1
|
Zhu D, Liu Y, Gong L, Si M, Wang Q, Feng J, Jiang T. The Consumption and Diversity Variation Responses of Agricultural Pests and Their Dietary Niche Differentiation in Insectivorous Bats. Animals (Basel) 2024; 14:815. [PMID: 38473199 DOI: 10.3390/ani14050815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
Insectivorous bats are generalist predators and can flexibly respond to fluctuations in the distribution and abundance of insect prey. To better understand the effects of bats on arthropod pests, the types of pests eaten by bats and the response of bats to insect prey need to be determined. In this study, we performed DNA metabarcoding to examine prey composition and pest diversity in the diets of four insectivorous species of bats (Hipposideros armiger, Taphozous melanopogon, Aselliscus stoliczkanus, and Miniopterus fuliginosus). We evaluated the correlation between bat activity and insect resources and assessed dietary niche similarity and niche breadth among species and factors that influence prey consumption in bats. We found that the diets of these bats included arthropods from 23 orders and 200 families, dominated by Lepidoptera, Coleoptera, and Diptera. The proportion of agricultural pests in the diet of each of the four species of bats exceeded 40% and comprised 713 agricultural pests, including those that caused severe economic losses. Bats responded to the availability of insects. For example, a higher abundance of insects, especially Lepidoptera, and a higher insect diversity led to an increase in the duration of bat activity. In areas with more abundant insects, the number of bat passes also increased. The dietary composition, diversity, and niches differed among species and were particularly significant between H. armiger and T. melanopogon; the dietary niche width was the greatest in A. stoliczkanus and the narrowest in H. armiger. The diet of bats was correlated with their morphological and echolocation traits. Larger bats preyed more on insects in the order Coleoptera, whereas the proportion of bats consuming insects in the order Lepidoptera increased as the body size decreased. Bats that emitted echolocation calls with a high peak frequency and duration preyed more on insects in the order Mantodea. Our results suggest that dietary niche differentiation promotes the coexistence of different bat species and increases the ability of bats to consume insect prey and agricultural pests. Our findings provide greater insights into the role of bats that prey on agricultural pests and highlight the importance of combining bat conservation with integrated pest management.
Collapse
Affiliation(s)
- Dan Zhu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Yingying Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Lixin Gong
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Man Si
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Qiuya Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| |
Collapse
|
2
|
Insights from the Structure of an Active Form of Bacillus thuringiensis Cry5B. Toxins (Basel) 2022; 14:toxins14120823. [PMID: 36548720 PMCID: PMC9785347 DOI: 10.3390/toxins14120823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
The crystal protein Cry5B, a pore-forming protein produced by the soil bacterium Bacillus thuringiensis, has been demonstrated to have excellent anthelmintic activity. While a previous structure of the three-domain core region of Cry5B(112-698) had been reported, this structure lacked a key N-terminal extension critical to function. Here we report the structure of Cry5B(27-698) containing this N-terminal extension. This new structure adopts a distinct quaternary structure compared to the previous Cry5B(112-698) structure, and also exhibits a change in the conformation of residues 112-140 involved in linking the N-terminal extension to the three-domain core by forming a random coil and an extended α-helix. A role for the N-terminal extension is suggested based on a computational model of the tetramer with the conformation of residues 112-140 in its alternate α-helix conformation. Finally, based on the Cry5B(27-698) structure, site-directed mutagenesis studies were performed on Tyr495, which revealed that having an aromatic group or bulky group at this residue 495 is important for Cry5B toxicity.
Collapse
|
3
|
Horikoshi RJ, Dourado PM, Bernardi O, Willse A, Godoy WA, Omoto C, Bueno ADF, Martinelli S, Berger GU, Head GP, Corrêa AS. Regional pest suppression associated with adoption of Cry1Ac soybean benefits pest management in tropical agriculture. PEST MANAGEMENT SCIENCE 2022; 78:4166-4172. [PMID: 35686298 DOI: 10.1002/ps.7034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Bacillus thuringiensis (Bt) crops have been adopted worldwide, providing high-level protection from insect pests. Furthermore, Bt crops preserve natural enemies, promote higher yield, and economically benefit farmers. Although regional pest suppression by widespread Bt crop adoption has been observed in temperate regions, this possibility remains uncertain in tropical areas due to the high diversity of alternative hosts and mild winters. RESULTS Evidence of regional reduction in insecticide use across areas was observed in Brazil where Cry1Ac soybean has been grown since 2013, with up to 50% reduction in the number of insecticide sprays for managing lepidopteran pests on non-Bt soybean observed at specific locations from 2012 to 2019. Pest monitoring data from four mesoregions across 5 years of commercial plantings of Cry1Ac soybean from December 2014 to July 2019 showed reduced numbers of Chrysodeixis includens moths captured in pheromone traps across years at all locations. The number of Helicoverpa spp. moths captured also was reduced at three locations. CONCLUSION We provide evidence for regional suppression of lepidopteran pests and reduced insecticide use with the widespread adoption of Cry1Ac soybean in Brazil, bringing economic, social and environmental benefits. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Renato J Horikoshi
- Regulatory Science, Bayer Crop Science, São Paulo, Brazil
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba, Brazil
| | | | - Oderlei Bernardi
- Departamento de Defesa Fitossanitária, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Alan Willse
- Regulatory Science, Bayer Crop Science, Chesterfield, MO, USA
| | - Wesley Ac Godoy
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba, Brazil
| | - Celso Omoto
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba, Brazil
| | - Adeney de F Bueno
- Embrapa Soja, Empresa Brasileira de Pesquisa Agropecuária, Londrina, Brazil
| | | | | | - Graham P Head
- Regulatory Science, Bayer Crop Science, Chesterfield, MO, USA
| | - Alberto S Corrêa
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba, Brazil
| |
Collapse
|
4
|
Baseline Susceptibility and Resistance Allele Frequency in Ostrinia furnacalis in Relation to Cry1Ab Toxins in China. Toxins (Basel) 2022; 14:toxins14040255. [PMID: 35448864 PMCID: PMC9032732 DOI: 10.3390/toxins14040255] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Asian corn borer (ACB), Ostrinia furnacalis (Guenée) is a destructive pest of corn and major target of transgenic corn expressing Bt (Bacillus thuringiensis) toxins in China. It is necessary to establish the baseline susceptibility of geographically distinct ACB populations to Cry1Ab protein and estimate the resistance alleles frequency. The median lethal concentration (LC50) and LC95 values of Bt toxin Cry1Ab for 25 geographically distinct populations collected in 2018–2019 ranged from 0.86 to 71.33, 18.58 to 5752.34 ng/cm2, respectively. The median effective concentration (EC50) and EC95 values ranged from 0.03 to 10.40 ng/cm2 and 3.75 to 172.86 ng/cm2, respectively. We used the F2 screening method for estimating the expected frequency of resistance alleles of the 13 ACB populations, to Bt corn (Bt11 × GA21) expressing the Cry1Ab toxin. The neonates could not survive on the leaves of transgenic maize Bt11 × GA21 with cry1Ab gene, the Cry1Ab resistance allele frequency was still low in each geographic population in the field, ranging from 0.0032–0.0048, indicating that the sensitivity of ACB to Cry1Ab was still at a high level, and there were no viable resistant individuals in the field at present. The susceptibility of 25 populations of ACB collected in China showed regional differences, although the Cry1Ab resistance allele frequency in these ACB populations is still at a low level. This provides essential knowledge for making the decision to commercialize Bt maize, and monitoring resistance development and evaluating resistance management strategies in the future in China.
Collapse
|
5
|
Salgotra RK, Thompson M, Chauhan BS. Unravelling the genetic potential of untapped crop wild genetic resources for crop improvement. CONSERV GENET RESOUR 2021. [DOI: 10.1007/s12686-021-01242-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Frisvold GB. How low can you go? Estimating impacts of reduced pesticide use. PEST MANAGEMENT SCIENCE 2019; 75:1223-1233. [PMID: 30407721 DOI: 10.1002/ps.5249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
Recent research has suggested that a high proportion of farms can dramatically reduce pesticide applications without reducing crop yields or farm profits. Yet this research has made estimation choices that may systematically bias downwards estimates of the productivity and profitability of pesticides. Fifty years of agricultural economics research provides lessons about how to avoid pitfalls in estimating pesticide productivity. Carefully executed econometric studies have found evidence of overuse, underuse, and near-optimal use of pesticides in different cropping systems. There are now standard methods to test and correct for sources of biases (either upward or downward) in estimates of pesticide productivity. Ignoring these lessons and methods can seriously bias estimates of the potential for reducing pesticide use at little or no economic cost. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- George B Frisvold
- Department of Agricultural & Resource Economics, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
7
|
Bredeson MM, Lundgren JG. Neonicotinoid insecticidal seed-treatment on corn contaminates interseeded cover crops intended as habitat for beneficial insects. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:222-228. [PMID: 30666494 DOI: 10.1007/s10646-018-02015-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Neonicotinoid seed treatments are extensively used to systemically protect corn from invertebrate herbivory. Interseeding cover crops can promote beneficial insect communities and their ecosystem services such as predation on pests, and this practice is gaining interest from farmers. In this study, cereal rye (Secale cereale) and hairy vetch (Vicia villosa) were planted between rows of early vegetative corn that had been seed-treated with thiamethoxam. Thiamethoxam and its insecticidal metabolite, clothianidin were quantified in cover crop leaves throughout the growing season. Thiamethoxam was present in cereal rye at concentrations ranging from 0 to 0.33 ± 0.09 ng/g of leaf tissue and was detected on six out of seven collection dates. Cereal rye leaves contained clothianidin at concentrations from 1.05 ± 0.22 to 2.61 ± 0.24 ng/g and was present on all sampling dates. Both thiamethoxam and clothianidin were detected in hairy vetch on all sampling dates at rates ranging from 0.10 ± 0.05 to 0.51 ± 0.11 ng/g and 0.56 ± 0.15 to 9.73 ± 5.04 ng/g of leaf tissue, respectively. Clothianidin was measured at a higher concentration than its precursor, thiamethoxam, in both plant species on every sampling date. Neonicotinoids entering interseeded cover crops from adjacent treated plants is a newly discovered route of exposure and potential hazard for non-target beneficial invertebrates. Future research efforts should examine the effects of systemic insecticides on biological communities in agroecosystems whose goal is to diversify plant communities using methods such as cover cropping.
Collapse
Affiliation(s)
- Michael M Bredeson
- Department of Natural Resource Management, South Dakota State University, Brookings, SD, 57007, USA
- Ecdysis Foundation, 46958 188th St, Estelline, SD, 57234, USA
| | | |
Collapse
|
8
|
Jerga A, Evdokimov AG, Moshiri F, Haas JA, Chen M, Clinton W, Fu X, Halls C, Jimenez-Juarez N, Kretzler CN, Panosian TD, Pleau M, Roberts JK, Rydel TJ, Salvador S, Sequeira R, Wang Y, Zheng M, Baum JA. Disabled insecticidal proteins: A novel tool to understand differences in insect receptor utilization. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 105:79-88. [PMID: 30605769 DOI: 10.1016/j.ibmb.2018.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/08/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
The development of insect resistance to pesticides via natural selection is an acknowledged agricultural issue. Likewise, resistance development in target insect populations is a significant challenge to the durability of crop traits conferring insect protection and has driven the need for novel insecticidal proteins (IPs) with alternative mechanism of action (MOA) mediated by different insect receptors. The combination or "stacking" of transgenes encoding different insecticidal proteins in a single crop plant can greatly delay the development of insect resistance, but requires sufficient knowledge of MOA to identify proteins with different receptor preferences. Accordingly, a rapid technique for differentiating the receptor binding preferences of insecticidal proteins is a critical need. This article introduces the Disabled Insecticidal Protein (DIP) method as applied to the well-known family of three-domain insecticidal proteins from Bacillus thuringiensis and related bacteria. These DIP's contain amino acid substitutions in domain 1 that render the proteins non-toxic but still capable of competing with active proteins in insect feeding assays, resulting in a suppression of the expected insecticidal activity. A set of insecticidal proteins with known differences in receptor binding (Cry1Ab3, Cry1Ac.107, Cry2Ab2, Cry1Ca, Cry1A.105, and Cry1A.1088) has been studied using the DIP method, yielding results that are consistent with previous MOA studies. When a native IP and an excess of DIP are co-administered to insects in a feeding assay, the outcome depends on the overlap between their MOAs: if receptors are shared, then the DIP saturates the receptors to which the native protein would ordinarily bind, and acts as an antidote whereas, if there is no shared receptor, the toxicity of the native insecticidal protein is not inhibited. These results suggest that the DIP methodology, employing standard insect feeding assays, is a robust and effective method for rapid MOA differentiation among insecticidal proteins.
Collapse
Affiliation(s)
- Agoston Jerga
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA.
| | - Artem G Evdokimov
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Farhad Moshiri
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Jeffrey A Haas
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Mao Chen
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - William Clinton
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Xiaoran Fu
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Coralie Halls
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | | | | | | | - Michael Pleau
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - James K Roberts
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Timothy J Rydel
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Sara Salvador
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Reuben Sequeira
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Yanfei Wang
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Meiying Zheng
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - James A Baum
- Plant Biotechnology, Bayer Crop Science, Chesterfield, MO, 63017, USA
| |
Collapse
|
9
|
No effect of Bt Cry1Ie toxin on bacterial diversity in the midgut of the Chinese honey bees, Apis cerana cerana (Hymenoptera, Apidae). Sci Rep 2017; 7:41688. [PMID: 28139751 PMCID: PMC5282592 DOI: 10.1038/srep41688] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/23/2016] [Indexed: 01/19/2023] Open
Abstract
Cry1Ie protein derived from Bacillus thuringiensis (Bt) has been proposed as a promising candidate for the development of a new Bt-maize variety to control maize pests in China. We studied the response of the midgut bacterial community of Apis cerana cerana to Cry1Ie toxin under laboratory conditions. Newly emerged bees were fed one of the following treatments for 15 and 30 days: three concentrations of Cry1Ie toxin (20 ng/mL, 200 ng/mL, and 20 μg/mL) in sugar syrup, pure sugar syrup as a negative control and 48 ng/mL imidacloprid as a positive control. The relative abundance of 16S rRNA genes was measured by Quantitative Polymerase Chain Reaction and no apparent differences were found among treatments for any of these counts at any time point. Furthermore, the midgut bacterial structure and compositions were determined using high-throughput sequencing targeting the V3-V4 regions of the 16S rDNA. All core honey bee intestinal bacterial genera such as Lactobacillus, Bifidobacterium, Snodgrassella, and Gilliamella were detected, and no significant changes were found in the species diversity and richness for any bacterial taxa among treatments at different time points. These results suggest that Cry1Ie toxin may not affect gut bacterial communities of Chinese honey bees.
Collapse
|
10
|
Abstract
Genome editing of crop plants is a rapidly advancing technology whereby targeted mutations can be introduced into a plant genome in a highly specific manner and with great precision. For the most part, the technology does not incorporate transgenic modifications and is far superior to conventional chemical mutagenesis. In this study we bring into focus some of the underlying differences between the 3 existing technologies: classical plant breeding, genetic modification and genome editing. We discuss some of the main achievements from each area and highlight their common characteristics and individual limitations, while emphasizing the unique capabilities of genome editing. We subsequently examine the possible regulatory mechanisms which governments may be inclined to use in assessing the status of genome edited products. If assessed on the basis of their phenotype rather than the process by which they are obtained, these products will be categorized as equivalent to those produced by classical mutagenesis. This would mean that genome edited products will not be subject to the restrictions imposed on genetically modified products, except in some cases where the mutation involves a large sequence insertion into the genome. We conclude by examining the potential of societal acceptance of genome editing technology, reinforced by a scientific perspective on promoting such acceptance.
Collapse
Affiliation(s)
| | - Heather Ray
- a Jene Quests Corporation , Saskatoon , SK , Canada
| |
Collapse
|
11
|
Zhang H, Mittal N, Leamy LJ, Barazani O, Song B. Back into the wild-Apply untapped genetic diversity of wild relatives for crop improvement. Evol Appl 2017; 10:5-24. [PMID: 28035232 PMCID: PMC5192947 DOI: 10.1111/eva.12434] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
Deleterious effects of climate change and human activities, as well as diverse environmental stresses, present critical challenges to food production and the maintenance of natural diversity. These challenges may be met by the development of novel crop varieties with increased biotic or abiotic resistance that enables them to thrive in marginal lands. However, considering the diverse interactions between crops and environmental factors, it is surprising that evolutionary principles have been underexploited in addressing these food and environmental challenges. Compared with domesticated cultivars, crop wild relatives (CWRs) have been challenged in natural environments for thousands of years and maintain a much higher level of genetic diversity. In this review, we highlight the significance of CWRs for crop improvement by providing examples of CWRs that have been used to increase biotic and abiotic stress resistance/tolerance and overall yield in various crop species. We also discuss the surge of advanced biotechnologies, such as next-generation sequencing technologies and omics, with particular emphasis on how they have facilitated gene discovery in CWRs. We end the review by discussing the available resources and conservation of CWRs, including the urgent need for CWR prioritization and collection to ensure continuous crop improvement for food sustainability.
Collapse
Affiliation(s)
- Hengyou Zhang
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
| | - Neha Mittal
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
| | - Larry J. Leamy
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
| | - Oz Barazani
- The Institute for Plant SciencesIsrael Plant Gene BankAgricultural Research OrganizationBet DaganIsrael
| | - Bao‐Hua Song
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
| |
Collapse
|
12
|
Schmidt-Jeffris RA, Huseth AS, Nault BA. Estimating E-Race European Corn Borer (Lepidoptera: Crambidae) Adult Activity in Snap Bean Fields Based on Corn Planting Intensity and Their Activity in Corn in New York Agroecosystems. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:2210-2214. [PMID: 27452000 DOI: 10.1093/jee/tow149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
European corn borer, Ostrinia nubilalis (Hübner), is a major pest of processing snap bean because larvae are contaminants in pods. The incidence of O. nubilalis-contaminated beans has become uncommon in New York, possibly because widespread adoption of Bt field corn has suppressed populations. Snap bean fields located where Bt corn has been intensively grown in space and time may be at lower risk for O. nubilalis than fields located where Bt corn is not common. To manage O. nubilalis infestation risk, growers determine insecticide application frequency in snap bean based on pheromone-trapping information in nearby sweet corn fields; adult activity is presumed equivalent in both crops. Our goal was to determine if corn planting intensity and adult activity in sweet corn could be used to estimate O. nubilalis populations in snap bean in New York in 2014-2015. Numbers of O nubilalis adults captured in pheromone-baited traps located in snap bean fields where corn was and was not intensively grown were similar, suggesting that O. nubilalis does not respond to local levels of Bt corn in the landscape. Numbers of Ostrinia nubilalis captured in pheromone-baited traps placed by snap bean fields and proximal sweet corn fields were not related, indicating that snap bean growers should no longer make control decisions based on adult activity in sweet corn. Our results also suggest that the risk of O. nubilalis infestations in snap bean is low (∼80% of the traps caught zero moths) and insecticide applications targeting this pest should be reduced or eliminated.
Collapse
Affiliation(s)
- Rebecca A Schmidt-Jeffris
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, 630 W. North Street, Geneva, NY, 14456 (; )
| | - Anders S Huseth
- Department of Entomology, Campus Box 7630, North Carolina State University, Raleigh, NC, 27695
| | - Brian A Nault
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, 630 W. North Street, Geneva, NY, 14456 (; )
| |
Collapse
|
13
|
Yu R, Xu X, Liang Y, Tian H, Pan Z, Jin S, Wang N, Zhang W. The insect ecdysone receptor is a good potential target for RNAi-based pest control. Int J Biol Sci 2014; 10:1171-80. [PMID: 25516715 PMCID: PMC4261201 DOI: 10.7150/ijbs.9598] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/09/2014] [Indexed: 12/11/2022] Open
Abstract
RNA interference (RNAi) has great potential for use in insect pest control. However, some significant challenges must be overcome before RNAi-based pest control can become a reality. One challenge is the proper selection of a good target gene for RNAi. Here, we report that the insect ecdysone receptor (EcR) is a good potential target for RNAi-based pest control in the brown planthopper Nilaparvata lugens, a serious insect pest of rice plants. We demonstrated that the use of a 360 bp fragment (NlEcR-c) that is common between NlEcR-A and NlEcR-B for feeding RNAi experiments significantly decreased the relative mRNA expression levels of NlEcR compared with those in the dsGFP control. Feeding RNAi also resulted in a significant reduction in the number of offspring per pair of N. lugens. Consequently, a transgenic rice line expressing NlEcR dsRNA was constructed by Agrobacterium- mediated transformation. The results of qRT-PCR showed that the total copy number of the target gene in all transgenic rice lines was 2. Northern blot analysis showed that the small RNA of the hairpin dsNlEcR-c was successfully expressed in the transgenic rice lines. After newly hatched nymphs of N. lugens fed on the transgenic rice lines, effective RNAi was observed. The NlEcR expression levels in all lines examined were decreased significantly compared with the control. In all lines, the survival rate of the nymphs was nearly 90%, and the average number of offspring per pair in the treated groups was significantly less than that observed in the control, with a decrease of 44.18-66.27%. These findings support an RNAi-based pest control strategy and are also important for the management of rice insect pests.
Collapse
Affiliation(s)
- Rong Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinping Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongkang Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Honggang Tian
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhanqing Pan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shouheng Jin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Na Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
14
|
Yu H, Li Y, Li X, Romeis J, Wu K. Expression of Cry1Ac in transgenic Bt soybean lines and their efficiency in controlling lepidopteran pests. PEST MANAGEMENT SCIENCE 2013; 69:1326-33. [PMID: 23564718 DOI: 10.1002/ps.3508] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/02/2012] [Accepted: 02/08/2013] [Indexed: 05/10/2023]
Abstract
BACKGROUND Two transgenic lines of the soybean Glycine max, MON87701 expressing the Cry1Ac protein and MON87701RR2Y expressing Cry1Ac + EPSPS proteins, were evaluated for their resistance to four lepidopteran pests in the laboratory using detached-leaf bioassays throughout the soybean growth seasons (before anthesis, during anthesis and after anthesis) in China. Enzyme-linked immunosorbent assays (ELISAs) were used to monitor the Cry1Ac expression in soybean leaves. RESULTS The bioassay results revealed that both transgenic soybean lines exhibited significantly high resistance against Helicoverpa armigera (Hübner) throughout the soybean growing seasons. The survival rates of H. armigera larvae ranged from 5.4 to 24.4% when feeding on the transgenic soybean leaves, significantly lower than the survival rates when feeding on control leaves (71.1-94.9%). Limited resistance was found for both transgenic soybean lines against Spodoptera litura (Fabricius), although the survival rates and weight of S. litura larvae as well as female fecundity were significantly decreased when feeding on Bt soybean leaves compared with feeding on control leaves. In contrast, both transgenic soybean lines provided almost no resistance to Spodoptera exigua (Hübner) and Agrotis ypsilon (Rottemberg). Cry1Ac expression in the leaves of both transgenic soybean lines was relatively stable throughout the soybean growing season, with a peak occurring at V6 -8 and V11 -12 before anthesis. The ELISA results were positively correlated with the results from the insect bioassays. CONCLUSIONS The results show that, while Cry1Ac-expressing Bt soybeans may provide good protection against H. armigera, alternative control measures are required to manage S. exigua, S. litura and A. ypsilon.
Collapse
Affiliation(s)
- Huilin Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
15
|
Diminishing returns from increased percent Bt cotton: the case of pink bollworm. PLoS One 2013; 8:e68573. [PMID: 23874678 PMCID: PMC3713026 DOI: 10.1371/journal.pone.0068573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 05/29/2013] [Indexed: 11/19/2022] Open
Abstract
Regional suppression of pests by transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) has been reported in several cropping systems, but little is known about the functional relationship between the ultimate pest population density and the pervasiveness of Bt crops. Here we address this issue by analyzing 16 years of field data on pink bollworm (Pectinophora gossypiella) population density and percentage of Bt cotton in the Yangtze River Valley of China. In this region, the percentage of cotton hectares planted with Bt cotton increased from 9% in 2000 to 94% in 2009 and 2010. We find that as the percent Bt cotton increased over the years, the cross-year growth rate of pink bollworm from the last generation of one year to the first generation of the next year decreased. However, as the percent Bt cotton increased, the within-year growth rate of pink bollworm from the first to last generation of the same year increased, with a slope approximately opposite to that of the cross-year rates. As a result, we did not find a statistically significant decline in the annual growth rate of pink bollworm as the percent Bt cotton increased over time. Consistent with the data, our modeling analyses predict that the regional average density of pink bollworm declines as the percent Bt cotton increases, but the higher the percent Bt cotton, the slower the decline in pest density. Specifically, we find that 95% Bt cotton is predicted to cause only 3% more reduction in larval density than 80% Bt cotton. The results here suggest that density dependence can act against the decline in pest density and diminish the net effects of Bt cotton on suppression of pink bollworm in the study region. The findings call for more studies of the interactions between pest density-dependence and Bt crops.
Collapse
|
16
|
Campagne P, Kruger M, Pasquet R, Le Ru B, Van den Berg J. Dominant inheritance of field-evolved resistance to Bt corn in Busseolafusca. PLoS One 2013; 8:e69675. [PMID: 23844262 PMCID: PMC3699669 DOI: 10.1371/journal.pone.0069675] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 06/16/2013] [Indexed: 11/18/2022] Open
Abstract
Transgenic crops expressing Bacillus thuringiensis (Bt) toxins have been adopted worldwide, notably in developing countries. In spite of their success in controlling target pests while allowing a substantial reduction of insecticide use, the sustainable control of these pest populations is threatened by the evolution of resistance. The implementation of the “high dose/refuge” strategy for managing insect resistance in transgenic crops aims at delaying the evolution of resistance to Bt crops in pest populations by promoting survival of susceptible insects. However, a crucial condition for the “high dose/refuge” strategy to be efficient is that the inheritance of resistance should be functionally recessive. Busseolafusca developed high levels of resistance to the Bt toxin Cry 1Ab expressed in Bt corn in South Africa. To test whether the inheritance of B. fusca resistance to the Bt toxin could be considered recessive we performed controlled crosses with this pest and evaluated its survival on Bt and non-Bt corn. Results show that resistance of B. fusca to Bt corn is dominant, which refutes the hypothesis of recessive inheritance. Survival on Bt corn was not lower than on non-Bt corn for both resistant larvae and the F1 progeny from resistant × susceptible parents. Hence, resistance management strategies of B. fusca to Bt corn must address non-recessive resistance.
Collapse
Affiliation(s)
- Pascal Campagne
- Unité de Recherche IRD 072, CNRS UPR9034, Laboratoire Evolution, Génome et Spéciation, Gif-sur-yvette, France.
| | | | | | | | | |
Collapse
|
17
|
Siebert MW, Nolting SP, Hendrix W, Dhavala S, Craig C, Leonard BR, Stewart SD, All J, Musser FR, Buntin GD, Samuel L. Evaluation of corn hybrids expressing Cry1F, cry1A.105, Cry2Ab2, Cry34Ab1/Cry35Ab1, and Cry3Bb1 against southern United States insect pests. JOURNAL OF ECONOMIC ENTOMOLOGY 2012; 105:1825-34. [PMID: 23156183 DOI: 10.1603/ec12155] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Studies were conducted across the southern United States to characterize the efficacy of multiple Bacillus thuringiensis (Bt) events in a field corn, Zea mays L., hybrid for control of common lepidopteran and coleopteran pests. Cry1F protein in event TC1507 and Cry1A.105 + Cry2Ab2 proteins in event MON 89034 were evaluated against pests infesting corn on above-ground plant tissue including foliage, stalks, and ears. Cry34Ab1/Cry35Ab1 proteins in event DAS-59122-7 and Cry3Bb1 in event MON 88017 were evaluated against the larvae of Mexican corn rootworm, Diabrotica virgifera zeae Krysan and Smith, which occur below-ground. Field corn hybrids containing Cry1F, Cry1A.105 + Cry2Ab2, Cry34Ab1/Cry35Ab1, and Cry3Bb1 insecticidal proteins (SmartStax) consistently demonstrated reductions in plant injury and/or reduced larval survivorship as compared with a non-Bt field corn hybrid. Efficacy provided by a field corn hybrid with multiple Bt proteins was statistically equal to or significantly better than corn hybrids containing a single event active against target pests. Single event field corn hybrids provided very high levels of control of southwestern corn borer, Diatraea grandiosella (Dyar), lesser cornstalk borer, Elasmopalpus lignosellus (Zeller), and fall armyworm, Spodoptera frugiperda (J.E. Smith), and were not significantly different than field corn hybrids with multiple events. Significant increases in efficacy were observed for a field corn hybrid with multiple Bt events for sugarcane borer, Diatraea saccharalis (F.), beet armyworm, Spodoptera exigua (Hübner), corn earworm, Helicoverpa zea (Boddie), and Mexican corn rootworm. Utilization of field corn hybrids containing multiple Bt events provides a means for managing insect resistance to Bt proteins and reduces non-Bt corn refuge requirements.
Collapse
Affiliation(s)
- M W Siebert
- Dow AgroSciences LLC, 753 HWY 438, Greenville, MS 38701, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wan P, Huang Y, Tabashnik BE, Huang M, Wu K. The halo effect: suppression of pink bollworm on non-Bt cotton by Bt cotton in China. PLoS One 2012; 7:e42004. [PMID: 22848685 PMCID: PMC3407057 DOI: 10.1371/journal.pone.0042004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/28/2012] [Indexed: 11/18/2022] Open
Abstract
In some previously reported cases, transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have suppressed insect pests not only in fields planted with such crops, but also regionally on host plants that do not produce Bt toxins. Here we used 16 years of field data to determine if Bt cotton caused this “halo effect” against pink bollworm (Pectinophora gossypiella) in six provinces of the Yangtze River Valley of China. In this region, the percentage of cotton hectares planted with Bt cotton increased from 9% in 2000 to 94% in 2009 and 2010. We found that Bt cotton significantly decreased the population density of pink bollworm on non-Bt cotton, with net decreases of 91% for eggs and 95% for larvae on non-Bt cotton after 11 years of Bt cotton use. Insecticide sprays targeting pink bollworm and cotton bollworm (Helicoverpa armigera) decreased by 69%. Previously reported evidence of the early stages of evolution of pink bollworm resistance to Bt cotton in China has raised concerns that if unchecked, such resistance could eventually diminish or eliminate the benefits of Bt cotton. The results reported here suggest that it might be possible to find a percentage of Bt cotton lower than the current level that causes sufficient regional pest suppression and reduces the risk of resistance.
Collapse
Affiliation(s)
- Peng Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, People’s Republic of China
| | - Yunxin Huang
- School of Resource and Environmental Science, Hubei University, Wuhan, Hubei, People’s Republic of China
| | - Bruce E. Tabashnik
- Department of Entomology, University of Arizona, Tucson, Arizona, United States of America
| | - Minsong Huang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, People’s Republic of China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
19
|
Du L, Rachul C. Chinese newspaper coverage of genetically modified organisms. BMC Public Health 2012; 12:326. [PMID: 22551150 PMCID: PMC3370988 DOI: 10.1186/1471-2458-12-326] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 05/02/2012] [Indexed: 11/23/2022] Open
Abstract
Background Debates persist around the world over the development and use of genetically modified organisms (GMO). News media has been shown to both reflect and influence public perceptions of health and science related debates, as well as policy development. To better understand the news coverage of GMOs in China, we analyzed the content of articles in two Chinese newspapers that relate to the development and promotion of genetically modified technologies and GMOs. Methods Searching in the Chinese National Knowledge Infrastructure Core Newspaper Database (CNKI-CND), we collected 77 articles, including news reports, comments and notes, published between January 2002 and August 2011 in two of the major Chinese newspapers: People’s Daily and Guangming Daily. We examined articles for perspectives that were discussed and/or mentioned regarding GMOs, the risks and benefits of GMOs, and the tone of news articles. Results The newspaper articles reported on 29 different kinds of GMOs. Compared with the possible risks, the benefits of GMOs were much more frequently discussed in the articles. 48.1% of articles were largely supportive of the GM technology research and development programs and the adoption of GM cottons, while 51.9% of articles were neutral on the subject of GMOs. Risks associated with GMOs were mentioned in the newspaper articles, but none of the articles expressed negative tones in regards to GMOs. Conclusion This study demonstrates that the Chinese print media is largely supportive of GMOs. It also indicates that the print media describes the Chinese government as actively pursuing national GMO research and development programs and the promotion of GM cotton usage. So far, discussion of the risks associated with GMOs is minimal in the news reports. The media, scientists, and the government should work together to ensure that science communication is accurate and balanced.
Collapse
Affiliation(s)
- Li Du
- Health Law and Science Policy Group, Faculty of Law, University of Alberta, T6G 2H5, Edmonton, AB, Canada.
| | | |
Collapse
|
20
|
Tabashnik BE, Gould F. Delaying corn rootworm resistance to Bt corn. JOURNAL OF ECONOMIC ENTOMOLOGY 2012; 105:767-76. [PMID: 22812111 DOI: 10.1603/ec12080] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Transgenic crops producing Bacillus thuringiensis (Bt) toxins for insect control have been successful, but their efficacy is reduced when pests evolve resistance. To delay pest resistance to Bt crops, the U.S. Environmental Protection Agency (EPA) has required refuges of host plants that do not produce Bt toxins to promote survival of susceptible pests. Such refuges are expected to be most effective if the Bt plants deliver a dose of toxin high enough to kill nearly all hybrid progeny produced by matings between resistant and susceptible pests. In 2003, the EPA first registered corn, Zea mays L., producing a Bt toxin (Cry3Bb1) that kills western corn rootworm, Diabrotica virgifera virgifera LeConte, one of the most economically important crop pests in the United States. The EPA requires minimum refuges of 20% for Cry3Bb1 corn and 5% for corn producing two Bt toxins active against corn rootworms. We conclude that the current refuge requirements are not adequate, because Bt corn hybrids active against corn rootworms do not meet the high-dose standard, and western corn rootworm has rapidly evolved resistance to Cry3Bb1 corn in the laboratory, greenhouse, and field. Accordingly, we recommend increasing the minimum refuge for Bt corn targeting corn rootworms to 50% for plants producing one toxin active against these pests and to 20% for plants producing two toxins active against these pests. Increasing the minimum refuge percentage can help to delay pest resistance, encourage integrated pest management, and promote more sustainable crop protection.
Collapse
Affiliation(s)
- Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
21
|
Tan WS, Carlson DF, Walton MW, Fahrenkrug SC, Hackett PB. Precision editing of large animal genomes. ADVANCES IN GENETICS 2012; 80:37-97. [PMID: 23084873 PMCID: PMC3683964 DOI: 10.1016/b978-0-12-404742-6.00002-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transgenic animals are an important source of protein and nutrition for most humans and will play key roles in satisfying the increasing demand for food in an ever-increasing world population. The past decade has experienced a revolution in the development of methods that permit the introduction of specific alterations to complex genomes. This precision will enhance genome-based improvement of farm animals for food production. Precision genetics also will enhance the development of therapeutic biomaterials and models of human disease as resources for the development of advanced patient therapies.
Collapse
Affiliation(s)
- Wenfang Spring Tan
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
22
|
Ryffel GU. Dismay with GM maize. A science-based solution to public resistance against genetically modified crops that could be compatible with organic farming. EMBO Rep 2011; 12:996-9. [PMID: 21909075 DOI: 10.1038/embor.2011.182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 08/24/2011] [Indexed: 01/20/2023] Open
Affiliation(s)
- Gerhart U Ryffel
- Institute for Cell Biology, University Hospital Essen, University Duisburg-Essen, Germany.
| |
Collapse
|
23
|
Yu HL, Li YH, Wu KM. Risk assessment and ecological effects of transgenic Bacillus thuringiensis crops on non-target organisms. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:520-38. [PMID: 21564541 DOI: 10.1111/j.1744-7909.2011.01047.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The application of recombinant DNA technology has resulted in many insect-resistant varieties by genetic engineering (GE). Crops expressing Cry toxins derived from Bacillus thuringiensis (Bt) have been planted worldwide, and are an effective tool for pest control. However, one ecological concern regarding the potential effects of insect-resistant GE plants on non-target organisms (NTOs) has been continually debated. In the present study, we briefly summarize the data regarding the development and commercial use of transgenic Bt varieties, elaborate on the procedure and methods for assessing the non-target effects of insect-resistant GE plants, and synthetically analyze the related research results, mostly those published between 2005 and 2010. A mass of laboratory and field studies have shown that the currently available Bt crops have no direct detrimental effects on NTOs due to their narrow spectrum of activity, and Bt crops are increasing the abundance of some beneficial insects and improving the natural control of specific pests. The use of Bt crops, such as Bt maize and Bt cotton, results in significant reductions of insecticide application and clear benefits on the environment and farmer health. Consequently, Bt crops can be a useful component of integrated pest management systems to protect the crop from targeted pests.
Collapse
Affiliation(s)
- Hui-Lin Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | | |
Collapse
|
24
|
Abstract
The United States and the world face serious societal challenges in the areas of food, environment, energy, and health. Historically, advances in plant genetics have provided new knowledge and technologies needed to address these challenges. Plant genetics remains a key component of global food security, peace, and prosperity for the foreseeable future. Millions of lives depend upon the extent to which crop genetic improvement can keep pace with the growing global population, changing climate, and shrinking environmental resources. While there is still much to be learned about the biology of plant-environment interactions, the fundamental technologies of plant genetic improvement, including crop genetic engineering, are in place, and are expected to play crucial roles in meeting the chronic demands of global food security. However, genetically improved seed is only part of the solution. Such seed must be integrated into ecologically based farming systems and evaluated in light of their environmental, economic, and social impacts-the three pillars of sustainable agriculture. In this review, I describe some lessons learned, over the last decade, of how genetically engineered crops have been integrated into agricultural practices around the world and discuss their current and future contribution to sustainable agricultural systems.
Collapse
|
25
|
|