1
|
Joffe N, Kuhlisch C, Schleyer G, Ahlers NS, Shemi A, Vardi A. Cell-to-cell heterogeneity drives host-virus coexistence in a bloom-forming alga. THE ISME JOURNAL 2024; 18:wrae038. [PMID: 38452203 PMCID: PMC10980834 DOI: 10.1093/ismejo/wrae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Algal blooms drive global biogeochemical cycles of key nutrients and serve as hotspots for biological interactions in the ocean. The massive blooms of the cosmopolitan coccolithophore Emiliania huxleyi are often infected by the lytic E. huxleyi virus, which is a major mortality agent triggering bloom demise. This multi-annual "boom and bust" pattern of E. huxleyi blooms suggests that coexistence is essential for these host-virus dynamics. To investigate host-virus coexistence, we developed a new model system from an E. huxleyi culture that recovered from viral infection. The recovered population coexists with the virus, as host cells continue to divide in parallel to viral production. By applying single-molecule fluorescence in situ hybridization (smFISH) to quantify the fraction of infected cells, and assessing infection-specific lipid biomarkers, we identified a small subpopulation of cells that were infected and produced new virions, whereas most of the host population could resist infection. To further assess population heterogeneity, we generated clonal strain collections using single-cell sorting and subsequently phenotyped their susceptibility to E. huxleyi virus infection. This unraveled substantial cell-to-cell heterogeneity across a continuum of susceptibility to resistance, highlighting that infection outcome may vary depending on the individual cell. These results add a new dimension to our understanding of the complexity of host-virus interactions that are commonly assessed in bulk and described by binary definitions of resistance or susceptibility. We propose that phenotypic heterogeneity drives the host-virus coexistence and demonstrate how the coexistence with a lytic virus provides an ecological advantage for the host by killing competing strains.
Collapse
Affiliation(s)
- Nir Joffe
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Guy Schleyer
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Nadia S Ahlers
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Adva Shemi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
2
|
Balestreri C, Schroeder DC, Sampedro F, Marqués G, Palowski A, Urriola PE, van de Ligt JLG, Yancy HF, Shurson GC. Unexpected thermal stability of two enveloped megaviruses, Emiliania huxleyi virus and African swine fever virus, as measured by viability PCR. Virol J 2024; 21:1. [PMID: 38172919 PMCID: PMC10765680 DOI: 10.1186/s12985-023-02272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The particle structure of Emiliania huxleyi virus (EhV), an algal infecting member of nucleocytoplasmic large DNA viruses (NCLDVs), contains an outer lipid membrane envelope similar to that found in animal viruses such as African swine fever virus (ASFV). Despite both being enveloped NCLDVs, EhV and ASFV are known for their stability outside their host environment. METHOD Here we report for the first time, the application of a viability qPCR (V-qPCR) method to describe the unprecedented and similar virion thermal stability of both EhV and ASFV. This result contradicts the cell culture-based assay method that suggests that virus "infectivity" is lost in a matter of seconds (for EhV) and minutes (for ASFV) at temperature greater than 50 °C. Confocal microscopy and analytical flow cytometry methods was used to validate the V-qPCR data for EhV. RESULTS We observed that both EhV and ASFV particles has unprecedented thermal tolerances. These two NCLDVs are exceptions to the rule that having an enveloped virion anatomy is a predicted weakness, as is often observed in enveloped RNA viruses (i.e., the viruses causing Porcine Reproductive and Respiratory Syndrome (PRRS), COVID-19, Ebola, or seasonal influenza). Using the V-qPCR method, we confirm that no PRRSV particles were detectable after 20 min of exposure to temperatures up to 100 °C. We also show that the EhV particles that remain after 50 °C 20 min exposure was in fact still infectious only after the three blind passages in bioassay experiments. CONCLUSIONS This study raises the possibility that ASFV is not always eliminated or contained after applying time and temperature inactivation treatments in current decontamination or biosecurity protocols. This observation has practical implications for industries involved in animal health and food security. Finally, we propose that EhV could be used as a surrogate for ASFV under certain circumstances.
Collapse
Affiliation(s)
- Cecilia Balestreri
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Declan C Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Fernando Sampedro
- Environmental Health Sciences Division, University of Minnesota, St. Paul, MN, 55455, USA
| | - Guillermo Marqués
- Department of Neuroscience, University Imaging Centers, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Amanda Palowski
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Pedro E Urriola
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Animal Science, University of Minnesota, St. Paul, MN, 55108, USA
| | | | - Haile F Yancy
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, MD, 20708, USA
| | - Gerald C Shurson
- Department of Animal Science, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
3
|
Vagelas I, Reizopoulou A, Exadactylos A, Madesis P, Karapetsi L, Michail G. Stalactites Core Prospect as Environmental "Microbial Ark": The Actinomycetota Diversity Paradigm, First Reported from a Greek Cave. Pol J Microbiol 2023; 72:155-168. [PMID: 37314357 DOI: 10.33073/pjm-2023-016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/15/2023] [Indexed: 06/15/2023] Open
Abstract
Speleothems found in caves worldwide are considered the natural libraries of paleontology. Bacteria found in these ecosystems are generally limited to Proteobacteria and Actinomycetota, but rare microbiome and "Dark Matter" is generally under-investigated and often neglected. This research article discusses, for the first time to our knowledge, the diachronic diversity of Actinomycetota entrapped inside a cave stalactite. The planet's environmental microbial community profile of different eras can be stored in these refugia (speleothems). These speleothems could be an environmental "Microbial Ark" storing rare microbiome and "Dark Matter" bacterial communities evermore.
Collapse
Affiliation(s)
- Ioannis Vagelas
- 2Laboratory of Plant Pathology, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Angeliki Reizopoulou
- 1Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Athanasios Exadactylos
- 1Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Panagiotis Madesis
- 3Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Lefkothea Karapetsi
- 3Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
- 4Centre for Research and Technology (CERTH), Institute of Applied Biosciences (INAB), Thessaloniki, Greece
| | - George Michail
- 1Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| |
Collapse
|
4
|
Cai L, Weinbauer MG, Xie L, Zhang R. The smallest in the deepest: the enigmatic role of viruses in the deep biosphere. Natl Sci Rev 2023; 10:nwad009. [PMID: 36960220 PMCID: PMC10029852 DOI: 10.1093/nsr/nwad009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
It is commonly recognized that viruses control the composition, metabolism, and evolutionary trajectories of prokaryotic communities, with resulting vital feedback on ecosystem functioning and nutrient cycling in a wide range of ecosystems. Although the deep biosphere has been estimated to be the largest reservoir for viruses and their prokaryotic hosts, the biology and ecology of viruses therein remain poorly understood. The deep virosphere is an enigmatic field of study in which many critical questions are still to be answered. Is the deep virosphere simply a repository for deeply preserved, non-functioning virus particles? Or are deep viruses infectious agents that can readily infect suitable hosts and subsequently shape microbial populations and nutrient cycling? Can the cellular content released by viral lysis, and even the organic structures of virions themselves, serve as the source of bioavailable nutrients for microbial activity in the deep biosphere as in other ecosystems? In this review, we synthesize our current knowledge of viruses in the deep biosphere and seek to identify topics with the potential for substantial discoveries in the future.
Collapse
Affiliation(s)
- Lanlan Cai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Markus G Weinbauer
- Sorbonne Universités, UPMC, Université Paris 06, CNRS, Laboratoire d’Océanographie de Villefranche (LOV), Villefranche BP28, France
| | - Le Xie
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | | |
Collapse
|
5
|
Li H, Zhang H, Chang F, Liu Q, Zhang Y, Liu F, Zhang X. Sedimentary DNA for tracking the long-term changes in biodiversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17039-17050. [PMID: 36622608 DOI: 10.1007/s11356-023-25130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Understanding long-term dynamics is vitally important for explaining current biodiversity patterns and setting conservation goals in a changing world. However, the changes in biodiversity in time and space, particularly the dynamics at the centuries or even longer time scales, are poorly documented because of a lack of continuous monitoring data. The sedimentary DNA (sedDNA) has a great potential for paleo-community reconstruction, and it has recently been used as a powerful tool to characterize past dynamics in terms of biodiversity over geological timescales. In particular, it is useful for prokaryotes and eukaryotes that do not fossilize; hence, it is revolutionizing the scope of paleoecological research. Here, a "Research Weaving" method was performed with systematic maps and bibliometric webs based on the Web of Science for Science Citation Index Expanded, presenting a comprehensive landscape of the sedDNA that traces biological dynamics. We identified that most sedDNA-based studies have focused on microbial dynamics and on using samples from multitypes of sediments. This review summarized the advantages and common applications of sedDNA, focused on the biodiversity in microbial communities, and provided an outlook for the future of sedDNA research.
Collapse
Affiliation(s)
- Haoyu Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China.
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Qi Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Yang Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Fengwen Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Xiaonan Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| |
Collapse
|
6
|
Abstract
Viruses are the most abundant biological entity in the ocean and infect a wide range of microbial life across bacteria, archaea, and eukaryotes. In this essay, we take a journey across several orders of magnitude in the scales of biological organization, time, and space of host-virus interactions in the ocean, aiming to shed light on their ecological relevance. We start from viruses infecting microbial host cells by delivering their genetic material in seconds across nanometer-size membranes, which highjack their host's metabolism in a few minutes to hours, leading to a profound transcriptomic and metabolic rewiring. The outcome of lytic infection leads to a release of virions and signaling molecules that can reach neighboring cells a few millimeters away, resulting in a population whose heterogeneous infection level impacts the surrounding community for days. These population dynamics can leave unique metabolic and biogeochemical fingerprints across scales of kilometers and over several decades. One of the biggest challenges in marine microbiology is to assess the impact of viruses across these scales, from the single cell to the ecosystem level. Here, we argue that the advent of new methodologies and conceptual frameworks represents an exciting time to pursue these efforts and propose a set of important challenges for the field. A better understanding of host-virus interactions across scales will inform models of global ocean ecosystem function in different climate change scenarios.
Collapse
Affiliation(s)
- Flora Vincent
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Huo S, Zhang H, Monchamp ME, Wang R, Weng N, Zhang J, Zhang H, Wu F. Century-Long Homogenization of Algal Communities Is Accelerated by Nutrient Enrichment and Climate Warming in Lakes and Reservoirs of the North Temperate Zone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3780-3790. [PMID: 35143177 DOI: 10.1021/acs.est.1c06958] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Anthropogenic pressures can threaten lake and reservoir ecosystems, leading to harmful algal blooms that have become globally widespread. However, patterns of phytoplankton diversity change and community assembly over long-term scales remain unknown. Here, we explore biodiversity patterns in eukaryotic algal (EA) and cyanobacterial (CYA) communities over a century by sequencing DNA preserved in the sediment cores of seven lakes and reservoirs in the North Temperate Zone. Comparisons within lakes revealed temporal algal community homogenization in mesotrophic lakes, eutrophic lakes, and reservoirs over the last century but no systematic losses of α-diversity. Temporal homogenization of EA and CYA communities continued into the modern day probably due to time-lags related to historical legacies, even if lakes go through a eutrophication phase followed by a reoligotrophication phase. Further, algal community assembly in lakes and reservoirs was mediated by both deterministic and stochastic processes, while homogeneous selection played a relatively important role in recent decades due to intensified anthropogenic activities and climate warming. Overall, these results expand our understanding of global change effects on algal community diversity and succession in lakes and reservoirs that exhibit different successional trajectories while also providing a baseline framework to assess their potential responses to future environmental change.
Collapse
Affiliation(s)
- Shouliang Huo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Water Sciences, Beijing Normal University, Beijing 100012, China
| | - Hanxiao Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Water Sciences, Beijing Normal University, Beijing 100012, China
| | - Marie-Eve Monchamp
- Department of Biology, McGill University, 1205 Docteur Penfield, Montreal, Quebec H3A 1B1, Canada
| | - Rong Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Nanyan Weng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jingtian Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hong Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
8
|
Zang L, Liu Y, Song X, Cai L, Liu K, Luo T, Zhang R. Unique T4-like phages in high-altitude lakes above 4500 m on the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149649. [PMID: 34428653 DOI: 10.1016/j.scitotenv.2021.149649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/24/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Viruses are the most abundant biological entities in the biosphere; however, little is known about viral ecology in high altitude lakes. Here, we characterized viruses from 13 lakes, nine of which located ≥4500 m above sea level, on the Tibetan Plateau, the highest plateau on Earth. The abundance of virus-like particle (VLP) in Tibetan lakes ranged from 4.8 ± 0.2 × 105 VLPs mL-1 to 6.0 ± 0.2 × 107 VLPs mL-1 and the virus-to-bacterium ratio was in the lower range of values reported for other lakes. The viral population size was positively correlated with turbidity and negatively correlated with particulate organic carbon concentration. Highly diverse VLP morphologies, including large (~300 nm) morphotypes, were observed. Phylogenetic analysis of T4-like bacteriophages based on major capsid gene (g23) identified a novel viral group, which were detected in abundance in hyposaline and mesosaline Tibetan lakes. Adaptation to lake evolution, water source (glacier-fed or non-glacier-fed) and environmental conditions (e.g., salinity, phosphorus concentration and productivity) are likely responsible for the variation in T4-like myovirus community composition in contrasting Tibetan lakes. This first investigation of viruses in high-altitude alpine lakes above 4500 m could contribute to our understanding of viral ecology in global alpine lakes.
Collapse
Affiliation(s)
- Lin Zang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100101, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China; University of Chinese Academy of Science, Beijing 100101, China.
| | - Xuanying Song
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingwei Luo
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
9
|
Michail G, Karapetsi L, Madesis P, Reizopoulou A, Vagelas I. Metataxonomic Analysis of Bacteria Entrapped in a Stalactite's Core and Their Possible Environmental Origins. Microorganisms 2021; 9:microorganisms9122411. [PMID: 34946013 PMCID: PMC8705861 DOI: 10.3390/microorganisms9122411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/02/2023] Open
Abstract
Much is known about microbes originally identified in caves, but little is known about the entrapment of microbes (bacteria) in stalactites and their possible environmental origins. This study presents data regarding the significant environmental distribution of prokaryotic bacterial taxa of a Greek stalactite core. We investigated the involvement of those bacteria communities in stalactites using a metataxonomic analysis approach of partial 16S rRNA genes. The metataxonomic analysis of stalactite core material revealed an exceptionally broad ecological spectrum of bacteria classified as members of Proteobacteria, Actinobacteria, Firmicutes, Verrucomicrobia, and other unclassified bacteria. We concluded that (i) the bacterial transport process is possible through water movement from the upper ground cave environment, forming cave speleothems such as stalactites, (ii) bacterial genera such as Polaromonas, Thioprofundum, and phylum Verrucomicrobia trapped inside the stalactite support the paleoecology, paleomicrobiology, and paleoclimate variations, (iii) the entrapment of certain bacteria taxa associated with water, soil, animals, and plants such as Micrococcales, Propionibacteriales, Acidimicrobiales, Pseudonocardiales, and α-, β-, and γ-Proteobacteria.
Collapse
Affiliation(s)
- George Michail
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
- Correspondence:
| | - Lefkothea Karapetsi
- Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece; (L.K.); (P.M.)
- Centre for Research and Technology (CERTH), Institute of Applied Biosciences (INAB), 57001 Thessaloniki, Greece
| | - Panagiotis Madesis
- Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece; (L.K.); (P.M.)
- Centre for Research and Technology (CERTH), Institute of Applied Biosciences (INAB), 57001 Thessaloniki, Greece
| | | | - Ioannis Vagelas
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece;
| |
Collapse
|
10
|
Visualizing active viral infection reveals diverse cell fates in synchronized algal bloom demise. Proc Natl Acad Sci U S A 2021; 118:2021586118. [PMID: 33707211 PMCID: PMC7980383 DOI: 10.1073/pnas.2021586118] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Marine viruses are the most abundant biological entity in the ocean and are considered as major evolutionary drivers of microbial life [C. A. Suttle, Nat. Rev. Microbiol. 5, 801-812 (2007)]. Yet, we lack quantitative approaches to assess their impact on the marine ecosystem. Here, we provide quantification of active viral infection in the bloom forming single-celled phytoplankton Emiliania huxleyi infected by the large virus EhV, using high-throughput single-molecule messenger RNA in situ hybridization (smFISH) of both virus and host transcripts. In natural samples, viral infection reached only 25% of the population despite synchronized bloom demise exposing the coexistence of infected and noninfected subpopulations. We prove that photosynthetically active cells chronically release viral particles through nonlytic infection and that viral-induced cell lysis can occur without viral release, thus challenging major assumptions regarding the life cycle of giant viruses. We could also assess active infection in cell aggregates linking viral infection and carbon export to the deep ocean [C. P. Laber et al., Nat. Microbiol. 3, 537-547 (2018)] and suggest a potential host defense strategy by enrichment of infected cells in sinking aggregates. Our approach can be applied to diverse marine microbial systems, opening a mechanistic dimension to the study of biotic interactions in the ocean.
Collapse
|
11
|
Sediment archives reveal irreversible shifts in plankton communities after World War II and agricultural pollution. Curr Biol 2021; 31:2682-2689.e7. [PMID: 33887182 DOI: 10.1016/j.cub.2021.03.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/12/2021] [Accepted: 03/23/2021] [Indexed: 01/04/2023]
Abstract
To evaluate the stability and resilience1 of coastal ecosystem communities to perturbations that occurred during the Anthropocene,2 pre-industrial biodiversity baselines inferred from paleoarchives are needed.3,4 The study of ancient DNA (aDNA) from sediments (sedaDNA)5 has provided valuable information about past dynamics of microbial species6-8 and communities9-18 in relation to ecosystem variations. Shifts in planktonic protist communities might significantly affect marine ecosystems through cascading effects,19-21 and therefore the analysis of this compartment is essential for the assessment of ecosystem variations. Here, sediment cores collected from different sites of the Bay of Brest (northeast Atlantic, France) allowed ca. 1,400 years of retrospective analyses of the effects of human pollution on marine protists. Comparison of sedaDNA extractions and metabarcoding analyses with different barcode regions (V4 and V7 18S rDNA) revealed that protist assemblages in ancient sediments are mainly composed of species known to produce resting stages. Heavy-metal pollution traces in sediments were ascribed to the World War II period and coincided with community shifts within dinoflagellates and stramenopiles. After the war and especially from the 1980s to 1990s, protist genera shifts followed chronic contaminations of agricultural origin. Community composition reconstruction over time showed that there was no recovery to a Middle Ages baseline composition. This demonstrates the irreversibility of the observed shifts after the cumulative effect of war and agricultural pollutions. Developing a paleoecological approach, this study highlights how human contaminations irreversibly affect marine microbial compartments, which contributes to the debate on coastal ecosystem preservation and restoration.
Collapse
|
12
|
Takahashi M, Wada K, Takano Y, Matsuno K, Masuda Y, Arai K, Murayama M, Tomaru Y, Tanaka K, Nagasaki K. Chronological distribution of dinoflagellate-infecting RNA virus in marine sediment core. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145220. [PMID: 33517015 DOI: 10.1016/j.scitotenv.2021.145220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
A bivalve-killing marine dinoflagellate, Heterocapsa circularisquama, is susceptible to the infectious single-stranded RNA virus, Heterocapsa circularisquama RNA virus (HcRNAV). The ecological relationship between H. circularisquama and HcRNAV was intensively studied from 2001 through 2005; however, only limited data are available for the ecological dynamics of HcRNAV before 2001. In this study, we applied radiometric dating and reverse transcription PCR (RT-PCR) to determine the chronological distribution of HcRNAV in a marine sediment core sampled from the Uranouchi Inlet, Kochi, Japan, where H. circularisquama was first discovered. Our results show that HcRNAV had existed in the inlet long before its first bloom in 1988. Furthermore, five HcRNAV variants, phylogenetically distinguishable based on the nucleotide sequence of the major capsid protein (MCP) gene, were identified. These variants were found to be distributed throughout the core over time, suggesting that the HcRNAV sequences registered in the NCBI database are only a portion of the variants that have emerged in the history of HcRNAV diversification. Herein, we have verified the applicability of the retrospective approach for speculating the distribution of algal RNA viruses over time in aquatic environments.
Collapse
Affiliation(s)
- Michiko Takahashi
- Faculty of Science and Technology, Kochi University, Nankoku 783-8502, Kochi, Japan
| | - Kei Wada
- Department of Medical Sciences, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Yoshihito Takano
- Faculty of Science and Technology, Kochi University, Nankoku 783-8502, Kochi, Japan
| | - Kyouhei Matsuno
- Japan Software Management, Yokohama 221-0056, Kanagawa, Japan
| | - Yuichi Masuda
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku 783-8502, Kochi, Japan
| | - Kazuno Arai
- Center for Advanced Marine Core Research, Kochi University, Nankoku 783-8502, Kochi, Japan
| | - Masafumi Murayama
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku 783-8502, Kochi, Japan; Center for Advanced Marine Core Research, Kochi University, Nankoku 783-8502, Kochi, Japan
| | - Yuji Tomaru
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Hatsukaichi 739-0452, Hiroshima, Japan
| | - Kouki Tanaka
- Usa Marine Biological Institute, Kochi University, Usa 781-1164, Kochi, Japan
| | - Keizo Nagasaki
- Faculty of Science and Technology, Kochi University, Nankoku 783-8502, Kochi, Japan; Faculty of Agriculture and Marine Science, Kochi University, Nankoku 783-8502, Kochi, Japan; Center for Advanced Marine Core Research, Kochi University, Nankoku 783-8502, Kochi, Japan.
| |
Collapse
|
13
|
Lake Sedimentary DNA Research on Past Terrestrial and Aquatic Biodiversity: Overview and Recommendations. QUATERNARY 2021. [DOI: 10.3390/quat4010006] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of lake sedimentary DNA to track the long-term changes in both terrestrial and aquatic biota is a rapidly advancing field in paleoecological research. Although largely applied nowadays, knowledge gaps remain in this field and there is therefore still research to be conducted to ensure the reliability of the sedimentary DNA signal. Building on the most recent literature and seven original case studies, we synthesize the state-of-the-art analytical procedures for effective sampling, extraction, amplification, quantification and/or generation of DNA inventories from sedimentary ancient DNA (sedaDNA) via high-throughput sequencing technologies. We provide recommendations based on current knowledge and best practises.
Collapse
|
14
|
El-Sayed A, Kamel M. Future threat from the past. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1287-1291. [PMID: 33068243 PMCID: PMC7567650 DOI: 10.1007/s11356-020-11234-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/12/2020] [Indexed: 05/03/2023]
Abstract
Global warming is one of the major challenges facing humanity. The increase in the Earth's temperature and thawing of ancient ice release viable viruses, bacteria, fungi, and other microorganisms which were trapped for thousands and millions of years. Such microorganisms may belong to novel microbial species, unknown genotypes of present pathogens, already eradicated pathogens, or even known pathogens that gained extremely robust characteristics due to their subjection to long-term stress. These worries drew more attention following the death of a child by ancient anthrax spores in Siberian in 2016 and the reconstruction of smallpox and Spanish flu genomes from ancient frozen biological samples. The present review illustrates some examples of recently recovered pathogens after being buried for millions of years, including some identified viable ancient viruses, bacteria and even other forms of life. While some pathogens could be revived, genomes of other ancient pathogens which could not be revived were re-constructed. The present study aims to highlight and alarm the hidden aspect of global warming on the international public health, which represents future threats from the past for humanity.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
15
|
Garner RE, Gregory-Eaves I, Walsh DA. Sediment Metagenomes as Time Capsules of Lake Microbiomes. mSphere 2020; 5:e00512-20. [PMID: 33148818 PMCID: PMC7643826 DOI: 10.1128/msphere.00512-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
The reconstruction of ecological time series from lake sediment archives can retrace the environmental impact of human activities. Molecular genetic approaches in paleolimnology have provided unprecedented access to DNA time series, which record evidence of the microbial ecologies that underlaid historical lake ecosystems. Such studies often rely on single-gene surveys, and consequently, the full diversity of preserved microorganisms remains unexplored. In this study, we probed the diversity archived in contemporary and preindustrial sediments by comparative shotgun metagenomic analysis of surface water and sediment samples from three eastern Canadian lakes. In a strategy that was aimed at disentangling historical DNA from the indigenous sediment background, microbial preservation signals were captured by mapping sequence similarities between sediment metagenome reads and reference surface water metagenome assemblies. We detected preserved Cyanobacteria, diverse bacterioplankton, microeukaryotes, and viruses in sediment metagenomes. Among the preserved microorganisms were important groups never before reported in paleolimnological reconstructions, including bacteriophages (Caudovirales) and ubiquitous freshwater Betaproteobacteria (Polynucleobacter and Limnohabitans). In contrast, ultramicroscopic Actinobacteria ("Candidatus Nanopelagicales") and Alphaproteobacteria (Pelagibacterales) were apparently not well preserved in sediment metagenomes even though they were numerically dominant in surface water metagenomes. Overall, our study explored a novel application of whole-metagenome shotgun sequencing for discovering the DNA remains of a broad diversity of microorganisms preserved in lake sediments. The recovery of diverse microbial time series supports the taxonomic expansion of microbiome reconstructions and the development of novel microbial paleoindicators.IMPORTANCE Lakes are critical freshwater resources under mounting pressure from climate change and other anthropogenic stressors. The reconstruction of ecological time series from sediment archives with paleolimnological techniques has been shown to be an effective means of understanding how humans are modifying lake ecosystems over extended timescales. In this study, we combined shotgun DNA sequencing with a novel comparative analysis of surface water and sediment metagenomes to expose the diversity of microorganisms preserved in lake sediments. The detection of DNA from a broad diversity of preserved microbes serves to more fully reconstruct historical microbiomes and describe preimpact lake conditions.
Collapse
Affiliation(s)
- Rebecca E Garner
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Groupe de Recherche Interuniversitaire en Limnologie, Montreal, Quebec, Canada
| | - Irene Gregory-Eaves
- Department of Biology, McGill University, Montreal, Quebec, Canada
- Groupe de Recherche Interuniversitaire en Limnologie, Montreal, Quebec, Canada
| | - David A Walsh
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Groupe de Recherche Interuniversitaire en Limnologie, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Pawłowska J, Wollenburg JE, Zajączkowski M, Pawlowski J. Planktonic foraminifera genomic variations reflect paleoceanographic changes in the Arctic: evidence from sedimentary ancient DNA. Sci Rep 2020; 10:15102. [PMID: 32934321 PMCID: PMC7492196 DOI: 10.1038/s41598-020-72146-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/08/2020] [Indexed: 11/09/2022] Open
Abstract
Deciphering the evolution of marine plankton is typically based on the study of microfossil groups. Cryptic speciation is common in these groups, and large intragenomic variations occur in ribosomal RNA genes of many morphospecies. In this study, we correlated the distribution of ribosomal amplicon sequence variants (ASVs) with paleoceanographic changes by analyzing the high-throughput sequence data assigned to Neogloboquadrina pachyderma in a 140,000-year-old sediment core from the Arctic Ocean. The sedimentary ancient DNA demonstrated the occurrence of various N. pachyderma ASVs whose occurrence and dominance varied through time. Most remarkable was the striking appearance of ASV18, which was nearly absent in older sediments but became dominant during the last glacial maximum and continues to persist today. Although the molecular ecology of planktonic foraminifera is still poorly known, the analysis of their intragenomic variations through time has the potential to provide new insight into the evolution of marine biodiversity and may lead to the development of new and important paleoceanographic proxies.
Collapse
Affiliation(s)
- Joanna Pawłowska
- Institute of Oceanology Polish Academy of Sciences, Sopot, Poland.
| | | | | | - Jan Pawlowski
- Institute of Oceanology Polish Academy of Sciences, Sopot, Poland.,University of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Nissimov JI, Talmy D, Haramaty L, Fredricks HF, Zelzion E, Knowles B, Eren AM, Vandzura R, Laber CP, Schieler BM, Johns CT, More KD, Coolen MJL, Follows MJ, Bhattacharya D, Van Mooy BAS, Bidle KD. Biochemical diversity of glycosphingolipid biosynthesis as a driver of Coccolithovirus competitive ecology. Environ Microbiol 2019; 21:2182-2197. [PMID: 31001863 DOI: 10.1111/1462-2920.14633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/15/2019] [Indexed: 11/29/2022]
Abstract
Coccolithoviruses (EhVs) are large, double-stranded DNA-containing viruses that infect the single-celled, marine coccolithophore Emiliania huxleyi. Given the cosmopolitan nature and global importance of E. huxleyi as a bloom-forming, calcifying, photoautotroph, E. huxleyi-EhV interactions play a key role in oceanic carbon biogeochemistry. Virally-encoded glycosphingolipids (vGSLs) are virulence factors that are produced by the activity of virus-encoded serine palmitoyltransferase (SPT). Here, we characterize the dynamics, diversity and catalytic production of vGSLs in an array of EhV strains in relation to their SPT sequence composition and explore the hypothesis that they are a determinant of infectivity and host demise. vGSL production and diversity was positively correlated with increased virulence, virus replication rate and lytic infection dynamics in laboratory experiments, but they do not explain the success of less-virulent EhVs in natural EhV communities. The majority of EhV-derived SPT amplicon sequences associated with infected cells in the North Atlantic derived from slower infecting, less virulent EhVs. Our lab-, field- and mathematical model-based data and simulations support ecological scenarios whereby slow-infecting, less-virulent EhVs successfully compete in North Atlantic populations of E. huxleyi, through either the preferential removal of fast-infecting, virulent EhVs during active infection or by having access to a broader host range.
Collapse
Affiliation(s)
- Jozef I Nissimov
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA.,Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, Scotland, UK
| | - David Talmy
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| | - Liti Haramaty
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Helen F Fredricks
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Ehud Zelzion
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ben Knowles
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - A Murat Eren
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, Massachusetts, 02543, USA.,Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Rebecca Vandzura
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Christien P Laber
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Brittany M Schieler
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Christopher T Johns
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Kuldeep D More
- WA-Organic and Isotope Geochemistry Centre, School of Earth and Planetary Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Marco J L Coolen
- WA-Organic and Isotope Geochemistry Centre, School of Earth and Planetary Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Michael J Follows
- Department of Earth, Atmosphere and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Benjamin A S Van Mooy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Kay D Bidle
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
18
|
Thamatrakoln K, Talmy D, Haramaty L, Maniscalco C, Latham JR, Knowles B, Natale F, Coolen MJL, Follows MJ, Bidle KD. Light regulation of coccolithophore host-virus interactions. THE NEW PHYTOLOGIST 2019; 221:1289-1302. [PMID: 30368816 DOI: 10.1111/nph.15459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Viruses that infect photoautotrophs have a fundamental relationship with light, given the need for host resources. We investigated the role of light on Coccolithovirus (EhV) infection of the globally distributed coccolithophore, Emiliania huxleyi. Light was required for EhV adsorption, and viral production was highest when host cultures were maintained in continuous light or at irradiance levels of 150-300 μmol m-2 s-1 . During the early stages of infection, photosynthetic electron transport remained high, while RuBisCO expression decreased concomitant with an induction of the pentose phosphate pathway, the primary source of de novo nucleotides. A mathematical model developed and fitted to the laboratory data supported the hypothesis that EhV replication was controlled by a trade-off between host nucleotide recycling and de novo synthesis, and that photoperiod and photon flux could toggle this switch. Laboratory results supported field observations that light was the most robust driver of EhV replication within E. huxleyi populations collected across a 2000 nautical mile transect in the North Atlantic. Collectively, these findings demonstrate that light can drive host-virus interactions through a mechanistic interplay between host metabolic processes, which serve to structure infection and phytoplankton mortality in the upper ocean.
Collapse
Affiliation(s)
- Kimberlee Thamatrakoln
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ, 08901, USA
| | - David Talmy
- Department of Microbiology, The University of Tennessee, Ken and Blaire Mossman Bldg, 1311 Cumberland Ave #307, Knoxville, TN 37996, USA
| | - Liti Haramaty
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Christopher Maniscalco
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Jason R Latham
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Ben Knowles
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Frank Natale
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Marco J L Coolen
- WA Organic and Isotope Geochemistry Centre, School of Earth and Planetary Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Michael J Follows
- Department of Earth, Atmosphere and Planetary Sciences, MIT, Cambridge, MA, 02139, USA
| | - Kay D Bidle
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ, 08901, USA
| |
Collapse
|
19
|
Laber CP, Hunter JE, Carvalho F, Collins JR, Hunter EJ, Schieler BM, Boss E, More K, Frada M, Thamatrakoln K, Brown CM, Haramaty L, Ossolinski J, Fredricks H, Nissimov JI, Vandzura R, Sheyn U, Lehahn Y, Chant RJ, Martins AM, Coolen MJL, Vardi A, DiTullio GR, Van Mooy BAS, Bidle KD. Coccolithovirus facilitation of carbon export in the North Atlantic. Nat Microbiol 2018. [DOI: 10.1038/s41564-018-0128-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Sheyn U, Rosenwasser S, Lehahn Y, Barak-Gavish N, Rotkopf R, Bidle KD, Koren I, Schatz D, Vardi A. Expression profiling of host and virus during a coccolithophore bloom provides insights into the role of viral infection in promoting carbon export. ISME JOURNAL 2018; 12:704-713. [PMID: 29335637 DOI: 10.1038/s41396-017-0004-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 09/19/2017] [Accepted: 10/08/2017] [Indexed: 11/09/2022]
Abstract
The cosmopolitan coccolithophore Emiliania huxleyi is a unicellular eukaryotic alga that forms vast blooms in the oceans impacting large biogeochemical cycles. These blooms are often terminated due to infection by the large dsDNA virus, E. huxleyi virus (EhV). It was recently established that EhV-induced modulation of E. huxleyi metabolism is a key factor for optimal viral infection cycle. Despite the huge ecological importance of this host-virus interaction, the ability to assess its spatial and temporal dynamics and its possible impact on nutrient fluxes is limited by current approaches that focus on quantification of viral abundance and biodiversity. Here, we applied a host and virus gene expression analysis as a sensitive tool to quantify the dynamics of this interaction during a natural E. huxleyi bloom in the North Atlantic. We used viral gene expression profiling as an index for the level of active infection and showed that the latter correlated with water column depth. Intriguingly, this suggests a possible sinking mechanism for removing infected cells as aggregates from the E. huxleyi population in the surface layer into deeper waters. Viral infection was also highly correlated with induction of host metabolic genes involved in host life cycle, sphingolipid, and antioxidant metabolism, providing evidence for modulation of host metabolism under natural conditions. The ability to track and quantify defined phases of infection by monitoring co-expression of viral and host genes, coupled with advance omics approaches, will enable a deeper understanding of the impact that viruses have on the environment.
Collapse
Affiliation(s)
- Uri Sheyn
- Departments of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shilo Rosenwasser
- Departments of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.,The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University, Rehovot, 7610001, Israel
| | - Yoav Lehahn
- Departments of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Noa Barak-Gavish
- Departments of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ron Rotkopf
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Kay D Bidle
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ilan Koren
- Departments of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Daniella Schatz
- Departments of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Assaf Vardi
- Departments of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
21
|
Han D, Nam SI, Kim JH, Stein R, Niessen F, Joe YJ, Park YH, Hur HG. Inference on Paleoclimate Change Using Microbial Habitat Preference in Arctic Holocene Sediments. Sci Rep 2017; 7:9652. [PMID: 28851886 PMCID: PMC5575242 DOI: 10.1038/s41598-017-08757-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022] Open
Abstract
The present study combines data of microbial assemblages with high-resolution paleoceanographic records from Core GC1 recovered in the Chukchi Sea. For the first time, we have demonstrated that microbial habitat preferences are closely linked to Holocene paleoclimate records, and found geological, geochemical, and microbiological evidence for the inference of the sulphate-methane transition zone (SMTZ) in the Chukchi Sea. In Core GC1, the layer of maximum crenarchaeol concentration was localized surrounding the SMTZ. The vertically distributed predominant populations of Gammaproteobacteria and Marine Group II Euryarchaeota (MG-II) were consistent with patterns of the known global SMTZs. MG-II was the most prominent archaeal group, even within the layer of elevated concentrations of crenarchaeol, an archaeal lipid biomarker most commonly used for Marine Group I Thaumarchaeota (MG-I). The distribution of MG-I and MG-II in Core GC1, as opposed to the potential contribution of MG-I to the marine tetraether lipid pool, suggests that the application of glycerol dibiphytanyl glycerol tetraethers (GDGT)-based proxies needs to be carefully considered in the subsurface sediments owing to the many unknowns of crenarchaeol. In conclusion, microbiological profiles integrated with geological records seem to be useful for tracking microbial habitat preference, which reflect climate-triggered changes from the paleodepositional environment.
Collapse
Affiliation(s)
- Dukki Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Seung-Il Nam
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
| | - Ji-Hoon Kim
- Petroleum and Marine Research Division, Korea Institute of Geosciences and Mineral Resources, 124 Gwahang-no Yuseong-gu, Daejeon, 34131, Republic of Korea
| | - Ruediger Stein
- Alfred Wegener Institute (AWI) Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 26, Bremerhaven, 27568, Germany.,Department of Geosciences (FB5), Klagenfurter Str. 4, University of Bremen, 28359, Bremen, Germany
| | - Frank Niessen
- Alfred Wegener Institute (AWI) Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 26, Bremerhaven, 27568, Germany
| | - Young Jin Joe
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Yu-Hyeon Park
- Division of Earth Environmental System, Pusan National University, Busan, 609-735, Republic of Korea
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
22
|
Vuillemin A, Horn F, Alawi M, Henny C, Wagner D, Crowe SA, Kallmeyer J. Preservation and Significance of Extracellular DNA in Ferruginous Sediments from Lake Towuti, Indonesia. Front Microbiol 2017; 8:1440. [PMID: 28798742 PMCID: PMC5529349 DOI: 10.3389/fmicb.2017.01440] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/17/2017] [Indexed: 01/20/2023] Open
Abstract
Extracellular DNA is ubiquitous in soil and sediment and constitutes a dominant fraction of environmental DNA in aquatic systems. In theory, extracellular DNA is composed of genomic elements persisting at different degrees of preservation produced by processes occurring on land, in the water column and sediment. Extracellular DNA can be taken up as a nutrient source, excreted or degraded by microorganisms, or adsorbed onto mineral matrices, thus potentially preserving information from past environments. To test whether extracellular DNA records lacustrine conditions, we sequentially extracted extracellular and intracellular DNA from anoxic sediments of ferruginous Lake Towuti, Indonesia. We applied 16S rRNA gene Illumina sequencing on both fractions to discriminate exogenous from endogenous sources of extracellular DNA in the sediment. Environmental sequences exclusively found as extracellular DNA in the sediment originated from multiple sources. For instance, Actinobacteria, Verrucomicrobia, and Acidobacteria derived from soils in the catchment. Limited primary productivity in the water column resulted in few sequences of Cyanobacteria in the oxic photic zone, whereas stratification of the water body mainly led to secondary production by aerobic and anaerobic heterotrophs. Chloroflexi and Planctomycetes, the main degraders of sinking organic matter and planktonic sequences at the water-sediment interface, were preferentially preserved during the initial phase of burial. To trace endogenous sources of extracellular DNA, we used relative abundances of taxa in the intracellular DNA to define which microbial populations grow, decline or persist at low density with sediment depth. Cell lysis became an important additional source of extracellular DNA, gradually covering previous genetic assemblages as other microbial genera became more abundant with depth. The use of extracellular DNA as nutrient by active microorganisms led to selective removal of sequences with lowest GC contents. We conclude that extracellular DNA preserved in shallow lacustrine sediments reflects the initial environmental context, but is gradually modified and thereby shifts from its stratigraphic context. Discrimination of exogenous and endogenous sources of extracellular DNA allows simultaneously addressing in-lake and post-depositional processes. In deeper sediments, the accumulation of resting stages and sequences from cell lysis would require stringent extraction and specific primers if ancient DNA is targeted.
Collapse
Affiliation(s)
- Aurèle Vuillemin
- GFZ German Research Centre for Geosciences, Section 5.3: GeomicrobiologyPotsdam, Germany
| | - Fabian Horn
- GFZ German Research Centre for Geosciences, Section 5.3: GeomicrobiologyPotsdam, Germany
| | - Mashal Alawi
- GFZ German Research Centre for Geosciences, Section 5.3: GeomicrobiologyPotsdam, Germany
| | - Cynthia Henny
- Research Center for Limnology, Indonesian Institute of SciencesCibinong-Bogor, Indonesia
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section 5.3: GeomicrobiologyPotsdam, Germany
| | - Sean A. Crowe
- Department of Microbiology and Immunology, University of British Columbia, VancouverBC, Canada
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, VancouverBC, Canada
| | - Jens Kallmeyer
- GFZ German Research Centre for Geosciences, Section 5.3: GeomicrobiologyPotsdam, Germany
| |
Collapse
|
23
|
Emerging Interaction Patterns in the Emiliania huxleyi-EhV System. Viruses 2017; 9:v9030061. [PMID: 28327527 PMCID: PMC5371816 DOI: 10.3390/v9030061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 01/25/2023] Open
Abstract
Viruses are thought to be fundamental in driving microbial diversity in the oceanic planktonic realm. That role and associated emerging infection patterns remain particularly elusive for eukaryotic phytoplankton and their viruses. Here we used a vast number of strains from the model system Emiliania huxleyi/Emiliania huxleyi Virus to quantify parameters such as growth rate (µ), resistance (R), and viral production (Vp) capacities. Algal and viral abundances were monitored by flow cytometry during 72-h incubation experiments. The results pointed out higher viral production capacity in generalist EhV strains, and the virus-host infection network showed a strong co-evolution pattern between E. huxleyi and EhV populations. The existence of a trade-off between resistance and growth capacities was not confirmed.
Collapse
|
24
|
Nissimov JI, Pagarete A, Ma F, Cody S, Dunigan DD, Kimmance SA, Allen MJ. Coccolithoviruses: A Review of Cross-Kingdom Genomic Thievery and Metabolic Thuggery. Viruses 2017; 9:v9030052. [PMID: 28335474 PMCID: PMC5371807 DOI: 10.3390/v9030052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 11/24/2022] Open
Abstract
Coccolithoviruses (Phycodnaviridae) infect and lyse the most ubiquitous and successful coccolithophorid in modern oceans, Emiliania huxleyi. So far, the genomes of 13 of these giant lytic viruses (i.e., Emiliania huxleyi viruses—EhVs) have been sequenced, assembled, and annotated. Here, we performed an in-depth comparison of their genomes to try and contextualize the ecological and evolutionary traits of these viruses. The genomes of these EhVs have from 444 to 548 coding sequences (CDSs). Presence/absence analysis of CDSs identified putative genes with particular ecological significance, namely sialidase, phosphate permease, and sphingolipid biosynthesis. The viruses clustered into distinct clades, based on their DNA polymerase gene as well as full genome comparisons. We discuss the use of such clustering and suggest that a gene-by-gene investigation approach may be more useful when the goal is to reveal differences related to functionally important genes. A multi domain “Best BLAST hit” analysis revealed that 84% of the EhV genes have closer similarities to the domain Eukarya. However, 16% of the EhV CDSs were very similar to bacterial genes, contributing to the idea that a significant portion of the gene flow in the planktonic world inter-crosses the domains of life.
Collapse
Affiliation(s)
- Jozef I Nissimov
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK.
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
| | - António Pagarete
- Department of Biology, University of Bergen, Bergen, 7803, Norway.
| | - Fangrui Ma
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583, USA.
| | - Sean Cody
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583, USA.
| | - David D Dunigan
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583, USA.
| | - Susan A Kimmance
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK.
| | - Michael J Allen
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK.
| |
Collapse
|
25
|
Highfield A, Joint I, Gilbert JA, Crawfurd KJ, Schroeder DC. Change in Emiliania huxleyi Virus Assemblage Diversity but Not in Host Genetic Composition during an Ocean Acidification Mesocosm Experiment. Viruses 2017; 9:v9030041. [PMID: 28282890 PMCID: PMC5371796 DOI: 10.3390/v9030041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 11/16/2022] Open
Abstract
Effects of elevated pCO₂ on Emiliania huxleyi genetic diversity and the viruses that infect E. huxleyi (EhVs) have been investigated in large volume enclosures in a Norwegian fjord. Triplicate enclosures were bubbled with air enriched with CO₂ to 760 ppmv whilst the other three enclosures were bubbled with air at ambient pCO₂; phytoplankton growth was initiated by the addition of nitrate and phosphate. E. huxleyi was the dominant coccolithophore in all enclosures, but no difference in genetic diversity, based on DGGE analysis using primers specific to the calcium binding protein gene (gpa) were detected in any of the treatments. Chlorophyll concentrations and primary production were lower in the three elevated pCO₂ treatments than in the ambient treatments. However, although coccolithophores numbers were reduced in two of the high-pCO₂ treatments; in the third, there was no suppression of coccolithophores numbers, which were very similar to the three ambient treatments. In contrast, there was considerable variation in genetic diversity in the EhVs, as determined by analysis of the major capsid protein (mcp) gene. EhV diversity was much lower in the high-pCO₂ treatment enclosure that did not show inhibition of E. huxleyi growth. Since virus infection is generally implicated as a major factor in terminating phytoplankton blooms, it is suggested that no study of the effect of ocean acidification in phytoplankton can be complete if it does not include an assessment of viruses.
Collapse
Affiliation(s)
- Andrea Highfield
- The Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK.
| | - Ian Joint
- The Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK.
| | - Jack A Gilbert
- The Microbiome Centre, Department of Surgery, University of Chicago, Chicago, IL 60637, USA.
- Division of Bioscience, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA.
| | - Katharine J Crawfurd
- Department of Biological Oceanography, NIOZ-Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands.
| | - Declan C Schroeder
- The Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK.
| |
Collapse
|
26
|
Sedimentary DNA Reveals Cyanobacterial Community Diversity over 200 Years in Two Perialpine Lakes. Appl Environ Microbiol 2016; 82:6472-6482. [PMID: 27565621 DOI: 10.1128/aem.02174-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/22/2016] [Indexed: 02/01/2023] Open
Abstract
We reconstructed cyanobacterial community structure and phylogeny using DNA that was isolated from layers of stratified sediments spanning 200 years of lake history in the perialpine lakes Greifensee and Lake Zurich (Switzerland). Community analysis based on amplification and sequencing of a 400-nucleotide (nt)-long 16S rRNA fragment specific to Cyanobacteria revealed operational taxonomic units (OTUs) capturing the whole phylum, including representatives of a newly characterized clade termed Melainabacteria, which shares common ancestry with Cyanobacteria and has not been previously described in lakes. The reconstruction of cyanobacterial richness and phylogenetic structure was validated using a data set consisting of 40 years of pelagic microscopic counts from each lake. We identified the OTUs assigned to common taxa known to be present in Greifensee and Lake Zurich and found a strong and significant relationship (adjusted R2 = 0.89; P < 0.001) between pelagic species richness in water and OTU richness in the sediments. The water-sediment richness relationship varied between cyanobacterial orders, indicating that the richness of Chroococcales and Synechococcales may be underestimated by microscopy. PCR detection of the microcystin synthetase gene mcyA confirmed the presence of potentially toxic cyanobacterial taxa over recent years in Greifensee and throughout the last century in Lake Zurich. The approach presented in this study demonstrates that it is possible to reconstruct past pelagic cyanobacterial communities in lakes where the integrity of the sedimentary archive is well preserved and to explore changes in phylogenetic and functional diversity over decade-to-century timescales. IMPORTANCE Cyanobacterial blooms can produce toxins that affect water quality, especially under eutrophic conditions, which are a consequence of human-induced climate warming and increased nutrient availability. Lakes worldwide have suffered from regular cyanobacterial blooms over the last century. The lack of long-term data limits our understanding of how these blooms form. We successfully reconstructed the past diversity of whole cyanobacterial communities over two hundred years by sequencing genes preserved in the sediments of two perialpine lakes in Switzerland. We identified changes in diversity over time and validated our results using existing data collected in the same two lakes over the past 40 years. This work shows the potential of our approach for addressing important ecological questions about the effects of a changing environment on lake ecology.
Collapse
|
27
|
Rivera-Perez JI, Santiago-Rodriguez TM, Toranzos GA. Paleomicrobiology: a Snapshot of Ancient Microbes and Approaches to Forensic Microbiology. Microbiol Spectr 2016; 4:10.1128/microbiolspec.EMF-0006-2015. [PMID: 27726770 PMCID: PMC5287379 DOI: 10.1128/microbiolspec.emf-0006-2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 01/14/2023] Open
Abstract
Paleomicrobiology, or the study of ancient microorganisms, has raised both fascination and skepticism for many years. While paleomicrobiology is not a recent field, the application of emerging techniques, such as DNA sequencing, is proving essential and has provided novel information regarding the evolution of viruses, antibiotic resistance, saprophytes, and pathogens, as well as ancient health and disease status, cultural customs, ethnic diets, and historical events. In this review, we highlight the importance of studying ancient microbial DNA, its contributions to current knowledge, and the role that forensic paleomicrobiology has played in deciphering historical enigmas. We also discuss the emerging techniques used to study the microbial composition of ancient samples as well as major concerns that accompany ancient DNA analyses.
Collapse
|
28
|
Virocell Metabolism: Metabolic Innovations During Host-Virus Interactions in the Ocean. Trends Microbiol 2016; 24:821-832. [PMID: 27395772 DOI: 10.1016/j.tim.2016.06.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 11/24/2022]
Abstract
Marine viruses are considered to be major ecological, evolutionary, and biogeochemical drivers of the marine environment, responsible for nutrient recycling and determining species composition. Viruses can re-shape their host's metabolic network during infection, generating the virocell-a unique metabolic state that supports their specific requirement. Here we discuss the concept of 'virocell metabolism' and its formation by rewiring of host-encoded metabolic networks, or by introducing virus-encoded auxiliary metabolic genes which provide the virocell with novel metabolic capabilities. The ecological role of marine viruses is commonly assessed by their relative abundance and phylogenetic diversity, lacking the ability to assess the dynamics of active viral infection. The new ability to define a unique metabolic state of the virocell will expand the current virion-centric approaches in order to quantify the impact of marine viruses on microbial food webs.
Collapse
|
29
|
Torti A, Lever MA, Jørgensen BB. Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Mar Genomics 2015; 24 Pt 3:185-96. [DOI: 10.1016/j.margen.2015.08.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 08/29/2015] [Indexed: 12/17/2022]
|
30
|
Nissimov JI, Napier JA, Allen MJ, Kimmance SA. Intragenus competition between coccolithoviruses: an insight on how a select few can come to dominate many. Environ Microbiol 2015; 18:133-45. [PMID: 25970076 DOI: 10.1111/1462-2920.12902] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 03/20/2015] [Accepted: 05/04/2015] [Indexed: 11/27/2022]
Abstract
Viruses are a major cause of coccolithophore bloom demise in both temperate and sub-temperate oceanic regions. Most infection studies on coccolithoviruses have been conducted with a single virus strain, and the effect of intragenus competition by closely related coccolithoviruses has been ignored. Here we conducted combined infection experiments, infecting Emiliania huxleyi CCMP 2090 with two coccolithoviruses: EhV-86 and EhV-207 both simultaneously and independently. EhV-207 displayed a shorter lytic cycle and increased production potential than EhV-86 and was remarkably superior under competitive conditions. Although the viruses displayed identical adsorption kinetics in the first 2 h post infection, EhV-207 gained a numerical advantage as early as 8 h post infection. Quantitative polymerase chain reaction (PCR) revealed that when infecting in combination, EhV-207 was not affected by the presence of EhV-86, whereas EhV-86 was quickly out-competed, and a significant reduction in free and cell-associated EhV-86 was seen as early as 2 days after the initial infection. The observation of such clear phenotypic differences between genetically distinct, yet similar, coccolithovirus strains, by flow cytometry and quantitative real-time PCR allowed tentative links to the burgeoning genomic, transcriptomic and metabolic data to be made and the factors driving their selection, in particular to the de novo coccolithovirus-encoded sphingolipid biosynthesis pathway. This work illustrates that, even within a family, not all viruses are created equally, and the potential exists for relatively small genetic changes to infer disproportionately large competitive advantages for one coccolithovirus over another, ultimately leading to a few viruses dominating the many.
Collapse
Affiliation(s)
- Jozef I Nissimov
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
| | - Johnathan A Napier
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Michael J Allen
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
| | - Susan A Kimmance
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
| |
Collapse
|
31
|
Abstract
Marine viruses constitute a major ecological and evolutionary driving force in the marine ecosystems. However, their dispersal mechanisms remain underexplored. Here we follow the dynamics of Emiliania huxleyi viruses (EhV) that infect the ubiquitous, bloom-forming phytoplankton E. huxleyi and show that EhV are emitted to the atmosphere as primary marine aerosols. Using a laboratory-based setup, we showed that the dynamic of EhV aerial emission is strongly coupled to the host-virus dynamic in the culture media. In addition, we recovered EhV DNA from atmospheric samples collected over an E. huxleyi bloom in the North Atlantic, providing evidence for aerosolization of marine viruses in their natural environment. Decay rate analysis in the laboratory revealed that aerosolized viruses can remain infective under meteorological conditions prevailing during E. huxleyi blooms in the ocean, allowing potential dispersal and infectivity over hundreds of kilometers. Based on the combined laboratory and in situ findings, we propose that atmospheric transport of EhV is an effective transmission mechanism for spreading viral infection over large areas in the ocean. This transmission mechanism may also have an important ecological impact on the large-scale host-virus "arms race" during bloom succession and consequently the turnover of carbon in the ocean.
Collapse
|
32
|
von Dassow P, John U, Ogata H, Probert I, Bendif EM, Kegel JU, Audic S, Wincker P, Da Silva C, Claverie JM, Doney S, Glover DM, Flores DM, Herrera Y, Lescot M, Garet-Delmas MJ, de Vargas C. Life-cycle modification in open oceans accounts for genome variability in a cosmopolitan phytoplankton. ISME JOURNAL 2014; 9:1365-77. [PMID: 25461969 PMCID: PMC4438323 DOI: 10.1038/ismej.2014.221] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/08/2014] [Accepted: 10/17/2014] [Indexed: 11/30/2022]
Abstract
Emiliania huxleyi is the most abundant calcifying plankton in modern oceans with substantial intraspecific genome variability and a biphasic life cycle involving sexual alternation between calcified 2N and flagellated 1N cells. We show that high genome content variability in Emiliania relates to erosion of 1N-specific genes and loss of the ability to form flagellated cells. Analysis of 185 E. huxleyi strains isolated from world oceans suggests that loss of flagella occurred independently in lineages inhabiting oligotrophic open oceans over short evolutionary timescales. This environmentally linked physiogenomic change suggests life cycling is not advantageous in very large/diluted populations experiencing low biotic pressure and low ecological variability. Gene loss did not appear to reflect pressure for genome streamlining in oligotrophic oceans as previously observed in picoplankton. Life-cycle modifications might be common in plankton and cause major functional variability to be hidden from traditional taxonomic or molecular markers.
Collapse
Affiliation(s)
- Peter von Dassow
- 1] Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile [2] UMI 3614, Evolutionary Biology and Ecology of Algae, CNRS, UPMC Sorbonne Universités, PUCCh, UACH, Station Biologique de Roscoff, Roscoff, France [3] Instituto Milenio de Oceanografía, Concepción, Chile [4] CNRS UMR 7144 and UMPC, Evolution of Pelagic Ecosystems and Protists (EPEP), CNRS, UPMC, Station Biologique de Roscoff, Roscoff, France
| | - Uwe John
- Alfred Wegener Institute Helmhotz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Hiroyuki Ogata
- 1] Institute for Chemical Research, Kyoto University, Kyoto, Japan [2] CNRS, Aix-Marseille Université, Laboratoire Information Génomique et Structurale (UMR 7256), Mediterranean Institute of Microbiology (FR 3479), Marseille, France
| | - Ian Probert
- CNRS-UMPC, FR2424, Roscoff Culture Collection, Station Biologique de Roscoff, Roscoff, France
| | - El Mahdi Bendif
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, UK
| | - Jessica U Kegel
- Alfred Wegener Institute Helmhotz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Stéphane Audic
- CNRS UMR 7144 and UMPC, Evolution of Pelagic Ecosystems and Protists (EPEP), CNRS, UPMC, Station Biologique de Roscoff, Roscoff, France
| | | | | | - Jean-Michel Claverie
- CNRS, Aix-Marseille Université, Laboratoire Information Génomique et Structurale (UMR 7256), Mediterranean Institute of Microbiology (FR 3479), Marseille, France
| | - Scott Doney
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - David M Glover
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Daniella Mella Flores
- 1] Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile [2] UMI 3614, Evolutionary Biology and Ecology of Algae, CNRS, UPMC Sorbonne Universités, PUCCh, UACH, Station Biologique de Roscoff, Roscoff, France
| | - Yeritza Herrera
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magali Lescot
- CNRS, Aix-Marseille Université, Laboratoire Information Génomique et Structurale (UMR 7256), Mediterranean Institute of Microbiology (FR 3479), Marseille, France
| | - Marie-José Garet-Delmas
- CNRS UMR 7144 and UMPC, Evolution of Pelagic Ecosystems and Protists (EPEP), CNRS, UPMC, Station Biologique de Roscoff, Roscoff, France
| | - Colomban de Vargas
- CNRS UMR 7144 and UMPC, Evolution of Pelagic Ecosystems and Protists (EPEP), CNRS, UPMC, Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
33
|
Ng TFF, Chen LF, Zhou Y, Shapiro B, Stiller M, Heintzman PD, Varsani A, Kondov NO, Wong W, Deng X, Andrews TD, Moorman BJ, Meulendyk T, MacKay G, Gilbertson RL, Delwart E. Preservation of viral genomes in 700-y-old caribou feces from a subarctic ice patch. Proc Natl Acad Sci U S A 2014; 111:16842-7. [PMID: 25349412 PMCID: PMC4250163 DOI: 10.1073/pnas.1410429111] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viruses preserved in ancient materials provide snapshots of past viral diversity and a means to trace viral evolution through time. Here, we use a metagenomics approach to identify filterable and nuclease-resistant nucleic acids preserved in 700-y-old caribou feces frozen in a permanent ice patch. We were able to recover and characterize two viruses in replicated experiments performed in two different laboratories: a small circular DNA viral genome (ancient caribou feces associated virus, or aCFV) and a partial RNA viral genome (Ancient Northwest Territories cripavirus, or aNCV). Phylogenetic analysis identifies aCFV as distantly related to the plant-infecting geminiviruses and the fungi-infecting Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 and aNCV as within the insect-infecting Cripavirus genus. We hypothesize that these viruses originate from plant material ingested by caribou or from flying insects and that their preservation can be attributed to protection within viral capsids maintained at cold temperatures. To investigate the tropism of aCFV, we used the geminiviral reverse genetic system and introduced a multimeric clone into the laboratory model plant Nicotiana benthamiana. Evidence for infectivity came from the detection of viral DNA in newly emerged leaves and the precise excision of the viral genome from the multimeric clones in inoculated leaves. Our findings indicate that viral genomes may in some circumstances be protected from degradation for centuries.
Collapse
Affiliation(s)
- Terry Fei Fan Ng
- Blood Systems Research Institute, San Francisco, CA 94118; Department of Laboratory Medicine, University of California, San Francisco, CA 94118
| | - Li-Fang Chen
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Yanchen Zhou
- Blood Systems Research Institute, San Francisco, CA 94118; Department of Laboratory Medicine, University of California, San Francisco, CA 94118
| | - Beth Shapiro
- Department of Ecology & Evolutionary Biology, University of California, Santa Cruz, CA 95064
| | - Mathias Stiller
- Department of Ecology & Evolutionary Biology, University of California, Santa Cruz, CA 95064
| | - Peter D Heintzman
- Department of Ecology & Evolutionary Biology, University of California, Santa Cruz, CA 95064
| | - Arvind Varsani
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611; Electron Microscope Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | | | - Walt Wong
- Blood Systems Research Institute, San Francisco, CA 94118
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, CA 94118; Department of Laboratory Medicine, University of California, San Francisco, CA 94118
| | - Thomas D Andrews
- Prince of Wales Northern Heritage Centre, Government of the Northwest Territories, Yellowknife, NT, Canada X1A2L9
| | - Brian J Moorman
- Department of Geography, University of Calgary, Calgary, AB, Canada T2N1N4; and
| | - Thomas Meulendyk
- Department of Physical and Environmental Sciences, University of Toronto, Scarborough, Toronto, Ontario, Canada M1C1A4
| | - Glen MacKay
- Prince of Wales Northern Heritage Centre, Government of the Northwest Territories, Yellowknife, NT, Canada X1A2L9
| | | | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA 94118; Department of Laboratory Medicine, University of California, San Francisco, CA 94118;
| |
Collapse
|
34
|
How many Coccolithovirus genotypes does it take to terminate an Emiliania huxleyi bloom? Virology 2014; 466-467:138-45. [DOI: 10.1016/j.virol.2014.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/08/2014] [Accepted: 07/11/2014] [Indexed: 11/22/2022]
|
35
|
Pawłowska J, Lejzerowicz F, Esling P, Szczuciński W, Zajączkowski M, Pawlowski J. Ancient DNA sheds new light on the Svalbard foraminiferal fossil record of the last millennium. GEOBIOLOGY 2014; 12:277-288. [PMID: 24730667 DOI: 10.1111/gbi.12087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 04/19/2014] [Indexed: 06/03/2023]
Abstract
Recent palaeogenetic studies have demonstrated the occurrence of preserved ancient DNA (aDNA) in various types of fossilised material. Environmental aDNA sequences assigned to modern species have been recovered from marine sediments dating to the Pleistocene. However, the match between the aDNA and the fossil record still needs to be evaluated for the environmental DNA approaches to be fully exploited. Here, we focus on foraminifera in sediments up to one thousand years old retrieved from the Hornsund fjord (Svalbard). We compared the diversity of foraminiferal microfossil assemblages with the diversity of aDNA sequenced from subsurface sediment samples using both cloning and high-throughput sequencing (HTS). Our study shows that 57% of the species archived in the fossil record were also detected in the aDNA data. However, the relative abundance of aDNA sequence reads and fossil specimens differed considerably. We also found a limited match between the stratigraphic occurrence of some fossil species and their aDNA sequences, especially in the case of rare taxa. The aDNA data comprised a high proportion of non-fossilised monothalamous species, which are known to dominate in modern foraminiferal communities of the Svalbard region. Our results confirm the relevance of HTS for studying past micro-eukaryotic diversity and provide insight into its ability to reflect fossil assemblages. Palaeogenetic studies including aDNA analyses of non-fossilised groups expand the range of palaeoceanographical proxies and therefore may increase the accuracy of palaeoenvironmental reconstructions.
Collapse
Affiliation(s)
- J Pawłowska
- Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | | | | | | | | | | |
Collapse
|
36
|
Pagarete A, Kusonmano K, Petersen K, Kimmance SA, Martínez Martínez J, Wilson WH, Hehemann JH, Allen MJ, Sandaa RA. Dip in the gene pool: metagenomic survey of natural coccolithovirus communities. Virology 2014; 466-467:129-37. [PMID: 24947907 DOI: 10.1016/j.virol.2014.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/23/2014] [Accepted: 05/18/2014] [Indexed: 11/30/2022]
Abstract
Despite the global oceanic distribution and recognised biogeochemical impact of coccolithoviruses (EhV), their diversity remains poorly understood. Here we employed a metagenomic approach to study the occurrence and progression of natural EhV community genomic variability. Analysis of EhV metagenomes from the early and late stages of an induced bloom led to three main discoveries. First, we observed resilient and specific genomic signatures in the EhV community associated with the Norwegian coast, which reinforce the existence of limitations to the capacity of dispersal and genomic exchange among EhV populations. Second, we identified a hyper-variable region (approximately 21kbp long) in the coccolithovirus genome. Third, we observed a clear trend for EhV relative amino-acid diversity to reduce from early to late stages of the bloom. This study validated two new methodological combinations, and proved very useful in the discovery of new genomic features associated with coccolithovirus natural communities.
Collapse
Affiliation(s)
| | | | - Kjell Petersen
- Computational Biology Unit, University of Bergen, Norway
| | | | | | - William H Wilson
- Plymouth Marine Laboratory, Plymouth, UK; Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - Jan-Hendrik Hehemann
- Department of Civil & Environmental Engineering, Massachusetts Institute of Technology, USA
| | | | | |
Collapse
|
37
|
Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc Natl Acad Sci U S A 2014; 111:4274-9. [PMID: 24591590 DOI: 10.1073/pnas.1320670111] [Citation(s) in RCA: 316] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The largest known DNA viruses infect Acanthamoeba and belong to two markedly different families. The Megaviridae exhibit pseudo-icosahedral virions up to 0.7 μm in diameter and adenine-thymine (AT)-rich genomes of up to 1.25 Mb encoding a thousand proteins. Like their Mimivirus prototype discovered 10 y ago, they entirely replicate within cytoplasmic virion factories. In contrast, the recently discovered Pandoraviruses exhibit larger amphora-shaped virions 1 μm in length and guanine-cytosine-rich genomes up to 2.8 Mb long encoding up to 2,500 proteins. Their replication involves the host nucleus. Whereas the Megaviridae share some general features with the previously described icosahedral large DNA viruses, the Pandoraviruses appear unrelated to them. Here we report the discovery of a third type of giant virus combining an even larger pandoravirus-like particle 1.5 μm in length with a surprisingly smaller 600 kb AT-rich genome, a gene content more similar to Iridoviruses and Marseillevirus, and a fully cytoplasmic replication reminiscent of the Megaviridae. This suggests that pandoravirus-like particles may be associated with a variety of virus families more diverse than previously envisioned. This giant virus, named Pithovirus sibericum, was isolated from a >30,000-y-old radiocarbon-dated sample when we initiated a survey of the virome of Siberian permafrost. The revival of such an ancestral amoeba-infecting virus used as a safe indicator of the possible presence of pathogenic DNA viruses, suggests that the thawing of permafrost either from global warming or industrial exploitation of circumpolar regions might not be exempt from future threats to human or animal health.
Collapse
|
38
|
Nissimov JI, Jones M, Napier JA, Munn CB, Kimmance SA, Allen MJ. Functional inferences of environmental coccolithovirus biodiversity. Virol Sin 2013; 28:291-302. [PMID: 24006045 DOI: 10.1007/s12250-013-3362-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/12/2013] [Indexed: 11/25/2022] Open
Abstract
The cosmopolitan calcifying alga Emiliania huxleyi is one of the most abundant bloom forming coccolithophore species in the oceans and plays an important role in global biogeochemical cycling. Coccolithoviruses are a major cause of coccolithophore bloom termination and have been studied in laboratory, mesocosm and open ocean studies. However, little is known about the dynamic interactions between the host and its viruses, and less is known about the natural diversity and role of functionally important genes within natural coccolithovirus communities. Here, we investigate the temporal and spatial distribution of coccolithoviruses by the use of molecular fingerprinting techniques PCR, DGGE and genomic sequencing. The natural biodiversity of the virus genes encoding the major capsid protein (MCP) and serine palmitoyltransferase (SPT) were analysed in samples obtained from the Atlantic Meridional Transect (AMT), the North Sea and the L4 site in the Western Channel Observatory. We discovered nine new coccolithovirus genotypes across the AMT and L4 site, with the majority of MCP sequences observed at the deep chlorophyll maximum layer of the sampled sites on the transect. We also found four new SPT gene variations in the North Sea and at L4. Their translated fragments and the full protein sequence of SPT from laboratory strains EhV-86 and EhV-99B1 were modelled and revealed that the theoretical fold differs among strains. Variation identified in the structural distance between the two domains of the SPT protein may have an impact on the catalytic capabilities of its active site. In summary, the combined use of 'standard' markers (i.e. MCP), in combination with metabolically relevant markers (i.e. SPT) are useful in the study of the phylogeny and functional biodiversity of coccolithoviruses, and can provide an interesting intracellular insight into the evolution of these viruses and their ability to infect and replicate within their algal hosts.
Collapse
Affiliation(s)
- Jozef I Nissimov
- Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK
| | | | | | | | | | | |
Collapse
|
39
|
Stock A, Edgcomb V, Orsi W, Filker S, Breiner HW, Yakimov MM, Stoeck T. Evidence for isolated evolution of deep-sea ciliate communities through geological separation and environmental selection. BMC Microbiol 2013. [PMID: 23834625 DOI: 10.1186/1471‐2180‐13‐150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deep hypersaline anoxic basins (DHABs) are isolated habitats at the bottom of the eastern Mediterranean Sea, which originate from the ancient dissolution of Messinian evaporites. The different basins have recruited their original biota from the same source, but their geological evolution eventually constituted sharp environmental barriers, restricting genetic exchange between the individual basins. Therefore, DHABs are unique model systems to assess the effect of geological events and environmental conditions on the evolution and diversification of protistan plankton. Here, we examine evidence for isolated evolution of unicellular eukaryote protistan plankton communities driven by geological separation and environmental selection. We specifically focused on ciliated protists as a major component of protistan DHAB plankton by pyrosequencing the hypervariable V4 fragment of the small subunit ribosomal RNA. Geospatial distributions and responses of marine ciliates to differential hydrochemistries suggest strong physical and chemical barriers to dispersal that influence the evolution of this plankton group. RESULTS Ciliate communities in the brines of four investigated DHABs are distinctively different from ciliate communities in the interfaces (haloclines) immediately above the brines. While the interface ciliate communities from different sites are relatively similar to each other, the brine ciliate communities are significantly different between sites. We found no distance-decay relationship, and canonical correspondence analyses identified oxygen and sodium as most important hydrochemical parameters explaining the partitioning of diversity between interface and brine ciliate communities. However, none of the analyzed hydrochemical parameters explained the significant differences between brine ciliate communities in different basins. CONCLUSIONS Our data indicate a frequent genetic exchange in the deep-sea water above the brines. The "isolated island character" of the different brines, that resulted from geological events and contemporary environmental conditions, create selective pressures driving evolutionary processes, and with time, lead to speciation and shape protistan community composition. We conclude that community assembly in DHABs is a mixture of isolated evolution (as evidenced by small changes in V4 primary structure in some taxa) and species sorting (as indicated by the regional absence/presence of individual taxon groups on high levels in taxonomic hierarchy).
Collapse
Affiliation(s)
- Alexandra Stock
- University of Kaiserslautern, School of Biology, Erwin-Schroedinger-Str, 14, D-67663 Kaiserslautern, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Stock A, Edgcomb V, Orsi W, Filker S, Breiner HW, Yakimov MM, Stoeck T. Evidence for isolated evolution of deep-sea ciliate communities through geological separation and environmental selection. BMC Microbiol 2013; 13:150. [PMID: 23834625 PMCID: PMC3707832 DOI: 10.1186/1471-2180-13-150] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 05/15/2013] [Indexed: 12/01/2022] Open
Abstract
Background Deep hypersaline anoxic basins (DHABs) are isolated habitats at the bottom of the eastern Mediterranean Sea, which originate from the ancient dissolution of Messinian evaporites. The different basins have recruited their original biota from the same source, but their geological evolution eventually constituted sharp environmental barriers, restricting genetic exchange between the individual basins. Therefore, DHABs are unique model systems to assess the effect of geological events and environmental conditions on the evolution and diversification of protistan plankton. Here, we examine evidence for isolated evolution of unicellular eukaryote protistan plankton communities driven by geological separation and environmental selection. We specifically focused on ciliated protists as a major component of protistan DHAB plankton by pyrosequencing the hypervariable V4 fragment of the small subunit ribosomal RNA. Geospatial distributions and responses of marine ciliates to differential hydrochemistries suggest strong physical and chemical barriers to dispersal that influence the evolution of this plankton group. Results Ciliate communities in the brines of four investigated DHABs are distinctively different from ciliate communities in the interfaces (haloclines) immediately above the brines. While the interface ciliate communities from different sites are relatively similar to each other, the brine ciliate communities are significantly different between sites. We found no distance-decay relationship, and canonical correspondence analyses identified oxygen and sodium as most important hydrochemical parameters explaining the partitioning of diversity between interface and brine ciliate communities. However, none of the analyzed hydrochemical parameters explained the significant differences between brine ciliate communities in different basins. Conclusions Our data indicate a frequent genetic exchange in the deep-sea water above the brines. The “isolated island character” of the different brines, that resulted from geological events and contemporary environmental conditions, create selective pressures driving evolutionary processes, and with time, lead to speciation and shape protistan community composition. We conclude that community assembly in DHABs is a mixture of isolated evolution (as evidenced by small changes in V4 primary structure in some taxa) and species sorting (as indicated by the regional absence/presence of individual taxon groups on high levels in taxonomic hierarchy).
Collapse
Affiliation(s)
- Alexandra Stock
- University of Kaiserslautern, School of Biology, Erwin-Schroedinger-Str, 14, D-67663 Kaiserslautern, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Evolution of the plankton paleome in the Black Sea from the Deglacial to Anthropocene. Proc Natl Acad Sci U S A 2013; 110:8609-14. [PMID: 23650351 DOI: 10.1073/pnas.1219283110] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complex interplay of climate shifts over Eurasia and global sea level changes modulates freshwater and saltwater inputs to the Black Sea. The dynamics of the hydrologic changes from the Late Glacial into the Holocene remain a matter of debate, and information on how these changes affected the ecology of the Black Sea is sparse. Here we used Roche 454 next-generation pyrosequencing of sedimentary 18S rRNA genes to reconstruct the plankton community structure in the Black Sea over the last ca. 11,400 y. We found that 150 of 2,710 species showed a statistically significant response to four environmental stages. Freshwater chlorophytes were the best indicator species for lacustrine conditions (>9.0 ka B.P.), although the copresence of previously unidentified marine taxa indicated that the Black Sea might have been influenced to some extent by the Marmara Sea since at least 9.6 ka calendar (cal) B.P. Dinoflagellates, cercozoa, eustigmatophytes, and haptophytes responded most dramatically to the gradual increase in salinity after the latest marine reconnection and during the warm and moist mid-Holocene climatic optimum. According to paired analysis of deuterium/hydrogen (D/H) isotope ratios in fossil alkenones, salinity increased rapidly with the onset of the dry Subboreal after ~5.2 ka B.P., leading to an increase in marine fungi and the first occurrence of marine copepods. A gradual succession of dinoflagellates, diatoms, and chrysophytes occurred during the refreshening after ~2.5 ka cal B.P. with the onset of the cool and wet Subatlantic climate and recent anthropogenic perturbations.
Collapse
|
42
|
Reusch TBH, Boyd PW. EXPERIMENTAL EVOLUTION MEETS MARINE PHYTOPLANKTON. Evolution 2013; 67:1849-59. [DOI: 10.1111/evo.12035] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 11/29/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Thorsten B. H. Reusch
- Evolutionary Ecology of Marine Fishes; Helmholtz Centre for Ocean Research Kiel GEOMAR; Düsternbrooker Weg 20 24105 Kiel Germany
| | - Philip W. Boyd
- NIWA Centre of Chemical & Physical Oceanography, Department of Chemistry; University of Otago; Dunedin 9012 New Zealand
| |
Collapse
|
43
|
Robinson LF, Siddall M. Palaeoceanography: motivations and challenges for the future. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2012; 370:5540-5566. [PMID: 23129712 DOI: 10.1098/rsta.2012.0396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The ocean interacts with the atmosphere, biosphere and cryosphere in a complex way, modulating climate through the storage and transport of heat, nutrients and carbon. As such, it is important that we understand the ways in which the ocean behaves and the factors that can lead to change. In order to gain this understanding, we need to look back into the past, on time scales from recent decadal-scale change, through the abrupt changes of the Pleistocene and back to times when the Earth's climate was significantly different than the Holocene. A key challenge facing the field of palaeoceanography is to combine data and modelling in a common framework. Coupling palaeo-data and models should improve our knowledge of how the Earth works, and perhaps of more direct societal relevance, might enable us to provide better predictive capabilities in climate modelling. In this discussion paper, we examine the motivations, past successes and challenges facing palaeoceanographic studies. We then suggest a number of areas and approaches that we believe will allow palaeoceanography to continue to provide new insights into processes that affect future climate change.
Collapse
|
44
|
Vardi A, Haramaty L, Van Mooy BAS, Fredricks HF, Kimmance SA, Larsen A, Bidle KD. Host-virus dynamics and subcellular controls of cell fate in a natural coccolithophore population. Proc Natl Acad Sci U S A 2012; 109:19327-32. [PMID: 23134731 PMCID: PMC3511156 DOI: 10.1073/pnas.1208895109] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Marine viruses are major evolutionary and biogeochemical drivers in marine microbial foodwebs. However, an in-depth understanding of the cellular mechanisms and the signal transduction pathways mediating host-virus interactions during natural bloom dynamics has remained elusive. We used field-based mesocosms to examine the "arms race" between natural populations of the coccolithophore Emiliania huxleyi and its double-stranded DNA-containing coccolithoviruses (EhVs). Specifically, we examined the dynamics of EhV infection and its regulation of cell fate over the course of bloom development and demise using a diverse suite of molecular tools and in situ fluorescent staining to target different levels of subcellular resolution. We demonstrate the concomitant induction of reactive oxygen species, caspase-specific activity, metacaspase expression, and programmed cell death in response to the accumulation of virus-derived glycosphingolipids upon infection of natural E. huxleyi populations. These subcellular responses to viral infection simultaneously resulted in the enhanced production of transparent exopolymer particles, which can facilitate aggregation and stimulate carbon flux. Our results not only corroborate the critical role for glycosphingolipids and programmed cell death in regulating E. huxleyi-EhV interactions, but also elucidate promising molecular biomarkers and lipid-based proxies for phytoplankton host-virus interactions in natural systems.
Collapse
Affiliation(s)
- Assaf Vardi
- Environmental Biophysics and Molecular Ecology Group, Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901
| | - Liti Haramaty
- Environmental Biophysics and Molecular Ecology Group, Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901
| | - Benjamin A. S. Van Mooy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
| | - Helen F. Fredricks
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
| | - Susan A. Kimmance
- Plymouth Marine Laboratory, The Hoe, Plymouth PL1 3DH, United Kingdom; and
| | - Aud Larsen
- Uni Environment, Uni Research, NO-5020 Bergen, Norway
| | - Kay D. Bidle
- Environmental Biophysics and Molecular Ecology Group, Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901
| |
Collapse
|
45
|
Early anthropogenic transformation of the Danube-Black Sea system. Sci Rep 2012; 2:582. [PMID: 22937219 PMCID: PMC3430877 DOI: 10.1038/srep00582] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 08/01/2012] [Indexed: 11/18/2022] Open
Abstract
Over the last century humans have altered the export of fluvial materials leading to significant changes in morphology, chemistry, and biology of the coastal ocean. Here we present sedimentary, paleoenvironmental and paleogenetic evidence to show that the Black Sea, a nearly enclosed marine basin, was affected by land use long before the changes of the Industrial Era. Although watershed hydroclimate was spatially and temporally variable over the last ~3000 years, surface salinity dropped systematically in the Black Sea. Sediment loads delivered by Danube River, the main tributary of the Black Sea, significantly increased as land use intensified in the last two millennia, which led to a rapid expansion of its delta. Lastly, proliferation of diatoms and dinoflagellates over the last five to six centuries, when intensive deforestation occurred in Eastern Europe, points to an anthropogenic pulse of river-borne nutrients that radically transformed the food web structure in the Black Sea.
Collapse
|
46
|
Martínez JM, Schroeder DC, Wilson WH. Dynamics and genotypic composition of Emiliania huxleyi and their co-occurring viruses during a coccolithophore bloom in the North Sea. FEMS Microbiol Ecol 2012; 81:315-23. [PMID: 22404582 DOI: 10.1111/j.1574-6941.2012.01349.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/19/2011] [Accepted: 02/23/2012] [Indexed: 11/30/2022] Open
Abstract
We studied the temporal succession of vertical profiles of Emiliania huxleyi and their specific viruses (EhVs) during the progression of a natural phytoplankton bloom in the North Sea in June 1999. Genotypic richness was assessed by exploiting the variations in a gene encoding a protein with calcium-binding motifs (GPA) for E. huxleyi and in the viral major capsid protein gene for EhVs. Using denaturing gradient gel electrophoresis and sequencing analysis, we showed at least three different E. huxleyi and EhV genotypic profiles during the period of study, revealing a complex, and changing assemblage at the molecular level. Our results also indicate that the dynamics of EhV genotypes reflect fluctuations in abundance of potential E. huxleyi host cells. The presence and concentration of specific EhVs in the area prior to the bloom, or EhVs transported into the area by different water masses, are significant factors affecting the structure and intraspecific succession of E. huxleyi during the phytoplankton bloom.
Collapse
|
47
|
Abstract
Because viruses of eukaryotic algae are incredibly diverse, sweeping generalizations about their ecology are rare. These obligate parasites infect a range of algae and their diversity can be illustrated by considering that isolates range from small particles with ssRNA genomes to much larger particles with 560 kb dsDNA genomes. Molecular research has also provided clues about the extent of their diversity especially considering that genetic signatures of algal viruses in the environment rarely match cultivated viruses. One general concept in algal virus ecology that has emerged is that algal viruses are very host specific and most infect only certain strains of their hosts; with the exception of viruses of brown algae, evidence for interspecies infectivity is lacking. Although some host-virus systems behave with boom-bust oscillations, complex patterns of intraspecies infectivity can lead to host-virus coexistence obfuscating the role of viruses in host population dynamics. Within the framework of population dynamics, host density dependence is an important phenomenon that influences virus abundances in nature. Variable burst sizes of different viruses also influence their abundances and permit speculations about different life strategies, but as exceptions are common in algal virus ecology, life strategy generalizations may not be broadly applicable. Gaps in knowledge of virus seasonality and persistence are beginning to close and investigations of environmental reservoirs and virus resilience may answer questions about virus inter-annual recurrences. Studies of algal mortality have shown that viruses are often important agents of mortality reinforcing notions about their ecological relevance, while observations of the surprising ways viruses interact with their hosts highlight the immaturity of our understanding. Considering that just two decades ago algal viruses were hardly acknowledged, recent progress affords the optimistic perspective that future studies will provide keys to unlocking our understanding of algal virus ecology specifically, and aquatic ecosystems generally.
Collapse
Affiliation(s)
- Steven M Short
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada.
| |
Collapse
|
48
|
Prasinoviruses of the marine green alga Ostreococcus tauri are mainly species specific. J Virol 2012; 86:4611-9. [PMID: 22318150 DOI: 10.1128/jvi.07221-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prasinoviruses infecting unicellular green algae in the order Mamiellales (class Mamiellophyceae) are commonly found in coastal marine waters where their host species frequently abound. We tested 40 Ostreococcus tauri viruses on 13 independently isolated wild-type O. tauri strains, 4 wild-type O. lucimarinus strains, 1 Ostreococcus sp. ("Ostreococcus mediterraneus") clade D strain, and 1 representative species of each of two other related species of Mamiellales, Bathycoccus prasinos and Micromonas pusilla. Thirty-four out of 40 viruses infected only O. tauri, 5 could infect one other species of the Ostreococcus genus, and 1 infected two other Ostreococcus spp., but none of them infected the other genera. We observed that the overall susceptibility pattern of Ostreococcus strains to viruses was related to the size of two host chromosomes known to show intraspecific size variations, that genetically related viruses tended to infect the same host strains, and that viruses carrying inteins were strictly strain specific. Comparison of two complete O. tauri virus proteomes revealed at least three predicted proteins to be candidate viral specificity determinants.
Collapse
|
49
|
Boere AC, Rijpstra WIC, De Lange GJ, Sinninghe Damsté JS, Coolen MJL. Preservation potential of ancient plankton DNA in Pleistocene marine sediments. GEOBIOLOGY 2011; 9:377-393. [PMID: 21884361 DOI: 10.1111/j.1472-4669.2011.00290.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Recent studies have shown that ancient plankton DNA can be recovered from Holocene lacustrine and marine sediments, including from species that do not leave diagnostic microscopic fossils in the sediment record. Therefore, the analysis of this so-called fossil plankton DNA is a promising approach for refining paleoecological and paleoenvironmental information. However, further studies are needed to reveal whether DNA of past plankton is preserved beyond the Holocene. Here, we identified past eukaryotic plankton members based on 18S rRNA gene profiling in eastern Mediterranean Holocene and Pleistocene sapropels S1 (~9 ka), S3 (~80 ka), S4 (~105 ka), and S5 (~125 ka). The majority of preserved ~400- to 500-bp-long 18S rDNA fragments of microalgae that were studied in detail (i.e. from haptophyte algae and dinoflagellates) were found in the youngest sapropel S1, whereas their specific lipid biomarkers (long-chain alkenones and dinosterol) were also abundant in sediments deposited between 80 and 124 ka BP. The late-Pleistocene sediments mainly contained eukaryotic DNA of marine fungi and from terrestrial plants, which could have been introduced via the river Nile at the time of deposition and preserved in pollen grains. A parallel analysis of Branched and Isoprenoid Tetraethers (i.e. BIT index) showed that most of the organic matter in the eastern Mediterranean sediment record was of marine (e.g. pelagic) origin. Therefore, the predominance of terrestrial plant DNA over plankton DNA in older sapropels suggests a preferential degradation of marine plankton DNA.
Collapse
Affiliation(s)
- A C Boere
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | | | | | | | | |
Collapse
|
50
|
Timeline of the ancient mariners. Nat Rev Microbiol 2011. [DOI: 10.1038/nrmicro2641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|