1
|
Jonasse JP, Perxés Perich M, Turner SJ, van der Hoeven JES. Synthetic control over lattice strain in trimetallic AuCu-core Pt-shell nanoparticles. NANOSCALE 2025; 17:7100-7113. [PMID: 39903214 PMCID: PMC11793081 DOI: 10.1039/d4nr04424j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
Core-shell nanoparticles can exhibit strongly enhanced performances in electro-, photo- and thermal catalysis. Lattice strain plays a key role in this and is induced by the mismatch between the crystal structure of the core and the shell metal. However, investigating the impact of lattice strain has been challenging due to the lack of a material system in which lattice strain can be controlled systematically, hampering further progress in the field of core-shell catalysis. In this work, we achieve such a core-shell nanoparticle system through the colloidal synthesis of trimetallic Pt-shell Au1-xCux-core nanoparticles. Our seed-mediated growth methodology yields well-defined Au1-xCux-cores, tunable in composition from 0 at% Cu to 77 at% Cu, and monodisperse in size. Subsequent overgrowth results in uniform, epitaxially grown Pt-shells with a controlled thickness of ∼3 atomic layers. By employing a multi-technique characterization strategy combining X-ray diffraction, electron diffraction and aberration corrected electron microscopy, we unravel the atomic structure of the trimetallic system on a single nanoparticle-, ensemble- and bulk scale level, and we unambiguously demonstrate the controlled variation of strain in the Pt-shell from -3.62% compressive-, to +3.79% tensile strain, while retaining full control over all other structural characteristics of the system.
Collapse
Affiliation(s)
- Just P Jonasse
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Marta Perxés Perich
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Savannah J Turner
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Jessi E S van der Hoeven
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
2
|
Moreira M, Cottancin E, Pellarin M, Roiban L, Masenelli-Varlot K, Ugarte D, Rodrigues V, Hillenkamp M. Intrinsic Coexistence of Miscibility and Segregation in Gold-Silver Nanoalloys. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411151. [PMID: 39711220 DOI: 10.1002/smll.202411151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Indexed: 12/24/2024]
Abstract
Bimetallic nanoparticles are used in numerous applications in catalysis, plasmonics or fuel cell technology. The addition of the second metal to the nanoparticles allows enhancing and fine-tuning their properties by choosing their composition, size, shape and environment. However, the crucial additional parameter of chemical structure within the particle is difficult to predict and access experimentally, even though segregated core-shell structures and random alloys can have drastically different physicochemical properties. This is highlighted by the vast literature on the most studied bimetallic system, gold-silver, for which the controversy on whether gold and silver are miscible on the nanoscale or segregate persists. Here, these contradictions are solved by determining quantitatively the coexistence of an alloyed core and a 1-2 nm thick shell with gradual silver enrichment as the chemical ground state structure. Chemical reactions with the environment and meta-stable structures are furthermore identified as responsible for the contradictions in the literature. This method is applicable to other multi-metallic systems, provides benchmark input for theoretical models, and forms the basis for studying chemical rearrangements under reactive conditions in catalysis.
Collapse
Affiliation(s)
- Murilo Moreira
- Institute of Light and Matter, University Claude Bernard Lyon 1, CNRS, UMR5306, Villeurbanne, F-69622, France
- Institute of Physics Gleb Wataghin, State University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Emmanuel Cottancin
- Institute of Light and Matter, University Claude Bernard Lyon 1, CNRS, UMR5306, Villeurbanne, F-69622, France
| | - Michel Pellarin
- Institute of Light and Matter, University Claude Bernard Lyon 1, CNRS, UMR5306, Villeurbanne, F-69622, France
| | - Lucian Roiban
- INSA Lyon, University Claude Bernard Lyon 1, CNRS, MATEIS, UMR5510, Villeurbanne, 69621, France
| | - Karine Masenelli-Varlot
- INSA Lyon, University Claude Bernard Lyon 1, CNRS, MATEIS, UMR5510, Villeurbanne, 69621, France
| | - Daniel Ugarte
- Institute of Physics Gleb Wataghin, State University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Varlei Rodrigues
- Institute of Physics Gleb Wataghin, State University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Matthias Hillenkamp
- Institute of Light and Matter, University Claude Bernard Lyon 1, CNRS, UMR5306, Villeurbanne, F-69622, France
- Institute of Physics Gleb Wataghin, State University of Campinas, Campinas, SP, 13083-970, Brazil
| |
Collapse
|
3
|
Bjerregaard JD, Votsmeier M, Grönbeck H. Influence of aluminium distribution on the diffusion mechanisms and pairing of [Cu(NH 3) 2] + complexes in Cu-CHA. Nat Commun 2025; 16:603. [PMID: 39799150 PMCID: PMC11724864 DOI: 10.1038/s41467-025-55859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025] Open
Abstract
The performance of Cu-exchanged chabazite (Cu-CHA) for the ammonia-assisted selective catalytic reduction of NOx (NH3-SCR) depends critically on the presence of paired[ Cu ( NH 3 ) 2 ] + complexes. Here, a machine-learning force field augmented with long-range Coulomb interactions is developed to investigate the effect of Al-distribution and Cu-loading on the mobility and pairing of[ Cu ( NH 3 ) 2 ] + complexes. Performing unbiased and constrained molecular dynamics simulations, we obtain unique information inaccessible to first-principle calculations and experiments. The free energy barrier for[ Cu ( NH 3 ) 2 ] + diffusion between CHA-cages depends sensitively on both the local and distant Al-distribution. Importantly, certain Al-distributions and arrangements of neighboring[ Cu ( NH 3 ) 2 ] + andNH 4 + cations make paired[ Cu ( NH 3 ) 2 ] + complexes exothermic with respect to separated configurations. Our results suggest that the NH3-SCR activity can be enhanced by increasing the Cu-loading and Al-content. The dynamic interplay between[ Cu ( NH 3 ) 2 ] + andNH 4 + diffusion is crucial for the[ Cu ( NH 3 ) 2 ] + mobility and stresses the need to explore large systems including long-range Coulomb interactions when studying diffusion of charged species in zeolites.
Collapse
Affiliation(s)
- Joachim D Bjerregaard
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96, Göteborg, Sweden.
- Umicore AG & Co. KG, Rodenbacher Chaussee 4, 63457, Hanau, Germany.
| | - Martin Votsmeier
- Umicore AG & Co. KG, Rodenbacher Chaussee 4, 63457, Hanau, Germany
| | - Henrik Grönbeck
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96, Göteborg, Sweden.
| |
Collapse
|
4
|
Yang X, Xiao YX, Yu F, Zhao WY, Shen L, Ying J, Zhang S, Ozoemena KI, Janiak C, Yang XY. Direct synthesis of PtNi coated with Ni 3B for efficient electrochemical hydrogen evolution from seawater. Chem Commun (Camb) 2025; 61:760-763. [PMID: 39666367 DOI: 10.1039/d4cc04333b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The design of a protective electron-rich surface is an ideal route to enhance the performance of catalysts. Due to the higher work function of Ni3B, facile-directed electron transport occurs from PtNi to Ni3B to enrich electron density on the surface of the Ni3B shell. This process increases hydrogen adsorption-desorption kinetics and mitigates Cl- corrosion.
Collapse
Affiliation(s)
- Xiong Yang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Yu-Xuan Xiao
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China.
| | - Fei Yu
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Wen-Ying Zhao
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Ling Shen
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Jie Ying
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China.
| | - Song Zhang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Kenneth I Ozoemena
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, 40204, Germany
| | - Xiao-Yu Yang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
- National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, P. R. China
| |
Collapse
|
5
|
Tao F. Development of New Methods of Studying Catalyst and Materials Surfaces with Ambient Pressure Photoelectron Spectroscopy. Acc Chem Res 2024. [PMID: 39715318 DOI: 10.1021/acs.accounts.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
ConspectusThe surface of a catalyst is crucial for understanding the mechanisms of catalytic reactions at the molecular level and developing new catalysts with higher activity, selectivity, and durability. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is a technique studying the surface of a sample in the gas phase, mainly identifying chemical identity, analyzing oxidation state, and measuring surface composition.In the last decade, numerous photoelectron spectroscopic methods for fundamental studies of key topics in catalysis using AP-XPS have been developed. By tracking the evolution of the catalyst surface during catalyst preparation, AP-XPS can assist in identifying the parameters for preparing an expected catalyst structure. Additionally, it can uncover adsorbate coverage-induced surface restructuring by monitoring the photoemission features of key elements as the gas pressure increases. Surface phase transitions of a catalyst support, supported metal, or supported oxide nanoparticles and restructuring of supported single-atom sites may occur at temperatures lower than a catalysis temperature. AP-XPS can track these temperature-dependent phase transition or structural evolution under catalytic conditions. It also enables analysis of the electronic structure of the catalyst surface during catalysis by collecting valence band spectrum at a specific catalysis temperature. Moreover, it can detect stable intermediates formed at a temperature lower than the catalysis onset temperature and track their transformation to product molecules, providing significant insights in proposing a pathway closest to the actual but unknown one. Time-on-stream quantification of oxidation and reduction processes on catalyst surfaces allows for the study of kinetics of redox, including determinations of reaction order and activation barrier. One challenging task in accurately measuring catalytic reaction rates under kinetic control is measurement of the number of catalytic sites. AP-XPS is a valuable technique for this task, as it can qualitatively identify active sites and quantitatively measure the number of active sites under a specific catalytic condition. For photocatalytic and photoelectrocatalytic systems, AP-XPS helps elucidate charge transfer at the interface of a cocatalyst and semiconductor by identifying shifts in binding energy of a key element, shedding light on electron-hole separation. Photoelectron-induced excitation (PEIE) spectroscopy provides a unique capability for in situ measurement of gas products proximal to the catalyst surface within 0-0.1 mm during catalysis. It enables the on-site in situ identification of gas products and quantification of their partial pressures.The successful development of these methods highlights the unique capabilities of AP-XPS in addressing key topics in catalysis and uncovering crucial information about catalysts under reaction or catalytic conditions that other spectroscopy or microscopy techniques cannot. These advancements are expected to significantly benefit many fields in chemistry, chemical engineering, energy science, materials science, and environmental science. Applications of AP-XPS to study solid-liquid interfaces, especially at the electrode-electrolyte interface in electrochemical processes, are significant. These applications at solid-liquid interfaces include electrification-based chemical transformations, electrochemical CO2 reduction, water electrolysis, electrochemical reduction of oxidants on the cathode and even oxidation of fuels in fuel cell process, and oxidation and reduction processes in batteries. Further development of instrumentation and spectral methods of AP-XPS will be beneficial to energy conversion, sustainable chemical transformation, and environmental remediation as well as materials design for quantum computing hardware.
Collapse
Affiliation(s)
- Franklin Tao
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
6
|
Perxés Perich M, O'Connor CR, Draijer KM, Visser NL, Artrith N, Reece C, de Jongh PE, van der Hoeven JES. In situ analysis of gas dependent redistribution kinetics in bimetallic Au-Pd nanoparticles. JOURNAL OF MATERIALS CHEMISTRY. A 2024; 12:32760-32774. [PMID: 39659480 PMCID: PMC11627011 DOI: 10.1039/d4ta03030c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 12/12/2024]
Abstract
The catalytic and plasmonic properties of bimetallic gold-palladium (Au-Pd) nanoparticles (NPs) critically depend on the distribution of the Au and Pd atoms inside the nanoparticle bulk and at the surface. Under operating conditions, the atomic distribution is highly dynamic. Analyzing gas induced redistribution kinetics at operating temperatures is therefore key in designing and understanding the behavior of Au-Pd nanoparticles for applications in thermal and light-driven catalysis, but requires advanced in situ characterization strategies. In this work, we achieve the in situ analysis of the gas dependent alloying kinetics in bimetallic Au-Pd nanoparticles at elevated temperatures through a combination of CO-DRIFTS and gas-phase in situ transmission electron microscopy (TEM), providing direct insight in both the surface- and nanoparticle bulk redistribution dynamics. Specifically, we employ a well-defined model system consisting of colloidal Au-core Pd-shell NPs, monodisperse in size and uniform in composition, and quantify the alloying dynamics of these NPs in H2 and O2 under isothermal conditions. By extracting the alloying kinetics from in situ TEM measurements, we show that the alloying behavior in Au-Pd NPs can be described by a numerical diffusion model based on Fick's second law. Overall, our results indicate that exposure to reactive gasses strongly affects the surface composition and surface alloying kinetics, but has a smaller effect on the alloying dynamics of the nanoparticle bulk. Both our in situ methodology as well as the quantitative insights on restructuring phenomena can be extended to a wider range of bimetallic nanoparticle systems and are relevant in understanding the behavior of nanoparticle catalysts under operating conditions.
Collapse
Affiliation(s)
- Marta Perxés Perich
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University 3584 CG Utrecht The Netherlands
| | | | - Koen M Draijer
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University 3584 CG Utrecht The Netherlands
| | - Nienke L Visser
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University 3584 CG Utrecht The Netherlands
| | - Nongnuch Artrith
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University 3584 CG Utrecht The Netherlands
| | - Christian Reece
- Rowland Institute at Harvard, Harvard University Cambridge Massachusetts 02142 USA
| | - Petra E de Jongh
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University 3584 CG Utrecht The Netherlands
| | - Jessi E S van der Hoeven
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University 3584 CG Utrecht The Netherlands
| |
Collapse
|
7
|
Zhang Y, Li H, Liu F, Li M, Zhang Y, Cai J, Li Y, Yang F, Yin F, Lu J, Zhang T, Yang B. Revealing Dynamics and Competitive Mechanism of Gas-Induced Surface Segregation of PdFe 0.08 Dilute Alloy by Multi-Dimensional Imaging. J Phys Chem Lett 2024; 15:11737-11744. [PMID: 39547818 DOI: 10.1021/acs.jpclett.4c02903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The restructuring of dilute alloys under gas environments has shown a great impact on their catalytic performance due to intriguing structural sensitivity, but the structural dynamics and underlying mechanism remains elusive. Herein, we directly resolved the distinct dynamic behaviors of PdFe0.08 dilute alloys under CO or O2 environment by multidimensional imaging. The stronger binding of gaseous CO with Fe atoms stimulates Fe segregation out of the PdFe0.08, resulting in 3D growth of Fe islands, whereas the dissociative adsorption of O2 results in 2D layer-by-layer growth of segregated FeO as encapsulation overlayers that bind strongly with the Pd surface underneath. Such varied structures remarkably tune the catalytic activity for CO oxidation, showing a considerably high activity for a CO-treated sample. Our results reveal the competitive mechanism between adsorbate-metal and metal-metal interaction for gas-induced surface segregation, which should be highly considered for the rational design of dilute alloys with dynamically tuned structure and reactivity.
Collapse
Affiliation(s)
- Yafeng Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, the Chinese Academy of Sciences, Dalian 116023, China
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Hong Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, the Chinese Academy of Sciences, Dalian 116023, China
| | - Fang Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Mengwei Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, the Chinese Academy of Sciences, Dalian 116023, China
| | - Yong Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Jinming Cai
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yangsheng Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fan Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Feng Yin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Junling Lu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, the Chinese Academy of Sciences, Dalian 116023, China
| | - Bing Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, the Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
8
|
Li Z, Wei Y, Wu H, Yuan P, Bu H, Tan X. Stable Magnetite@La-Fe Oxide Core-Shell Nanostructures Prepared via Lattice Lock for Reusable Extraction of Phosphate Anions. Inorg Chem 2024. [PMID: 39254305 DOI: 10.1021/acs.inorgchem.4c02487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Stable magnetic core-shell nanostructures are developed by lattice locking lanthanide-iron (La-Fe) oxide shells with magnetite cores to prevent the release of La from the surfaces of the magnetite nanostructures. The resulting core-shell nanostructures demonstrate excellent outstanding regeneration performance and high adsorption capacity for phosphate (115 mg P·g-1). These nanostructures release minimal La from the magnetite core surfaces after adsorbent regeneration, with a La loss of only 20% compared to the control sample, Mag@La(OH)3. La3+ ions were released at concentrations ranging from 1 to 2.3 μg·L-1 at pH levels of 4 to 8, which is within the metal content range found in natural aquatic environments. These results demonstrate the high stability of the nanostructures after regeneration. Furthermore, the adsorbent exhibits high extraction capacity across a wide pH range of 4 to 10 and performs well even in the presence of interfering anions at phosphate-to-anion molar ratios of 1:5, 1:25, and 1:100. Microscopic and spectroscopic analyses reveal that the primary extraction mechanism of phosphate in the La-containing shells is surface precipitation. This approach not only improves the use of magnetic core-shell nanostructures as adsorbents but also demonstrates the creation of a broad range of stable magnetic functional materials for diverse applications.
Collapse
Affiliation(s)
- Zheng Li
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Yanfu Wei
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Honghai Wu
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Peng Yuan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hongling Bu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinjie Tan
- School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
9
|
Gao Y, Zhu B. Simulating Structural Dynamics of Metal Catalysts under Operative Conditions. J Phys Chem Lett 2024; 15:8351-8359. [PMID: 39110671 DOI: 10.1021/acs.jpclett.4c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Structural reconstructions of metal catalysts have been recognized as common phenomena during catalytic reactions, which play a key role in their activities in heterogeneous catalysis. Precisely identifying the structures under the operative conditions becomes a prerequisite to establish a reliable structure-activity relationship and further rationalize the design of metal catalysts. However, real-time capture of the structural variations of catalysts at the atomic level with high-temporal resolution is a grand challenge for present in situ characterizations. During the past decade, significant progress has been made in theory to couple the structures with the reaction conditions to reproduce the experimental observations and predict the adsorbate-induced changes of catalysts in composition, morphology, size, etc. Modeling the dynamic correlation between the structure and activity of the metal catalysts brings us advanced knowledge of heterogeneous catalysis and becomes indispensable for accurate evaluation of the performance of metal catalysts.
Collapse
Affiliation(s)
- Yi Gao
- Photon Science Research Center for Carbon Dioxide, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Beien Zhu
- Photon Science Research Center for Carbon Dioxide, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| |
Collapse
|
10
|
Svensson R, Grönbeck H. Dynamics of Dilute Nanoalloy Catalysts. J Phys Chem Lett 2024; 15:7885-7891. [PMID: 39058634 PMCID: PMC11318031 DOI: 10.1021/acs.jpclett.4c01659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Capturing the dynamic character of metal nanoparticles under the reaction conditions is one of the major challenges within heterogeneous catalysis. The role of nanoparticle dynamics is particularly important for metal alloys as the surface composition responds sensitively to the gas environment. Here, a first-principles-based kinetic Monte Carlo method is developed to compare the dynamics of dilute PdAu alloy nanoparticles in inert and CO-rich atmospheres, corresponding to reaction conditions for catalyst deactivation and activation. CO influences the dynamics of the activation by facilitating the formation of vacancies and mobile Au-CO complexes, which are needed to obtain CO-stabilized Pd monomers on the surface. The structure of the catalyst and the location of the Pd monomers determine the rate of deactivation. The rate of catalyst deactivation is slow at low temperatures, which suggests that metastable structures determine the catalyst activity at typical operating conditions. The developed method is general and can be applied to a range of metal catalysts and reactions.
Collapse
Affiliation(s)
- Rasmus Svensson
- Department of Physics and
Competence Centre for Catalysis, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden
| | - Henrik Grönbeck
- Department of Physics and
Competence Centre for Catalysis, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden
| |
Collapse
|
11
|
Grimes M, Atlan C, Chatelier C, Bellec E, Olson K, Simonne D, Levi M, Schülli TU, Leake SJ, Rabkin E, Eymery J, Richard MI. Capturing Catalyst Strain Dynamics during Operando CO Oxidation. ACS NANO 2024. [PMID: 39009584 DOI: 10.1021/acsnano.4c04127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Understanding the strain dynamic behavior of catalysts is crucial for the development of cost-effective, efficient, stable, and long-lasting catalysts. Using time-resolved Bragg coherent diffraction imaging at the fourth generation Extremely Brilliant Source of the European Synchrotron (ESRF-EBS), we achieved subsecond time resolution during operando chemical reactions. Upon investigation of Pt nanoparticles during CO oxidation, the three-dimensional strain profile highlights significant changes in the surface and subsurface regions, where localized strain is probed along the [111] direction. Notably, a rapid increase in tensile strain was observed at the top and bottom Pt {111} facets during CO adsorption. Moreover, we detected oscillatory strain changes (6.4 s period) linked to CO adsorption during oxidation, where a time resolution of 0.25 s was achieved. This approach allows for the study of adsorption dynamics of catalytic nanomaterials at the single-particle level under operando conditions, which provides insight into nanoscale catalytic mechanisms.
Collapse
Affiliation(s)
- Michael Grimes
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 rue des Martyrs, F-38000 Grenoble, France
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Clément Atlan
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 rue des Martyrs, F-38000 Grenoble, France
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Corentin Chatelier
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 rue des Martyrs, F-38000 Grenoble, France
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Ewen Bellec
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 rue des Martyrs, F-38000 Grenoble, France
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Kyle Olson
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 rue des Martyrs, F-38000 Grenoble, France
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - David Simonne
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 rue des Martyrs, F-38000 Grenoble, France
- SOLEIL, L'Orme des Merisiers Départementale 128, 91190 Saint-Aubin, France
| | - Mor Levi
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Tobias U Schülli
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Steven J Leake
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Eugen Rabkin
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Joël Eymery
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Marie-Ingrid Richard
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 rue des Martyrs, F-38000 Grenoble, France
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| |
Collapse
|
12
|
Huang A, Kong L, Zhang B, Liu X, Wang L, Li L, Xu J. Electrochemical Restructuring Driven Catalytic Cycle of Bi-Based Heterojunctions for High-Performance Lithium-Sulfur Batteries. ACS NANO 2024; 18:12795-12807. [PMID: 38719733 DOI: 10.1021/acsnano.3c12279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Restructuring is an important phenomenon in catalytic reactions. Conversion-type materials with suitable redox potential may undergo in situ electrochemically driven restructurings and induce highly active catalytic sites in a working lithium-sulfur battery. Herein, driven by the electrochemical conversion reaction of BiVO4, a reversible catalytic cycle of Bi/amorphous Li3VO4 (a-Li3VO4) and Bi2S3/a-Li3VO4 heterojunctions is constructed, which targets the oxidation of Li2S and the conversion of polysulfide, respectively. The heterostructures and electrochemically driven size confinement provide abundant sites for shuttle restraining and sulfur conversion. Especially, the p-block Bi and Bi2S3 could dramatically reduce the conversion energy barriers of Li2S and polysulfide by virtue of the p-p orbital hybridization, promoting bidirectional reactions of the sulfur cathode. As a result, the corresponding sulfur cathode possesses a high reversible capacity of 7.5 mAh cm-2 after 120 cycles under a high sulfur loading of 10.3 mg cm-2 with a current density of 0.38 mA cm-2. This study furnishes a feasible scheme to obtain highly effective catalysts for bidirectional sulfur redox by utilizing the electrochemically induced restructuring.
Collapse
Affiliation(s)
- Ao Huang
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong 271018, P. R. China
| | - Linglong Kong
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, School of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Bowen Zhang
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong 271018, P. R. China
| | - Xuefan Liu
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong 271018, P. R. China
| | - Lu Wang
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong 271018, P. R. China
| | - Lifang Li
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong 271018, P. R. China
| | - Jing Xu
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong 271018, P. R. China
| |
Collapse
|
13
|
Jiang T, Li Y, Tang Y, Zhang S, Le D, Rahman TS, Tao F. Breaking Continuously Packed Bimetallic Sites to Singly Dispersed on Nonmetallic Support for Efficient Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21757-21770. [PMID: 38632669 DOI: 10.1021/acsami.3c18160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
We have synthesized Pt1Zn3/ZnO, also termed 0.01 wt %Pt/ZnO-O2-H2, as a catalyst containing singly dispersed single-atom bimetallic sites, also called a catalyst of singly dispersed bimetallic sites or a catalyst of isolated single-atom bimetallic sites. Its catalytic activity in partial oxidation of methanol to hydrogen at 290 °C is found to be 2-3 orders of magnitude higher than that of Pt-Zn bimetallic nanoparticles supported on ZnO, 5.0 wt %Pt/ZnO-N2-H2. Selectivity for H2 on Pt1Zn3/ZnO reaches 96%-100% at 290-330 °C, arising from the uniform coordination environment of single-atom Pt1 in singly dispersed single-atom bimetallic sites, Pt1Zn3 on 0.01 wt %Pt/ZnO-O2-H2, which is sharply different from various coordination environments of Pt atoms in coexisting PtxZny (x ≥ 0, y ≥ 0) sites on Pt-Zn bimetallic nanoparticles. Computational simulations attribute the extraordinary catalytic performance of Pt1Zn3/ZnO to the stronger adsorption of methanol and the lower activation barriers in O-H dissociation of CH3OH, C-H dissociations of CH2O to CO, and coupling of intermediate CO with atomic oxygen to form CO2 on Pt1Zn3/ZnO as compared to those on Pt-Zn bimetallic nanoparticles. It demonstrates that anchoring uniform, isolated single-atom bimetallic sites, also called singly dispersed bimetallic sites on a nonmetallic support can create new catalysts for certain types of reactions with much higher activity and selectivity in contrast to bimetallic nanoparticle catalysts with coexisting, various metallic sites MxAy (x ≥ 0, y ≥ 0). As these single-atom bimetallic sites are cationic and anchored on a nonmetallic support, the catalyst of singly dispersed single-atom bimetallic sites is different from a single-atom alloy nanoparticle catalyst. The critical role of the 0.01 wt %Pt in the extraordinary catalytic performance calls on fundamental studies of the profound role of a trace amount of a metal in heterogeneous catalysis.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Yuting Li
- Department of Chemical and Petroleum Engineering, Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66049, United States
| | - Yu Tang
- Department of Chemical and Petroleum Engineering, Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66049, United States
| | - Shiran Zhang
- Department of Chemical and Petroleum Engineering, Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66049, United States
| | - Duy Le
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Talat S Rahman
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Franklin Tao
- Department of Chemical and Petroleum Engineering, Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66049, United States
| |
Collapse
|
14
|
Guo X, Wang Y, Zhu W, Zhuang Z. Design of Superior Electrocatalysts for Proton-Exchange Membrane-Water Electrolyzers: Importance of Catalyst Stability and Evolution. Chempluschem 2024; 89:e202300514. [PMID: 37986238 DOI: 10.1002/cplu.202300514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
By virtue of the high energy conversion efficiency and compact facility, proton exchange membrane water electrolysis (PEMWE) is a promising green hydrogen production technology ready for commercial applications. However, catalyst stability is a challenging but often-ignored topic for the electrocatalyst design, which retards the device applications of many newly-developed electrocatalysts. By defining catalyst stability as the function of activity versus time, we ascribe the stability issue to the evolution of catalysts or catalyst layers during the water electrolysis. We trace the instability sources of electrocatalysts as the function versus time for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in acid and classify them into internal and external sources. Accordingly, we summarize the latest studies for stability improvements into five strategies, i. e., thermodynamic stable active site construction, precatalyst design, support regulation, superwetting electrode fabrication, and catalyst-ionomer interface engineering. With the help of ex-situ/ in-situ characterizations and theoretical calculations, an in-depth understanding of the instability sources benefits the rational development of highly active and stable HER/OER electrocatalysts for PEMWE applications.
Collapse
Affiliation(s)
- Xiaoxuan Guo
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yongsheng Wang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
15
|
Zhang Y, Ma Z, Yang S, Wang Q, Liu L, Bai Y, Rao D, Wang G, Li H, Zheng X. Element-dependent effects of alkali cations on nitrate reduction to ammonia. Sci Bull (Beijing) 2024; 69:1100-1108. [PMID: 38423872 DOI: 10.1016/j.scib.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Catalytic conversion of nitrate (NO3-) pollutants into ammonia (NH3) offers a sustainable and promising route for both wastewater treatment and NH3 synthesis. Alkali cations are prevalent in nitrate solutions, but their roles beyond charge balance in catalytic NO3- conversion have been generally ignored. Herein, we report the promotion effect of K+ cations in KNO3 solution for NO3- reduction over a TiO2-supported Ni single-atom catalyst (Ni1/TiO2). For photocatalytic NO3- reduction reaction, Ni1/TiO2 exhibited a 1.9-fold NH3 yield rate with nearly 100% selectivity in KNO3 solution relative to that in NaNO3 solution. Mechanistic studies reveal that the K+ cations from KNO3 gradually bonded with the surface of Ni1/TiO2, in situ forming a K-O-Ni moiety during reaction, whereas the Na+ ions were unable to interact with the catalyst in NaNO3 solution. The charge accumulation on the Ni sites induced by the incorporation of K atom promoted the adsorption and activation of NO3-. Furthermore, the K-O-Ni moiety facilitated the multiple proton-electron coupling of NO3- into NH3 by stabilizing the intermediates.
Collapse
Affiliation(s)
- Yida Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China; College of Chemistry and Materials Science, Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Zhentao Ma
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Shaokang Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qingyu Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China; College of Chemistry and Materials Science, Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Limin Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yu Bai
- College of Chemistry and Materials Science, Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Dewei Rao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Gongming Wang
- College of Chemistry and Materials Science, Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Hongliang Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China; Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China.
| |
Collapse
|
16
|
Xin H, Li R, Lin L, Mu R, Li M, Li D, Fu Q, Bao X. Reverse water gas-shift reaction product driven dynamic activation of molybdenum nitride catalyst surface. Nat Commun 2024; 15:3100. [PMID: 38600159 PMCID: PMC11271606 DOI: 10.1038/s41467-024-47550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
In heterogeneous catalysis catalyst activation is often observed during the reaction process, which is mostly attributed to the induction by reactants. In this work we report that surface structure of molybdenum nitride (MoNx) catalyst exhibits a high dependency on the partial pressure or concentration of reaction products i.e., CO and H2O in reverse water gas-shift reaction (RWGS) (CO2:H2 = 1:3) but not reactants of CO2 and H2. Molybdenum oxide (MoOx) overlayers formed by oxidation with H2O are observed at reaction pressure below 10 mbar or with low partial pressure of CO/H2O products, while CO-induced surface carbonization happens at reaction pressure above 100 mbar and with high partial pressure of CO/H2O products. The reaction products induce restructuring of MoNx surface into more active molybdenum carbide (MoCx) to increase the reaction rate and make for higher partial pressure CO, which in turn promote further surface carbonization of MoNx. We refer to this as the positive feedback between catalytic activity and catalyst activation in RWGS, which should be widely present in heterogeneous catalysis.
Collapse
Affiliation(s)
- Hui Xin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Rongtan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Le Lin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Mingrun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Dan Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China.
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
17
|
Wang H, Chen ZN, Wang Y, Wu D, Cao M, Sun F, Cao R. Sub-10-nm-sized Au@Au xIr 1-x metal-core/alloy-shell nanoparticles as highly durable catalysts for acidic water splitting. Natl Sci Rev 2024; 11:nwae056. [PMID: 38444985 PMCID: PMC10914371 DOI: 10.1093/nsr/nwae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/15/2023] [Accepted: 01/12/2024] [Indexed: 03/07/2024] Open
Abstract
The absence of efficient and durable catalysts for oxygen evolution reaction (OER) is the main obstacle to hydrogen production through water splitting in an acidic electrolyte. Here, we report a controllable synthesis method of surface IrOx with changing Au/Ir compositions by constructing a range of sub-10-nm-sized core-shell nanocatalysts composed of an Au core and AuxIr1-x alloy shell. In particular, Au@Au0.43Ir0.57 exhibits 4.5 times higher intrinsic OER activity than that of the commercial Ir/C. Synchrotron X-ray-based spectroscopies, electron microscopy and density functional theory calculations revealed a balanced binding of reaction intermediates with enhanced activity. The water-splitting cell using a load of 0.02 mgIr/cm2 of Au@Au0.43Ir0.57 as both anode and cathode can reach 10 mA/cm2 at 1.52 V and maintain activity for at least 194 h, which is better than the cell using the commercial couple Ir/C‖Pt/C (1.63 V, 0.2 h).
Collapse
Affiliation(s)
- Huimin Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe-ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yuanyuan Wang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Dongshuang Wu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Minna Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanfei Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
18
|
Sun G, Zhao ZJ, Li L, Pei C, Chang X, Chen S, Zhang T, Tian K, Sun S, Zheng L, Gong J. Metastable gallium hydride mediates propane dehydrogenation on H 2 co-feeding. Nat Chem 2024; 16:575-583. [PMID: 38168925 DOI: 10.1038/s41557-023-01392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/03/2023] [Indexed: 01/05/2024]
Abstract
In heterogeneous catalysis, the catalytic dehydrogenation reactions of hydrocarbons often exhibit a negative pressure dependence on hydrogen due to the competitive chemisorption of hydrocarbons and hydrogen. However, some catalysts show a positive pressure dependence for propane dehydrogenation, an important reaction for propylene production. Here we show that the positive activity dependence on H2 partial pressure of gallium oxide-based catalysts arises from metastable hydride mediation. Through in situ spectroscopic, kinetic and computational analyses, we demonstrate that under reaction conditions with H2 co-feeding, the dissociative adsorption of H2 on a partially reduced gallium oxide surface produces H atoms chemically bonded to coordinatively unsaturated Ga atoms. These metastable gallium hydride species promote C-H bond activation while inhibiting deep dehydrogenation. We found that the surface coverage of gallium hydride determines the catalytic performance. Accordingly, benefiting from proper H2 co-feeding, the alumina-supported, trace additive-modified gallium oxide catalyst GaOx-Ir-K/Al2O3 exhibited high activity and selectivity at high propane concentrations.
Collapse
Affiliation(s)
- Guodong Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Lulu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Xin Chang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Tingting Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Kaige Tian
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Shijia Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China.
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China.
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, China.
| |
Collapse
|
19
|
Pei C, Chen S, Fu D, Zhao ZJ, Gong J. Structured Catalysts and Catalytic Processes: Transport and Reaction Perspectives. Chem Rev 2024; 124:2955-3012. [PMID: 38478971 DOI: 10.1021/acs.chemrev.3c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The structure of catalysts determines the performance of catalytic processes. Intrinsically, the electronic and geometric structures influence the interaction between active species and the surface of the catalyst, which subsequently regulates the adsorption, reaction, and desorption behaviors. In recent decades, the development of catalysts with complex structures, including bulk, interfacial, encapsulated, and atomically dispersed structures, can potentially affect the electronic and geometric structures of catalysts and lead to further control of the transport and reaction of molecules. This review describes comprehensive understandings on the influence of electronic and geometric properties and complex catalyst structures on the performance of relevant heterogeneous catalytic processes, especially for the transport and reaction over structured catalysts for the conversions of light alkanes and small molecules. The recent research progress of the electronic and geometric properties over the active sites, specifically for theoretical descriptors developed in the recent decades, is discussed at the atomic level. The designs and properties of catalysts with specific structures are summarized. The transport phenomena and reactions over structured catalysts for the conversions of light alkanes and small molecules are analyzed. At the end of this review, we present our perspectives on the challenges for the further development of structured catalysts and heterogeneous catalytic processes.
Collapse
Affiliation(s)
- Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Donglong Fu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
20
|
He L, Li M, Qiu L, Geng S, Liu Y, Tian F, Luo M, Liu H, Yu Y, Yang W, Guo S. Single-atom Mo-tailored high-entropy-alloy ultrathin nanosheets with intrinsic tensile strain enhance electrocatalysis. Nat Commun 2024; 15:2290. [PMID: 38480686 PMCID: PMC10937678 DOI: 10.1038/s41467-024-45874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/06/2024] [Indexed: 03/17/2024] Open
Abstract
The precise structural integration of single-atom and high-entropy-alloy features for energy electrocatalysis is highly appealing for energy conversion, yet remains a grand challenge. Herein, we report a class of single-atom Mo-tailored PdPtNiCuZn high-entropy-alloy nanosheets with dilute Pt-Pt ensembles and intrinsic tensile strain (Mo1-PdPtNiCuZn) as efficient electrocatalysts for enhancing the methanol oxidation reaction catalysis. The as-made Mo1-PdPtNiCuZn delivers an extraordinary mass activity of 24.55 A mgPt-1 and 11.62 A mgPd+Pt-1, along with impressive long-term durability. The planted oxophilic Mo single atoms as promoters modify the electronic structure of isolated Pt sites in the high-entropy-alloy host, suppressing the formation of CO adsorbates and steering the reaction towards the formate pathway. Meanwhile, Mo promoters and tensile strain synergistically optimize the adsorption behaviour of intermediates to achieve a more energetically favourable pathway and minimize the methanol oxidation reaction barrier. This work advances the design of atomically precise catalytic sites by creating a new paradigm of single atom-tailored high-entropy alloys, opening an encouraging pathway to the design of CO-tolerance electrocatalysts.
Collapse
Affiliation(s)
- Lin He
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Menggang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Longyu Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Shuo Geng
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Yequn Liu
- Analytical Instrumentation Center, State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, China
| | - Fenyang Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Hu Liu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| | - Yongsheng Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
| | - Weiwei Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
21
|
Liao GJ, Hsueh WH, Yen YH, Shih YC, Wang CH, Wang JH, Luo MF. Decomposition of methanol-d 4 on Rh nanoclusters supported by thin-film Al 2O 3/NiAl(100) under near-ambient-pressure conditions. Phys Chem Chem Phys 2024; 26:5059-5069. [PMID: 38258542 DOI: 10.1039/d3cp05303b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The decomposition of methanol-d4 (CD3OD) on Rh nanoclusters grown by the deposition of Rh vapors onto an ordered thin film of Al2O3/NiAl(100) was studied, with various surface-probe techniques and largely under near-ambient-pressure (NAP) conditions. The results showed a superior reactivity of small Rh clusters (diameter < 1.5 nm) exposed to CD3OD at 5 × 10-3-0.1 mbar at 400 K; the gaseous production of CO and D2 from decomposed methanol-d4 per Rh surface site on the small Rh clusters with diameters of ∼1.1 nm was nearly 8 times that on large ones with diameters of ∼3.5 nm. The promotion of reactivity with decreased cluster size under NAP conditions was evidently greater than that under ultrahigh vacuum conditions. Moreover, the concentration of atomic carbon (C*; where * denotes adsorbate)-a key catalyst poisoner-yielded from the dissociation of CO* from dehydrogenated methanol-d4 was significantly smaller on small clusters (diameter < 1.5 nm). The NAP size effect on methanol-d4 decomposition involved the surface hydroxyl (OH*) from the little co-adsorbed water (H2O*) that was dissociated at a probability dependent on the cluster size. H2O* was more likely dissociated into OH* on small Rh clusters, by virtue of their more reactive d-band structure, and the OH* then effectively promoted the O-D cleavage of methanol-d4, as the rate-determining step, and thus the reaction probability; on the other hand, the OH* limited CO* dissociation on small Rh clusters via both adsorbate and lateral effects. These results suggest that the superior properties of small Rh clusters in both reactivity and anti-poisoning would persist and be highly applicable under "real-world" catalysis conditions.
Collapse
Affiliation(s)
- Guan-Jr Liao
- Department of Physics, National Central University, No. 300 Jhongda Road, Jhongli 32054, Taiwan.
| | - Wen-Hao Hsueh
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Ting-Zhou Road, Taipei, Taiwan.
| | - Yu-Hsiang Yen
- Department of Physics, National Central University, No. 300 Jhongda Road, Jhongli 32054, Taiwan.
| | - Yi-Chan Shih
- Department of Physics, National Central University, No. 300 Jhongda Road, Jhongli 32054, Taiwan.
| | - Chia-Hsin Wang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Jeng-Han Wang
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Ting-Zhou Road, Taipei, Taiwan.
| | - Meng-Fan Luo
- Department of Physics, National Central University, No. 300 Jhongda Road, Jhongli 32054, Taiwan.
| |
Collapse
|
22
|
Zhao JW, Wang HY, Feng L, Zhu JZ, Liu JX, Li WX. Crystal-Phase Engineering in Heterogeneous Catalysis. Chem Rev 2024; 124:164-209. [PMID: 38044580 DOI: 10.1021/acs.chemrev.3c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The performance of a chemical reaction is critically dependent on the electronic and/or geometric structures of a material in heterogeneous catalysis. Over the past century, the Sabatier principle has already provided a conceptual framework for optimal catalyst design by adjusting the electronic structure of the catalytic material via a change in composition. Beyond composition, it is essential to recognize that the geometric atomic structures of a catalyst, encompassing terraces, edges, steps, kinks, and corners, have a substantial impact on the activity and selectivity of a chemical reaction. Crystal-phase engineering has the capacity to bring about substantial alterations in the electronic and geometric configurations of a catalyst, enabling control over coordination numbers, morphological features, and the arrangement of surface atoms. Modulating the crystallographic phase is therefore an important strategy for improving the stability, activity, and selectivity of catalytic materials. Nonetheless, a complete understanding of how the performance depends on the crystal phase of a catalyst remains elusive, primarily due to the absence of a molecular-level view of active sites across various crystal phases. In this review, we primarily focus on assessing the dependence of catalytic performance on crystal phases to elucidate the challenges and complexities inherent in heterogeneous catalysis, ultimately aiming for improved catalyst design.
Collapse
Affiliation(s)
- Jian-Wen Zhao
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hong-Yue Wang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Li Feng
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin-Ze Zhu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin-Xun Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Wei-Xue Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
23
|
Han Y, Wang L, Cao K, Zhou J, Zhu Y, Hou Y, Lu Y. In Situ TEM Characterization and Modulation for Phase Engineering of Nanomaterials. Chem Rev 2023; 123:14119-14184. [PMID: 38055201 DOI: 10.1021/acs.chemrev.3c00510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Solid-state phase transformation is an intriguing phenomenon in crystalline or noncrystalline solids due to the distinct physical and chemical properties that can be obtained and modified by phase engineering. Compared to bulk solids, nanomaterials exhibit enhanced capability for phase engineering due to their small sizes and high surface-to-volume ratios, facilitating various emerging applications. To establish a comprehensive atomistic understanding of phase engineering, in situ transmission electron microscopy (TEM) techniques have emerged as powerful tools, providing unprecedented atomic-resolution imaging, multiple characterization and stimulation mechanisms, and real-time integrations with various external fields. In this Review, we present a comprehensive overview of recent advances in in situ TEM studies to characterize and modulate nanomaterials for phase transformations under different stimuli, including mechanical, thermal, electrical, environmental, optical, and magnetic factors. We briefly introduce crystalline structures and polymorphism and then summarize phase stability and phase transformation models. The advanced experimental setups of in situ techniques are outlined and the advantages of in situ TEM phase engineering are highlighted, as demonstrated via several representative examples. Besides, the distinctive properties that can be obtained from in situ phase engineering are presented. Finally, current challenges and future research opportunities, along with their potential applications, are suggested.
Collapse
Affiliation(s)
- Ying Han
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Liqiang Wang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Ke Cao
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Jingzhuo Zhou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yingxin Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yuan Hou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yang Lu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| |
Collapse
|
24
|
Yan X, Cao M, Li S, Duchesne PN, Sun W, Mao C, Song R, Lu Z, Chen X, Qian W, Li R, Wang L, Ozin GA. Visualizing the Birth and Monitoring the Life of a Bimetallic Methanation Catalyst. J Am Chem Soc 2023; 145:27358-27366. [PMID: 38052446 DOI: 10.1021/jacs.3c07668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Well-defined bimetallic heterogeneous catalysts are not only difficult to synthesize in a controlled manner, but their elemental distributions are also notoriously challenging to define. Knowledge of these distributions is required for both the as-synthesized catalyst and its activated form under reaction conditions, where various types of reconstruction can occur. Success in this endeavor requires observation of the active catalyst via in situ analytical methods. As a step toward this goal, we present a composite material composed of bimetallic nickel-ruthenium nanoparticles supported on a protonated zeolite (Ni-Ru/HZSM-5) and probe its evolution and function as a photoactive carbon dioxide methanation catalyst using in situ X-ray absorption spectroscopy (XAS). The working Ni-Ru/HZSM-5, as a selective and durable photothermal CO2 methanation catalyst, comprises a corona of Ru nanoparticles decorating a Ni nanoparticle core. The specific Ni-Ru interactions in the bimetallic particles were confirmed by in situ XAS, which reveals significant electron transfer from Ni to Ru. The light-harvesting Ni nanoparticle core and electron-accepting Ru nanoparticle corona serve as the CO2 and H2 dissociation centers, respectively. These Ni and Ru nanoparticles also promote synergistic photothermal and hydrogen atom transfer effects. Collectively, these effects enable an associative CO2 methanation reaction pathway while hindering coking and fostering high selectivity toward methane.
Collapse
Affiliation(s)
- Xiaoliang Yan
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| | - Min Cao
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| | - Sha Li
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| | - Paul N Duchesne
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Wei Sun
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Chenliang Mao
- Materials Chemistry and Nanochemistry Research Group, Solar Fuels Cluster, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Rui Song
- Materials Chemistry and Nanochemistry Research Group, Solar Fuels Cluster, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Zhe Lu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, P. R. China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Weizhong Qian
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Ruifeng Li
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| | - Lu Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, P. R. China
| | - Geoffrey A Ozin
- Materials Chemistry and Nanochemistry Research Group, Solar Fuels Cluster, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
25
|
Wu W, Pavloudis T, Palmer RE. Core atoms escape from the shell: reverse segregation of Pb-Al core-shell nanoclusters via nanoscale melting. DISCOVER NANO 2023; 18:143. [PMID: 37975964 PMCID: PMC10656412 DOI: 10.1186/s11671-023-03924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Melting is a phase transition that profoundly affects the fabrication and diverse applications of metal nanoclusters. Core-shell clusters offer distinctive properties and thus opportunities compared with other classes of nano-alloys. Molecular dynamics simulations have been employed to investigate the melting behaviour of Pb-Al core-shell clusters containing a fixed Pb147 core and varying shell thickness. Our results show that the core and shell melt separately. Surprisingly, core melting always drives the core Pb atoms to break out the shell and coat the nanoclusters in a reversed segregation process at the nanoscale. The melting point of the core increases with the shell thickness to exceed that of the bare core cluster, but the thinnest shell always supresses the core melting point. These results can be a reference for the future fabrication, manipulation, and exploitation of the core-shell nanoalloys chosen. The system chosen is ideally suited for experimental observations.
Collapse
Affiliation(s)
- Wenkai Wu
- Nanomaterials Lab, Mechanical Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, SA1 8EN, UK
| | - Theodoros Pavloudis
- Nanomaterials Lab, Mechanical Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, SA1 8EN, UK
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Richard E Palmer
- Nanomaterials Lab, Mechanical Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, SA1 8EN, UK.
| |
Collapse
|
26
|
He Q, Sheng B, Zhu K, Zhou Y, Qiao S, Wang Z, Song L. Phase Engineering and Synchrotron-Based Study on Two-Dimensional Energy Nanomaterials. Chem Rev 2023; 123:10750-10807. [PMID: 37581572 DOI: 10.1021/acs.chemrev.3c00389] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In recent years, there has been significant interest in the development of two-dimensional (2D) nanomaterials with unique physicochemical properties for various energy applications. These properties are often derived from the phase structures established through a range of physical and chemical design strategies. A concrete analysis of the phase structures and real reaction mechanisms of 2D energy nanomaterials requires advanced characterization methods that offer valuable information as much as possible. Here, we present a comprehensive review on the phase engineering of typical 2D nanomaterials with the focus of synchrotron radiation characterizations. In particular, the intrinsic defects, atomic doping, intercalation, and heterogeneous interfaces on 2D nanomaterials are introduced, together with their applications in energy-related fields. Among them, synchrotron-based multiple spectroscopic techniques are emphasized to reveal their intrinsic phases and structures. More importantly, various in situ methods are employed to provide deep insights into their structural evolutions under working conditions or reaction processes of 2D energy nanomaterials. Finally, conclusions and research perspectives on the future outlook for the further development of 2D energy nanomaterials and synchrotron radiation light sources and integrated techniques are discussed.
Collapse
Affiliation(s)
- Qun He
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Beibei Sheng
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Kefu Zhu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Yuzhu Zhou
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Sicong Qiao
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zhouxin Wang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
- Zhejiang Institute of Photonelectronics, Jinhua, Zhejiang 321004, China
| |
Collapse
|
27
|
Shi X, Cheng D, Zhao R, Zhang G, Wu S, Zhen S, Zhao ZJ, Gong J. Accessing complex reconstructed material structures with hybrid global optimization accelerated via on-the-fly machine learning. Chem Sci 2023; 14:8777-8784. [PMID: 37621421 PMCID: PMC10445438 DOI: 10.1039/d3sc02974c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
The complex reconstructed structure of materials can be revealed by global optimization. This paper describes a hybrid evolutionary algorithm (HEA) that combines differential evolution and genetic algorithms with a multi-tribe framework. An on-the-fly machine learning calculator is adopted to expedite the identification of low-lying structures. With a superior performance to other well-established methods, we further demonstrate its efficacy by optimizing the complex oxidized surface of Pt/Pd/Cu with different facets under (4 × 4) periodicity. The obtained structures are consistent with experimental results and are energetically lower than the previously presented model.
Collapse
Affiliation(s)
- Xiangcheng Shi
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- National Industry-Education Platform of Energy Storage, Tianjin University 135 Yaguan Road Tianjin 300350 China
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Dongfang Cheng
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- National Industry-Education Platform of Energy Storage, Tianjin University 135 Yaguan Road Tianjin 300350 China
| | - Ran Zhao
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- National Industry-Education Platform of Energy Storage, Tianjin University 135 Yaguan Road Tianjin 300350 China
| | - Gong Zhang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- National Industry-Education Platform of Energy Storage, Tianjin University 135 Yaguan Road Tianjin 300350 China
| | - Shican Wu
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- National Industry-Education Platform of Energy Storage, Tianjin University 135 Yaguan Road Tianjin 300350 China
| | - Shiyu Zhen
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- National Industry-Education Platform of Energy Storage, Tianjin University 135 Yaguan Road Tianjin 300350 China
| | - Zhi-Jian Zhao
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
- National Industry-Education Platform of Energy Storage, Tianjin University 135 Yaguan Road Tianjin 300350 China
| | - Jinlong Gong
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
- National Industry-Education Platform of Energy Storage, Tianjin University 135 Yaguan Road Tianjin 300350 China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou 350207 Fujian China
| |
Collapse
|
28
|
Abdallah Y, Nehela Y, Ogunyemi SO, Ijaz M, Ahmed T, Elashmony R, Alkhalifah DHM, Hozzein WN, Xu L, Yan C, Chen J, Li B. Bio-functionalized nickel-silica nanoparticles suppress bacterial leaf blight disease in rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1216782. [PMID: 37655220 PMCID: PMC10466215 DOI: 10.3389/fpls.2023.1216782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/12/2023] [Indexed: 09/02/2023]
Abstract
Introduction Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most devastative diseases that threatens rice plants worldwide. Biosynthesized nanoparticle (NP) composite compounds have attracted attention as environmentally safe materials that possess antibacterial activity that could be used in managing plant diseases. Methods During this study, a nanocomposite of two important elements, nickel and silicon, was biosynthesized using extraction of saffron stigmas (Crocus sativus L.). Characterization of obtained nickel-silicon dioxide (Ni-SiO2) nanocomposite was investigated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Transmission/Scanning electron microscopy (TEM/SEM), and energy-dispersive spectrum (EDS). Antibacterial activities of the biosynthesized Ni-SiO2 nanocomposite against Xoo were tested by measuring bacterial growth, biofilm formation, and dead Xoo cells. Results and discussions The bacterial growth (OD600) and biofilm formation (OD570) of Xoo treated with distilled water (control) was found to be 1.21 and 1.11, respectively. Treatment with Ni-SiO2 NPs composite, respectively, reduced the growth and biofilm formation by 89.07% and 80.40% at 200 μg/ml. The impact of obtained Ni-SiO2 nanocomposite at a concentration of 200 μg/ml was assayed on infected rice plants. Treatment of rice seedlings with Ni-SiO2 NPs composite only had a plant height of 64.8 cm while seedlings treated with distilled water reached a height of 45.20 cm. Notably, Xoo-infected seedlings treated with Ni-SiO2 NPs composite had a plant height of 57.10 cm. Furthermore, Ni-SiO2 NPs composite sprayed on inoculated seedlings had a decrease in disease leaf area from 43.83% in non-treated infected seedlings to 13.06% in treated seedlings. The FTIR spectra of biosynthesized Ni-SiO2 nanocomposite using saffron stigma extract showed different bands at 3,406, 1,643, 1,103, 600, and 470 cm-1. No impurities were found in the synthesized composite. Spherically shaped NPs were observed by using TEM and SEM. EDS revealed that Ni-SiO2 nanoparticles (NPs) have 13.26% Ni, 29.62% Si, and 57.11% O. Xoo treated with 200 µg/ml of Ni-SiO2 NPs composite drastically increased the apoptosis of bacterial cells to 99.61% in comparison with 2.23% recorded for the control. Conclusions The application of Ni-SiO2 NPs significantly improved the vitality of rice plants and reduced the severity of BLB.
Collapse
Affiliation(s)
- Yasmine Abdallah
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Department of Plant Pathology, Faculty of Agriculture, Minia University, ElMinya, Egypt
| | - Yasser Nehela
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Munazza Ijaz
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ranya Elashmony
- Department of Plant Pathology, Faculty of Agriculture, Minia University, ElMinya, Egypt
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wael N. Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Shelly L, Schweke D, Danon A, Rosen BA, Hayun S. Exploring the Redox Properties of Ce 1-xU xO 2±δ ( x ≤ 0.5) Oxides for Energy Applications. Inorg Chem 2023. [PMID: 37429325 DOI: 10.1021/acs.inorgchem.3c01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The Ce-U-O system, forming a solid solution in the fluorite structure, has gained much attention due to its unique properties. Mixed fluorite oxide powders of Ce1-xUxO2±δ compositions were found to be particularly active for H2 production through thermochemical water splitting. In the present work, we explore the reduction-oxidation properties of the mixed oxides with x = 0.1, 0.25, and 0.5. We report a particularly high oxygen storage capacity (OSC) for x ≥ 0.25 and show that the oxygen extracted from these mixed oxides is of a different origin than that extracted from CeO2. While in ceria, oxygen is extracted from the tetrahedral sites, leading to the formation of oxygen vacancies, the extracted oxygen in Ce1-xUxO2±δ (x ≥ 0.25) is essentially excess oxygen in the fluorite lattice (which spontaneously penetrates the oxide under ambient or oxidative conditions). This property, which is clearly related to the change in the valency of the U cations, is apparently responsible for the higher OSC and the lower activation energy for oxygen extraction from the mixed oxides compared to ceria. The mixed oxide powders are shown to be structurally stable, retaining their fluorite structure following reduction under Ar-5%H2 or oxidation in air until 1000 °C. The presented results provide new insights into the Ce-U-O system which may be exploited for future technical applications, as a catalyst for thermochemical water splitting, or as a solid electrolyte in solid oxide fuel cells.
Collapse
Affiliation(s)
- Lee Shelly
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Danielle Schweke
- Department of Physics, Nuclear Research Centre-Negev, Beer-Sheva 84190, Israel
| | - Albert Danon
- Department of Chemistry, Nuclear Research Centre-Negev, Beer-Sheva 84190, Israel
| | - Brian Ashley Rosen
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Shmuel Hayun
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| |
Collapse
|
30
|
Alcorn FM, van der Veen RM, Jain PK. In Situ Electron Microscopy of Transformations of Copper Nanoparticles under Plasmonic Excitation. NANO LETTERS 2023. [PMID: 37399502 DOI: 10.1021/acs.nanolett.3c01474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Metal nanoparticles are attracting interest for their light-absorption properties, but such materials are known to dynamically evolve under the action of chemical and physical perturbations, resulting in changes in their structure and composition. Using a transmission electron microscope equipped for optical excitation of the specimen, the structural evolution of Cu-based nanoparticles under simultaneous electron beam irradiation and plasmonic excitation was investigated with high spatiotemporal resolution. These nanoparticles initially have a Cu core-Cu2O oxide shell structure, but over the course of imaging, they undergo hollowing via the nanoscale Kirkendall effect. We captured the nucleation of a void within the core, which then rapidly grows along specific crystallographic directions until the core is hollowed out. Hollowing is triggered by electron-beam irradiation; plasmonic excitation enhances the kinetics of the transformation likely by the effect of photothermal heating.
Collapse
Affiliation(s)
- Francis M Alcorn
- Department of Chemistry, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Renske M van der Veen
- Department of Chemistry, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany
| | - Prashant K Jain
- Department of Chemistry, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
31
|
Liaqat F, Vosqa UT, Khan F, Haleem A, Shaik MR, Siddiqui MR, Khan M. Light-Driven Catalytic Activity of Green-Synthesized SnO 2/WO 3-x Hetero-nanostructures. ACS OMEGA 2023; 8:20042-20055. [PMID: 37305313 PMCID: PMC10249087 DOI: 10.1021/acsomega.3c02330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023]
Abstract
This work reports an environmentally friendly and economically feasible green synthesis of monometallic oxides (SnO2 and WO3) and their corresponding mixed metal oxide (SnO2/WO3-x) nanostructures from the aqueous Psidium guajava leaf extract for light-driven catalytic degradation of a major industrial contaminant, methylene blue (MB). P. guajava is a rich source of polyphenols that acts as a bio-reductant as well as a capping agent in the synthesis of nanostructures. The chemical composition and redox behavior of the green extract were investigated by liquid chromatography-mass spectrometry and cyclic voltammetry, respectively. Results acquired by X-ray diffraction and Fourier transform infrared spectroscopy confirm the successful formation of crystalline monometallic oxides (SnO2 and WO3) and bimetallic SnO2/WO3-x hetero-nanostructures capped with polyphenols. The structural and morphological aspects of the synthesized nanostructures were analyzed by transmission electron microscopy and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. Photocatalytic activity of the synthesized monometallic and hetero-nanostructures was investigated for the degradation of MB dye under UV light irradiation. Results indicate a higher photocatalytic degradation efficiency for mixed metal oxide nanostructures (93.5%) as compared to pristine monometallic oxides SnO2 (35.7%) and WO3 (74.5%). The hetero-metal oxide nanostructures prove to be better photocatalysts with reusability up to 3 cycles without any loss in degradation efficiency or stability. The enhanced photocatalytic efficiency is attributed to a synergistic effect in the hetero-nanostructures, efficient charge transportation, extended light absorption, and increased adsorption of dye due to the enlarged specific surface area.
Collapse
Affiliation(s)
- Faroha Liaqat
- Department
of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Urwa tul Vosqa
- Department
of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Fatima Khan
- Department
of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Abdul Haleem
- CAS
Key Laboratory of Soft Matter Chemistry, Department of Polymer Science
and Engineering, University of Science and
Technology of China, Hefei, Anhui 230026, China
| | - Mohammed Rafi Shaik
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Mujeeb Khan
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
32
|
Liao GJ, Hsueh WH, Yen YH, Shih YC, Wang CH, Wang JH, Luo MF. Decomposition of methanol-d4 on a thin film of Al2O3/NiAl(100) under near-ambient-pressure conditions. J Chem Phys 2023; 158:2887766. [PMID: 37129140 DOI: 10.1063/5.0151135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
We have studied the decomposition of methanol-d4 on thin film Al2O3/NiAl(100) under near-ambient-pressure conditions, with varied surface-probe techniques and calculations based on density-functional theory. Methanol-d4 neither adsorbed nor reacted on Al2O3/NiAl(100) at 400 K under ultrahigh vacuum conditions, whereas they dehydrogenated, largely to methoxy-d3 (CD3O*, * denoting adsorbates) and formaldehyde-d2 (CD2O*), on the surface when the methanol-d4 partial pressure was increased to 10-3 mbar and above. The dehydrogenation was facilitated by hydroxyl (OH* or OD*) from the dissociation of little co-adsorbed water; a small fraction of CD2O* interacted further with OH* (OD*) to form, via intermediate CD2OOH* (CD2OOD*), formic acid (DCOOH* or DCOOD*). A few surface carbonates were also yielded, likely on the defect sites of Al2O3/NiAl(100). The results suggest that alumina not only supports metal clusters but also participates in reactions under realistic catalytic conditions. One may consider accordingly the multiple functions of alumina while designing ideal catalysts.
Collapse
Affiliation(s)
- Guan-Jr Liao
- Department of Physics, National Central University, No. 300 Jhongda Road, Jhongli 32054, Taiwan
| | - Wen-Hao Hsueh
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Road, Taipei, Taiwan
| | - Yu-Hsiang Yen
- Department of Physics, National Central University, No. 300 Jhongda Road, Jhongli 32054, Taiwan
| | - Yi-Chan Shih
- Department of Physics, National Central University, No. 300 Jhongda Road, Jhongli 32054, Taiwan
| | - Chia-Hsin Wang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Jeng-Han Wang
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Road, Taipei, Taiwan
| | - Meng-Fan Luo
- Department of Physics, National Central University, No. 300 Jhongda Road, Jhongli 32054, Taiwan
| |
Collapse
|
33
|
Chaudhury S, Jangid P, Kolomeisky AB. Dynamics of chemical reactions on single nanocatalysts with heterogeneous active sites. J Chem Phys 2023; 158:074101. [PMID: 36813720 DOI: 10.1063/5.0137751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Modern chemical science and industries critically depend on the application of various catalytic methods. However, the underlying molecular mechanisms of these processes still remain not fully understood. Recent experimental advances that produced highly-efficient nanoparticle catalysts allowed researchers to obtain more quantitative descriptions, opening the way to clarify the microscopic picture of catalysis. Stimulated by these developments, we present a minimal theoretical model that investigates the effect of heterogeneity in catalytic processes at the single-particle level. Using a discrete-state stochastic framework that accounts for the most relevant chemical transitions, we explicitly evaluated the dynamics of chemical reactions on single heterogeneous nanocatalysts with different types of active sites. It is found that the degree of stochastic noise in nanoparticle catalytic systems depends on several factors that include the heterogeneity of catalytic efficiencies of active sites and distinctions between chemical mechanisms on different active sites. The proposed theoretical approach provides a single-molecule view of heterogeneous catalysis and also suggests possible quantitative routes to clarify some important molecular details of nanocatalysts.
Collapse
Affiliation(s)
- Srabanti Chaudhury
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Pankaj Jangid
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Anatoly B Kolomeisky
- Department of Chemistry, Department of Physics and Astronomy, Department of Chemical and Biomolecular Engineering and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, USA
| |
Collapse
|
34
|
Reddy KP, Kim D, Hong S, Kim KJ, Ryoo R, Park JY. Tuning CO 2 Hydrogenation Selectivity through Reaction-Driven Restructuring on Cu-Ni Bimetal Catalysts. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9373-9381. [PMID: 36763569 DOI: 10.1021/acsami.2c20832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tuning the selectivity of CO2 hydrogenation is of significant scientific interest, especially using nickel-based catalysts. Fundamental insights into CO2 hydrogenation on Ni-based catalysts demonstrate that CO is a primary intermediate, and product selectivity is strongly dependent on the oxidation state of Ni. Therefore, modifying the electronic structure of the nickel surface is a compelling strategy for tuning product selectivity. Herein, we synthesized well dispersed Cu-Ni bimetallic nanoparticles (NPs) using a simple hydrothermal method for CO selective CO2 hydrogenation. A detailed study on the monometallic (Ni and Cu) and bimetallic (CuxNi1-x) catalysts supported on γ-Al2O3 was performed to increase CO selectivity while maintaining the high reaction rate. The Cu0.5Ni0.5/γ-Al2O3 catalyst shows a high CO2 conversion and more CO product selectivity than its monometallic counterparts. The surface electronic and geometric structure of Cu0.5Ni0.5 bimetallic NPs was studied using ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and in situ diffuse reflectance infrared Fourier-transform spectroscopy under reaction conditions. The Cu core atoms migrate toward the surface, resulting in the restructuring of the Cu@Ni core-shell structure to a Cu-Ni alloy during the reaction and functioning as the active site by enhancing CO desorption. A systematic correlation is obtained between catalytic activity from a continuous fixed-bed flow reactor and the surface electronic structural details derived from AP-XPS results, establishing the structure-activity relationship. This investigation contributes to providing a strategy for controlling CO2 hydrogenation selectivity by modifying the surface structure of bimetallic NP catalysts.
Collapse
Affiliation(s)
- Kasala Prabhakar Reddy
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Daeho Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seunghwa Hong
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ki-Jeong Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang 37673, Republic of Korea
| | - Ryong Ryoo
- KENTECH Laboratory for Chemical, Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksinro, Naju 58330, Republic of Korea
| | - Jeong Young Park
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
35
|
Roongcharoen T, Yang X, Han S, Sementa L, Vegge T, Hansen HA, Fortunelli A. Oxidation and de-alloying of PtMn particle models: a computational investigation. Faraday Discuss 2023; 242:174-192. [PMID: 36196677 DOI: 10.1039/d2fd00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We present a computational study of the energetics and mechanisms of oxidation of Pt-Mn systems. We use slab models and simulate the oxidation process over the most stable (111) facet at a given Pt2Mn composition to make the problem computationally affordable, and combine Density-Functional Theory (DFT) with neural network potentials and metadynamics simulations to accelerate the mechanistic search. We find, first, that Mn has a strong tendency to alloy with Pt. This tendency is optimally realized when Pt and Mn are mixed in the bulk, but, at a composition in which the Mn content is high enough such as for Pt2Mn, Mn atoms will also be found in the surface outmost layer. These surface Mn atoms can dissociate O2 and generate MnOx species, transforming the surface-alloyed Mn atoms into MnOx surface oxide structures supported on a metallic framework in which one or more vacancy sites are simultaneously created. The thus-formed vacancies promote the successive steps of the oxidation process: the vacancy sites can be filled by surface oxygen atoms, which can then interact with Mn atoms in deeper layers, or subsurface Mn atoms can intercalate into interstitial sites. Both these steps facilitate the extraction of further bulk Mn atoms into MnOx oxide surface structures, and thus the progress of the oxidation process, with typical rate-determining energy barriers in the range 0.9-1.0 eV.
Collapse
Affiliation(s)
- Thantip Roongcharoen
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, via G. Moruzzi 1, Pisa, 56124, Italy. .,Department of Chemistry and Industrial Chemistry, DCCI, University of Pisa, Via G. Moruzzi 13, Pisa, Italy
| | - Xin Yang
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, 2800 Kgs. Lyngby, Denmark.
| | - Shuang Han
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, 2800 Kgs. Lyngby, Denmark.
| | - Luca Sementa
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, via G. Moruzzi 1, Pisa, 56124, Italy.
| | - Tejs Vegge
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, 2800 Kgs. Lyngby, Denmark.
| | - Heine Anton Hansen
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, 2800 Kgs. Lyngby, Denmark.
| | - Alessandro Fortunelli
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, via G. Moruzzi 1, Pisa, 56124, Italy.
| |
Collapse
|
36
|
Leidinger P, Panighel M, Pérez Dieste V, Villar-Garcia IJ, Vezzoni P, Haag F, Barth JV, Allegretti F, Günther S, Patera LL. Probing dynamic covalent chemistry in a 2D boroxine framework by in situ near-ambient pressure X-ray photoelectron spectroscopy. NANOSCALE 2023; 15:1068-1075. [PMID: 36541666 PMCID: PMC9851174 DOI: 10.1039/d2nr04949j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/30/2022] [Indexed: 06/08/2023]
Abstract
Dynamic covalent chemistry is a powerful approach to design covalent organic frameworks, where high crystallinity is achieved through reversible bond formation. Here, we exploit near-ambient pressure X-ray photoelectron spectroscopy to elucidate the reversible formation of a two-dimensional boroxine framework. By in situ mapping the pressure-temperature parameter space, we identify the regions where the rates of the condensation and hydrolysis reactions become dominant, being the key to enable the thermodynamically controlled growth of crystalline frameworks.
Collapse
Affiliation(s)
- Paul Leidinger
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany
| | | | | | | | - Pablo Vezzoni
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | - Felix Haag
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | - Johannes V Barth
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | | | - Sebastian Günther
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany
| | - Laerte L Patera
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany
- Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
37
|
Sumaria V, Nguyen L, Tao FF, Sautet P. Atomic-Scale Mechanism of Platinum Catalyst Restructuring under a Pressure of Reactant Gas. J Am Chem Soc 2023; 145:392-401. [PMID: 36548635 DOI: 10.1021/jacs.2c10179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Heterogeneous catalysis is key for chemical transformations. Understanding how catalysts' active sites dynamically evolve at the atomic scale under reaction conditions is a prerequisite for accurately determining catalytic mechanisms and predictably developing catalysts. We combine in situ time-dependent scanning tunneling microscopy observations and machine-learning-accelerated first-principles atomistic simulations to uncover the mechanism of restructuring of Pt catalysts under a pressure of carbon monoxide (CO). We show that a high CO coverage at a Pt step edge triggers the formation of atomic protrusions of low-coordination Pt atoms, which then detach from the step edge to create sub-nano-islands on the terraces, where under-coordinated sites are stabilized by the CO adsorbates. The fast and accurate machine-learning potential is key to enabling the exploration of tens of thousands of configurations for the CO-covered restructuring catalyst. These studies open an avenue to achieve an atomic-scale understanding of the structural dynamics of more complex metal nanoparticle catalysts under reaction conditions.
Collapse
Affiliation(s)
- Vaidish Sumaria
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90094, United States
| | - Luan Nguyen
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Franklin Feng Tao
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90094, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90094, United States
| |
Collapse
|
38
|
García L, Garaio E, López-Ortega A, Galarreta-Rodriguez I, Cervera-Gabalda L, Cruz-Quesada G, Cornejo A, Garrido JJ, Gómez-Polo C, Pérez-Landazábal JI. Fe 3O 4-SiO 2 Mesoporous Core/Shell Nanoparticles for Magnetic Field-Induced Ibuprofen-Controlled Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:211-219. [PMID: 36562662 DOI: 10.1021/acs.langmuir.2c02408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hybrid magnetic nanoparticles made up of an iron oxide, Fe3O4, core and a mesoporous SiO2 shell with high magnetization and a large surface area were proposed as an efficient drug delivery platform. The core/shell structure was synthesized by two seed-mediated growth steps combining solvothermal and sol-gel approaches and using organic molecules as a porous scaffolding template. The system presents a mean particle diameter of 30(5) nm (9 nm magnetic core diameter and 10 nm silica shell thickness) with superparamagnetic behavior, saturation magnetization of 32 emu/g, and a significant AC magnetic-field-induced heating response (SAR = 63 W/gFe3O4, measured at an amplitude of 400 Oe and a frequency of 307 kHz). Using ibuprofen as a model drug, the specific surface area (231 m2/g) of the porous structure exhibits a high molecule loading capacity (10 wt %), and controlled drug release efficiency (67%) can be achieved using the external AC magnetic field for short time periods (5 min), showing faster and higher drug desorption compared to that of similar stimulus-responsive iron oxide-based nanocarriers. In addition, it is demonstrated that the magnetic field-induced drug release shows higher efficiency compared to that of the sustained release at fixed temperatures (47 and 53% for 37 and 42 °C, respectively), considering that the maximum temperature reached during the exposure to the magnetic field is well below (31 °C). Therefore, it can be hypothesized that short periods of exposure to the oscillating field induce much greater heating within the nanoparticles than in the external solution.
Collapse
|
39
|
Lindner J, Ross U, Roddatis V, Jooss C. Langmuir analysis of electron beam induced plasma in environmental TEM. Ultramicroscopy 2023; 243:113629. [DOI: 10.1016/j.ultramic.2022.113629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/22/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
|
40
|
Atom hybridization of metallic elements: Emergence of subnano metallurgy for the post-nanotechnology. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Mao S, Wang Z, Luo Q, Lu B, Wang Y. Geometric and Electronic Effects in Hydrogenation Reactions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shanjun Mao
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou310028, People’s Republic of China
| | - Zhe Wang
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou310028, People’s Republic of China
| | - Qian Luo
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou310028, People’s Republic of China
| | - Bing Lu
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou310028, People’s Republic of China
| | - Yong Wang
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou310028, People’s Republic of China
| |
Collapse
|
42
|
Han T, Li Y, Cao Y, Lee I, Zhou X, Frenkel AI, Zaera F. In situ identification of surface sites in Cu-Pt bimetallic catalysts: Gas-induced metal segregation. J Chem Phys 2022; 157:234706. [PMID: 36550054 DOI: 10.1063/5.0130431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The effect of gases on the surface composition of Cu-Pt bimetallic catalysts has been tested by in situ infrared (IR) and x-ray absorption spectroscopies. Diffusion of Pt atoms within the Cu-Pt nanoparticles was observed both in vacuum and under gaseous atmospheres. Vacuum IR spectra of CO adsorbed on CuPtx/SBA-15 catalysts (x = 0-∞) at 125 K showed no bonding on Pt regardless of Pt content, but reversible Pt segregation to the surface was seen with the high-Pt-content (x ≥ 0.2) samples upon heating to 225 K. In situ IR spectra in CO atmospheres also highlighted the reversible segregation of Pt to the surface and its diffusion back into the bulk when cycling the temperature from 295 to 495 K and back, most evidently for diluted single-atom alloy catalysts (x ≤ 0.01). Similar behavior was possibly observed under H2 using small amounts of CO as a probe molecule. In situ x-ray absorption near-edge structure data obtained for CuPt0.2/SBA-15 under both CO and He pointed to the metallic nature of the Pt atoms irrespective of gas or temperature, but analysis of the extended x-ray absorption fine structure identified a change in coordination environment around the Pt atoms, from a (Pt-Cu):(Pt-Pt) coordination number ratio of ∼6:6 at or below 445 K to 8:4 at 495 K. The main conclusion is that Cu-Pt bimetallic catalysts are dynamic, with the composition of their surfaces being dependent on temperature in gaseous environments.
Collapse
Affiliation(s)
- Tongxin Han
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, USA
| | - Yuanyuan Li
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Yueqiang Cao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ilkeun Lee
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, USA
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, USA
| |
Collapse
|
43
|
Single Metal Atoms Embedded in the Surface of Pt Nanocatalysts: The Effect of Temperature and Hydrogen Pressure. Catalysts 2022. [DOI: 10.3390/catal12121669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Embedding energetically stable single metal atoms in the surface of Pt nanocatalysts exposed to varied temperature (T) and hydrogen pressure (P) could open up new possibilities in selective and dynamical engineering of alloyed Pt catalysts, particularly interesting for hydrogenation reactions. In this work, an environmental segregation energy model is developed to predict the stability and the surface composition evolution of 24 Metal M-promoted Pt surfaces (with M: Cu, Ag, Au, Ni, Pd, Co, Rh and Ir) under varied T and P. Counterintuitive to expectations, the results show that the more reactive alloy component (i.e., the one forming the strongest chemical bond with the hydrogen) is not the one that segregates to the surface. Moreover, using DFT-based Multi-Scaled Reconstruction (MSR) method and by extrapolation of M-promoted Pt nanoparticles (NPs), the shape dynamics of M-Pt are investigated under the same ranges of T and P. The results show that under low hydrogen pressure and high temperature ranges, Ag and Au—single atoms (and Cu to a less extent) are energetically stable on the surface of truncated octahedral and/or cuboctahedral shaped NPs. This indicated that coinage single-atoms might be used to tune the catalytic properties of Pt surface under hydrogen media. In contrast, bulk stability within wide range of temperature and pressure is predicted for all other M-single atoms, which might act as bulk promoters. This work provides insightful guides and understandings of M-promoted Pt NPs by predicting both the evolution of the shape and the surface compositions under reaction gas condition.
Collapse
|
44
|
Ye YL, Wang WL, Sun WM, Yang J. Polymeric tungsten carbide nanoclusters as potential non-noble metal catalysts for CO oxidation. NANOSCALE 2022; 14:18231-18240. [PMID: 36468662 DOI: 10.1039/d2nr06097c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The discovery of tungsten carbide (WC) as an analog of the noble metal Pt atom is of great significance toward designing novel highly-active catalysts from the viewpoint of the superatom concept. The potential of such a superatom to serve as building blocks of replacement catalysts for Pt has been evaluated in this work. The electronic properties, adsorption behaviors, and catalytic mechanisms towards the CO oxidation of (WC)n and Ptn (n = 1, 2, 4, and 6) were compared. Counterintuitively, these studied (WC)n clusters exhibit quite different electronic properties and adsorption behaviours from the corresponding Ptn species. For instance, (WC)n preferentially adsorbs O2, whereas Ptn tends to first combine with CO. Even so, it is interesting to find that the catalytic performances of (WC)n are always superior to the corresponding Ptn, and especially, the largest (WC)6 cluster exhibits the best catalytic ability towards CO oxidation. Therefore, assembling superatomic WC clusters into larger polymeric clusters can be regarded as a novel strategy to develop efficient superatom-assembled catalysts for CO oxidation. It is highly expected to see the realization of non-noble metal catalysts for various reactions in the near future experiments by using superatoms as building blocks.
Collapse
Affiliation(s)
- Ya-Ling Ye
- Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou 350108, People's Republic of China.
| | - Wen-Lu Wang
- Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou 350108, People's Republic of China.
| | - Wei-Ming Sun
- Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou 350108, People's Republic of China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| | - Jinlong Yang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| |
Collapse
|
45
|
Nakaya Y, Furukawa S. Catalysis of Alloys: Classification, Principles, and Design for a Variety of Materials and Reactions. Chem Rev 2022; 123:5859-5947. [PMID: 36170063 DOI: 10.1021/acs.chemrev.2c00356] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alloying has long been used as a promising methodology to improve the catalytic performance of metallic materials. In recent years, the field of alloy catalysis has made remarkable progress with the emergence of a variety of novel alloy materials and their functions. Therefore, a comprehensive disciplinary framework for catalytic chemistry of alloys that provides a cross-sectional understanding of the broad research field is in high demand. In this review, we provide a comprehensive classification of various alloy materials based on metallurgy, thermodynamics, and inorganic chemistry and summarize the roles of alloying in catalysis and its principles with a brief introduction of the historical background of this research field. Furthermore, we explain how each type of alloy can be used as a catalyst material and how to design a functional catalyst for the target reaction by introducing representative case studies. This review includes two approaches, namely, from materials and reactions, to provide a better understanding of the catalytic chemistry of alloys. Our review offers a perspective on this research field and can be used encyclopedically according to the readers' individual interests.
Collapse
Affiliation(s)
- Yuki Nakaya
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Chiyoda, Tokyo 102-0076, Japan
| |
Collapse
|
46
|
Toyoshima R, Tanaka T, Kato T, Uchida K, Kondoh H. Origin of the High Selectivity of the Pt-Rh Thin-Film H 2 Gas Sensor Studied by Operando Ambient-Pressure X-ray Photoelectron Spectroscopy at Working Conditions. J Phys Chem Lett 2022; 13:8546-8552. [PMID: 36067214 DOI: 10.1021/acs.jpclett.2c02365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Pt-Rh thin-film sensors exhibit excellent sensitivity and selectivity for H2 gas detection. Here, we studied the mechanism of highly selective detection of H2 by the Pt-Rh thin-film sensors with ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) measurements at working conditions, which were paralleled with electric resistivity measurements. The elemental composition and chemical state of surface Pt and Rh drastically change depending on the background gas environments, which directly link to the sensor response. It is revealed that surface segregated Pt atoms accelerate dissociative adsorption of H2, resulting in a reduction of the sensor surface and then a decrease of electric resistivity of the film, whereas a thin oxidized Rh layer blocks dissociation of the other reducing agent, that is, NH3. This is supported from the adsorption energetics obtained by the density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Ryo Toyoshima
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takahisa Tanaka
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Taro Kato
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ken Uchida
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroshi Kondoh
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
47
|
High M, Patzschke CF, Zheng L, Zeng D, Xiao R, Fennell PS, Song Q. Hydrotalcite-Derived Copper-Based Oxygen Carrier Materials for Efficient Chemical-Looping Combustion of Solid Fuels with CO 2 Capture. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2022; 36:11062-11076. [PMID: 36148001 PMCID: PMC9483923 DOI: 10.1021/acs.energyfuels.2c02409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Chemical-looping combustion (CLC) is a promising technology that utilizes metal oxides as oxygen carriers for the combustion of fossil fuels to CO2 and H2O, with CO2 readily sequestrated after the condensation of steam. Thermally stable and reactive metal oxides are desirable as oxygen carrier materials for the CLC processes. Here, we report the performance of Cu-based mixed oxides derived from hydrotalcite (also known as layered double hydroxides) precursors as oxygen carriers for the combustion of solid fuels. Two types of CLC processes were demonstrated, including chemical looping oxygen uncoupling (CLOU) and in situ gasification (iG-CLC) in the presence of steam. The Cu-based oxygen carriers showed high performance for the combustion of two solid fuels (a lignite and a bituminous coal), maintaining high thermal stability, fast reaction kinetics, and reversible oxygen release and storage over multiple redox cycles. Slight deactivation and sintering of the oxygen carrier occurred after redox cycles at an very high operation temperature of 985 °C. We expect that our material design strategy will inspire the development of better oxygen carrier materials for a variety of chemical looping processes for the clean conversion of fossil fuels with efficient CO2 capture.
Collapse
Affiliation(s)
- Michael High
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, United Kingdom
| | - Clemens F. Patzschke
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, United Kingdom
| | - Liya Zheng
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, United Kingdom
- School
of Materials, Sun Yat-sen University, Guangzhou510275, China
| | - Dewang Zeng
- MOE
Key Laboratory of Energy Thermal Conversion and Control, School of
Energy and Environment, Southeast University, Nanjing210096, China
| | - Rui Xiao
- MOE
Key Laboratory of Energy Thermal Conversion and Control, School of
Energy and Environment, Southeast University, Nanjing210096, China
| | - Paul S. Fennell
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, United Kingdom
| | - Qilei Song
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, United Kingdom
| |
Collapse
|
48
|
Han Y, Li XY, Zhu B, Gao Y. Unveiling the Au Surface Reconstruction in a CO Environment by Surface Dynamics and Ab Initio Thermodynamics. J Phys Chem A 2022; 126:6538-6547. [PMID: 36099447 DOI: 10.1021/acs.jpca.2c03124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surface reconstruction changes the atomic configuration of the metal surface and thus alters its intrinsic physical and chemical properties. Recent in situ experiments have shown a variety of surface reconstructions under reaction conditions, but how to effectively predict and characterize these structures remains challenging. Herein, we combine a DFT-based kinetic Monte Carlo simulation method and ab initio thermodynamics to explore the low-energy configurations of metal surface reconstructions, which takes the surface dynamics under the reactive environment into account. We systematically simulate 13 Au surfaces ((100), (110), (111), (210), (211), (221), (310), (311), (320), (321), (322), (331), and (332)) in the CO environment and identify 19 candidate reconstruction patterns driven by CO adsorption. The breakup of the original surfaces is attributed to the lateral interactions among the nearest-neighboring adsorbates. This work provides an efficient approach to unveil the reconstructed metal surface structures in reactive environments for guiding the experiments.
Collapse
Affiliation(s)
- Yu Han
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Yan Li
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Beien Zhu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yi Gao
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
49
|
Wang H, Zhou X, Yu T, Lu X, Qian L, Liu P, Lei P. Surface restructuring in AgCu single-atom alloy catalyst and self-enhanced selectivity toward CO2 reduction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Zhou C, Ngan HT, Lim JS, Darbari Z, Lewandowski A, Stacchiola DJ, Kozinsky B, Sautet P, Boscoboinik JA. Dynamical Study of Adsorbate-Induced Restructuring Kinetics in Bimetallic Catalysts Using the PdAu(111) Model System. J Am Chem Soc 2022; 144:15132-15142. [PMID: 35952667 DOI: 10.1021/jacs.2c04871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dynamic restructuring of bimetallic catalysts plays a crucial role in their catalytic activity and selectivity. In particular, catalyst pretreatment with species such as carbon monoxide and oxygen has been shown to be an effective strategy for tuning the surface composition and morphology. Mechanistic and kinetic understanding of such restructuring is fundamental to the chemistry and engineering of surface active sites but has remained challenging due to the large structural, chemical, and temporal degrees of freedom. Here, we combine time-resolved temperature-programmed infrared reflection absorption spectroscopy, ab initio thermodynamics, and machine-learning molecular dynamics to uncover previously unidentified timescale and kinetic parameters of in situ restructuring in Pd/Au(111), a highly relevant model system for dilute Pd-in-Au nanoparticle catalysts. The key innovation lies in utilizing CO not only as a chemically sensitive probe of surface Pd but also as an agent that induces restructuring of the surface. Upon annealing in vacuum, as-deposited Pd islands became encapsulated by Au and partially dissolved into the subsurface, leaving behind isolated Pd monomers on the surface. Subsequent exposure to 0.1 mbar CO enabled Pd monomers to repopulate the surface up to 373 K, above which complete Pd dissolution occurred by 473 K, with apparent activation energies of 0.14 and 0.48 eV, respectively. These restructuring processes occurred over the span of ∼1000 s at a given temperature. Such a minute-timescale dynamics not only elucidates the fluxional nature of alloy catalysts but also presents an opportunity to fine-tune the surface under moderate temperature and pressure conditions.
Collapse
Affiliation(s)
- Chen Zhou
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States.,Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11790, United States
| | - Hio Tong Ngan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Jin Soo Lim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Zubin Darbari
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States.,Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11790, United States
| | - Adrian Lewandowski
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Dario J Stacchiola
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Boris Kozinsky
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Robert Bosch LLC, Research and Technology Center, Cambridge, Massachusetts 02139, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Jorge Anibal Boscoboinik
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|