pullman, WA 99164, USA
| | - Anna-Sapfo Malaspinas
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Yong Wang
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA. Ancestry.com DNA LLC, San Francisco, CA 94107, USA
| | - Morten Rasmussen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Vibha Raghavan
- Informatics and Bio-computing, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, Ontario, M5G 0A3, Canada
| | - Thomas V O Hansen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Scientific Center of Russian Academy of Sciences, Ufa, Russia. Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Bashkortostan 450074, Russia
| | - Tracey Pierre
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Kirill Dneprovsky
- State Museum for Oriental Art, 12a, Nikitsky Boulevard, Moscow 119019, Russia
| | - Claus Andreasen
- Greenland National Museum and Archives, Post Office Box 145, 3900 Nuuk, Greenland
| | - Hans Lange
- Greenland National Museum and Archives, Post Office Box 145, 3900 Nuuk, Greenland
| | - M Geoffrey Hayes
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. Department of Anthropology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA. Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joan Coltrain
- Department of Anthropology, University of Utah, Salt Lake City, UT 84112, USA
| | - Victor A Spitsyn
- Research Centre for Medical Genetics of Russian Academy of Medical Sciences, 1 Moskvorechie, Moscow 115478, Russia
| | - Anders Götherström
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Toomas Kivisild
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia. Department of Archaeology and Anthropology, University of Cambridge, Cambridge CB2 1QH, UK
| | - Richard Villems
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia. Department of Evolutionary Biology, University of Tartu, Tartu 51010, Estonia
| | - Michael H Crawford
- Laboratory of Biological Anthropology, University of Kansas, Lawrence, KS 66045, USA
| | - Finn C Nielsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Jørgen Dissing
- Anthropological Laboratory, Institute of Forensic Medicine, Faculty of Health Sciences, University of Copenhagen, Frederik V's Vej 11, 2100 Copenhagen, Denmark
| | - Jan Heinemeier
- AMS 14C Dating Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Morten Meldgaard
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Carlos Bustamante
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Dennis H O'Rourke
- Department of Anthropology, University of Utah, Salt Lake City, UT 84112, USA
| | - Mattias Jakobsson
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.
| |
Collapse
|
46
|
Gansauge MT, Meyer M. Selective enrichment of damaged DNA molecules for ancient genome sequencing. Genome Res 2014; 24:1543-9. [PMID: 25081630 PMCID: PMC4158764 DOI: 10.1101/gr.174201.114] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Contamination by present-day human and microbial DNA is one of the major hindrances for large-scale genomic studies using ancient biological material. We describe a new molecular method, U selection, which exploits one of the most distinctive features of ancient DNA—the presence of deoxyuracils—for selective enrichment of endogenous DNA against a complex background of contamination during DNA library preparation. By applying the method to Neanderthal DNA extracts that are heavily contaminated with present-day human DNA, we show that the fraction of useful sequence information increases ∼10-fold and that the resulting sequences are more efficiently depleted of human contamination than when using purely computational approaches. Furthermore, we show that U selection can lead to a four- to fivefold increase in the proportion of endogenous DNA sequences relative to those of microbial contaminants in some samples. U selection may thus help to lower the costs for ancient genome sequencing of nonhuman samples also.
Collapse
Affiliation(s)
- Marie-Theres Gansauge
- Max Planck Institute for Evolutionary Anthropology, Evolutionary Genetics Department, Deutscher Platz 6, D-04103 Leipzig, Germany
| | - Matthias Meyer
- Max Planck Institute for Evolutionary Anthropology, Evolutionary Genetics Department, Deutscher Platz 6, D-04103 Leipzig, Germany
| |
Collapse
|
47
|
Complete mitogenome analysis of indigenous populations in Mexico: its relevance for the origin of Mesoamericans. J Hum Genet 2014; 59:359-67. [PMID: 24804703 DOI: 10.1038/jhg.2014.35] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 11/08/2022]
Abstract
Mesoamerica has an important role in the expansion of Paleoamericans as the route to South America. In this study, we determined complete mitogenome sequences of 113 unrelated individuals from two indigenous populations of Mesoamerica, Mazahua and Zapotec. All newly sequenced mitogenomes could be classified into haplogroups A2, B2, C1 and D1, but one sequence in Mazahua was D4h3a, a subclade of haplogroup D4. This haplogroup has been mostly found in South America along the Pacific coast. Haplogroup X2a was not found in either population. Genetic similarity obtained using phylogenetic tree construction and principal component analysis showed that these two populations are distantly related to each other. Actually, the Mazahua and the Zapotec shared no sequences (haplotypes) in common, while each also showed a number of unique subclades. Surprisingly, Zapotec formed a cluster with indigenous populations living in an area from central Mesoamerica to Central America. By contrast, the Mazahua formed a group with indigenous populations living in external areas, including southwestern North America and South America. This intriguing genetic relationship suggests the presence of two paleo-Mesoamerican groups, invoking a scenario in which one group had expanded into South America and the other resided in Mesoamerica.
Collapse
|
48
|
Pereira V, Tomas C, Sanchez JJ, Syndercombe-Court D, Amorim A, Gusmão L, Prata MJ, Morling N. The peopling of Greenland: further insights from the analysis of genetic diversity using autosomal and X-chromosomal markers. Eur J Hum Genet 2014; 23:245-51. [PMID: 24801759 DOI: 10.1038/ejhg.2014.90] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 11/09/2022] Open
Abstract
The peopling of Greenland has a complex history shaped by population migrations, isolation and genetic drift. The Greenlanders present a genetic heritage with components of European and Inuit groups; previous studies using uniparentally inherited markers in Greenlanders have reported evidence of a sex-biased, admixed genetic background. This work further explores the genetics of the Greenlanders by analysing autosomal and X-chromosomal data to obtain deeper insights into the factors that shaped the genetic diversity in Greenlanders. Fourteen Greenlandic subsamples from multiple geographical settlements were compared to assess the level of genetic substructure in the Greenlandic population. The results showed low levels of genetic diversity in all sets of the genetic markers studied, together with an increased number of X-chromosomal loci in linkage disequilibrium in relation to the Danish population. In the broader context of worldwide populations, Greenlanders are remarkably different from most populations, but they are genetically closer to some Inuit groups from Alaska. Admixture analyses identified an Inuit component in the Greenlandic population of approximately 80%. The sub-populations of Ammassalik and Nanortalik are the least diverse, presenting the lowest levels of European admixture. Isolation-by-distance analyses showed that only 16% of the genetic substructure of Greenlanders is most likely to be explained by geographic barriers. We suggest that genetic drift and a differentiated settlement history around the island explain most of the genetic substructure of the population in Greenland.
Collapse
Affiliation(s)
- Vania Pereira
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Ø, Denmark
| | - Carmen Tomas
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Ø, Denmark
| | - Juan J Sanchez
- Instituto Nacional de Toxicología y Ciencias Forenses, Delegación de Canarias, La Cuesta, Tenerife, Spain
| | - Denise Syndercombe-Court
- Academic Haematology, Blizard Institute, Barts and the London School of Medicine and Dentistry, London, UK
| | - António Amorim
- 1] IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal [2] Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Leonor Gusmão
- 1] IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal [2] DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Maria João Prata
- 1] IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal [2] Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Ø, Denmark
| |
Collapse
|
49
|
Schubert M, Ermini L, Der Sarkissian C, Jónsson H, Ginolhac A, Schaefer R, Martin MD, Fernández R, Kircher M, McCue M, Willerslev E, Orlando L. Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nat Protoc 2014; 9:1056-82. [PMID: 24722405 DOI: 10.1038/nprot.2014.063] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Next-generation sequencing technologies have revolutionized the field of paleogenomics, allowing the reconstruction of complete ancient genomes and their comparison with modern references. However, this requires the processing of vast amounts of data and involves a large number of steps that use a variety of computational tools. Here we present PALEOMIX (http://geogenetics.ku.dk/publications/paleomix), a flexible and user-friendly pipeline applicable to both modern and ancient genomes, which largely automates the in silico analyses behind whole-genome resequencing. Starting with next-generation sequencing reads, PALEOMIX carries out adapter removal, mapping against reference genomes, PCR duplicate removal, characterization of and compensation for postmortem damage, SNP calling and maximum-likelihood phylogenomic inference, and it profiles the metagenomic contents of the samples. As such, PALEOMIX allows for a series of potential applications in paleogenomics, comparative genomics and metagenomics. Applying the PALEOMIX pipeline to the three ancient and seven modern Phytophthora infestans genomes as described here takes 5 d using a 16-core server.
Collapse
Affiliation(s)
- Mikkel Schubert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Luca Ermini
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Clio Der Sarkissian
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Hákon Jónsson
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Aurélien Ginolhac
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Robert Schaefer
- Biomedical Informatics and Computational Biology Graduate Program, University of Minnesota Rochester, Rochester, Minnesota, USA
| | - Michael D Martin
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ruth Fernández
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Martin Kircher
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Molly McCue
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
50
|
Coutinho A, Valverde G, Fehren-Schmitz L, Cooper A, Barreto Romero MI, Espinoza IF, Llamas B, Haak W. AmericaPlex26: a SNaPshot multiplex system for genotyping the main human mitochondrial founder lineages of the Americas. PLoS One 2014; 9:e93292. [PMID: 24671218 PMCID: PMC3966882 DOI: 10.1371/journal.pone.0093292] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 03/04/2014] [Indexed: 11/18/2022] Open
Abstract
Phylogeographic studies have described a reduced genetic diversity in Native American populations, indicative of one or more bottleneck events during the peopling and prehistory of the Americas. Classical sequencing approaches targeting the mitochondrial diversity have reported the presence of five major haplogroups, namely A, B, C, D and X, whereas the advent of complete mitochondrial genome sequencing has recently refined the number of founder lineages within the given diversity to 15 sub-haplogroups. We developed and optimized a SNaPshot assay to study the mitochondrial diversity in pre-Columbian Native American populations by simultaneous typing of 26 single nucleotide polymorphisms (SNPs) characterising Native American sub-haplogroups. Our assay proved to be highly sensitive with respect to starting concentrations of target DNA and could be applied successfully to a range of ancient human skeletal material from South America from various time periods. The AmericaPlex26 is a powerful assay with enhanced phylogenetic resolution that allows time- and cost-efficient mitochondrial DNA sub-typing from valuable ancient specimens. It can be applied in addition or alternative to standard sequencing of the D-loop region in forensics, ancestry testing, and population studies, or where full-resolution mitochondrial genome sequencing is not feasible.
Collapse
Affiliation(s)
- Alexandra Coutinho
- Australian Centre for Ancient DNA, School of Earth & Environmental Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Guido Valverde
- Australian Centre for Ancient DNA, School of Earth & Environmental Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lars Fehren-Schmitz
- Historical Anthropology and Human Ecology, Johann-Friedrich-Blumenbach Department of Zoology and Anthropology, University Goettingen, Goettingen, Germany
- Department of Anthropology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Alan Cooper
- Australian Centre for Ancient DNA, School of Earth & Environmental Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Earth & Environmental Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Wolfgang Haak
- Australian Centre for Ancient DNA, School of Earth & Environmental Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|