1
|
Koehle AP, Brumwell SL, Seto EP, Lynch AM, Urbaniak C. Microbial applications for sustainable space exploration beyond low Earth orbit. NPJ Microgravity 2023; 9:47. [PMID: 37344487 DOI: 10.1038/s41526-023-00285-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
With the construction of the International Space Station, humans have been continuously living and working in space for 22 years. Microbial studies in space and other extreme environments on Earth have shown the ability for bacteria and fungi to adapt and change compared to "normal" conditions. Some of these changes, like biofilm formation, can impact astronaut health and spacecraft integrity in a negative way, while others, such as a propensity for plastic degradation, can promote self-sufficiency and sustainability in space. With the next era of space exploration upon us, which will see crewed missions to the Moon and Mars in the next 10 years, incorporating microbiology research into planning, decision-making, and mission design will be paramount to ensuring success of these long-duration missions. These can include astronaut microbiome studies to protect against infections, immune system dysfunction and bone deterioration, or biological in situ resource utilization (bISRU) studies that incorporate microbes to act as radiation shields, create electricity and establish robust plant habitats for fresh food and recycling of waste. In this review, information will be presented on the beneficial use of microbes in bioregenerative life support systems, their applicability to bISRU, and their capability to be genetically engineered for biotechnological space applications. In addition, we discuss the negative effect microbes and microbial communities may have on long-duration space travel and provide mitigation strategies to reduce their impact. Utilizing the benefits of microbes, while understanding their limitations, will help us explore deeper into space and develop sustainable human habitats on the Moon, Mars and beyond.
Collapse
Affiliation(s)
- Allison P Koehle
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Stephanie L Brumwell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | | | - Anne M Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc, Middleburg Heights, OH, USA.
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
2
|
Tutolo BM, Tosca NJ. Observational constraints on the process and products of Martian serpentinization. SCIENCE ADVANCES 2023; 9:eadd8472. [PMID: 36735795 PMCID: PMC9897658 DOI: 10.1126/sciadv.add8472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
The alteration of olivine-rich rocks to serpentine minerals, (hydr)oxides, and aqueous hydrogen through serpentinization is long thought to have influenced the distribution of habitable environments on early Mars and the evolution of the early Martian hydrosphere and atmosphere. Nevertheless, the planetary importance of Martian serpentinization has remained a matter of debate. To constrain the process and products of Martian serpentinization, we studied serpentinized iron-rich olivines from the 1.1-billion-year Duluth Complex. These data indicate that serpentinized iron-rich olivine would have been accompanied by a fivefold increase in hydrogen production relative to serpentinized terrestrial mantle peridotites. In contrast to previous expectations, this style of serpentinization yields hisingerite as the dominant iron serpentine mineral at comparatively low temperature and pH, consistent with meteorite mineralogy and in situ rover data. The widespread occurrence of oxidized iron-bearing phyllosilicates in highly magnetized regions of the Martian crust supports the hypothesis that serpentinization was more pervasive on early Mars than currently estimated.
Collapse
Affiliation(s)
| | - Nicholas J. Tosca
- University of Cambridge, Department of Earth Sciences, Cambridge, UK
| |
Collapse
|
3
|
Li J, Beghein C, McLennan SM, Horleston AC, Charalambous C, Huang Q, Zenhäusern G, Bozdağ E, Pike WT, Golombek M, Lekić V, Lognonné P, Bruce Banerdt W. Constraints on the martian crust away from the InSight landing site. Nat Commun 2022; 13:7950. [PMID: 36572693 PMCID: PMC9792460 DOI: 10.1038/s41467-022-35662-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/15/2022] [Indexed: 12/27/2022] Open
Abstract
The most distant marsquake recorded so far by the InSight seismometer occurred at an epicentral distance of 146.3 ± 6.9o, close to the western end of Valles Marineris. On the seismogram of this event, we have identified seismic wave precursors, i.e., underside reflections off a subsurface discontinuity halfway between the marsquake and the instrument, which directly constrain the crustal structure away (about 4100-4500 km) from the InSight landing site. Here we show that the Martian crust at the bounce point between the lander and the marsquake is characterized by a discontinuity at about 20 km depth, similar to the second (deeper) intra-crustal interface seen beneath the InSight landing site. We propose that this 20-km interface, first discovered beneath the lander, is not a local geological structure but likely a regional or global feature, and is consistent with a transition from porous to non-porous Martian crustal materials.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA, 90095, USA.
| | - Caroline Beghein
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Scott M McLennan
- Department of Geosciences, Stony Brook University, Stony Brook, NY, 11794-2100, USA
| | | | | | - Quancheng Huang
- Department of Geophysics, Colorado School of Mines, Golden, CO, USA
| | | | - Ebru Bozdağ
- Department of Geophysics, Colorado School of Mines, Golden, CO, USA
| | - W T Pike
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Matthew Golombek
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Vedran Lekić
- Department of Geology, University of Maryland, College Park, MD, USA
| | - Philippe Lognonné
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, F-75005, France
| | - W Bruce Banerdt
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| |
Collapse
|
4
|
Blasizzo AY, Ukstins IA, Scheidt SP, Graettinger AH, Peate DW, Carley TL, Moritz AJ, Thines JE. Vikrahraun-the 1961 basaltic lava flow eruption at Askja, Iceland: morphology, geochemistry, and planetary analogs. EARTH, PLANETS, AND SPACE : EPS 2022; 74:168. [PMID: 36397812 PMCID: PMC9653356 DOI: 10.1186/s40623-022-01711-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED We examine the morphology and chemistry of the Vikrahraun basaltic eruption emplaced at Askja Volcano, Iceland, from Oct. 26-Dec. 17, 1961. The eruption had three eruptive events, initiating with a'a and followed by alternating a'a and pahoehoe lava flow emplacement. We determine that while the eruption is chemically homogenous (Fe/Mg = 1.9-2.2, 47-52 wt.% SiO2), it demonstrates transitions from high to low viscosity lava flow morphologies. A'a flows have a total crystallinity (phenocryst and microlite abundance by area) ranging from 85-100%, which increases by 1% per km from the vents, while pahoehoe flows range from 55-86% and increase at a higher rate of 5% per km. Vesicularity systematically decreases with distance from the vent by 3% per km. Pahoehoe and vent samples have calculated temperatures 50 °C higher than a'a samples, which we interpret to be due to the difference between tube fed pahoehoe and open channel a'a lavas. The homogenous nature of the Vikrahraun lava makes it an excellent testbed to study the effects of observational scale and satellite resolution on the interpretation of surficial textures. Festoons, which are downslope pointed convex ridges from 1 to 5 m high and ~ 10 m long, are observed in event 2 a'a lavas in satellite imagery and topographic profiles. Features of this scale have previously only been documented in terrestrial rhyolitic lavas, leading planetary researchers to infer that festooned lava flows on Venus and Mars may be silicic. The diverse morphologies and homogenous composition make Vikrahraun an important planetary analog, where morphological complexity is over-attributed to chemical variation and suggests the need to re-evaluation planetary lava flow interpretations. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s40623-022-01711-5.
Collapse
Affiliation(s)
| | - Ingrid A. Ukstins
- The University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | | | | | | | | | | | - Jennifer E. Thines
- New Mexico State University, 1780 E University Ave, Las Cruces, NM 88003 USA
| |
Collapse
|
5
|
Liu Y, Tice MM, Schmidt ME, Treiman AH, Kizovski TV, Hurowitz JA, Allwood AC, Henneke J, Pedersen DAK, VanBommel SJ, Jones MWM, Knight AL, Orenstein BJ, Clark BC, Elam WT, Heirwegh CM, Barber T, Beegle LW, Benzerara K, Bernard S, Beyssac O, Bosak T, Brown AJ, Cardarelli EL, Catling DC, Christian JR, Cloutis EA, Cohen BA, Davidoff S, Fairén AG, Farley KA, Flannery DT, Galvin A, Grotzinger JP, Gupta S, Hall J, Herd CDK, Hickman-Lewis K, Hodyss RP, Horgan BHN, Johnson JR, Jørgensen JL, Kah LC, Maki JN, Mandon L, Mangold N, McCubbin FM, McLennan SM, Moore K, Nachon M, Nemere P, Nothdurft LD, Núñez JI, O'Neil L, Quantin-Nataf CM, Sautter V, Shuster DL, Siebach KL, Simon JI, Sinclair KP, Stack KM, Steele A, Tarnas JD, Tosca NJ, Uckert K, Udry A, Wade LA, Weiss BP, Wiens RC, Williford KH, Zorzano MP. An olivine cumulate outcrop on the floor of Jezero crater, Mars. Science 2022; 377:1513-1519. [PMID: 36007094 DOI: 10.1126/science.abo2756] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The geological units on the floor of Jezero crater, Mars, are part of a wider regional stratigraphy of olivine-rich rocks, which extends well beyond the crater. We investigate the petrology of olivine and carbonate-bearing rocks of the Séítah formation in the floor of Jezero. Using multispectral images and x-ray fluorescence data, acquired by the Perseverance rover, we performed a petrographic analysis of the Bastide and Brac outcrops within this unit. We find that these outcrops are composed of igneous rock, moderately altered by aqueous fluid. The igneous rocks are mainly made of coarse-grained olivine, similar to some Martian meteorites. We interpret them as an olivine cumulate, formed by settling and enrichment of olivine through multi-stage cooling of a thick magma body.
Collapse
Affiliation(s)
- Y Liu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - M M Tice
- Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843, USA
| | - M E Schmidt
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - A H Treiman
- Lunar and Planetary Institute, Universities Space Research Association, Houston TX 77058, USA
| | - T V Kizovski
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - J A Hurowitz
- Department of Geosciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - A C Allwood
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - J Henneke
- Department of Space, Measurement and Instrumentation, Technical University of Denmark,, Lyngby, Denmark
| | - D A K Pedersen
- Department of Space, Measurement and Instrumentation, Technical University of Denmark,, Lyngby, Denmark
| | - S J VanBommel
- McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - M W M Jones
- Central Analytical Research Facility, and School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - A L Knight
- McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - B J Orenstein
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - B C Clark
- Space Science Institute, Boulder, CO 80301, USA
| | - W T Elam
- Applied Physics Lab and Department of Earth and Space Sciences, University of Washington, Seattle, WA 98052, USA
| | - C M Heirwegh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - T Barber
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - L W Beegle
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - K Benzerara
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Centre National de la Recherche Scientifique (CNRS), Muséum National d'Histoire Naturelle, Sorbonne Université, Paris 75005, France
| | - S Bernard
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Centre National de la Recherche Scientifique (CNRS), Muséum National d'Histoire Naturelle, Sorbonne Université, Paris 75005, France
| | - O Beyssac
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Centre National de la Recherche Scientifique (CNRS), Muséum National d'Histoire Naturelle, Sorbonne Université, Paris 75005, France
| | - T Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - E L Cardarelli
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - D C Catling
- Department of Earth and Space Sciences, University of Washington, Seattle WA 98195, USA
| | - J R Christian
- McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - E A Cloutis
- Department of Geography, University of Winnipeg, Winnipeg, Manitoba R3B 2E9, Canada
| | - B A Cohen
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - S Davidoff
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - A G Fairén
- Centro de Astrobiología, Consejo Superior de Investigaciones Cientificas - Instituto Nacional de Tecnica Aeroespacial, Madrid 28850, Spain.,Dept. of Astronomy, Cornell University, Ithaca, NY 14853, USA
| | - K A Farley
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - D T Flannery
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - A Galvin
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - J P Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - S Gupta
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - J Hall
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - C D K Herd
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - K Hickman-Lewis
- Department of Earth Sciences, The Natural History Museum, South Kensington, London, SW7 5BD, UK.,Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, via Zamboni 67, I-40126 Bologna, Italy
| | - R P Hodyss
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - B H N Horgan
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - J R Johnson
- Johns Hopkins University Applied Physics Laboratory Laurel, MD 20723, USA
| | - J L Jørgensen
- Department of Space, Measurement and Instrumentation, Technical University of Denmark,, Lyngby, Denmark
| | - L C Kah
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville TN 37996, USA
| | - J N Maki
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - L Mandon
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris-Université Paris Sciences et Lettres, CNRS, Sorbonne Université, Université de Paris Cité, Meudon 92190, France
| | - N Mangold
- Laboratoire Planetologie et Geosciences, Centre National de Recherches Scientifiques, Universite Nantes, Universite Angers, Unite Mixte de Recherche 6112, Nantes 44322, France
| | - F M McCubbin
- NASA Johnson Space Center, Houston, TX 77058, USA
| | - S M McLennan
- Department of Geosciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - K Moore
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - M Nachon
- Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843, USA
| | - P Nemere
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - L D Nothdurft
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - J I Núñez
- Johns Hopkins University Applied Physics Laboratory Laurel, MD 20723, USA
| | - L O'Neil
- Applied Physics Lab and Department of Earth and Space Sciences, University of Washington, Seattle, WA 98052, USA
| | - C M Quantin-Nataf
- Laboratoire de Geologie de Lyon-Terre Planetes Environnement, Univ Lyon, Universite Claude Bernard Lyon 1, Ecole Normale Superieure Lyon, Centre National de Recherches Scientifiques, 69622 Villeurbanne, France
| | - V Sautter
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Centre National de la Recherche Scientifique (CNRS), Muséum National d'Histoire Naturelle, Sorbonne Université, Paris 75005, France
| | - D L Shuster
- Dept. Earth and Planetary Science, University of California, Berkeley, CA 94720, USA
| | - K L Siebach
- Department of Earth, Environmental, and Planetary Sciences, Rice University, Houston, TX 77005, USA
| | - J I Simon
- NASA Johnson Space Center, Houston, TX 77058, USA
| | - K P Sinclair
- Applied Physics Lab and Department of Earth and Space Sciences, University of Washington, Seattle, WA 98052, USA
| | - K M Stack
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - A Steele
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
| | - J D Tarnas
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - N J Tosca
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - K Uckert
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - A Udry
- Department of Geosciences University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - L A Wade
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - B P Weiss
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - R C Wiens
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - K H Williford
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.,Blue Marble Space Institute of Science, 600 1st Ave. Seattle, WA 98104, USA
| | - M-P Zorzano
- Centro de Astrobiología, Consejo Superior de Investigaciones Cientificas - Instituto Nacional de Tecnica Aeroespacial, Madrid 28850, Spain
| |
Collapse
|
6
|
Kasiviswanathan P, Swanner ED, Halverson LJ, Vijayapalani P. Farming on Mars: Treatment of basaltic regolith soil and briny water simulants sustains plant growth. PLoS One 2022; 17:e0272209. [PMID: 35976812 PMCID: PMC9385024 DOI: 10.1371/journal.pone.0272209] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/14/2022] [Indexed: 11/18/2022] Open
Abstract
A fundamental challenge in human missions to Mars is producing consumable foods efficiently with the in situ resources such as soil, water, nutrients and solar radiation available on Mars. The low nutrient content of martian soil and high salinity of water render them unfit for direct use for propagating food crops on Mars. It is therefore essential to develop strategies to enhance nutrient content in Mars soil and to desalinate briny water for long-term missions on Mars. We report simple and efficient strategies for treating basaltic regolith simulant soil and briny water simulant for suitable resources for growing plants. We show that alfalfa plants grow well in a nutrient-limited basaltic regolith simulant soil and that the alfalfa biomass can be used as a biofertilizer to sustain growth and production of turnip, radish and lettuce in the basaltic regolith simulant soil. Moreover, we show that marine cyanobacterium Synechococcus sp. PCC 7002 effectively desalinates the briny water simulant, and that desalination can be further enhanced by filtration through basalt-type volcanic rocks. Our findings indicate that it is possible to grow food crops with alfalfa treated basaltic regolith martian soil as a substratum watered with biodesalinated water.
Collapse
Affiliation(s)
| | - Elizabeth D. Swanner
- Department of Geological & Atmospheric Sciences, Ames, Iowa, United States of America
| | - Larry J. Halverson
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Paramasivan Vijayapalani
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
7
|
A Martian Analogues Library (MAL) Applicable for Tianwen-1 MarSCoDe-LIBS Data Interpretation. REMOTE SENSING 2022. [DOI: 10.3390/rs14122937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
China’s first Mars exploration mission, named Tianwen-1, landed on Mars on 15 May 2021. The Mars Surface Composition Detector (MarSCoDe) payload onboard the Zhurong rover applied the laser-induced breakdown spectroscopy (LIBS) technique to acquire chemical compositions of Martian rocks and soils. The quantitative interpretation of MarSCoDe-LIBS spectra needs to establish a LIBS spectral database that requires plenty of terrestrial geological standards. In this work, we selected 316 terrestrial standards including igneous rocks, sedimentary rocks, metamorphic rocks, and ores, whose chemical compositions, rock types, and chemical weathering characteristics were comparable to those of Martian materials from previous orbital and in situ detections. These rocks were crushed, ground, and sieved into powders less than <38 μm and pressed into pellets to minimize heterogeneity at the scale of laser spot. The chemical compositions of these standards were independently measured by X-ray fluorescence (XRF). Subsequently, the LIBS spectra of MAL standards were acquired using an established LIBS system at Shandong University (SDU-LIBS). In order to evaluate the performance of these standards in LIBS spectral interpretation, we established multivariate models using partial least squares (PLS) and least absolute shrinkage and selection (LASSO) algorithms to predict the abundance of major elements based on SDU-LIBS spectra. The root mean squared error (RMSE) values of these models are comparable to those of the published models for MarSCoDe, ChemCam, and SuperCam, suggesting these PLS and LASSO models work well. From our research, we can conclude that these 316 MAL targets are good candidates to acquire geochemistry information based on the LIBS technique. These targets could be regarded as geological standards to build a LIBS database using a prototype of MarSCoDe in the near future, which is critical to obtain accurate chemical compositions of Martian rocks and soils based on MarSCoDe-LIBS spectral data.
Collapse
|
8
|
Magnetometric Surveys for the Non-Invasive Surface and Subsurface Interpretation of Volcanic Structures in Planetary Exploration, a Case Study of Several Volcanoes in the Iberian Peninsula. REMOTE SENSING 2022. [DOI: 10.3390/rs14092039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Volcanoes are typical features of the solar system that offer a window into the interior of planets. Thus, their study can improve the understanding of the interiors and evolution of planets. On Earth, volcanoes are monitored by multiple sensors during their dormant and active phases. Presently, this is not feasible for other planets’ volcanoes. However, robotic vehicles and the recent technological demonstration of Ingenuity on Mars open up the possibility of using the powerful and non-destructive geophysical tool of magnetic surveys at different heights, for the investigation of surfaces and subsurfaces. We propose a methodology with a view to extract information from planetary volcanoes in the short and medium term, which comprises an analysis of the morphology using images, magnetic field surveys at different heights, in situ measurements of magnetic susceptibility, and simplified models for the interpretation of geological structures. This methodology is applied successfully to the study of different examples of the main volcanic zones of the Iberian Peninsula, representative of the Martian intraplate volcanism and similar to Venus domes, as a preparatory action prior to the exploration of the rocky planets’ surfaces.
Collapse
|
9
|
Kloprogge JT(T, Hartman H. Clays and the Origin of Life: The Experiments. Life (Basel) 2022; 12:259. [PMID: 35207546 PMCID: PMC8880559 DOI: 10.3390/life12020259] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/08/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
There are three groups of scientists dominating the search for the origin of life: the organic chemists (the Soup), the molecular biologists (RNA world), and the inorganic chemists (metabolism and transient-state metal ions), all of which have experimental adjuncts. It is time for Clays and the Origin of Life to have its experimental adjunct. The clay data coming from Mars and carbonaceous chondrites have necessitated a review of the role that clays played in the origin of life on Earth. The data from Mars have suggested that Fe-clays such as nontronite, ferrous saponites, and several other clays were formed on early Mars when it had sufficient water. This raised the question of the possible role that these clays may have played in the origin of life on Mars. This has put clays front and center in the studies on the origin of life not only on Mars but also here on Earth. One of the major questions is: What was the catalytic role of Fe-clays in the origin and development of metabolism here on Earth? First, there is the recent finding of a chiral amino acid (isovaline) that formed on the surface of a clay mineral on several carbonaceous chondrites. This points to the formation of amino acids on the surface of clay minerals on carbonaceous chondrites from simpler molecules, e.g., CO2, NH3, and HCN. Additionally, there is the catalytic role of small organic molecules, such as dicarboxylic acids and amino acids found on carbonaceous chondrites, in the formation of Fe-clays themselves. Amino acids and nucleotides adsorb on clay surfaces on Earth and subsequently polymerize. All of these observations and more must be subjected to strict experimental analysis. This review provides an overview of what has happened and is now happening in the experimental clay world related to the origin of life. The emphasis is on smectite-group clay minerals, such as montmorillonite and nontronite.
Collapse
Affiliation(s)
- Jacob Teunis (Theo) Kloprogge
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Chemistry, College of Arts and Sciences, University of the Philippines Visayas, Miagao 5023, Philippines
| | - Hyman Hartman
- Department of Earth Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
10
|
Touchette D, Altshuler I, Raymond-Bouchard I, Fernández-Martínez MÁ, Bourdages LJ, O'Connor B, Ricco AJ, Whyte LG. Microfluidics Microbial Activity MicroAssay: An Automated In Situ Microbial Metabolic Detection System. ASTROBIOLOGY 2022; 22:158-170. [PMID: 35049343 DOI: 10.1089/ast.2021.0072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With no direct extant-life detection instrumentation included in a space mission since the 1970s, the advancement of new technologies to be included in future space missions is imperative. We developed, optimized, and tested a semi-automated prototype, the microfluidics Microbial Activity MicroAssay (μMAMA). This system metabolically characterizes and detects extant microbial life by way of metabolism-indicator redox dyes. We first evaluated the robustness and sensitivity of six redox dye/buffer combinations, and we then tested their responses to metabolic activity in astrobiological analog high-Arctic samples. We determined that the Biolog Inoculating Fluid (IF)-C and AlamarBlue buffered in IF-0a (aB-IF0a) dye/buffer combinations were optimal, as they detected metabolic activity from the fewest microbial cells (102 cells/mL) while maintaining efficacy over a broad physiochemical range of pH (0-13), temperature (-10°C to 37°C), salinity and perchlorate (tested up to 30%), and in the presence of a Mars regolith simulant (MMS-2). The μMAMA, which incorporated these redox dyes, detected extant active cold-adapted microbial life from high Arctic analog sites, including samples amended with substrates targeting chemolithoautotrophic metabolisms. Given μMAMA's small size (we estimate a complete planetary instrument could occupy as little as 3 L) and potential for automation, it could easily be incorporated into almost any landed platform for life detection missions.
Collapse
Affiliation(s)
- David Touchette
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- McGill Space Institute, Montréal, Québec, Canada
| | - Ianina Altshuler
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Isabelle Raymond-Bouchard
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- McGill Space Institute, Montréal, Québec, Canada
| | - Miguel Ángel Fernández-Martínez
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- McGill Space Institute, Montréal, Québec, Canada
| | - Louis-Jacques Bourdages
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- Department of Mechanical Engineering, Faculty of Engineering, McGill University, Montréal, Québec, Canada
| | - Brady O'Connor
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- McGill Space Institute, Montréal, Québec, Canada
| | | | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- McGill Space Institute, Montréal, Québec, Canada
| |
Collapse
|
11
|
Santomartino R, Zea L, Cockell CS. The smallest space miners: principles of space biomining. Extremophiles 2022; 26:7. [PMID: 34993644 PMCID: PMC8739323 DOI: 10.1007/s00792-021-01253-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/09/2021] [Indexed: 12/03/2022]
Abstract
As we aim to expand human presence in space, we need to find viable approaches to achieve independence from terrestrial resources. Space biomining of the Moon, Mars and asteroids has been indicated as one of the promising approaches to achieve in-situ resource utilization by the main space agencies. Structural and expensive metals, essential mineral nutrients, water, oxygen and volatiles could be potentially extracted from extraterrestrial regolith and rocks using microbial-based biotechnologies. The use of bioleaching microorganisms could also be applied to space bioremediation, recycling of waste and to reinforce regenerative life support systems. However, the science around space biomining is still young. Relevant differences between terrestrial and extraterrestrial conditions exist, including the rock types and ores available for mining, and a direct application of established terrestrial biomining techniques may not be a possibility. It is, therefore, necessary to invest in terrestrial and space-based research of specific methods for space applications to learn the effects of space conditions on biomining and bioremediation, expand our knowledge on organotrophic and community-based bioleaching mechanisms, as well as on anaerobic biomining, and investigate the use of synthetic biology to overcome limitations posed by the space environments.
Collapse
Affiliation(s)
- Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK.
| | - Luis Zea
- BioServe Space Technologies, University of Colorado Boulder, Boulder, CO, USA
| | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
| |
Collapse
|
12
|
Mandon L, Beck P, Quantin‐Nataf C, Dehouck E, Thollot P, Loizeau D, Volat M. ROMA: A Database of Rock Reflectance Spectra for Martian In Situ Exploration. EARTH AND SPACE SCIENCE (HOBOKEN, N.J.) 2022; 9:e2021EA001871. [PMID: 35844834 PMCID: PMC9285354 DOI: 10.1029/2021ea001871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/16/2021] [Accepted: 11/30/2021] [Indexed: 06/15/2023]
Abstract
The ROMA database (ROck reflectance for MArtian in situ exploration, https://roma.univ-lyon1.fr) provides the reflectance spectra between 0.4 and 3-4 μm of various terrestrial, Martian, and synthetic samples, as a means to document reference measurements for comparison with data acquired by visible and near-infrared spectrometers on planetary surfaces, with a focus on current and future Martian observations by the Perseverance (Mars 2020 mission) and Rosalind Franklin (ExoMars) rovers. The main specificity of this database is to include a significant fraction of spectra of unprocessed rock, which are more realistic analogs and often have different spectral features than the fine powders more commonly analyzed in reflectance spectroscopy. Additionally, these measurements were acquired with a spectrometer whose spot size is similar to those of the SuperCam instrument (Mars 2020 mission) at a few meters from a target. Supplementary information are provided in the ROMA database: higher-level data (such as absorption band parameters) as well as sample mineralogy estimated by whole-rock X-ray diffraction analyses. Future comparisons with this database will help improve the interpretation of spectral measurements acquired on the Martian surface. This work introduces the aim of the library and its current state, but additional data on intact natural rock surfaces will likely be added in the future.
Collapse
Affiliation(s)
- L. Mandon
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL‐TPEVilleurbanneFrance
- Now at LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de ParisMeudonFrance
| | - P. Beck
- Université Grenoble‐Alpes, CNRS, IPAG, UMR 5274GrenobleFrance
- Institut Universitaire de FranceParisFrance
| | | | - E. Dehouck
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL‐TPEVilleurbanneFrance
| | - P. Thollot
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL‐TPEVilleurbanneFrance
| | - D. Loizeau
- Université Paris‐Saclay, CNRS, Institut d’Astrophysique SpatialeOrsayFrance
| | - M. Volat
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL‐TPEVilleurbanneFrance
| |
Collapse
|
13
|
A Stand-Off Laser-Induced Breakdown Spectroscopy (LIBS) System Applicable for Martian Rocks Studies. REMOTE SENSING 2021. [DOI: 10.3390/rs13234773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Laser-induced breakdown spectroscopy (LIBS) is a valuable tool for evaluating the geochemical characteristics of Martian rocks and was applied in the Tianwen-1 Mars exploration mission with the payload called Mars Surface Composition Detection Package (MarSCoDe). In this work, we developed a laboratory standoff LIBS system combined with a Martian simulation chamber to examine the geochemical characteristics of igneous rocks, with the intention to provide a reference and a basis for the analysis of LIBS data acquired by MarSCoDe. Fifteen igneous geological standards are selected for a preliminary LIBS spectroscopic study. Three multivariate analysis methods were applied to characterize the geochemical features of igneous standards. First, quantitative analysis was done with Partial Least Squares (PLS) and Least Absolute Shrinkage and Selection (LASSO), where the major element compositions of these samples (SiO2, Al2O3, T Fe2O3, MgO, CaO, K2O, Na2O, and TiO2) were derived. The predicted concentrations ((Fe2O3 + MgO)/SiO2, Fe2O3/MgO, Al2O3/SiO2, and (Na2O + K2O)/Al2O3) were used to identify the geochemical characteristics of igneous rocks. Also, PCA, an unsupervised multivariate method was tested to directly identify the igneous rock lithology with no prior quantification. Higher correlation (0.82–0.88) are obtained using Principal Component Analysis (PCA) scores than using predicted elemental ratios derived by PLS and LASSO, indicating that PCA is better suited to identify igneous rock lithology than via quantitative concentrations. This preliminary study, using this LIBS system, provides suitable methods for the elemental prediction and geochemical identification of martian rocks, and we will use extended geologic standards and continue to build a robust LIBS spectral library for MarSCoDe based on this LIBS system in the future.
Collapse
|
14
|
Abstract
From the 2000s onwards, unprecedented space missions have brought about a wealth of novel investigations on the different aspects of space geomechanics. Such aspects are related to the exploratory activities such as drilling, sampling, coring, water extraction, anchoring, etc. So far, a whole range of constitutive research projects on the plate tectonics, morphology, volcanic activities and volatile content of planetary bodies have been implemented. Furthermore, various laboratory experiments on extraterrestrial samples and their artificial terrestrial simulants are continually conducted to obtain the physical and mechanical properties of the corresponding specimens. Today, with the space boom being steered by diverse space agencies, the incorporation of geomechanics into space exploration appreciably appears much needed. The primary objective of this article is to collate and integrate the up-to-date investigations related to the geomechanical applications in space technologies. Emphasis is given to the new and future applications such as planetary drilling and water extraction. The main impetus is to provide a comprehensive reference for geoscience scientists and astronauts to quickly become acquainted with the cutting-edge advancements in the area of space geomechanics. Moreover, this research study also elaborates on the operational constraints in space geomechanics which necessitate further scientific investigations.
Collapse
|
15
|
Khan A, Ceylan S, van Driel M, Giardini D, Lognonné P, Samuel H, Schmerr NC, Stähler SC, Duran AC, Huang Q, Kim D, Broquet A, Charalambous C, Clinton JF, Davis PM, Drilleau M, Karakostas F, Lekic V, McLennan SM, Maguire RR, Michaut C, Panning MP, Pike WT, Pinot B, Plasman M, Scholz JR, Widmer-Schnidrig R, Spohn T, Smrekar SE, Banerdt WB. Upper mantle structure of Mars from InSight seismic data. Science 2021; 373:434-438. [PMID: 34437116 DOI: 10.1126/science.abf2966] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/14/2021] [Indexed: 11/03/2022]
Abstract
For 2 years, the InSight lander has been recording seismic data on Mars that are vital to constrain the structure and thermochemical state of the planet. We used observations of direct (P and S) and surface-reflected (PP, PPP, SS, and SSS) body-wave phases from eight low-frequency marsquakes to constrain the interior structure to a depth of 800 kilometers. We found a structure compatible with a low-velocity zone associated with a thermal lithosphere much thicker than on Earth that is possibly related to a weak S-wave shadow zone at teleseismic distances. By combining the seismic constraints with geodynamic models, we predict that, relative to the primitive mantle, the crust is more enriched in heat-producing elements by a factor of 13 to 20. This enrichment is greater than suggested by gamma-ray surface mapping and has a moderate-to-elevated surface heat flow.
Collapse
Affiliation(s)
- Amir Khan
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland. .,Physik-Institut, University of Zürich, Zürich, Switzerland
| | - Savas Ceylan
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - Martin van Driel
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland.,Mondaic AG, Zypressenstrasse 82, 8004 Zürich, Switzerland
| | | | - Philippe Lognonné
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - Henri Samuel
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | | | | | - Andrea C Duran
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - Quancheng Huang
- Department of Geology, University of Maryland, College Park, MD, USA
| | - Doyeon Kim
- Department of Geology, University of Maryland, College Park, MD, USA
| | - Adrien Broquet
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA.,Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, Nice, France
| | | | - John F Clinton
- Swiss Seismological Service, ETH Zürich, Zürich, Switzerland
| | - Paul M Davis
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA, USA
| | - Mélanie Drilleau
- Institut Supérieur de l'Aéronautique et de l'Espace SUPAERO, Toulouse, France
| | - Foivos Karakostas
- Department of Geology, University of Maryland, College Park, MD, USA
| | - Vedran Lekic
- Department of Geology, University of Maryland, College Park, MD, USA
| | - Scott M McLennan
- Department of Geosciences, Stony Brook University, Stony Brook, NY, USA
| | - Ross R Maguire
- Department of Geology, University of Maryland, College Park, MD, USA
| | - Chloé Michaut
- Institut Universitaire de France, Paris, France.,Laboratoire de Géologie, Terre, Planétes, Environnement, Lyon, France
| | - Mark P Panning
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - William T Pike
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Baptiste Pinot
- Institut Supérieur de l'Aéronautique et de l'Espace SUPAERO, Toulouse, France
| | - Matthieu Plasman
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | | | | | - Tilman Spohn
- International Space Science Institute, Bern, Switzerland
| | - Suzanne E Smrekar
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - William B Banerdt
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
16
|
O'Connor BRW, Fernández-Martínez MÁ, Léveillé RJ, Whyte LG. Taxonomic Characterization and Microbial Activity Determination of Cold-Adapted Microbial Communities in Lava Tube Ice Caves from Lava Beds National Monument, a High-Fidelity Mars Analogue Environment. ASTROBIOLOGY 2021; 21:613-627. [PMID: 33794669 DOI: 10.1089/ast.2020.2327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Martian lava tube caves resulting from a time when the planet was still volcanically active are proposed to contain deposits of water ice, a feature that may increase microbial habitability. In this study, we taxonomically characterized and directly measured metabolic activity of the microbial communities that inhabit lava tube ice from Lava Beds National Monument, an analogue environment to martian lava tubes. We investigated whether this environment was habitable to microorganisms by determining their taxonomic diversity, metabolic activity, and viability using both culture-dependent and culture-independent techniques. With 16S rRNA gene sequencing, we recovered 27 distinct phyla from both ice and ice-rock interface samples, primarily consisting of Actinobacteria, Proteobacteria, Bacteroidetes, Firmicutes, and Chloroflexi. Radiorespiration and Biolog EcoPlate assays found these microbial communities to be metabolically active at both 5°C and -5°C and able to metabolize diverse sets of heterotrophic carbon substrates at each temperature. Viable cells were predominantly cold adapted and capable of growth at 5°C (1.3 × 104 to 2.9 × 107 cells/mL), and 24 of 38 cultured isolates were capable of growth at -5°C. Furthermore, 14 of these cultured isolates, and 16 of the 20 most numerous amplicon sequences we recovered were most closely related to isolates and sequences obtained from other cryophilic environments. Given these results, lava tube ice appears to be a habitable environment, and considering the protections martian lava tubes offer to microbial communities from harsh surface conditions, similar martian caves containing ice may be capable of supporting extant, active microbial communities.
Collapse
Affiliation(s)
- Brady R W O'Connor
- Department of Natural Resource Sciences, McGill Space Institute, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | | | - Richard J Léveillé
- Department of Earth and Planetary Sciences, McGill Space Institute, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill Space Institute, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
17
|
Cockell CS, Santomartino R, Finster K, Waajen AC, Nicholson N, Loudon CM, Eades LJ, Moeller R, Rettberg P, Fuchs FM, Van Houdt R, Leys N, Coninx I, Hatton J, Parmitano L, Krause J, Koehler A, Caplin N, Zuijderduijn L, Mariani A, Pellari S, Carubia F, Luciani G, Balsamo M, Zolesi V, Ochoa J, Sen P, Watt JAJ, Doswald-Winkler J, Herová M, Rattenbacher B, Wadsworth J, Everroad RC, Demets R. Microbially-Enhanced Vanadium Mining and Bioremediation Under Micro- and Mars Gravity on the International Space Station. Front Microbiol 2021; 12:641387. [PMID: 33868198 PMCID: PMC8047202 DOI: 10.3389/fmicb.2021.641387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/04/2021] [Indexed: 11/30/2022] Open
Abstract
As humans explore and settle in space, they will need to mine elements to support industries such as manufacturing and construction. In preparation for the establishment of permanent human settlements across the Solar System, we conducted the ESA BioRock experiment on board the International Space Station to investigate whether biological mining could be accomplished under extraterrestrial gravity conditions. We tested the hypothesis that the gravity (g) level influenced the efficacy with which biomining could be achieved from basalt, an abundant material on the Moon and Mars, by quantifying bioleaching by three different microorganisms under microgravity, simulated Mars and Earth gravitational conditions. One element of interest in mining is vanadium (V), which is added to steel to fabricate high strength, corrosion-resistant structural materials for buildings, transportation, tools and other applications. The results showed that Sphingomonas desiccabilis and Bacillus subtilis enhanced the leaching of vanadium under the three gravity conditions compared to sterile controls by 184.92 to 283.22%, respectively. Gravity did not have a significant effect on mean leaching, thus showing the potential for biomining on Solar System objects with diverse gravitational conditions. Our results demonstrate the potential to use microorganisms to conduct elemental mining and other bioindustrial processes in space locations with non-1 × g gravity. These same principles apply to extraterrestrial bioremediation and elemental recycling beyond Earth.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Kai Finster
- Department of Biology - Microbiology, Aarhus University, Aarhus, Denmark
| | - Annemiek C Waajen
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Natasha Nicholson
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Claire-Marie Loudon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Lorna J Eades
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Ralf Moeller
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany
| | - Petra Rettberg
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany
| | - Felix M Fuchs
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany.,Institute of Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Sciences, Ruhr University Bochum, Bochum, Germany
| | - Rob Van Houdt
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Natalie Leys
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Ilse Coninx
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jon Ochoa
- ESTEC, Noordwijk, Netherlands.,Space Application Services NV/SA, Noordwijk, Netherlands
| | - Pia Sen
- Earth and Environmental Sciences Department, Rutgers University, Newark, NJ, United States
| | - James A J Watt
- School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeannine Doswald-Winkler
- BIOTESC, Hochschule Luzern Technik & Architektur, Lucerne School of Engineering and Architecture, Hergiswil, Switzerland
| | - Magdalena Herová
- BIOTESC, Hochschule Luzern Technik & Architektur, Lucerne School of Engineering and Architecture, Hergiswil, Switzerland
| | - Bernd Rattenbacher
- BIOTESC, Hochschule Luzern Technik & Architektur, Lucerne School of Engineering and Architecture, Hergiswil, Switzerland
| | - Jennifer Wadsworth
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, United States
| | - R Craig Everroad
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, United States
| | | |
Collapse
|
18
|
Seaton KM, Cable ML, Stockton AM. Analytical Chemistry in Astrobiology. Anal Chem 2021; 93:5981-5997. [PMID: 33835785 DOI: 10.1021/acs.analchem.0c04271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This Feature introduces and discusses the findings of key analytical techniques used to study planetary bodies in our solar system in the search for life beyond Earth, future missions planned for high-priority astrobiology targets in our solar system, and the challenges we face in performing these investigations.
Collapse
Affiliation(s)
- Kenneth Marshall Seaton
- School of Chemistry & Biochemistry, Georgia Institute of Technology, North Avenue NW, Atlanta, Georgia 30332, United States
| | - Morgan Leigh Cable
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Amanda Michelle Stockton
- School of Chemistry & Biochemistry, Georgia Institute of Technology, North Avenue NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
19
|
García-Florentino C, Gomez-Nubla L, Huidobro J, Torre-Fdez I, Ruíz-Galende P, Aramendia J, Hausrath EM, Castro K, Arana G, Madariaga JM. Interrelationships in the Gypsum-Syngenite-Görgeyite System and Their Possible Formation on Mars. ASTROBIOLOGY 2021; 21:332-344. [PMID: 33481644 DOI: 10.1089/ast.2020.2319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Calcium sulfates are known to be potential reservoirs of organic compounds and have been detected on Mars. However, not all data that indicate the presence of sulfates collected by the Mars Exploration Rovers (Spirit and Opportunity) and Curiosity rover can be explained by the different calcium sulfate polymorphs, and therefore, mixtures of calcium sulfates with other single sulfates must be considered. In addition, the presence of mixed calcium sulfates supports the data and indicates that the molar ratio of sulfate/calcium is >1. To obtain adequate spectroscopic information of mixed-cation sulfates to be used in the interpretation of data from Mars in the next few years, the thermodynamically stable syngenite (K2Ca(SO4)2·H2O) and görgeyite (K2Ca5(SO4)6·H2O) mixed-cation sulfates have been studied along with the interrelationships in the gypsum-syngenite-görgeyite system to understand their possible formation on Mars. Raman spectroscopy and Visible-Near Infrared-Shortwave Infrared (VisNIR) spectroscopy have been used for their characterization to increase the databases for the two future Mars exploration missions, Mars2020 and ExoMars2022, where both techniques will be implemented. These VisNIR data can also help with the interpretation of spectral data of salt deposits on Mars acquired by the OMEGA and CRISM spectrometers onboard the Mars Express and Mars Reconnaissance orbiters. This work demonstrates that syngenite (K2Ca(SO4)2·H2O) easily precipitates without the need for hydrothermal conditions, which, depending on the ion concentrations, may precipitate in different proportions with gypsum. Furthermore, in this study, we also demonstrate that, under hydrothermal conditions, görgeyite (K2Ca5(SO4)6·H2O) would also be highly likely to form and may also be identified on Mars together with syngenite and gypsum.
Collapse
Affiliation(s)
- Cristina García-Florentino
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Bilbao, Spain
| | - Leticia Gomez-Nubla
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Bilbao, Spain
| | - Jennifer Huidobro
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Bilbao, Spain
| | - Imanol Torre-Fdez
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Bilbao, Spain
| | - Patricia Ruíz-Galende
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Bilbao, Spain
| | - Julene Aramendia
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Bilbao, Spain
| | | | - Kepa Castro
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Bilbao, Spain
| | - Gorka Arana
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Bilbao, Spain
| | - Juan Manuel Madariaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Bilbao, Spain
| |
Collapse
|
20
|
Davidson J, Wadhwa M, Hervig RL, Stephant A. Water on Mars: Insights from apatite in regolith breccia Northwest Africa 7034. EARTH AND PLANETARY SCIENCE LETTERS 2020; 552:116597. [PMID: 33390609 PMCID: PMC7774504 DOI: 10.1016/j.epsl.2020.116597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Determining the source of planetary water from the hydrogen isotope compositions of crustal samples is complicated by the overprinting of isotopically diverse source material by geologic and atmospheric processes. As Mars has no plate tectonics, crustal material, which may have isotopically exchanged with the martian atmosphere, is not recycled into the mantle keeping the water reservoirs in the mantle and atmosphere mostly isolated, buffered by the crust. As the only known martian samples that are regolith breccias with a composition representative of the average crust of Mars, Northwest Africa (NWA) 7034 and its paired stones provide an important opportunity to investigate the water content and hydrogen isotope composition of the martian crust. In particular, apatites in distinct clasts as well as the brecciated matrix of NWA 7034 record a complex history including magmatic and impact processes, and exchange with crustal fluids.
Collapse
Affiliation(s)
- Jemma Davidson
- Center for Meteorite Studies, Arizona State University, 781 East Terrace Road, Tempe, AZ 85287-6004, USA
- School of Earth and Space Exploration, Arizona State University, 781 East Terrace Road, Tempe, AZ 85287-6004, USA
| | - Meenakshi Wadhwa
- School of Earth and Space Exploration, Arizona State University, 781 East Terrace Road, Tempe, AZ 85287-6004, USA
| | - Richard L. Hervig
- School of Earth and Space Exploration, Arizona State University, 781 East Terrace Road, Tempe, AZ 85287-6004, USA
| | - Alice Stephant
- Center for Meteorite Studies, Arizona State University, 781 East Terrace Road, Tempe, AZ 85287-6004, USA
- School of Earth and Space Exploration, Arizona State University, 781 East Terrace Road, Tempe, AZ 85287-6004, USA
| |
Collapse
|
21
|
Sánchez-García L, Carrizo D, Molina A, Muñoz-Iglesias V, Lezcano MÁ, Fernández-Sampedro M, Parro V, Prieto-Ballesteros O. Fingerprinting molecular and isotopic biosignatures on different hydrothermal scenarios of Iceland, an acidic and sulfur-rich Mars analog. Sci Rep 2020; 10:21196. [PMID: 33273669 PMCID: PMC7712778 DOI: 10.1038/s41598-020-78240-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/23/2020] [Indexed: 11/09/2022] Open
Abstract
Detecting signs of potential extant/extinct life on Mars is challenging because the presence of organics on that planet is expected to be very low and most likely linked to radiation-protected refugia and/or preservative strategies (e.g., organo-mineral complexes). With scarcity of organics, accounting for biomineralization and potential relationships between biomarkers, mineralogy, and geochemistry is key in the search for extraterrestrial life. Here we explored microbial fingerprints and their associated mineralogy in Icelandic hydrothermal systems analog to Mars (i.e., high sulfur content, or amorphous silica), to identify potentially habitable locations on that planet. The mineralogical assemblage of four hydrothermal substrates (hot springs biofilms, mud pots, and steaming and inactive fumaroles) was analyzed concerning the distribution of biomarkers. Molecular and isotopic composition of lipids revealed quantitative and compositional differences apparently impacted by surface geothermal alteration and environmental factors. pH and water showed an influence (i.e., greatest biomass in circumneutral settings with highest supply and turnover of water), whereas temperature conditioned the mineralogy that supported specific microbial metabolisms related with sulfur. Raman spectra suggested the possible coexistence of abiotic and biomediated sources of minerals (i.e., sulfur or hematite). These findings may help to interpret future Raman or GC-MS signals in forthcoming Martian missions.
Collapse
Affiliation(s)
| | - Daniel Carrizo
- Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir km 4, Madrid, Spain
| | - Antonio Molina
- Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir km 4, Madrid, Spain
| | | | | | | | - Victor Parro
- Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir km 4, Madrid, Spain
| | | |
Collapse
|
22
|
Edgett KS, Banham SG, Bennett KA, Edgar LA, Edwards CS, Fairén AG, Fedo CM, Fey DM, Garvin JB, Grotzinger JP, Gupta S, Henderson MJ, House CH, Mangold N, McLennan SM, Newsom HE, Rowland SK, Siebach KL, Thompson L, VanBommel SJ, Wiens RC, Williams RME, Yingst RA. Extraformational sediment recycling on Mars. GEOSPHERE (BOULDER, COLO.) 2020; 16:1508-1537. [PMID: 33304202 PMCID: PMC7116455 DOI: 10.1130/ges02244.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Extraformational sediment recycling (old sedimentary rock to new sedimentary rock) is a fundamental aspect of Earth's geological record; tectonism exposes sedimentary rock, whereupon it is weathered and eroded to form new sediment that later becomes lithified. On Mars, tectonism has been minor, but two decades of orbiter instrument-based studies show that some sedimentary rocks previously buried to depths of kilometers have been exposed, by erosion, at the surface. Four locations in Gale crater, explored using the National Aeronautics and Space Administration's Curiosity rover, exhibit sedimentary lithoclasts in sedimentary rock: At Marias Pass, they are mudstone fragments in sandstone derived from strata below an erosional unconformity; at Bimbe, they are pebble-sized sandstone and, possibly, laminated, intraclast-bearing, chemical (calcium sulfate) sediment fragments in conglomerates; at Cooperstown, they are pebble-sized fragments of sandstone within coarse sandstone; at Dingo Gap, they are cobble-sized, stratified sandstone fragments in conglomerate derived from an immediately underlying sandstone. Mars orbiter images show lithified sediment fans at the termini of canyons that incise sedimentary rock in Gale crater; these, too, consist of recycled, extraformational sediment. The recycled sediments in Gale crater are compositionally immature, indicating the dominance of physical weathering processes during the second known cycle. The observations at Marias Pass indicate that sediment eroded and removed from craters such as Gale crater during the Martian Hesperian Period could have been recycled to form new rock elsewhere. Our results permit prediction that lithified deltaic sediments at the Perseverance (landing in 2021) and Rosalind Franklin (landing in 2023) rover field sites could contain extraformational recycled sediment.
Collapse
Affiliation(s)
- Kenneth S Edgett
- Malin Space Science Systems, P.O. Box 910148, San Diego, California 92191-0148, USA
| | - Steven G Banham
- Department of Earth Science and Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Kristen A Bennett
- U.S. Geological Survey, Astrogeology Science Center, 2255 N. Gemini Drive, Flagstaff, Arizona 86001, USA
| | - Lauren A Edgar
- U.S. Geological Survey, Astrogeology Science Center, 2255 N. Gemini Drive, Flagstaff, Arizona 86001, USA
| | - Christopher S Edwards
- Department of Astronomy and Planetary Science, Northern Arizona University, P.O. Box 6010, Flagstaff, Arizona 86011, USA
| | - Alberto G Fairén
- Department of Planetology and Habitability, Centro de Astrobiología (CSIC-INTA), M-108, km 4, 28850 Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca, New York 14853, USA
| | - Christopher M Fedo
- Department of Earth and Planetary Sciences, The University of Tennessee, 1621 Cumberland Avenue, 602 Strong Hall, Knoxville, Tennessee 37996-1410, USA
| | - Deirdra M Fey
- Malin Space Science Systems, P.O. Box 910148, San Diego, California 92191-0148, USA
| | - James B Garvin
- National Aeronautics and Space Administration (NASA) Goddard Space Flight Center, Mail Code 600, Greenbelt, Maryland 20771, USA
| | - John P Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA
| | - Sanjeev Gupta
- Department of Earth Science and Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Marie J Henderson
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907, USA
| | - Christopher H House
- Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Nicolas Mangold
- Laboratoire de Planétologie et Géodynamique de Nantes, CNRS UMR 6112, Université de Nantes, Université Angers, 44300 Nantes, France
| | - Scott M McLennan
- Department of Geosciences, Stony Brook University, Stony Brook, New York 11794-2100, USA
| | - Horton E Newsom
- Institute of Meteoritics and Department of Earth and Planetary Sciences, 1 University of New Mexico, MSC03-2050, Albuquerque, New Mexico 87131, USA
| | - Scott K Rowland
- Department of Earth Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822, USA
| | - Kirsten L Siebach
- Department of Earth, Environmental and Planetary Sciences, Rice University, MS-126, 6100 Main Street, Houston, Texas 77005, USA
| | - Lucy Thompson
- Department of Earth Sciences, University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick E3B 5A3, Canada
| | - Scott J VanBommel
- Department of Earth and Planetary Sciences, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, USA
| | - Roger C Wiens
- MS C331, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Rebecca M E Williams
- Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, Arizona 85719-2395, USA
| | - R Aileen Yingst
- Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, Arizona 85719-2395, USA
| |
Collapse
|
23
|
Cockell CS, Santomartino R, Finster K, Waajen AC, Eades LJ, Moeller R, Rettberg P, Fuchs FM, Van Houdt R, Leys N, Coninx I, Hatton J, Parmitano L, Krause J, Koehler A, Caplin N, Zuijderduijn L, Mariani A, Pellari SS, Carubia F, Luciani G, Balsamo M, Zolesi V, Nicholson N, Loudon CM, Doswald-Winkler J, Herová M, Rattenbacher B, Wadsworth J, Craig Everroad R, Demets R. Space station biomining experiment demonstrates rare earth element extraction in microgravity and Mars gravity. Nat Commun 2020; 11:5523. [PMID: 33173035 PMCID: PMC7656455 DOI: 10.1038/s41467-020-19276-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/07/2020] [Indexed: 11/24/2022] Open
Abstract
Microorganisms are employed to mine economically important elements from rocks, including the rare earth elements (REEs), used in electronic industries and alloy production. We carried out a mining experiment on the International Space Station to test hypotheses on the bioleaching of REEs from basaltic rock in microgravity and simulated Mars and Earth gravities using three microorganisms and a purposely designed biomining reactor. Sphingomonas desiccabilis enhanced mean leached concentrations of REEs compared to non-biological controls in all gravity conditions. No significant difference in final yields was observed between gravity conditions, showing the efficacy of the process under different gravity regimens. Bacillus subtilis exhibited a reduction in bioleaching efficacy and Cupriavidus metallidurans showed no difference compared to non-biological controls, showing the microbial specificity of the process, as on Earth. These data demonstrate the potential for space biomining and the principles of a reactor to advance human industry and mining beyond Earth. Rare earth elements are used in electronics, but increase in demand could lead to low supply. Here the authors conduct experiments on the International Space Station and show microbes can extract rare elements from rocks at low gravity, a finding that could extend mining potential to other planets.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK.
| | - Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Kai Finster
- Department of Bioscience-Microbiology, Ny Munkegade 116, Building 1540, 129, 8000, Aarhus C, Denmark
| | - Annemiek C Waajen
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Lorna J Eades
- School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Ralf Moeller
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Linder Hoehe, Köln, Germany
| | - Petra Rettberg
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Linder Hoehe, Köln, Germany
| | - Felix M Fuchs
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Linder Hoehe, Köln, Germany.,Institute of Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Sciences, Ruhr University Bochum, Bochum, Germany
| | - Rob Van Houdt
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Natalie Leys
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Ilse Coninx
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Jason Hatton
- ESTEC, Keplerlaan 1, 2201 AZ, Noordwijk, Netherlands
| | | | - Jutta Krause
- ESTEC, Keplerlaan 1, 2201 AZ, Noordwijk, Netherlands
| | | | - Nicol Caplin
- ESTEC, Keplerlaan 1, 2201 AZ, Noordwijk, Netherlands
| | | | | | | | - Fabrizio Carubia
- Kayser Italia S.r.l., Via di Popogna, 501, 57128, Livorno, Italy
| | - Giacomo Luciani
- Kayser Italia S.r.l., Via di Popogna, 501, 57128, Livorno, Italy
| | - Michele Balsamo
- Kayser Italia S.r.l., Via di Popogna, 501, 57128, Livorno, Italy
| | - Valfredo Zolesi
- Kayser Italia S.r.l., Via di Popogna, 501, 57128, Livorno, Italy
| | - Natasha Nicholson
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Claire-Marie Loudon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Jeannine Doswald-Winkler
- BIOTESC, Hochschule Luzern Technik & Architektur, Lucerne School of Engineering and Architecture, Obermattweg 9, 6052, Hergiswil, Switzerland
| | - Magdalena Herová
- BIOTESC, Hochschule Luzern Technik & Architektur, Lucerne School of Engineering and Architecture, Obermattweg 9, 6052, Hergiswil, Switzerland
| | - Bernd Rattenbacher
- BIOTESC, Hochschule Luzern Technik & Architektur, Lucerne School of Engineering and Architecture, Obermattweg 9, 6052, Hergiswil, Switzerland
| | | | - R Craig Everroad
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
| | - René Demets
- ESTEC, Keplerlaan 1, 2201 AZ, Noordwijk, Netherlands
| |
Collapse
|
24
|
Deng Z, Moynier F, Villeneuve J, Jensen NK, Liu D, Cartigny P, Mikouchi T, Siebert J, Agranier A, Chaussidon M, Bizzarro M. Early oxidation of the martian crust triggered by impacts. SCIENCE ADVANCES 2020; 6:6/44/eabc4941. [PMID: 33127679 PMCID: PMC7608801 DOI: 10.1126/sciadv.abc4941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/10/2020] [Indexed: 05/26/2023]
Abstract
Despite the abundant geomorphological evidence for surface liquid water on Mars during the Noachian epoch (>3.7 billion years ago), attaining a warm climate to sustain liquid water on Mars at the period of the faint young Sun is a long-standing question. Here, we show that melts of ancient mafic clasts from a martian regolith meteorite, NWA 7533, experienced substantial Fe-Ti oxide fractionation. This implies early, impact-induced, oxidation events that increased by five to six orders of magnitude the oxygen fugacity of impact melts from remelting of the crust. Oxygen isotopic compositions of sequentially crystallized phases from the clasts show that progressive oxidation was due to interaction with an 17O-rich water reservoir. Such an early oxidation of the crust by impacts in the presence of water may have supplied greenhouse gas H2 that caused an increase in surface temperature in a CO2-thick atmosphere.
Collapse
Affiliation(s)
- Zhengbin Deng
- Université de Paris, Institut de physique du globe de Paris, CNRS, 75005 Paris, France.
| | - Frédéric Moynier
- Université de Paris, Institut de physique du globe de Paris, CNRS, 75005 Paris, France
| | - Johan Villeneuve
- CRPG (UMR 7350) Université de Lorraine, CNRS, 7358 Vandoeuvre-lès-Nancy, France
| | - Ninna K Jensen
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Deze Liu
- Université de Paris, Institut de physique du globe de Paris, CNRS, 75005 Paris, France
| | - Pierre Cartigny
- Université de Paris, Institut de physique du globe de Paris, CNRS, 75005 Paris, France
| | | | - Julien Siebert
- Université de Paris, Institut de physique du globe de Paris, CNRS, 75005 Paris, France
| | - Arnaud Agranier
- Laboratoire Géosciences Océan (UMR CNRS 6538), Université de Bretagne Occidentale et Institut Universitaire Européen de la Mer, Plouzané, France
| | - Marc Chaussidon
- Université de Paris, Institut de physique du globe de Paris, CNRS, 75005 Paris, France
| | - Martin Bizzarro
- Université de Paris, Institut de physique du globe de Paris, CNRS, 75005 Paris, France
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Structural dynamics of basaltic melt at mantle conditions with implications for magma oceans and superplumes. Nat Commun 2020; 11:4815. [PMID: 32968073 PMCID: PMC7511909 DOI: 10.1038/s41467-020-18660-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 08/28/2020] [Indexed: 12/04/2022] Open
Abstract
Transport properties like diffusivity and viscosity of melts dictated the evolution of the Earth’s early magma oceans. We report the structure, density, diffusivity, electrical conductivity and viscosity of a model basaltic (Ca11Mg7Al8Si22O74) melt from first-principles molecular dynamics calculations at temperatures of 2200 K (0 to 82 GPa) and 3000 K (40–70 GPa). A key finding is that, although the density and coordination numbers around Si and Al increase with pressure, the Si–O and Al–O bonds become more ionic and weaker. The temporal atomic interactions at high pressure are fluxional and fragile, making the atoms more mobile and reversing the trend in transport properties at pressures near 50 GPa. The reversed melt viscosity under lower mantle conditions allows new constraints on the timescales of the early Earth’s magma oceans and also provides the first tantalizing explanation for the horizontal deflections of superplumes at ~1000 km below the Earth’s surface. Transport properties of melts in the deep Earth have dictated the evolution of the early Earth’s magma oceans and also govern many modern dynamic processes, such as plate tectonics. Here, the authors find there is a reversal in the trends of transport properties of basaltic melts at pressures near 50 GPa, with implications for the timescales of early Earth’s magma oceans.
Collapse
|
26
|
Schenk P, Scully J, Buczkowski D, Sizemore H, Schmidt B, Pieters C, Neesemann A, O'Brien D, Marchi S, Williams D, Nathues A, De Sanctis M, Tosi F, Russell CT, Castillo-Rogez J, Raymond C. Impact heat driven volatile redistribution at Occator crater on Ceres as a comparative planetary process. Nat Commun 2020; 11:3679. [PMID: 32778649 PMCID: PMC7417549 DOI: 10.1038/s41467-020-17184-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/16/2020] [Indexed: 12/02/2022] Open
Abstract
Hydrothermal processes in impact environments on water-rich bodies such as Mars and Earth are relevant to the origins of life. Dawn mapping of dwarf planet (1) Ceres has identified similar deposits within Occator crater. Here we show using Dawn high-resolution stereo imaging and topography that Ceres' unique composition has resulted in widespread mantling by solidified water- and salt-rich mud-like impact melts with scattered endogenic pits, troughs, and bright mounds indicative of outgassing of volatiles and periglacial-style activity during solidification. These features are distinct from and less extensive than on Mars, indicating that Occator melts may be less gas-rich or volatiles partially inhibited from reaching the surface. Bright salts at Vinalia Faculae form thin surficial precipitates sourced from hydrothermal brine effusion at many individual sites, coalescing in several larger centers, but their ages are statistically indistinguishable from floor materials, allowing for but not requiring migration of brines from deep crustal source(s).
Collapse
Affiliation(s)
- P Schenk
- Lunar and Planetary Institute/USRA, Houston, TX, USA.
| | - J Scully
- Jet Propulsion Laboratory/Caltech, Pasadena, CA, USA
| | - D Buczkowski
- Johns Hopkins University-Applied Physics Laboratory, Laurel, MD, USA
| | - H Sizemore
- Planetary Science Institute, Tucson, AZ, USA
| | - B Schmidt
- Georgia Institute of Technology, Atlanta, GA, USA
| | - C Pieters
- Brown University Providence, Providence, RI, USA
| | | | - D O'Brien
- Planetary Science Institute, Tucson, AZ, USA
| | - S Marchi
- Southwest Research Institute, Boulder, CO, USA
| | - D Williams
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
| | - A Nathues
- Max Planck Institute for Solar System Research, Goettingen, Germany
| | - M De Sanctis
- Istituto di Astrofisica e Planetologia Spaziali, INAF, Rome, Italy
| | - F Tosi
- Istituto di Astrofisica e Planetologia Spaziali, INAF, Rome, Italy
| | - C T Russell
- University of California, Los Angeles, CA, USA
| | | | - C Raymond
- Jet Propulsion Laboratory/Caltech, Pasadena, CA, USA
| |
Collapse
|
27
|
Marusiak AG, Schmerr NC, Banks ME, Daubar IJ. Terrestrial Single-Station Analog for Constraining the Martian Core and Deep Interior: Implications for InSight. ICARUS 2020; 335:113396. [PMID: 31534268 PMCID: PMC6750223 DOI: 10.1016/j.icarus.2019.113396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We used a terrestrial single-station seismometer to quantify the uncertainty of InSight (INterior explorations using Seismic Investigations, Geodesy and Heat Transport) data for determining Martian core size. To mimic Martian seismicity, we formed a catalog using 917 terrestrial earthquakes, from which we randomly selected events. We stacked ScS amplitudes on modeled arrival times and searched for where ScS produced coherent seismic amplitudes. A core detection was defined by a coherent peak with small offset between predicted and user-selected arrival times. Iterating the detection algorithm with varying signal-to-noise (SNR) ranges and quantity of events determined the selection frequency of each model and quantified core depth uncertainty. Increasing the quantity of events reduced core depth uncertainty while increasing the recovery rate, while increasing event SNR had little effect. Including ScS2 multiples increased the recovery rate and reduced core depth uncertainty when we used low quantities of events. The most-frequent core depths varied by back azimuth, suggesting our method is sensitive to the presence of mantle heterogeneities. When we added 1° in source distance errors, core depth uncertainty increased by up to 11 km and recovery rates decreased by <5%. Altering epicentral distances by 25% added ~35 km of uncertainty and reduced recovery rates to <50% in some cases. From these experiments, we estimate that if InSight can detect five events with high location precision (<10 % epicentral distance errors), that there is at least an 88% chance of core depth recovery using ScS alone with uncertainty in core depth approaching 18 km and decreasing as more events are located.
Collapse
Affiliation(s)
- Angela G. Marusiak
- University of Maryland, College Park, 8000 Regents Drive, College Park, MD 20742 USA
| | - Nicholas C. Schmerr
- University of Maryland, College Park, 8000 Regents Drive, College Park, MD 20742 USA
| | - Maria E. Banks
- NASA Goddard Space Flight Center, Greenbelt, MD, 20771 USA
- Planetary Science Institute, Tucson AZ, 85719 USA
| | - Ingrid J. Daubar
- Jet Propulsion Laboratory, California Institute of Technology, M/S 183-301, 4800 Oak Grove Drive Pasadena, CA 91109 USA
| |
Collapse
|
28
|
Abstract
Both the northern and southern arms of Kasei Valles are occupied by platy-ridged flood lavas. We have mapped these flows and examined their morphology to better understand their emplacement. The lavas were emplaced as high-flux, turbulent flows (exceeding 106 m3 s-1). Lava in southern Kasei Valles can be traced back up onto the Tharsis rise, which is also the likely source of lavas in the northern arm. These eruptions were similar to, but somewhat smaller than, the Athabasca Valles flood lava in Elysium Planitia, with estimated volumes of >1200 km3 here and 5000 km3 in Athabasca Valles. The flood lavas in both Kasei and Athabasca Valles have evidence for distal inflation as well as widespread drainage or volume loss in medial areas; this may be an important characteristic of many large, recent Martian eruptions. Despite their great size and flux, the Kasei Valles flood lavas are only a late modification to the valley system capable of only modest local erosion. The more vigorous Athabasca Valles lava may have been capable of somewhat more erosion in its smaller valley system.
Collapse
Affiliation(s)
- Colin M. Dundas
- U.S. Geological Survey, Astrogeology Science Center, 2255 N. Gemini Dr., Flagstaff, AZ 86001, USA
| | - Glen E. Cushing
- U.S. Geological Survey, Astrogeology Science Center, 2255 N. Gemini Dr., Flagstaff, AZ 86001, USA
| | - Laszlo P. Keszthelyi
- U.S. Geological Survey, Astrogeology Science Center, 2255 N. Gemini Dr., Flagstaff, AZ 86001, USA
| |
Collapse
|
29
|
Cockell CS, Harrison JP, Stevens AH, Payler SJ, Hughes SS, Kobs Nawotniak SE, Brady AL, Elphic R, Haberle CW, Sehlke A, Beaton KH, Abercromby AF, Schwendner P, Wadsworth J, Landenmark H, Cane R, Dickinson AW, Nicholson N, Perera L, Lim DS. A Low-Diversity Microbiota Inhabits Extreme Terrestrial Basaltic Terrains and Their Fumaroles: Implications for the Exploration of Mars. ASTROBIOLOGY 2019; 19:284-299. [PMID: 30840501 PMCID: PMC6442273 DOI: 10.1089/ast.2018.1870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A major objective in the exploration of Mars is to test the hypothesis that the planet hosted life. Even in the absence of life, the mapping of habitable and uninhabitable environments is an essential task in developing a complete understanding of the geological and aqueous history of Mars and, as a consequence, understanding what factors caused Earth to take a different trajectory of biological potential. We carried out the aseptic collection of samples and comparison of the bacterial and archaeal communities associated with basaltic fumaroles and rocks of varying weathering states in Hawai'i to test four hypotheses concerning the diversity of life in these environments. Using high-throughput sequencing, we found that all these materials are inhabited by a low-diversity biota. Multivariate analyses of bacterial community data showed a clear separation between sites that have active fumaroles and other sites that comprised relict fumaroles, unaltered, and syn-emplacement basalts. Contrary to our hypothesis that high water flow environments, such as fumaroles with active mineral leaching, would be sites of high biological diversity, alpha diversity was lower in active fumaroles compared to relict or nonfumarolic sites, potentially due to high-temperature constraints on microbial diversity in fumarolic sites. A comparison of these data with communities inhabiting unaltered and weathered basaltic rocks in Idaho suggests that bacterial taxon composition of basaltic materials varies between sites, although the archaeal communities were similar in Hawai'i and Idaho. The taxa present in both sites suggest that most of them obtain organic carbon compounds from the atmosphere and from phototrophs and that some of them, including archaeal taxa, cycle fixed nitrogen. The low diversity shows that, on Earth, extreme basaltic terrains are environments on the edge of sustaining life with implications for the biological potential of similar environments on Mars and their exploration by robots and humans.
Collapse
Affiliation(s)
- Charles S. Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
- Address correspondence to: Charles S. Cockell, School of Physics and Astronomy, University of Edinburgh, King's Buildings, Edinburgh EH9 3JZ, UK
| | - Jesse P. Harrison
- Aquatic Biogeochemistry Research Unit, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Adam H. Stevens
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Samuel J. Payler
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Scott S. Hughes
- Department of Geosciences, Idaho State University, Pocatello, Idaho, USA
| | | | - Allyson L. Brady
- School of Geography and Earth Sciences, McMaster University, Hamilton, Canada
| | - R.C. Elphic
- NASA Ames Research Center, Mountain View, California, USA
| | | | | | | | - Andrew F.J. Abercromby
- Biomedical Research & Environmental Sciences Division (SK), NASA Johnson Space Center, Houston, Texas, USA
| | - Petra Schwendner
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Jennifer Wadsworth
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Hanna Landenmark
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Rosie Cane
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Andrew W. Dickinson
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Natasha Nicholson
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Liam Perera
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Darlene S.S. Lim
- NASA Ames Research Center, Mountain View, California, USA
- Bay Area Environmental Research Institute (BAERI), Moffett Field, California, USA
| |
Collapse
|
30
|
Hughes SS, Haberle CW, Kobs Nawotniak SE, Sehlke A, Garry WB, Elphic RC, Payler SJ, Stevens AH, Cockell CS, Brady AL, Heldmann JL, Lim DS. Basaltic Terrains in Idaho and Hawai'i as Planetary Analogs for Mars Geology and Astrobiology. ASTROBIOLOGY 2019; 19:260-283. [PMID: 30339033 PMCID: PMC6442300 DOI: 10.1089/ast.2018.1847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/30/2018] [Indexed: 05/26/2023]
Abstract
Field research target regions within two basaltic geologic provinces are described as Earth analogs to Mars. Regions within the eastern Snake River Plain of Idaho and the Big Island of Hawai'i, the United States, provinces that represent analogs of present-day and early Mars, respectively, were evaluated on the basis of geologic settings, rock lithology and geochemistry, rock alteration, and climate. Each of these factors provides rationale for the selection of specific targets for field research in five analog target regions: (1) Big Craters and (2) Highway lava flows at Craters of the Moon National Monument and Preserve, Idaho, and (3) Mauna Ulu low shield, (4) Kīlauea Iki lava lake, and (5) Kīlauea caldera in the Kīlauea Volcano summit region and the East Rift Zone of Hawai'i. Our evaluation of compositional and textural attributes, as well as the effects of syn- and posteruptive rock alteration, shows that basaltic terrains in Idaho and Hawai'i provide a way to characterize the geology and major geologic substrates that host biological activity of relevance to Mars exploration. This work provides the foundation to better understand the scientific questions related to the habitability of basaltic terrains, the rationale behind selecting analog field targets, and their applicability as analogs to Mars.
Collapse
Affiliation(s)
- Scott S. Hughes
- Department of Geosciences, Idaho State University, Pocatello, Idaho
| | - Christopher W. Haberle
- Mars Space Flight Facility, School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| | | | | | | | | | - Samuel J. Payler
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam H. Stevens
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Charles S. Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Allyson L. Brady
- School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jennifer L. Heldmann
- NASA Ames Research Center, Moffett Field, California
- NASA Headquarters, Washington, District of Columbia
| | - Darlene S.S. Lim
- NASA Ames Research Center, Moffett Field, California
- BAER Institute, Moffett Field, California
| |
Collapse
|
31
|
Yung YL, Chen P, Nealson K, Atreya S, Beckett P, Blank JG, Ehlmann B, Eiler J, Etiope G, Ferry JG, Forget F, Gao P, Hu R, Kleinböhl A, Klusman R, Lefèvre F, Miller C, Mischna M, Mumma M, Newman S, Oehler D, Okumura M, Oremland R, Orphan V, Popa R, Russell M, Shen L, Sherwood Lollar B, Staehle R, Stamenković V, Stolper D, Templeton A, Vandaele AC, Viscardy S, Webster CR, Wennberg PO, Wong ML, Worden J. Methane on Mars and Habitability: Challenges and Responses. ASTROBIOLOGY 2018; 18:1221-1242. [PMID: 30234380 PMCID: PMC6205098 DOI: 10.1089/ast.2018.1917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 05/05/2023]
Abstract
Recent measurements of methane (CH4) by the Mars Science Laboratory (MSL) now confront us with robust data that demand interpretation. Thus far, the MSL data have revealed a baseline level of CH4 (∼0.4 parts per billion by volume [ppbv]), with seasonal variations, as well as greatly enhanced spikes of CH4 with peak abundances of ∼7 ppbv. What do these CH4 revelations with drastically different abundances and temporal signatures represent in terms of interior geochemical processes, or is martian CH4 a biosignature? Discerning how CH4 generation occurs on Mars may shed light on the potential habitability of Mars. There is no evidence of life on the surface of Mars today, but microbes might reside beneath the surface. In this case, the carbon flux represented by CH4 would serve as a link between a putative subterranean biosphere on Mars and what we can measure above the surface. Alternatively, CH4 records modern geochemical activity. Here we ask the fundamental question: how active is Mars, geochemically and/or biologically? In this article, we examine geological, geochemical, and biogeochemical processes related to our overarching question. The martian atmosphere and surface are an overwhelmingly oxidizing environment, and life requires pairing of electron donors and electron acceptors, that is, redox gradients, as an essential source of energy. Therefore, a fundamental and critical question regarding the possibility of life on Mars is, "Where can we find redox gradients as energy sources for life on Mars?" Hence, regardless of the pathway that generates CH4 on Mars, the presence of CH4, a reduced species in an oxidant-rich environment, suggests the possibility of redox gradients supporting life and habitability on Mars. Recent missions such as ExoMars Trace Gas Orbiter may provide mapping of the global distribution of CH4. To discriminate between abiotic and biotic sources of CH4 on Mars, future studies should use a series of diagnostic geochemical analyses, preferably performed below the ground or at the ground/atmosphere interface, including measurements of CH4 isotopes, methane/ethane ratios, H2 gas concentration, and species such as acetic acid. Advances in the fields of Mars exploration and instrumentation will be driven, augmented, and supported by an improved understanding of atmospheric chemistry and dynamics, deep subsurface biogeochemistry, astrobiology, planetary geology, and geophysics. Future Mars exploration programs will have to expand the integration of complementary areas of expertise to generate synergistic and innovative ideas to realize breakthroughs in advancing our understanding of the potential of life and habitable conditions having existed on Mars. In this spirit, we conducted a set of interdisciplinary workshops. From this series has emerged a vision of technological, theoretical, and methodological innovations to explore the martian subsurface and to enhance spatial tracking of key volatiles, such as CH4.
Collapse
Affiliation(s)
- Yuk L. Yung
- California Institute of Technology, Pasadena, California
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Pin Chen
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | | | - Jennifer G. Blank
- NASA Ames Research Center, Blue Marble Space Institute of Science, Mountain View, California
| | - Bethany Ehlmann
- California Institute of Technology, Pasadena, California
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - John Eiler
- California Institute of Technology, Pasadena, California
| | - Giuseppe Etiope
- Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - James G. Ferry
- The Pennsylvania State University, University Park, Pennsylvania
| | - Francois Forget
- Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace, CNRS, Paris, France
| | - Peter Gao
- University of California, Berkeley, California
| | - Renyu Hu
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Armin Kleinböhl
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | - Franck Lefèvre
- Laboratoire Atmospheres, Milieux, Observations Spatiales (LATMOS), IPSL, Paris, France
| | - Charles Miller
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Michael Mischna
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Michael Mumma
- NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Sally Newman
- California Institute of Technology, Pasadena, California
| | | | | | | | | | - Radu Popa
- University of Southern California, Los Angeles, California
| | - Michael Russell
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Linhan Shen
- California Institute of Technology, Pasadena, California
| | | | - Robert Staehle
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Vlada Stamenković
- California Institute of Technology, Pasadena, California
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | - Ann C. Vandaele
- The Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
| | - Sébastien Viscardy
- The Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
| | - Christopher R. Webster
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | - John Worden
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| |
Collapse
|
32
|
Hynek BM, Rogers KL, Antunovich M, Avard G, Alvarado GE. Lack of Microbial Diversity in an Extreme Mars Analog Setting: Poás Volcano, Costa Rica. ASTROBIOLOGY 2018; 18:923-933. [PMID: 29688767 PMCID: PMC6067093 DOI: 10.1089/ast.2017.1719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The Poás volcano in Costa Rica has been studied as a Mars geochemical analog environment, since both the style of hydrothermal alteration present and the alteration mineralogy are consistent with Mars' relict hydrothermal systems. The site hosts an active volcano, with high-temperature fumaroles (up to 980°C) and an ultra-acidic lake. This lake, Laguna Caliente, is one of the most dynamic environments on Earth, with frequent phreatic eruptions, temperatures ranging from near-ambient to almost boiling, a pH range of -1 to 1.5, and a wide range of chemistries and redox potential. Martian acid-sulfate hydrothermal systems were likely similarly dynamic and equally challenging to life. The microbiology existing within Laguna Caliente was characterized for the first time, with sampling taking place in November, 2013. The diversity of the microbial community was surveyed via extraction of environmental DNA from fluid and sediment samples followed by Illumina sequencing of the 16S rRNA gene. The microbial diversity was limited to a single species of the bacterial genus Acidiphilium. This organism likely gets its energy from oxidation of reduced sulfur in the lake, including elemental sulfur. Given Mars' propensity for sulfur and acid-sulfate environments, this type of organism is of significant interest to the search for past or present life on the Red Planet. Key Words: Mars astrobiology-Acid-sulfate hydrothermal systems-Extremophiles-Acidic-High temperature-Acidiphilium bacteria. Astrobiology 18, 923-933.
Collapse
Affiliation(s)
- Brian M. Hynek
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado, USA
- Department of Geological Sciences, University of Colorado, Boulder, Colorado, USA
- Address correspondence to:Brian M. HynekLaboratory for Atmospheric and Space PhysicsUniversity of Colorado3665 Discovery Dr.Boulder, CO 80303
| | - Karyn L. Rogers
- Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Monique Antunovich
- Department of Geological Sciences, University of Colorado, Boulder, Colorado, USA
| | - Geoffroy Avard
- OVSICORI, National University of Costa Rica, Heredia, Costa Rica
| | - Guillermo E. Alvarado
- Centro de Investigaciones Geológicas, Red Sismológica Nacional, Universidad de Costa Rica, Costa Rica
| |
Collapse
|
33
|
Evidence for extremely rapid magma ocean crystallization and crust formation on Mars. Nature 2018; 558:586-589. [PMID: 29950620 PMCID: PMC6107064 DOI: 10.1038/s41586-018-0222-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/01/2018] [Indexed: 11/08/2022]
Abstract
The formation of a primordial crust is a critical step in the evolution of terrestrial planets but the timing of this process is poorly understood. The mineral zircon is a powerful tool for constraining crust formation because it can be accurately dated with the uranium-to-lead (U-Pb) isotopic decay system and is resistant to subsequent alteration. Moreover, given the high concentration of hafnium in zircon, the lutetium-to-hafnium (176Lu-176Hf) isotopic decay system can be used to determine the nature and formation timescale of its source reservoir1-3. Ancient igneous zircons with crystallization ages of around 4,430 million years (Myr) have been reported in Martian meteorites that are believed to represent regolith breccias from the southern highlands of Mars4,5. These zircons are present in evolved lithologies interpreted to reflect re-melted primary Martian crust 4 , thereby potentially providing insight into early crustal evolution on Mars. Here, we report concomitant high-precision U-Pb ages and Hf-isotope compositions of ancient zircons from the NWA 7034 Martian regolith breccia. Seven zircons with mostly concordant U-Pb ages define 207Pb/206Pb dates ranging from 4,476.3 ± 0.9 Myr ago to 4,429.7 ± 1.0 Myr ago, including the oldest directly dated material from Mars. All zircons record unradiogenic initial Hf-isotope compositions inherited from an enriched, andesitic-like crust extracted from a primitive mantle no later than 4,547 Myr ago. Thus, a primordial crust existed on Mars by this time and survived for around 100 Myr before it was reworked, possibly by impacts4,5, to produce magmas from which the zircons crystallized. Given that formation of a stable primordial crust is the end product of planetary differentiation, our data require that the accretion, core formation and magma ocean crystallization on Mars were completed less than 20 Myr after the formation of the Solar System. These timescales support models that suggest extremely rapid magma ocean crystallization leading to a gravitationally unstable stratified mantle, which subsequently overturns, resulting in decompression melting of rising cumulates and production of a primordial basaltic to andesitic crust6,7.
Collapse
|
34
|
Price A, Pearson VK, Schwenzer SP, Miot J, Olsson-Francis K. Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism. Front Microbiol 2018; 9:513. [PMID: 29616015 PMCID: PMC5869265 DOI: 10.3389/fmicb.2018.00513] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/06/2018] [Indexed: 11/13/2022] Open
Abstract
This work considers the hypothetical viability of microbial nitrate-dependent Fe2+ oxidation (NDFO) for supporting simple life in the context of the early Mars environment. This draws on knowledge built up over several decades of remote and in situ observation, as well as recent discoveries that have shaped current understanding of early Mars. Our current understanding is that certain early martian environments fulfill several of the key requirements for microbes with NDFO metabolism. First, abundant Fe2+ has been identified on Mars and provides evidence of an accessible electron donor; evidence of anoxia suggests that abiotic Fe2+ oxidation by molecular oxygen would not have interfered and competed with microbial iron metabolism in these environments. Second, nitrate, which can be used by some iron oxidizing microorganisms as an electron acceptor, has also been confirmed in modern aeolian and ancient sediment deposits on Mars. In addition to redox substrates, reservoirs of both organic and inorganic carbon are available for biosynthesis, and geochemical evidence suggests that lacustrine systems during the hydrologically active Noachian period (4.1-3.7 Ga) match the circumneutral pH requirements of nitrate-dependent iron-oxidizing microorganisms. As well as potentially acting as a primary producer in early martian lakes and fluvial systems, the light-independent nature of NDFO suggests that such microbes could have persisted in sub-surface aquifers long after the desiccation of the surface, provided that adequate carbon and nitrates sources were prevalent. Traces of NDFO microorganisms may be preserved in the rock record by biomineralization and cellular encrustation in zones of high Fe2+ concentrations. These processes could produce morphological biosignatures, preserve distinctive Fe-isotope variation patterns, and enhance preservation of biological organic compounds. Such biosignatures could be detectable by future missions to Mars with appropriate instrumentation.
Collapse
Affiliation(s)
- Alex Price
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Victoria K. Pearson
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Susanne P. Schwenzer
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Jennyfer Miot
- CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d’Histoire Naturelle, Université Pierre et Marie Curie – Sorbonne Universités, UMR 7590, Paris, France
| | - Karen Olsson-Francis
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
35
|
Dalai P, Pleyer HL, Strasdeit H, Fox S. The Influence of Mineral Matrices on the Thermal Behavior of Glycine. ORIGINS LIFE EVOL B 2017; 47:427-452. [PMID: 27757771 DOI: 10.1007/s11084-016-9523-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 08/27/2016] [Indexed: 10/20/2022]
Abstract
On the Hadean-Early Archean Earth, the first islands must have provided hot and dry environments for abiotically formed organic molecules. The heat sources, mainly volcanism and meteorite impacts, were also available on Mars during the Noachian period. In recent work simulating this scenario, we have shown that neat glycine forms a black, sparingly water-soluble polymer ("thermomelanoid") when dry-heated at 200 °C under pure nitrogen. The present study explores whether relevant minerals and mineral mixtures can change this thermal behavior. Most experiments were conducted at 200 or 250 °C for 2 or 7 days. The mineral matrices used were phyllosilicates (Ca-montmorillonites SAz-1 and STx-1, Na-montmorillonite SAz-1-Na, nontronite NAu-1, kaolinite KGa-1), salts (NaCl, NaCl-KCl, CaCl2, artificial sea salt, gypsum, magnesite), picritic basalt, and three Martian regolith simulants (P-MRS, S-MRS, JSC Mars-1A). The main analytical method employed was high-performance liquid chromatography (HPLC). Glycine intercalated in SAz-1 and SAz-1-Na was well protected against thermomelanoid formation and sublimation at 200 °C: after 2 days, 95 and 79 %, respectively, had either survived unaltered or been transformed into the cyclic dipeptide (DKP) and linear peptides up to Gly6. The glycine survival rate followed the order SAz-1 > SAz-1-Na > STx-1 ≈ NAu-1 > KGa-1. Very good protection was also provided by artificial sea salt (84 % unaltered glycine after 200 °C for 7 days). P-MRS promoted the condensation up to Gly6, consistent with its high phyllosilicate content. The remaining matrices were less effective in preserving glycine as such or as peptides.
Collapse
Affiliation(s)
- Punam Dalai
- Department of Bioinorganic Chemistry, Institute of Chemistry, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Hannes Lukas Pleyer
- Department of Bioinorganic Chemistry, Institute of Chemistry, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Henry Strasdeit
- Department of Bioinorganic Chemistry, Institute of Chemistry, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany.
| | - Stefan Fox
- Department of Bioinorganic Chemistry, Institute of Chemistry, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| |
Collapse
|
36
|
Chemtob SM, Nickerson RD, Morris RV, Agresti DG, Catalano JG. Oxidative alteration of ferrous smectites and implications for the redox evolution of early Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2017; 122:2469-2488. [PMID: 32802700 PMCID: PMC7427814 DOI: 10.1002/2017je005331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Surface conditions on early Mars were likely anoxic, similar to early Earth, but the timing of the evolution to oxic conditions characteristic of contemporary Mars is unresolved. Ferrous trioctahedral smectites are the thermodynamically predicted products of anoxic basalt weathering, but orbital analyses of Noachian-aged terrains find primarily Fe3+-bearing clay minerals. Rover-based detection of Fe2+-bearing trioctahedral smectites at Gale Crater suggest that ferrous smectites are the unoxidized progenitors of orbitally-detected ferric smectites. To assess this pathway, we conducted ambient-temperature oxidative alteration experiments on four synthetic ferrous smectites having molar Fe/(Mg+Fe) from 1.00 to 0.33. Smectite suspension in air-saturated solutions produced incomplete oxidation (24-38% Fe3+/ΣFe). Additional smectite oxidation occurred upon re-exposure to air-saturated solutions after anoxic hydrothermal recrystallization, which accelerated cation and charge redistribution in the octahedral sheet. Oxidation was accompanied by contraction of the octahedral sheet (d(060) decreased from 1.53-1.56 Å to 1.52 Å), consistent with a shift towards dioctahedral structure. Ferrous smectite oxidation by aqueous hydrogen peroxide solutions resulted in nearly complete Fe2+ oxidation but also led to partial Fe3+ ejection from the structure, producing nanoparticulate hematite. Reflectance spectra of oxidized smectites were characterized by (Fe3+,Mg)2-OH bands at 2.28-2.30 μm, consistent with oxidative formation of dioctahedral nontronite. Accordingly, ferrous smectites are plausible precursors to observed ferric smectites on Mars, and their presence in late-Noachian sedimentary units suggests that anoxic conditions may have persisted on Mars beyond the Noachian.
Collapse
Affiliation(s)
- Steven M Chemtob
- Department of Earth and Environmental Sciences, Temple University, Philadelphia, PA 19122, U.S.A
- Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, U.S.A
| | - Ryan D Nickerson
- Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, U.S.A
| | | | - David G Agresti
- Department of Physics, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - Jeffrey G Catalano
- Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, U.S.A
| |
Collapse
|
37
|
Chojnacki M, Fenton LK. The Geologic Exploration of the Bagnold Dune Field at Gale Crater by the Curiosity Rover. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2017; 122:2216-2222. [PMID: 29564198 PMCID: PMC5857957 DOI: 10.1002/2017je005455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The Mars Science Laboratory rover Curiosity engaged in a monthlong campaign investigating the Bagnold dune field in Gale crater. What represents the first in situ investigation of a dune field on another planet has resulted in a number of discoveries. Collectively, the Curiosity rover team has compiled the most comprehensive survey of any extraterrestrial aeolian system visited to date with results that yield important insights into a number of processes, including sediment transport, bed form morphology and structure, chemical and physical composition of aeolian sand, and wind regime characteristics. These findings and more are provided in detail by the JGR-Planets Special Issue Curiosity's Bagnold Dunes Campaign, Phase I.
Collapse
Affiliation(s)
- Matthew Chojnacki
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - Lori K Fenton
- Carl Sagan Center, SETI Institute, Mountain View, CA, USA
| |
Collapse
|
38
|
Abstract
Spectral remote sensing in the visible/near-infrared (VNIR) and mid-IR (MIR) regions has enabled detection and characterisation of multiple clays and clay minerals on Earth and in the Solar System. Remote sensing on Earth poses the greatest challenge due to atmospheric absorptions that interfere with detection of surface minerals. Still, a greater variety of clay minerals have been observed on Earth than other bodies due to extensive aqueous alteration on our planet. Clay minerals have arguably been mapped in more detail on the planet Mars because they are not masked by vegetation on that planet and the atmosphere is less of a hindrance. Fe/Mg-smectite is the most abundant clay mineral on the surface of Mars and is also common in meteorites and comets where clay minerals are detected.
Collapse
Affiliation(s)
- Janice L Bishop
- SETI Institute, Carl Sagan Center, 189 Bernardo Ave, Suite 200, Mountain View, CA 94043, USA
| | | | - John Carter
- Institut d'Astrophysique Spatiale, CNRS/Paris-Sud University, Orsay, France
| |
Collapse
|
39
|
Russell MJ, Nitschke W. Methane: Fuel or Exhaust at the Emergence of Life? ASTROBIOLOGY 2017; 17:1053-1066. [PMID: 28949766 PMCID: PMC5655419 DOI: 10.1089/ast.2016.1599] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/20/2017] [Indexed: 05/28/2023]
Abstract
As many of the methanogens first encountered at hydrothermal vents were thermophilic to hyperthermophilic and comprised one of the lower roots of the evolutionary tree, it has been assumed that methanogenesis was one of the earliest, if not the earliest, pathway to life. It being well known that hydrothermal springs associated with serpentinization also bore abiotic methane, it had been further assumed that emergent biochemistry merely adopted and quickened this supposed serpentinization reaction. Yet, recent hydrothermal experiments simulating serpentinization have failed to generate methane so far, thus casting doubt on this assumption. The idea that the inverse view is worthy of debate, that is, that methanotrophy was the earlier, is stymied by the "fact" that methanotrophy itself has been termed "reverse methanogenesis," so allotting the methanogens the founding pedigree. Thus, attempting to suggest instead that methanogenesis might be termed reverse methanotrophy would require "unlearning"-a challenge to the subconscious! Here we re-examine the "impossibility" of methanotrophy predating methanogenesis as in what we have termed the "denitrifying methanotrophic acetogenic pathway." Advantages offered by such thinking are that methane would not only be a fuel but also a ready source of reduced carbon to combine with formate or carbon monoxide-available in hydrothermal fluids-to generate acetate, a target molecule of the first autotrophs. And the nitrate/nitrite required for the putative oxidation of methane with activated NO would also be a ready source of fixed nitrogen for amination reactions. Theoretical conditions for such a putative pathway would be met in a hydrothermal green rust-bearing exhalative pile and associated chimneys subject to proton and electron counter gradients. This hypothesis could be put to test in a high-pressure hydrothermal reaction chamber in which a cool carbonate/nitrate/nitrite-bearing early acidulous ocean simulant is juxtaposed across a precipitate membrane to an alkaline solution of hydrogen and methane. Key Words: Green rust-Methanotrophy-Nitrate reduction-Emergence of life. Astrobiology 17, 1053-1066.
Collapse
Affiliation(s)
- Michael J. Russell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Wolfgang Nitschke
- CNRS/Aix-Marseille University, BIP UMR 7281, IMM FR 3479, Marseille, France
| |
Collapse
|
40
|
Fairén AG, Gil‐Lozano C, Uceda ER, Losa‐Adams E, Davila AF, Gago‐Duport L. Mineral paragenesis on Mars: The roles of reactive surface area and diffusion. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2017; 122:1855-1879. [PMID: 29104844 PMCID: PMC5656915 DOI: 10.1002/2016je005229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 08/13/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Geochemical models of secondary mineral precipitation on Mars generally assume semiopen systems (open to the atmosphere but closed at the water-sediment interface) and equilibrium conditions. However, in natural multicomponent systems, the reactive surface area of primary minerals controls the dissolution rate and affects the precipitation sequences of secondary phases, and simultaneously, the transport of dissolved species may occur through the atmosphere-water and water-sediment interfaces. Here we present a suite of geochemical models designed to analyze the formation of secondary minerals in basaltic sediments on Mars, evaluating the role of (i) reactive surface areas and (ii) the transport of ions through a basalt sediment column. We consider fully open conditions, both to the atmosphere and to the sediment, and a kinetic approach for mineral dissolution and precipitation. Our models consider a geochemical scenario constituted by a basin (i.e., a shallow lake) where supersaturation is generated by evaporation/cooling and the starting point is a solution in equilibrium with basaltic sediments. Our results show that cation removal by diffusion, along with the input of atmospheric volatiles and the influence of the reactive surface area of primary minerals, plays a central role in the evolution of the secondary mineral sequences formed. We conclude that precipitation of evaporites finds more restrictions in basaltic sediments of small grain size than in basaltic sediments of greater grain size.
Collapse
Affiliation(s)
- Alberto G. Fairén
- Centro de Astrobiología (CSIC‐INTA)MadridSpain
- Department of AstronomyCornell UniversityIthacaNew YorkUSA
| | | | - Esther R. Uceda
- Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
| | | | | | | |
Collapse
|
41
|
Susko D, Karunatillake S, Kodikara G, Skok JR, Wray J, Heldmann J, Cousin A, Judice T. A record of igneous evolution in Elysium, a major martian volcanic province. Sci Rep 2017; 7:43177. [PMID: 28233797 PMCID: PMC5324095 DOI: 10.1038/srep43177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 01/22/2017] [Indexed: 11/30/2022] Open
Abstract
A major knowledge gap exists on how eruptive compositions of a single martian volcanic province change over time. Here we seek to fill that gap by assessing the compositional evolution of Elysium, a major martian volcanic province. A unique geochemical signature overlaps with the southeastern flows of this volcano, which provides the context for this study of variability of martian magmatism. The southeastern lava fields of Elysium Planitia show distinct chemistry in the shallow subsurface (down to several decimeters) relative to the rest of the martian mid-to-low latitudes (average crust) and flows in northwest Elysium. By impact crater counting chronology we estimated the age of the southeastern province to be 0.85 ± 0.08 Ga younger than the northwestern fields. This study of the geochemical and temporal differences between the NW and SE Elysium lava fields is the first to demonstrate compositional variation within a single volcanic province on Mars. We interpret the geochemical and temporal differences between the SE and NW lava fields to be consistent with primary magmatic processes, such as mantle heterogeneity or change in depth of melt formation within the martian mantle due to crustal loading.
Collapse
Affiliation(s)
- David Susko
- Department of Geology and Geophysics, Louisiana State University, Louisiana, USA
| | - Suniti Karunatillake
- Department of Geology and Geophysics, Louisiana State University, Louisiana, USA
| | - Gayantha Kodikara
- Department of Oceanography and Marine Geology, Faculty of Fisheries and Marine Sciences &Technology, University of Rahuna, Matara, Sri Lanka
| | | | - James Wray
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Agnes Cousin
- Institut de Recherche en Astrophysique et Planétologie, Toulouse, France
| | - Taylor Judice
- Department of Geology and Geophysics, Louisiana State University, Louisiana, USA
| |
Collapse
|
42
|
Hanna RD, Hamilton VE, Putzig NE. The complex relationship between olivine abundance and thermal inertia on Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2016; 121:1293-1320. [PMID: 31007993 PMCID: PMC6469700 DOI: 10.1002/2015je004924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We examine four olivine-bearing regions at a variety of spatial scales with thermal infrared, visible to near-infrared, and visible imagery data to investigate the hypothesis that the relationship between olivine abundance and thermal inertia (i.e., effective particle size) can be used to infer the occurrence of olivine chemical alteration during sediment production on Mars. As in previous work, Nili Fossae and Isidis Planitia show a positive correlation between thermal inertia and olivine abundance in Thermal Emission Spectrometer (TES) and Thermal Emission Imaging System (THEMIS) data, which could be interpreted as indicating olivine chemical weathering. However, geomorphological analysis reveals that relatively olivine-poor sediments are not derived from adjacent olivine-rich materials, and therefore, chemical weathering cannot be inferred based on the olivine-thermal inertia relationship alone. We identify two areas (Terra Cimmeria and Argyre Planitia) with significant olivine abundance and thermal inertias consistent with sand, but no adjacent rocky (parent) units having even greater olivine abundances. More broadly, global analysis with TES reveals that the most typical olivine abundance on Mars is ~5-7% and that olivine-bearing (5-25%) materials have a wide range of thermal inertias, commonly 25-600 J m-2 K-1 s-1/2. TES also indicates that the majority of olivine-rich (>25%) materials have apparent thermal inertias less than 400 J m-2 K-1 s-1/2. In summary, we find that the relationship between thermal inertia and olivine abundance alone cannot be used in infer olivine weathering in the examined areas, that olivine-bearing materials have a large range of thermal intertias, and therefore that a complex relationship between olivine abundance and thermal inertia exists on Mars.
Collapse
Affiliation(s)
- Romy D Hanna
- Jackson School of Geological Sciences, University of Texas at Austin, Austin, Texas, USA
| | - Victoria E Hamilton
- Department of Space Studies, Southwest Research Institute, Boulder, Colorado, USA
| | - Nathaniel E Putzig
- Department of Space Studies, Southwest Research Institute, Boulder, Colorado, USA
- Now at the Planetary Science Institute, Lakewood, Colorado, USA
| |
Collapse
|
43
|
Abstract
The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. Serpentinization of olivine-bearing rocks, to yield hydrogen that may further react with carbon-bearing species, has been widely invoked as a source of methane on Mars, but this possibility has not hitherto been tested. Here we show that some Martian meteorites, representing basic igneous rocks, liberate a methane-rich volatile component on crushing. The occurrence of methane in Martian rock samples adds strong weight to models whereby any life on Mars is/was likely to be resident in a subsurface habitat, where methane could be a source of energy and carbon for microbial activity.
Collapse
|
44
|
Xiong MY, Shelobolina ES, Roden EE. Potential for microbial oxidation of ferrous iron in basaltic glass. ASTROBIOLOGY 2015; 15:331-340. [PMID: 25915449 DOI: 10.1089/ast.2014.1233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Basaltic glass (BG) is an amorphous ferrous iron [Fe(II)]-containing material present in basaltic rocks, which are abundant on rocky planets such as Earth and Mars. Previous research has suggested that Fe(II) in BG can serve as an energy source for chemolithotrophic microbial metabolism, which has important ramifications for potential past and present microbial life on Mars. However, to date there has been no direct demonstration of microbially catalyzed oxidation of Fe(II) in BG. In this study, three different culture systems were used to investigate the potential for microbial oxidation of Fe(II) in BG, including (1) the chemolithoautotrophic Fe(II)-oxidizing, nitrate-reducing "Straub culture"; (2) the mixotrophic Fe(II)-oxidizing, nitrate-reducing organism Desulfitobacterium frappieri strain G2; and (3) indigenous microorganisms from a streambed Fe seep in Wisconsin. The BG employed consisted of clay and silt-sized particles of freshly quenched lava from the TEB flow in Kilauea, Hawaii. Soluble Fe(II) or chemically reduced NAu-2 smectite (RS) were employed as positive controls to verify Fe(II) oxidation activity in the culture systems. All three systems demonstrated oxidation of soluble Fe(II) and/or structural Fe(II) in RS, whereas no oxidation of Fe(II) in BG material was observed. The inability of the Straub culture to oxidize Fe(II) in BG was particularly surprising, as this culture can oxidize other insoluble Fe(II)-bearing minerals such as biotite, magnetite, and siderite. Although the reason for the resistance of the BG toward enzymatic oxidation remains unknown, it seems possible that the absence of distinct crystal faces or edge sites in the amorphous glass renders the material resistant to such attack. These findings have implications with regard to the idea that Fe(II)-Si-rich phases in basalt rocks could provide a basis for chemolithotrophic microbial life on Mars, specifically in neutral-pH environments where acid-promoted mineral dissolution and utilization of dissolved Fe(II) as an energy source is not likely to take place.
Collapse
Affiliation(s)
- Mai Yia Xiong
- Department of Geoscience, University of Wisconsin, and NASA Astrobiology Institute, University of Wisconsin, Madison, Wisconsin
| | - Evgenya S Shelobolina
- Department of Geoscience, University of Wisconsin, and NASA Astrobiology Institute, University of Wisconsin, Madison, Wisconsin
| | - Eric E Roden
- Department of Geoscience, University of Wisconsin, and NASA Astrobiology Institute, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
45
|
Volcanogenic fluvial-lacustrine environments in iceland and their utility for identifying past habitability on Mars. Life (Basel) 2015; 5:568-86. [PMID: 25692905 PMCID: PMC4390869 DOI: 10.3390/life5010568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/24/2014] [Accepted: 02/06/2015] [Indexed: 11/29/2022] Open
Abstract
The search for once-habitable locations on Mars is increasingly focused on environments dominated by fluvial and lacustrine processes, such as those investigated by the Mars Science Laboratory Curiosity rover. The availability of liquid water coupled with the potential longevity of such systems renders these localities prime targets for the future exploration of Martian biosignatures. Fluvial-lacustrine environments associated with basaltic volcanism are highly relevant to Mars, but their terrestrial counterparts have been largely overlooked as a field analogue. Such environments are common in Iceland, where basaltic volcanism interacts with glacial ice and surface snow to produce large volumes of meltwater within an otherwise cold and dry environment. This meltwater can be stored to create subglacial, englacial, and proglacial lakes, or be released as catastrophic floods and proglacial fluvial systems. Sedimentary deposits produced by the resulting fluvial-lacustrine activity are extensive, with lithologies dominated by basaltic minerals, low-temperature alteration assemblages (e.g., smectite clays, calcite), and amorphous, poorly crystalline phases (basaltic glass, palagonite, nanophase iron oxides). This paper reviews examples of these environments, including their sedimentary deposits and microbiology, within the context of utilising these localities for future Mars analogue studies and instrument testing.
Collapse
|
46
|
Gasda PJ, Acosta-Maeda TE, Lucey PG, Misra AK, Sharma SK, Taylor GJ. Next generation laser-based standoff spectroscopy techniques for Mars exploration. APPLIED SPECTROSCOPY 2015; 69:173-92. [PMID: 25587811 DOI: 10.1366/14-07483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In the recent Mars 2020 Rover Science Definition Team Report, the National Aeronautics and Space Administration (NASA) has sought the capability to detect and identify elements, minerals, and most importantly, biosignatures, at fine scales for the preparation of a retrievable cache of samples. The current Mars rover, the Mars Science Laboratory Curiosity, has a remote laser-induced breakdown spectroscopy (LIBS) instrument, a type of quantitative elemental analysis, called the Chemistry Camera (ChemCam) that has shown that laser-induced spectroscopy instruments are not only feasible for space exploration, but are reliable and complementary to traditional elemental analysis instruments such as the Alpha Particle X-Ray Spectrometer. The superb track record of ChemCam has paved the way for other laser-induced spectroscopy instruments, such as Raman and fluorescence spectroscopy. We have developed a prototype remote LIBS-Raman-fluorescence instrument, Q-switched laser-induced time-resolved spectroscopy (QuaLITy), which is approximately 70 000 times more efficient at recording signals than a commercially available LIBS instrument. The increase in detection limits and sensitivity is due to our development of a directly coupled system, the use of an intensified charge-coupled device image detector, and a pulsed laser that allows for time-resolved measurements. We compare the LIBS capabilities of our system with an Ocean Optics spectrometer instrument at 7 m and 5 m distance. An increase in signal-to-noise ratio of at least an order of magnitude allows for greater quantitative analysis of the elements in a LIBS spectrum with 200-300 μm spatial resolution at 7 m, a Raman instrument capable of 1 mm spatial resolution at 3 m, and bioorganic fluorescence detection at longer distances. Thus, the new QuaLITy instrument fulfills all of the NASA expectations for proposed instruments.
Collapse
Affiliation(s)
- Patrick J Gasda
- Hawai'i Institute for Geophysics and Planetology, University of Hawai'i, Mānoa, 1680 East West Road, Honolulu, Hawai'i 96822 USA
| | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Humayun M, Nemchin A, Zanda B, Hewins RH, Grange M, Kennedy A, Lorand JP, Göpel C, Fieni C, Pont S, Deldicque D. Origin and age of the earliest Martian crust from meteorite NWA 7533. Nature 2013; 503:513-6. [PMID: 24256724 DOI: 10.1038/nature12764] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/10/2013] [Indexed: 11/09/2022]
Abstract
The ancient cratered terrain of the southern highlands of Mars is thought to hold clues to the planet's early differentiation, but until now no meteoritic regolith breccias have been recovered from Mars. Here we show that the meteorite Northwest Africa (NWA) 7533 (paired with meteorite NWA 7034) is a polymict breccia consisting of a fine-grained interclast matrix containing clasts of igneous-textured rocks and fine-grained clast-laden impact melt rocks. High abundances of meteoritic siderophiles (for example nickel and iridium) found throughout the rock reach a level in the fine-grained portions equivalent to 5 per cent CI chondritic input, which is comparable to the highest levels found in lunar breccias. Furthermore, analyses of three leucocratic monzonite clasts show a correlation between nickel, iridium and magnesium consistent with differentiation from impact melts. Compositionally, all the fine-grained material is alkalic basalt, chemically identical (except for sulphur, chlorine and zinc) to soils from Gusev crater. Thus, we propose that NWA 7533 is a Martian regolith breccia. It contains zircons for which we measured an age of 4,428 ± 25 million years, which were later disturbed 1,712 ± 85 million years ago. This evidence for early crustal differentiation implies that the Martian crust, and its volatile inventory, formed in about the first 100 million years of Martian history, coeval with earliest crust formation on the Moon and the Earth. In addition, incompatible element abundances in clast-laden impact melt rocks and interclast matrix provide a geochemical estimate of the average thickness of the Martian crust (50 kilometres) comparable to that estimated geophysically.
Collapse
Affiliation(s)
- M Humayun
- Department of Earth, Ocean and Atmospheric Science, and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Blake DF, Morris RV, Kocurek G, Morrison SM, Downs RT, Bish D, Ming DW, Edgett KS, Rubin D, Goetz W, Madsen MB, Sullivan R, Gellert R, Campbell I, Treiman AH, McLennan SM, Yen AS, Grotzinger J, Vaniman DT, Chipera SJ, Achilles CN, Rampe EB, Sumner D, Meslin PY, Maurice S, Forni O, Gasnault O, Fisk M, Schmidt M, Mahaffy P, Leshin LA, Glavin D, Steele A, Freissinet C, Navarro-González R, Yingst RA, Kah LC, Bridges N, Lewis KW, Bristow TF, Farmer JD, Crisp JA, Stolper EM, Des Marais DJ, Sarrazin P. Curiosity at Gale crater, Mars: characterization and analysis of the Rocknest sand shadow. Science 2013; 341:1239505. [PMID: 24072928 DOI: 10.1126/science.1239505] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MERs) Spirit and Opportunity. The fraction of sand <150 micrometers in size contains ~55% crystalline material consistent with a basaltic heritage and ~45% x-ray amorphous material. The amorphous component of Rocknest is iron-rich and silicon-poor and is the host of the volatiles (water, oxygen, sulfur dioxide, carbon dioxide, and chlorine) detected by the Sample Analysis at Mars instrument and of the fine-grained nanophase oxide component first described from basaltic soils analyzed by MERs. The similarity between soils and aeolian materials analyzed at Gusev Crater, Meridiani Planum, and Gale Crater implies locally sourced, globally similar basaltic materials or globally and regionally sourced basaltic components deposited locally at all three locations.
Collapse
Affiliation(s)
- D F Blake
- National Aeronautics and Space Administration Ames Research Center, Moffett Field, CA 94035, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Stolper EM, Baker MB, Newcombe ME, Schmidt ME, Treiman AH, Cousin A, Dyar MD, Fisk MR, Gellert R, King PL, Leshin L, Maurice S, McLennan SM, Minitti ME, Perrett G, Rowland S, Sautter V, Wiens RC, Kemppinen O, Bridges N, Johnson JR, Cremers D, Bell JF, Edgar L, Farmer J, Godber A, Wadhwa M, Wellington D, McEwan I, Newman C, Richardson M, Charpentier A, Peret L, Blank J, Weigle G, Li S, Milliken R, Robertson K, Sun V, Edwards C, Ehlmann B, Farley K, Griffes J, Grotzinger J, Miller H, Pilorget C, Rice M, Siebach K, Stack K, Brunet C, Hipkin V, Léveillé R, Marchand G, Sánchez PS, Favot L, Cody G, Steele A, Flückiger L, Lees D, Nefian A, Martin M, Gailhanou M, Westall F, Israël G, Agard C, Baroukh J, Donny C, Gaboriaud A, Guillemot P, Lafaille V, Lorigny E, Paillet A, Pérez R, Saccoccio M, Yana C, Armiens‐Aparicio C, Rodríguez JC, Blázquez IC, Gómez FG, Gómez-Elvira J, Hettrich S, Malvitte AL, Jiménez MM, Martínez-Frías J, Martín-Soler J, Martín-Torres FJ, Jurado AM, Mora-Sotomayor L, Caro GM, López SN, Peinado-González V, Pla-García J, Manfredi JAR, Romeral-Planelló JJ, Fuentes SAS, Martinez ES, Redondo JT, Urqui-O'Callaghan R, Mier MPZ, Chipera S, Lacour JL, Mauchien P, Sirven JB, Manning H, Fairén A, Hayes A, Joseph J, Squyres S, Sullivan R, Thomas P, Dupont A, Lundberg A, Melikechi N, Mezzacappa A, DeMarines J, Grinspoon D, Reitz G, Prats B, Atlaskin E, Genzer M, Harri AM, Haukka H, Kahanpää H, Kauhanen J, Kemppinen O, Paton M, Polkko J, Schmidt W, Siili T, Fabre C, Wray J, Wilhelm MB, Poitrasson F, Patel K, Gorevan S, Indyk S, Paulsen G, Gupta S, Bish D, Schieber J, Gondet B, Langevin Y, Geffroy C, Baratoux D, Berger G, Cros A, d’Uston C, Forni O, Gasnault O, Lasue J, Lee QM, Meslin PY, Pallier E, Parot Y, Pinet P, Schröder S, Toplis M, Lewin É, Brunner W, Heydari E, Achilles C, Oehler D, Sutter B, Cabane M, Coscia D, Israël G, Szopa C, Teinturier S, Dromart G, Robert F, Le Mouélic S, Mangold N, Nachon M, Buch A, Stalport F, Coll P, François P, Raulin F, Cameron J, Clegg S, DeLapp D, Dingler R, Jackson RS, Johnstone S, Lanza N, Little C, Nelson T, Williams RB, Kirkland L, Baker B, Cantor B, Caplinger M, Davis S, Duston B, Edgett K, Fay D, Hardgrove C, Harker D, Herrera P, Jensen E, Kennedy MR, Krezoski G, Krysak D, Lipkaman L, Malin M, McCartney E, McNair S, Nixon B, Posiolova L, Ravine M, Salamon A, Saper L, Stoiber K, Supulver K, Van Beek J, Van Beek T, Zimdar R, French KL, Iagnemma K, Miller K, Summons R, Goesmann F, Goetz W, Hviid S, Johnson M, Lefavor M, Lyness E, Breves E, Fassett C, Blake DF, Bristow T, DesMarais D, Edwards L, Haberle R, Hoehler T, Hollingsworth J, Kahre M, Keely L, McKay C, Wilhelm MB, Bleacher L, Brinckerhoff W, Choi D, Conrad P, Dworkin JP, Eigenbrode J, Floyd M, Freissinet C, Garvin J, Glavin D, Harpold D, Mahaffy P, Martin DK, McAdam A, Pavlov A, Raaen E, Smith MD, Stern J, Tan F, Trainer M, Meyer M, Posner A, Voytek M, Anderson RC, Aubrey A, Beegle LW, Behar A, Blaney D, Brinza D, Calef F, Christensen L, Crisp J, DeFlores L, Ehlmann B, Feldman J, Feldman S, Flesch G, Hurowitz J, Jun I, Keymeulen D, Maki J, Mischna M, Morookian JM, Parker T, Pavri B, Schoppers M, Sengstacken A, Simmonds JJ, Spanovich N, Juarez MDLT, Vasavada A, Webster CR, Yen A, Archer PD, Cucinotta F, Jones JH, Ming D, Morris RV, Niles P, Rampe E, Nolan T, Radziemski L, Barraclough B, Bender S, Berman D, Dobrea EN, Tokar R, Vaniman D, Williams RME, Yingst A, Lewis K, Cleghorn T, Huntress W, Manhès G, Hudgins J, Olson T, Stewart N, Sarrazin P, Grant J, Vicenzi E, Wilson SA, Bullock M, Ehresmann B, Hamilton V, Hassler D, Peterson J, Rafkin S, Zeitlin C, Fedosov F, Golovin D, Karpushkina N, Kozyrev A, Litvak M, Malakhov A, Mitrofanov I, Mokrousov M, Nikiforov S, Prokhorov V, Sanin A, Tretyakov V, Varenikov A, Vostrukhin A, Kuzmin R, Clark B, Wolff M, Botta O, Drake D, Bean K, Lemmon M, Schwenzer SP, Anderson RB, Herkenhoff K, Lee EM, Sucharski R, Hernández MÁDP, Ávalos JJB, Ramos M, Jones A, Kim MH, Malespin C, Plante I, Muller JP, Navarro-González R, Ewing R, Boynton W, Downs R, Fitzgibbon M, Harshman K, Morrison S, Dietrich W, Kortmann O, Palucis M, Sumner DY, Williams A, Lugmair G, Wilson MA, Rubin D, Jakosky B, Balic-Zunic T, Frydenvang J, Jensen JK, Kinch K, Koefoed A, Madsen MB, Stipp SLS, Boyd N, Campbell JL, Pradler I, VanBommel S, Jacob S, Owen T, Atlaskin E, Savijärvi H, Boehm E, Böttcher S, Burmeister S, Guo J, Köhler J, García CM, Mueller-Mellin R, Wimmer-Schweingruber R, Bridges JC, McConnochie T, Benna M, Franz H, Bower H, Brunner A, Blau H, Boucher T, Carmosino M, Atreya S, Elliott H, Halleaux D, Rennó N, Wong M, Pepin R, Elliott B, Spray J, Thompson L, Gordon S, Newsom H, Ollila A, Williams J, Vasconcelos P, Bentz J, Nealson K, Popa R, Kah LC, Moersch J, Tate C, Day M, Kocurek G, Hallet B, Sletten R, Francis R, McCullough E, Cloutis E, ten Kate IL, Kuzmin R, Arvidson R, Fraeman A, Scholes D, Slavney S, Stein T, Ward J, Berger J, Moores JE. The Petrochemistry of Jake_M: A Martian Mugearite. Science 2013; 341:1239463. [DOI: 10.1126/science.1239463] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | - M. E. Schmidt
- Brock University, St. Catharines, Ontario L2T 3V8, Canada
| | - A. H. Treiman
- Lunar and Planetary Institute, Houston, TX 77058, USA
| | - A. Cousin
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Institut de Recherches en Astrophysique et Planétologie, 31028 Toulouse, France
| | - M. D. Dyar
- Mount Holyoke College, South Hadley, MA 01075, USA
| | - M. R. Fisk
- Oregon State University, Corvallis, OR 97331, USA
| | - R. Gellert
- University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - P. L. King
- Research School of Earth Sciences, Australian National University, Acton, ACT 0200, Australia
| | - L. Leshin
- Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - S. Maurice
- Institut de Recherches en Astrophysique et Planétologie, 31028 Toulouse, France
| | - S. M. McLennan
- The State University of New York, Stony Brook, NY 11794, USA
| | - M. E. Minitti
- Applied Physics Laboratory, The Johns Hopkins University, Baltimore, MD 20723, USA
| | - G. Perrett
- University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - S. Rowland
- University of Hawaii, Honolulu, HI 96822, USA
| | - V. Sautter
- Laboratoire de Minéralogie et Cosmochimie du Muséum, 75005 Paris, France
| | - R. C. Wiens
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|